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Transient instability in long, tilted water columns
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We study the stability of unsteady particle-laden flows in long, tilted water columns in
batch settling mode, where the quasi-steady assumption of base flow no longer holds for
the fast settling of particles. For this purpose, we introduce a settling time scale in the
momentum and transport equations to solve the unsteady base flow, and utilise non-modal
analysis to examine the stability of the disturbance flow field. The base flow increases
in magnitude as the settling speed decreases and attains its maximum value when the
settling speed becomes infinitesimal. The time evolution of the disturbance flow energy
experiences an algebraic growth caused by the lift-up mechanism of the wall-normal
disturbance, followed by an exponential growth owing to the shear instability of the base
flow. The streamwise and spanwise wavenumbers corresponding to the peak energy gain
are identified for both stages. In particular, the flow instability is enhanced as the Prandtl
number increases, which is attributed to the sharpening of the particle-laden interface. On
the other hand, the flow instability is suppressed by the increase in settling speed, because
less disturbance energy can be extracted from the base flow. There exists an optimal tilted
angle for efficient sedimentation, where the particle-laden flow is relatively stable and is
accompanied by a smaller energy gain of the disturbance.
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1. Introduction

Many engineering processes apply tilted liquid columns to accelerate the separation
of suspended materials. For example, in sewage systems, heavy wastes can be quickly
removed from water columns when placed in inclined tanks (Smith & Davis 2013).
Typically, centrifuge systems are also designed with centrifuge tubes tilted at certain
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Figure 1. Schematic showing the sedimentation of fine particles in a liquid column («) without inclination and
(b) inclined at an angle 6, in which the white area represents the clear-fluid layer, the grey area is the suspension
layer and the black area is the deposition layer. In the liquid columns, the black arrows indicate the settling of
the particles and the grey arrow indicates the direction of the resulting convective flow.

angles, such that fine suspended materials can be efficiently separated from the carrier fluid
(Al-Fagheri et al. 2017). In such apparatus, the Boycott effect, which was first reported
by Boycott (1920), plays a key role in sedimentation enhancement. The Boycott effect
is a free-convection phenomenon driven by the density difference between particle-free
and particle-laden fluid layers. As shown in figure 1, in a tilted water column, when
a particle-laden fluid layer descends due to the gravity-induced settlement of particles,
a thin layer of clear fluid (i.e. particle-free liquid layer) forms immediately beneath the
downward-facing wall of the liquid column (see figure 15). The presence of the clear-fluid
layer, which does not occur in non-tilted cases (see figure 1a), has a buoyant effect, such
that the clear fluid moves toward the top of the water column along the wall (see figure 10).
The resulting convective motion then pushes the suspension layer (i.e. particle-laden layer)
toward the bottom of the water column, accelerating the sedimentation of suspended fine
materials.

In 1979, Acrivos & Herbolzheimer first developed a theoretical model to describe the
hydrodynamic processes associated with the Boycott effect inside an inclined tube. Under
the assumptions of a Newtonian fluid, Boussinesq approximation and a small-particle
Reynolds number, Acrivos & Herbolzheimer (1979) showed that the flow is dominated
by three dimensionless parameters,

R Hvop’ A H?g(ps — p)co

W Ko
where H is the vertical height of the suspension, vy is the settling velocity of the particles,
0 is the inclined angle, p is the fluid density, w is the fluid viscosity, g is the gravitational
acceleration, p; is the particle density, cp is the initial volume fraction of the suspension
and x is the coordinate normalised by H on the axis along the inlined plate (see figure 15).
In (1.1), R is the sedimentation Reynolds number, A is the ratio of the Grashof number
to R and & is a parameter for quantifying the importance of the inertial effect (Shagfeh
& Acrivos 1986). It was found that, at the limit of A — oco and over the whole range
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of RA~!/3, the model obtains satisfactory results for settlers with a low aspect ratio
(i.e. b/H = O(1), where b is the width of the tube) and in cases with a high aspect
ratio with continuous settling, in which the suspension fluid is continuously supplied
while the clear fluid is continuously removed from the settler. Although the model can be
used to predict the accelerated sedimentation rate given by various physical parameters,
such as the inclined angle, aspect ratio and initial particle concentration, sedimentation
enhancement can be suppressed by flow instabilities owing to the strong shear generated
at the interface between the clear-fluid and suspension layers. A shear instability leads
to travelling waves at the particle-laden interface, which subsequently break and can
be transformed into fine turbulent structures, which resuspend the sedimenting particles
(Chang et al. 2019), thus reducing the enhanced sedimentation efficiency. In this regard,
researchers have performed linear stability analysis to focus on the associated shear
instabilities (Acrivos & Herbolzheimer 1979; Herbolzheimer & Acrivos 1981; Schneider
1982; Shaqgfeh & Acrivos 1986, 1987b).

For a low-aspect-ratio regime, following the similarity solution and its asymptotic form
for a highly viscous fluid (£'/¢ — 0) presented by Acrivos & Herbolzheimer (1979),
Herbolzheimer (1983) further analysed the related interfacial instability. The author
showed that most growing interfacial waves can be convected out of the channel without
causing instabilities. In addition, he also found that among cases with various inclined
angles and particle concentrations, the inception points of the interfacial waves and their
associated amplifications are similar. Prasad (1985) analysed flow instabilities for the
inviscid case (£!/¢ — 00) (Schneider 1982), and showed that flows can be stabilised by
inertia and that particle concentration can damp dispersive waves at the interface.

In between the two extremes of &1/, cases with moderate &1/0 values were investigated
by Shagfeh & Acrivos (1986), who developed a theoretical model to describe the base flow
using perturbation expansion. In their study, the flow field and the influence of flow inertia
for different £!/6 values were analysed. Interfacial instabilities were also investigated by
Shagfeh & Acrivos (1987a) via linear stability analysis and the results were compared with
the experimental results reported by Shaqfeh & Acrivos (1987b). They showed that £1/6 ~
O(1) results in the most unstable mode owing to the inviscid effect, and that this type
of instability exists over the whole range of inclined angles. An important characteristic
in low-aspect-ratio cases is that the thickness of a clear-fluid layer increases along the
x-direction (Acrivos & Herbolzheimer 1979) (see figure 2a) and becomes thicker when
£1/6 increases (Shagfeh & Acrivos 1986).

The studies by Herbolzheimer (1983) and Shaqfeh & Acrivos (1987a) were concerned
with the settling of small particles in a highly viscous fluid, such that the temporal change
in the thickness of the clear-fluid layer owing to particle settling is negligible during the
development of flow instabilities. Moreover, the non-uniform nature in the x-direction of
the base flow validates the linear modal stability analysis of spatially evolving disturbances
for determining the criteria of wave formation in the quasi-steady state. This spatially
varied clear-fluid layer can also be treated as a case in which particles slowly settle in liquid
columns with a continuous settling mode in high-aspect-ratio containers (Herbolzheimer
& Acrivos 1981; Davis, Herbolzheimer & Acrivos 1983; Leung & Probstein 1983). In the
continuous settling mode, to maintain a time-invariant position of the interface, suspended
particles are continuously fed into an inclined tube while clear fluids are withdrawn
from the tube. As a result, the particle-laden interface in the base flow varies along the
x-direction without temporal variation, such that the development of interfacial waves
can be examined in the same way as in the low-aspect-ratio case. The base flow of
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Figure 2. Schematic showing the sedimentation of particles in a tilted liquid column for cases with (a) low
and (b) high aspect ratio, along with (¢) a zoom-in figure of a two-layered flow in the fully developed section
of a high-aspect-ratio case when the particle-laden interface is located at the middle in the y-direction.

the continuously settling mode was first proposed by Herbolzheimer & Acrivos (1981),
and the instability of the particle-laden interface was analysed by Davis et al. (1983).
However, the flow characteristics can differ significantly from high-aspect-ratio cases with
no source and sink, namely the batch settling mode. This finding was first reported by
Herbolzheimer & Acrivos (1981) and Davis et al. (1983), both of whom showed that in the
batch settling mode, a clear-flow region with spatial variation only occupies a small portion
of the water column, and most of the clear-fluid—suspension interface is nearly parallel
to the downward-facing plate, as shown in figure 2(b). Chang et al. (2019) confirmed
these results in their numerical study. Moreover, owing to particle settling, the thickness
of the clear-fluid layer increases with time, resulting in a change in the upward stream
beneath the downward-facing wall, as shown in figure 2(b). These findings regarding the
development of interfacial instabilities in high-aspect-ratio containers differ from those of
previous studies, particularly those pertaining to cases with fast particle settling (i.e. large
particle sizes or low liquid viscosity).

While the associated base-flow field has been studied by Herbolzheimer & Acrivos
(1981) and Amberg & Dahlkild (1987), instabilities in the batch settling mode have not
been explored, even though they can be found in many industrial applications, such
as in wastewater treatment (Sarkar, Kamilya & Mal 2007) and ultracentrifugation in
biochemistry studies (Schachman 2013). In this regard, this study aims to investigate
the temporal evolution of flow disturbances in time-dependent base flows as particles
settle in a tilted, long water column. Unlike the previous study by Davis et al. (1983),
who assumed a continuous particle supply to maintain a time-invariant particle-laden
interface and steady state in the base flow (i.e. the continuous settling mode), we consider
a descending interface due to particle settling and eliminate the assumption of the steady
state for the base flow. By performing a non-modal stability analysis (Trefethen ef al. 1993;
Schmid 2007), we extend the application of the theoretical analysis for the Boycott effect
to the more general case. To the best of our knowledge, this is the first study that focuses
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on the transient behaviour of flow instabilities associated with the Boycott effect in the
batch settling mode in long tubes. We show that for the fast settling of particles, there is
not enough time for the base flow to become fully developed and the associated stability
problem is of an unsteady nature. Therefore, a settling time scale is introduced for the
investigation of the transient behaviour of the base flow. The influence of settling speed
on the magnitude of base flow is thus investigated. Two different stages of energy growth,
namely the algebraic and exponential stages, in the time history are studied, and the main
mechanisms leading to the flow instability in both stages are identified. Moreover, the
optimal range of the tilted angle for efficient sedimentation is studied based on our stability
analysis.

The rest of this paper is organised as follows. Section 2 presents a mathematical
description of the problem, including the base flow, the evolution of the disturbance fields,
and the measure used for the energy growth of the flow. Based on our numerical results,
the effect of particle settling on the base flow is discussed in § 3. In §4, we show the
time history of the energy gain in a general case and present a detailed discussion of the
growth in the energy gain during the stages of algebraic and exponential instabilities. We
discuss the effect of the Prandtl number on the growth of the energy gain in § 6. In § 5,
we consider the energy growth in different cases as a function of the Reynolds number,
normalised particle settling speed and variations in disturbances. We then show the effect
of the inclined angle in § 7 and discuss the applicability in § 8. Concluding remarks are
then given in § 9.

2. Mathematical description of the problem

We assume that the suspended particles are sufficiently small that the buoyancy force is
in balance with the Stokes drag and the particle inertia is negligible. Thus, the Eulerian
description for the volume fraction of particles, ¢*, can be expressed as

*

¢+ V§ (V™ - &) = k¥ V20", 2.1)

D*t*

where D*/D** is the material derivative, Vj is the Stokes settling speed obtained by
the balance between the particle drag and buoyant force, €, is the unit direction vector
of the gravitational acceleration g*, ™ is the diffusivity and the superscript * indicates
the dimensional quantity of the physical variables. Following Herbolzheimer & Acrivos
(1981), we assume a dilute suspension, such that the viscosity of the liquid phase is
not altered by the presence of the suspended particles. As shown in the schematic
in figure 2(b), for a water column with an inclined angle 6, under the Boussinesq
approximation, the mass and momentum equations are as follows:

V¥ u* =0, 2.2)
D* 1 )
0

where p* is the modified pressure term obtained by subtracting the hydrostatic pressure
of the clear-fluid column from the total pressure field and V*B* is the body-force term
written in a conservative form. After subtracting the hydrostatic pressure of the clear-fluid
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column, V*5* becomes the buoyant forcing due to ¢* and can be written as

x*
B* = P*g* (X*)eg - dX*, (2.4)
)
where x* = (x*, y*, z*), x{; represents the reference position, g™ = (o7 /p* — 1)g* is the
reduced gravity and e, = (— cos 0¢,, — sin6e,) represents the unit direction vector of g
in the present configuration.

For the high-aspect-ratio case in which the liquid column is assumed to be fairly long
in the x-direction, we consider the fully developed flow section where the variations in
the unperturbed momentum and concentration in the streamwise direction (x) are zero.
Without variation in both x- and z-directions (see figure 2b), the transport equation, (2.1),
of ¢* can be reduced to
* * 2 4%

909" _ Vi sin93¢ = K*a ¢2 . (2.5)

ar* ay* ay*

It should be noted that in (2.5), if one considers only the molecular diffusivity, the value
of «* can be infinitesimally small according to the Stokes—Einstein equation. Examples
are Herbolzheimer & Acrivos (1981) and Davis et al. (1983), in which the problem
configurations become two fluid flows separated by a density jump. More recent studies
have shown that additional ‘hydrodynamic diffusion’ exists owing to particle—particle and
particle-hydrodynamics interactions, which can dominate the diffusion of the suspended
particles over the molecular effect (e.g. Davis 1996; Segre et al. 2001). However,
hydrodynamic diffusion is still not a well-defined physical quantity and its magnitude
can vary among different flow configurations. In this regard, different values of «*
are studied in §6, where we show that the instability characteristics asymptotically
converge when «* becomes infinitesimally small. Typically, when the volume fraction of
suspended particles is modelled using (2.5), the bottom boundary condition is specified
as Vyo* + k*0¢™/0y* = 0. However, this is usually the case where flow turbulence exists
to support resuspension (e.g. Chou & Fringer 2008), and the diffusivity («*) should be
replaced by the eddy diffusivity. In this study, turbulence is not considered and, because
k* is typically very small, the bottom wall is a deposition-dominant regime such that at
the bottom boundary V§¢* + k*¢*/0y* > 0 becomes deposition.

If the problem starts from a fully suspended water column with a volume fraction cg,
the layer of deposition is usually thin and its thickness is negligible relative to the domain
width (i.e. 84 = 0 in figure 2b). Therefore, we only consider the layer in which ¢* <
c; (the grey areas in figure 2) as the particle-laden liquid column, which eliminates the
complexities while dealing with the transition to the dense deposition zone on the wall.
Under this condition, because ¢* is uniform within the suspension layer in our domain
of interest except at the diffusive interface where 0 < ¢* < ¢, k*9¢*/dy* becomes zero
on the bottom boundary. Thus, the bottom boundary condition for solving (2.5) in this
study is to specify a flux —Vj¢*, such that ¢* at the bottom remains as c;j, except when
the diffusive interface (i.e. ¢* < c{j) approaches the bottom boundary near the end of the
calculation. In fact, starting from a fully suspended water column with a volume fraction
¢ using the boundary conditions ¢* = 0 at the top (y* = b*) and specifying a flux —V¢*
at the bottom, solving (2.5) (Ogata & Banks 1961) gives a descending diffusive interface
specified by a time-varying error function given by

1 —erf (g)
_\2)

2

(") = cbs (2.6)

929 A42-6


https://doi.org/10.1017/jfm.2021.876

https://doi.org/10.1017/jfm.2021.876 Published online by Cambridge University Press

Instability in tilted water columns with settling particles

where
*—b* + Visinor*
o (y ) =2 0 : 2.7)
VKR
2.1. Scaling

The velocity scale is obtained by calculating the upper limit of the velocity magnitude for
the undisturbed flow field in the steady state under the condition that both «* and Vj are
zero and that the interface is located at the middle of the vertical dimension (i.e. y* =
0.5b*). Assuming a fully developed, steady undisturbed flow (i.e. du*/dx* = 0) without
any variation in the z-direction, as shown in figure 2(c), the governing equations can be
reduced to a momentum equation in the x-direction of a planar flow written as

op* 82 *
0= —% — ¢*g™ cosO + v*—ayi:z , (2.8)
8 *
0=— al;* — ¢*g* sin6, 2.9)

where
o* = b , (2.10)

That is, the flow, governed by (2.8) and (2.9), becomes a two-layered flow separated by the
interface of ¢* (see figure 2c¢).

For a water column with a long but finite length in the x-direction, owing to the existence
of end walls in the x-direction, the net flow at each cross-section must be zero. By imposing
this zero-net-flow condition at the cross-section, along with the no-slip boundary condition
at the walls and continuity for #* and stress (v*du™/9x*) at the interface (y* = b*/2), the
solution can be obtained as

1 * /% *2 b* * : * b*
mcog cosO | y* — ?y if0 <y* < >
S I ¢ b2\ b ’ 1D
4—*c3g/* cos 6 (—y*2 + 5 y* — 7) if £ <y* < b*
%

which gives a two-layered flow in counter directions. Substituting y* = 5*/4 into the top
identity or y* = 3b* /4 into the bottom identity of (2.11), the maximum magnitude of the
velocity can be found as cfjg’ *b*2 cos 0/ (64v*). Thus, we use

2
. C(ﬂ;gl*b*
U= 2.12)

as the velocity scale of the present study.

For an inclined water column associated with a long dimension in the x-direction, we
use b*, the domain length in the y-direction (see figure 2b), as our characteristic length
scale, U7 (2.12) as the velocity scale, u* U /b* as the pressure scale and cfj as the scale for
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the volume fraction. Substituting these dimensional parameters into (2.1)—(2.4) gives the
dimensionless transport equation of ¢, written as

ap . 1
— — Ry sinfey) - Vo =
+(u v Sin e)) 1) RePr

2
o V<o, (2.13)

and the dimensionless mass and momentum equations for the fluid, written as

V-.u=0, (2.14)
9 +u-v Ly +V/x64qf d5c+1vz (2.15)
—u+u-Vu=—— —pe, * —V-u, .
ot Re o RS Re
where
U*b* 1% *
Re=-<" R,=-Y% and Pr=>, (2.16a—c)
V* U* K*

are the Reynolds number, velocity ratio and Prandtl number, respectively.

2.2. Specification of time-dependent base flow

Each physical variable is expressed as a summation of its base state and perturbation,
which can be written as

ulx,y,z,t) = Uy, ) + ulxy,z1),
vix,y,z, 1) = v(x,y,2z,1),
wx,y,z,t) = w(x, y,z, 1), (2.17)
px,y,z.t) = Py + pxyzi),
Py, z.t) = (0D 4+ Pk

Substitution of (2.17) into (2.13)—(2.15) yields equations describing the base flow and the
temporal evolution of disturbances. The base-flow equation is as follows:

dUu
— =0, 2.18
& (2.18)
U 1 9P 64 1 3’U
— =———— — 080D + — ——, (2.19)
ot Re dx  Re Re 93y?
1 0P 64
0=———— —sinbd, (2.20)
Re dy  Re
AP L 1 3%
— — Rysinf— = _—, (2.21)
dy  RePr dy?

where y € [0, 1]. Starting from a water column fully occupied by particle-laden fluid
(i.e. @(y,0) = 1), using the normalised boundary conditions, @ = 0 at y = 1 and the
mass flux = —@R,, sin 0 at the bottom wall, the solution of (2.21) can be simply obtained

929 A42-8
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as
1 —erf (%)
D) = — (2.22)
where
D) = VPrRe (y — 1 + R, sin@t). 2.23)

Vi

To obtain the base flow U by solving (2.19), we note the net flow at each cross-section
must be zero, as previously mentioned in §2.1. That is, using the forcing owing to the
time-varying @ given by (2.22), with the no-slip boundary condition at both the bottom
and top walls and the condition of zero net flow in the cross-section, one can obtain
the time-varying base-flow solution (U) by solving (2.19) numerically. Here, we use the
second-order central difference for spatial discretisation and second-order Crank—Nicolson
method for time discretisation to obtain U(y, 1).

2.3. Temporal evolution of disturbances

In this study, we examine the transient instability by measuring the growth of the total
energy, including the kinetic and potential energies. The kinetic energy can be obtained
from the wall-normal velocity and the wall-normal vorticity (Schmid & Henningson
2001; Schmid 2007), the potential energy in a generalised form (South & Hooper 1999;
Sameen & Govindarajan 2007; Jerome et al. 2012) can be converted from the volume
fraction ¢. Let a state vector of disturbances, ¢, be composed of disturbances of the
wall-normal velocity 9, wall-normal vorticity 7 and volume fraction ¢. The energy of
these disturbances can be defined as a weighted energy norm written as

@ 9c =q"Eq, (2.24)
where
-1 _
2 2
; 75 (k*—=D* 0 0
- 1 /
~ _ _ 2 2 .
q = 72 B E = 0 2—](2 0 . k— o +,B (22561 C)
¢ 1
0 0 —RePr
L 2 _

the superscript H denotes the Hermitian transpose, E is the energy conversion matrix,
o is the streamwise wavenumber, S is the spanwise wavenumber and D? = d?/dy?
(D = d/dy). Given that any disturbance input can be amplified differently with time, we
are interested in initial perturbations that lead to maximum amplification. Therefore, we
are interested in finding the initial disturbances that generate the optimal energy gain,
G, (t; tg), at each time point. The optimal energy gain within a time interval [7, t] can be
described as

G, (t; 19) = arg max M = arg max M (2.26)

20 (4(0).q(t0)e i (90 90)E

The resulting optimisation problem can be solved by propagating the disturbances forward
and backward in time using the governing and corresponding adjoint equations (Farrell &
Moore 1992; Schmid 2007; Luchini & Bottaro 2014).
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The normal mode formulation for the components of g (2.24) is written as

0(y, 1)
= | (3, ) | expi(ax + B2). (2.27)
d(y, 1)

Based on Equations (A9), (A12), and (A13) derived in Appendix A, the evolution of the
disturbance field can be obtained by solving the Orr—Sommerfeld equation with baroclinic
forcing, the Squire equation and the transport equation in a compact notation, written as
follows:

ASSESTIRSH

0
M— —L)g=0, 2.28
(u? 1) -
with
D—-k* 0 0 Los 0 L
M= 0 1 0 and L=|Lcy, Lso 0 |, (2.29a,b)
0 0 1 Lce 0 Ly
where
1
Los = R—(D2 —k)? —iaU(D* — k*) +iaD?U, (2.30a)
e
64
Ly = ——k sind, (2.30b)
Re
Lcy = —ipDU, (2.30¢)
1
Lsg = —(D* - k) —ial, (2.30d)
Re
Lcyp = —D, (2.30¢)
1 . .
Ly = o (D> — k*) —iaU + R, sin6D. (2.30)
Because all disturbance quantities vanish on the walls, boundary conditions are given with
=0, Di=0, 7=0, $=0 ond, (2.31a-d)

where 02y denotes the boundaries in the y-direction. It should be noted that the boundary

condition <13 = 0 on 952, is not consistent with the condition for the base flow, where we
specify a flux for transport of the volume fraction at the bottom boundary. However, as we
also solve for a set of adjoint equations in what follows, a flux-type boundary condition
makes it very difficult to obtain its adjoint counterpart. In addition, because the instabilities

of the momentum and volume fraction of particles are fully coupled, we set é = 0 at the

bottom boundary because of vanishing momentum disturbance in (2.31). Here, g at time ¢
can be linked to the initial disturbance g at time 7y by an evolution matrix A(7),

q = A()qo, (2.32)

which represents the time integration of (2.28) from the initial time #( to a later time 7.
Equation (2.26) can then be rewritten as follows:
i, q A(t)qo, A(t)g AT(DA(DG, 4
6ot 1) — argmax LDE o AOD ADDE A OAD, G0
i (90-90)E o {905 90)E o {905 90)E
(2.33)
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where the superscript + denotes the adjoint operator and A’ (7) is the evolution matrix of
the associated adjoint equation:

0 .

<_MT_ _ ,_~) it =o, (2.34)
ot

where the superscript + denotes the complex conjugate. We note that in (2.28), M is

a self-adjoint operator, such that M" = M in (2.34). The boundary conditions for the

solutions of (2.34) are

it=0, DitT=0, 77=0, ¢"=0 ond, (2.35a-d)

The last identity in (2.33) implies that finding an initial disturbance that causes the
maximum gain is equivalent to seeking an eigenvector that corresponds to the maximum
eigenvalue of AT(r)A(¢). This can be accomplished by solving the ordinary differential
equation system composed of (2.28) and (2.34). This process begins from guessing
an initial, random disturbance field g, at the initial time #p. The initial disturbance is
propagated to a later time ¢ using (2.28) with an appropriate time-marching scheme.
The resulting disturbance at ¢ is then propagated back to #y using (2.34). Variations in
the resulting disturbance and energy gain between two consecutive loops decrease as the
number of loops increases. For details of the computational procedure used, readers are
referred to Schmid & Brandt (2014). In our case, the termination criterion for the iterations
is that the relative variation between two consecutive loops needs to be less than 1075.
Equation (2.28) and its adjoint form (2.34) are evolved using the Chebyshev collocation
method (Weideman & Reddy 2000; Trefethen 2019) in space and the second-order
marching scheme in time accompanied by the implicit Euler method as a starter following
Hack & Zaki (2015). The (n + 1)th step of the state vector is thus calculated using

"0 = M =22 (m (4 - V). (2.36)

We adopted Chebyshev points of the second kind to discretise the physical domain in
the wall-normal direction. As the spectral grids are defined within the interval [—1, 1],
the derivative with respect to y must be stretched by a factor of two. To impose m
boundary constraints, an N-point second-kind Chebyshev polynomial interpolant of order
N is downsampled on to an N-point first-kind Chebyshev polynomial interpolant of
order (N — m), which excludes the boundary points at y = *1. In this way, an N-by-N
differentiation matrix becomes an (N — m)-by-N matrix, whose vanishing rows are then
replenished by the boundary information, following the work of Driscoll & Hale (2016)
and Trefethen (2019).

Computations were performed using the Julia programming language (Bezanson et al.
2017), and the packages of Cairo.jl (Bezanson et al. 2012), Dierckx.jl (Barbary et al.
2020), FFTW.jl (Frigo & Johnson 2005), Makie.jl (Danisch ef al. 2021), JLD.jl (Holy
et al. 2020), Roots.jl (Verzani et al. 2021), SpecialFunctions.jl (Johnson et al. 2021), and
ToeplitzMatrices.jl (Noack et al. 2021).

3. Effect of particle settling on the base flow

In this section, we investigate changes in the base flow in response to a fast-settling,
particle-laden layer. To examine this clearly, (2.19) is rearranged to become

U 1 9P 92U
— = [—— —64cos0D + — |, (3.1)
9t  Ressinf ax 9y?
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Figure 3. Time series of the streamwise velocity profiles for various Re; sin 6. The grey horizontal lines
indicate positions of the particle-laden interface.

where
V(’)“b*

Reg = RyRe = "
v

(3.2)

is the sedimentation Reynolds number, which indicates the balance between particle
settling and the viscous effect. In (3.1), we can see that, given a fixed inclined angle,
0, so that the buoyant forcing, 64 cos 6@, is fixed, Re; appears to be the only parameter
that controls the base flow. Figure 3 presents profiles of the streamwise velocity for various
Reg sin @ with 0 = 30°, Re = 215, and PrRe = 1000 at ten time points, which show that
typically, base flows of various Re; sin 8 attain maximum speed at the time point at which
the particle-laden interface reaches the middle of the domain in the vertical direction.
However, as Regsinf increases (i.e. fast settling), the development of the base flow is
somewhat delayed relative to the settlement of the particle-laden interface, as indicated by
the grey lines in the figure. In figure 3, we can also see that the maximum speed the base
flow can reach decreases as Re, sin 6 increases. Moreover, the temporal development of the
velocity profile converges with decreasing Reg sinf. In (3.1), Re, sin 6 indicates how fast
the flow can adapt to any change owing to the settlement of the particle-laden interface.
If Ressinf « 1, one anticipates a quasi-steady state in which the flow can adjust itself
rapidly in response to the combined forcing of the pressure and buoyancy. In this case, the
flow can attain its maximum strength at each time step. In contrast, when Re;sinf > 1,
the flow cannot react instantly to the particle settling, so the flow develops after the descent
of the particle-laden interface.

4. Energy growth of disturbances

For the sake of clarity, here, we first focus on a representative case with R, = 0.01,
Re = 215, PrRe = 1000, 6 = 30° and (o, B) = (7t/2, /2), which is denoted as the base
case hereafter. In this case, values for o« and B are chosen such that both the algebraic
and exponential instabilities can be clearly seen, as discussed in the following. Figure 4
presents time histories of various G, (#; fp). In this figure, each curve represents different
G, (t; tg) resulting from the disturbances initialised at different time instants, 7y, during the
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Figure 4. Time histories of the optimal energy gain G, (; ty) in the base case with the disturbance initialised at
different time points during the beginning stage (see inset (a)). The dash-dotted line indicates the corresponding
maximum energy gain G (4.1).

early time stage (see inset (a)). Typically, the energy gain G, (z; f9) undergoes algebraic
growth and decay in the early stage (see inset (a) in figure 4), followed by a duration
of stable flow development (i.e. G,(t; to) = 1), and then exponential growth to a peak
magnitude significantly greater than that of the early algebraic case. In the present cases,
owing to the descent of the particle-laden interface, the buoyant forcing resulting from the
particle-laden layer eventually vanishes, such that the flow energy always decays at the
end. In figure 4, the time step ¢ = 215 is the time point at which particles completely settle
on to the upper-facing wall. Hereafter, we also consider the maximum amplification of the
energy gain at time 7" acquired from perturbations introduced at all time instants ¢ during
the time interval [#, T]. Our focus is on the maximum energy gain, G(¢), caused by any
disturbances, which is defined as follows (Blesbois et al. 2013):

G(t) = argmax G, (t; tp). 4.1
0]
An example of G for the base case is highlighted by the black dash-dotted line in figure 4.

4.1. Algebraic growth

Figure 5 presents contours of the peak value of G, (#; 7o) during the algebraic instability
as a function of the streamwise and spanwise wavenumbers in cases wherein all other
parameters are the same as those in the base case. In general, we can see that with a fixed
B, the energy growth during the algebraic instability diminishes with increasing «. The
maximum growth is found at § = 0.68 when o = 0. To examine the mechanism causing
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Figure 5. Contours of the peak values of the maximum energy gain, G, (t; #p), during algebraic instability as a
function of @ and B in cases where all other parameters are the same as those in the base case. The solid lines
are contour lines starting at 100 with increments of 100.

the algebraic instability, we set @ = 0, such that the governing differential equations, (2.27)
and (2.28), become

3 64 , . . 1 .
(D* — ﬁz)w = —Feﬂz sin ¢ + F@(DZ — k%20, (4.2)
8 A . A 1 A
o= —iBDUD + E(Dz — )7, (4.3)
EIA . . . 1 PN
8_t¢ = —R,sin0D¢p — DDV + %(D —k%)o. 4.4)

At this point, one can see that the algebraic instability can be attributed to two potential
contributions. The first possible contribution is the buoyant forcing (the first term in the
right-hand side of (4.2), which can increase the magnitude of v. The second contribution
is the possible growth in 1 due to vortex tilting, also known as the lift-up mechanism
(4.3) (Brandt 2014; Schmid & Brandt 2014). To identify the dominant mechanism, figure 6
presents G, (t; tp) and representative snapshots of streamlines on the yz-plane using 7y =
0.0 in the case with («, B) = (0, t/2), with all other parameters the same as those in
the base case. In figure 6(b), we can see that the instability begins with perturbations
that have a value of zero in the streamwise direction (& =~ 0), but vary in the spanwise
direction, which results in a pair of streamwise vortices. As shown in figure 6(c), when
the peak of G, (t; tp) is attained during algebraic instability (see figure 6a), the transverse
perturbation components (shown by the streamlines) do not change appreciably, but
significantly increases, which, with its spanwise variation, causes growth in 7. Therefore,
as consistently reported in the context of transient behaviours in shear instabilities
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Figure 6. (a) Time history of the development of the energy gain that yields the maximum energy growth
(to = 0) in the case with (&, B) = (0, t/2), with all other parameters the same as in the base case during the
algebraic instability and the corresponding disturbance flow field at (b) r = 0 and (c¢) = 37, the time point at
which the energy growth reaches its local maximum. In (b,c), the flow field is presented by the colour contours
of the streamwise component & and the streamlines on the yz-plane, for which the solid and dashed lines indicate
clockwise and counterclockwise rotation, respectively.

(e.g. Brandt 2014; Schmid & Brandt 2014), the energy growth during algebraic instability
can be attributed to the lift-up mechanism.

4.2. Exponential energy growth

As shown in figure 4, G,(f;1)) begins to increase when ¢ = 100. The greatest
exponential growth (see the pink line in figure 4) corresponds to the evolution of the
perturbation initialised at 7o = 67.5, which is approximately the time when the descending
particle-laden interface reaches one third of the domain. That is, unlike the algebraic
instability regime in which earlier #y leads to the greater and earlier growth of G, (; 7o)
(see the inset in figure 4), in the exponential growth regime, flow perturbations at the
time point at which the interface reaches approximately one third of the domain produces
optimal energy growth. This can be further examined from the energy equation, which is
obtained by substituting (2.17) into (2.15), multiplying with &, and integrated over a control
volume within a wave period, denoted as §2. The resulting energy equation is expressed as
d . 1 2
—E:—/ uvDde——f (V x &) dx, (4.5)
dr o Re Jo

where
Ez%/it-izdx (4.6)
Q

is the kinetic energy of the disturbance. Moreover, substituting (2.17) into (2.13),
multiplying with ¢, and integrating over a control volume within a wave period gives

d ~ A~ A
—FE, =— vDP dx — Vo - Vo dx, 4.7
dr ¢ /de PrRe/_Q ¢ ¢ “.7)
where
E. = %/ $? dx (4.8)
Q
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Figure 7. Contours of peak values of the maximum energy gain, G, as a function of « and § in cases wherein
all other parameters are the same as those in the base case.

is the generalised potential energy of the disturbances (South & Hooper 1999; Sameen
& Govindarajan 2007; Jerome et al. 2012). In both (4.5) and (4.7), the first terms on the
right-hand sides represent the energy production that transfers energy from the shear of the
base flow, while the second terms on the right-hand sides of these two equations represent
dissipation. Equations (4.5) and (4.7) clearly show that the energy of disturbances can grow
due to the interaction between the base-flow shear and disturbance fields of momentum and
concentration, respectively. The exponential growth of the flow energy is much stronger
than that in the algebraic case and would dominate the flow instability throughout the
descent of the particle-laden interface. Figure 7 shows the contours of the peak values
of the maximum energy gain (G) at various « and B values in cases wherein all other
parameters are the same as those in the base case. It can be seen that for a fixed o,
G monotonically increases with decreasing 8, which indicates that perturbations with a
streamwise variation are most susceptible to the shear of the base flow, and the spanwise
variation can stabilise the flow. Moreover, figure 7 shows that the most unstable case
(i.e. greatest G) occurs at « &~ 7, which means that the perturbation leading to the greatest
amplification of energy has a wavelength which is comparable to twice the domain width,
b, i.e. a vortex with the size of the domain width.

At this point, it is also interesting to investigate the evolution of the disturbance
field in response to the descent of the particle-laden interface. We examine this in
a case wherein all parameters are the same as those in the base case but for the
setting («, B) = (7/2, 0). The panels in the upper row of figure 8 show five consecutive
snapshots of the streamlines in the yx-plane at z = 0.5 at representative time points for
the disturbance field with #y = 0. Initially, streamwise perturbations form counter-rotating
pairs of spanwise vortices (i.e. @;) along the x-direction. During the descent of the
particle-laden interface, the upper panels in figure 8 show that the vortices in the
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Figure 8. Consecutive snapshots of the streamlines in the yx-plane (upper panels) of the disturbance flow field
that leads to the maximum energy gain during exponential instability in the case wherein all of the parameters
are the same as those in the base case except that (a, ) = (/2. 0), and the corresponding contours of 7D>U
(lower panels).

upper layer (i.e. the clear-fluid layer) are distorted toward the left and those in the
lower layer (i.e. the particle-laden layer) are distorted toward the right. This vortex
distortion can be explained by the equation of the spanwise vorticity @,, which is
obtained by applying the curl operator to the momentum equations for disturbances (i.e.
(A2)—(A4)). Neglecting the diffusion term, the temporal change of &, can be expressed as
follows:

0w, 0w, . 5

o7 +U o = vDU. (4.9)
Equation (4.9) shows that the temporal change of @, at fixed spatial points is caused by
transport by the base flow and the transfer from the vorticity of the base flow through
the perturbation component v, i.e. UD2U. Here, the second derivative of the base-flow
velocity is typically one order of magnitude greater than the velocity itself. Therefore,
unless the streamwise wavenumber « is high (e.g. >0O(10)), the temporal change in @, is
dominated by 9D?U. The panels in the lower row of figure 8 show contours of 7D?U that
correspond to the upper panels. Because DU has different signs in the clear-fluid and
particle-laden layers (see figure 3) and v has the same sign throughout the y-direction, the
DU field usually jumps to a different sign across the descending particle-laden interface,
thus distorting the streamline patterns along the y-direction.

5. Effect of R, and Re on disturbances

As presented in § 3, with fixed 6 and Pr values, the combined effect of R, and Re
dominates the base flow, whereas the disturbance fields are dominated by R, and Re
separately (see (2.28)—(2.30)). In this section, we examine the energy gain as a function
of R, and Re in the exponential growth regime. As shown in the inset of figure 4, in the
exponential regime of the present cases, once the energy begins to grow, G,(f; fp) can
easily reach 10* and typically soon increases to O(10°) in the case with the highest energy.
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Figure 9. Contour lines of G = 10* as a function of & and g for various R, in the cases wherein all other
parameters are the same as those in the base case.

Here, we set G = 10* as a criterion to distinguish between two regimes (i.e. G > 10* or
< 10%). Although, this criterion is somewhat arbitrary, we note that the overall trend that
we present subsequently would not change if other values were adopted. Figure 9 presents
the contours of G = 10* as a function of , B and R,, with fixed Re (=215) and 6 (=30°
values). In the figure, the area enclosed by the contour is the regime in which G > 10%,
whereas outside the contour, G < 10*. In figure 9, we can see that the area enclosed
by the contour of G = 10* shrinks as R, increases. This enclosed area becomes zero
when R, = 0.5, which indicates the stabilising effect of the descent of the particle-laden
interface, mainly because of the weakened base-flow field as R, increases, as discussed
in § 3. The contours tend to remain unchanged as R, decreases (e.g. R, < 0.001), which
means that for given Re and 6 values, a maximum instability regime can be obtained with
R, — 0.

Figure 10 presents the contour lines of G = 10* at @ = 3.0 as a function of 8, Re and R,,.
Again, in this figure, the area beneath the contour line in each case represents the regime
in which G > 10*. Therefore, the smaller enclosed area with increasing R, indicates that
the flow becomes more stable as particles settle faster, the same trend can also be seen
in figure 9. Generally, with increasing Re, flows become unstable when certain threshold
values of Re are reached. However, in the cases with greater R, (e.g. R, > 0.028), the
contour lines in figure 10 imply that the flows become stabilised when Re further increases
(e.g. Re > 500). This is because during the transient stage, with the greater Re, it requires
more time for the flow to be fully developed. In this case, the presence of the descending
particle-laden interface hinders the development of the flow, such that the shear and
resulting instability are suppressed.
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Figure 10. Contour lines of G = 10* as a function of 8 and Re with a fixed @ = 3.0 for various R, in cases
wherein all other parameters are the same as those in the base case.

6. Effect of the Prandtl number on disturbances

In this section, we investigate the influence of the Prandtl number, Pr. Figure 11 shows
the time evolution of the maximum energy gain, G(¢), in the base case with various Pr. In
this figure, each curve of G () is obtained based on the collection of G, (¢; #p) values with
disturbances initialised at 7y ranging from O to 204 with an equal time spacing Aty = 10.75.
It can be seen that increasing Pr results in an increase of G(¢). This is due to the fact
that PrRe controls the diffusion of mass transport, (2.30f). With a fixed Re, a higher Pr
leads to a sharper particle-laden interface in the base flow and higher energy dissipation
in disturbances. Moreover, figure 11 shows that G(f) converges with increasing Pr, which
implies that when there are large particles in association with infinitesimal diffusivities,
asymptotic results can be anticipated with increases in Pr.

7. Influence of the inclined angle, #, on disturbances

In this section, we investigate the influence of the inclined angle, 6, on the energy growth
of disturbances. In figure 12, we present the temporal evolution of the maximum energy
gain, G(1), in cases with various 6. Because 6 varies between cases, the total durations
of all cases are different depending on V{ sinf. Therefore, for easier comparison, we
rescale the time by multiplying by R, sin 6. In this way, the inclined angle is taken into
account in the new time scale, and the new dimensionless time 7R, sin 6 represents the
time relative to particle settling, i.e. R, sinf = 1 when the particle laden layer (¢ = 1)
fully settles on to the bottom. In the figure, each curve of G(¢) is obtained based on the
collection of G, (¢; tp) values with disturbances initialised at foR, sin 6, ranging from 0.0
to 0.6 with an equal time spacing AfgR, sinf = 0.05. Figure 12 shows that increasing
0 delays the development of energy growth, which is evident in aspects of both the
algebraic and exponential growth. Moreover, the peak of G(¢) decreases with increases
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Figure 11. Time histories of the maximum energy gain G in cases with PrRe varying from 1000 to 9000 and
all other parameters being the same as those in the base case. Here, each curve of G(¢) is obtained based on the
collection of G, (t; ty) (see (4.1)) in which 7y € [0, 204] with an increment Afy = 10.75.
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Figure 13. Time histories of all G,(z; #p) that make the curve of G(f) with 8 = 55° in figure 12. The
dash-dotted line denotes the curve associated with 7y = 52, which shows two peaks of G,. The thick grey
line represents the curve of G obtained based on the collection of the local maximum of all G, curves (4.1).

in 0, except that when 6 = 50°, no exponential growth occurs. These results are mainly
due to the decrease in buoyant forcing in the momentum of the base flow when 6 increases
(see (2.19)), which reduces the generated velocity shear, thereby suppressing instability.
Another important effect of 6 is on the descending speed of the particle-laden interface.
As shown in the second term on the left-hand side of (2.21), increasing € yields higher
descending speed of the particle-laden interface. As discussed in § 3, a high descending
speed of the interface may restrict the base flow from reaching its quasi-steady state. As
a result, the strength of the base flow decreases and the flow, thus, becomes more stable.
Moreover, figure 12 shows that G(¢) dramatically decreases when 6 becomes greater than
40°, indicating that flow instabilities are significantly suppressed. When 6 further increases
to 55°, it can be seen that values of G(¢) at tR, sinf > 0.50 are much reduced compared
with all the other cases with smaller 6. In fact, when 6 = 55°, increase of G(¢) is only
attributed to algebraic growth. This can be seen from figure 13, where we plot all curves of
G, (t; tg) that make G(7) with & = 55° in figure 12. Each curve of G, (¢; t9) has either one
or two peaks, in which the first peak corresponds to the algebraic growth and the second
is due to the exponential growth. However, unlike the base case as shown in figure 4
where the exponential growth is much stronger, even the greatest value of the second
peak of G, (t; tp) in figure 13 (note the dash-dotted curve started at t+ = 52) is found to
be much less than the first peak values of Gy(¢; #p). Therefore, one may conclude that
the flow can be significantly stabilised in its exponential regime when 6 > 40°. At this
point, it is worthwhile to mention that the previous numerical study by Chang et al. (2019)
suggested an optimal inclined angle 6,, = 40°~50° such that the sedimentation process
can be accelerated to a maximum extent without causing flow instability. Moreover, an
empirical value of ~45° was suggested by the wastewater engineering practice (Kao 1978)
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to reach the maximum separation efficiency. Our finding here seems to support these
previous findings from different study approaches.

8. Applicability

It should be noted that in this study, an important assumption we have made is the
small particle size, such that particles can soon reach their terminal speed and our scalar
transport equation used to describe the volume fraction of particles is valid. This is the
case when the particle relaxation time, 7, is small. For spherical particles, this means that
T, = p;“dgz /(18u*) <« 1,in which df; is the particle diameter. In liquid flows for which the

w1073 kgm~! s7! (e.g. water) or greater, this can be easily met if the particle diameter
do < O(1 mm), which is very common in suspension flows in various engineering and
industrial applications (Galvin et al. 2005; Madge, Romero & Strand 2005). Another
assumption is that the particle concentration is dilute such that the viscosity cannot be
significantly altered in the presence of suspended particles (see §2). According to the
theoretical work of Batchelor & Green (1972), the flow viscosity can be significantly
altered when the volume fraction ¢* is O(0.1). Therefore, the applicability of the present
findings can be extended to suspension liquids in which ¢* < 0.1. However, even when
¢™* is beyond this criterion in the highly concentrated case, the procedure presented here
can be modified by the inclusion of the existing models that describe the flow viscosity as
empirical functions of ¢*.

The major contribution of the present study is the investigation of the case in which
particles settle fast, such that the unsteadiness of the base flow is not negligible. According
to our findings, this is the case when the parameter R, = V5 /U > 0.001 (see figures 9 and
10). To see this more clearly, using the formula of Vj based on Stokes’ law, i.e.

2
.
0 18u*
and the definition of U, (2.12), R, can be reduced to

(p} = pg) & (8.1)

2
e 324

=S g (8.2)

That is, R, appears to be a parameter indicating the competitive influences among the
width of the liquid column (b*), particle size (d;;) and volume fraction (cfj). As seen from
(8.2), Ry > 0.001 requires that dj > 0.000281)*\/%, which can be easily met in realistic
conditions. For example, in the laboratory, the magnitude of b* is typically O(1 cm).
Considering a case in which cg ~ 0(0.01), da‘ needs to be at least O(1 wm) to satisfy
R, > 0.001, which is very common for suspended materials. In such cases, the findings of
the present study can provide useful guidance in optimising the design for the separation
process of suspension liquid.

9. Concluding remarks

In conclusion, we have analysed the stability of particle-laden flows in long, tilted water
columns in batch settling mode beyond the quasi-steady approximation, which is essential
for the fast settling of particles in the problem of sedimentation. By introducing a settling
time scale in the momentum and transport equations, the transient behaviour of base flow
was resolved in terms of Reynolds number (Re), Prandtl number (Pr) and the settling
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speed ratio (R,). The magnitude of base flow increases as the settling speed is reduced,
which attains its maximum value when the settling speed becomes infinitesimal. Based
on the unsteady base-flow solutions, the non-modal analysis was utilised to analyse the
temporal evolution of the disturbance flow field. The time history of the disturbance
flow energy gain experiences an algebraic and an exponential growth stage owing to
the lift-up mechanism of wall-normal disturbance and the shear instability of base flow,
respectively. The flow instability is enhanced by the increase of Prandtl number owing to
the sharpening of the particle-laden interface, and suppressed by the increase of settling
speed because of less disturbance energy being extracted from the base flow. Considering
the efficiency of sedimentation, for example, in the removal of suspended particles, there
exists an optimal inclined angle 6 ~ 50°, which provides the maximum capacity for
sedimentation enhancement while maintaining flow stability to prevent the resuspension
of the sedimenting particles.
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Appendix A. Derivation of the governing equations of disturbances

This appendix presents the derivations of the final differential equations for the evolution
of disturbances. Substituting (2.17) into (2.13)—(2.15), and neglecting nonlinear terms yield

ou dv 0w
— 4 — 4+ — =0, Al
0x + oy + 0z A
ou ou - op 64cosf 0 ~ 64sinf 0 1 5.
—+U—+4+DUt=——F" — ——— dx — — d V
o TV TP S T T TR ) ¢ Re ax) PV TR
(A2)
v v ap 64cosH 0 ~ 64sin6 9
D= 22207 % [ Gax— /qsd + v2 (A3)
at ax ay Re 9y
ow ow op 64cosf 9 [ - 64sin6 0 9
— —_— = dx — — dy V A4
ot + 0x 0z Re 0z ¢ /¢ + " A
and
3 - 3 - L) 5 -
— U—¢—R 00— —Ddv = V. AS
8t¢+ 8x¢ v S ay v PrRe ¢ (A5)

After taking 0/0x(A2)+ 9/0y(A3) + 0/3z(A4) and using (Al), the equation of the
pressure disturbance is as follows:

0v  64cos6 . 64sin6 .
V2p = —2DU o Tvzfdmx— TVZ/qbdy. (A6)
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Next, eliminating the pressure terms by substituting 3/dy(A6) into VZ(A3) gives the
following:

D ov
vR iy ZDZU—U = —
Dt ox Re

where V,%,(: 32/9x> + 8%/9z%) is the horizontal Laplacian operator. Substitution of the
normal-mode solution,

1
v — V4D, A7
o+ Re v (A7)

v 0(y, t)} .
~ =1 exp1(ax + pz2), A8
into (A7) gives the Orr—Sommerfeld equation with baroclinic forcing, as follows:
d 1 2 64 N
(D2 - kz) Zh=— (D2 . kz) b —iaU <D2 - k2) b +iaD2UD — K2 sin 6.
at Re Re

(A9)

Subtracting d/0x(A4) from 9/9z(A2) results in a typical Squire equation for the vorticity
in the y-direction (1), i.e.

a 0 ov 1
—f+U—7f+DU— = —V?. A10
az” * E))c)7 + 0z Re 7 ( )
Substitution of the normal mode solution,
i = fexpi(ax + B2), (A1l)
into (A10) gives
0 1
Zh=— <D2 - k2> i —iaUf — iBDUD. (A12)
at Re
Finally, substitution of (A8) into the transport equation, (AS), gives
9o Y S o a A
— = D —k“)¢p —iaU¢p + Ry, sin0D¢p — DD Y. (A13)
dt PrRe

Equations (A9), (Al2) and (A13) form a linear differential equation system (see
(2.28)—(2.30)) to describe the evolution of disturbed quantities in the present study.
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