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Abstract

We show that in preferential attachment models with power-law exponent τ ∈ (2, 3)

the distance between randomly chosen vertices in the giant component is asymptotically
equal to (4 + o(1)) log log N/(− log(τ − 2)), where N denotes the number of nodes.
This is twice the value obtained for the configuration model with the same power-law
exponent. The extra factor reveals the different structure of typical shortest paths in
preferential attachment graphs.
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1. Introduction

One of the central observations in the theory of scale-free random networks is that in the
case of power-law exponents τ ∈ (2, 3) networks are ultrasmall, which means that the distance
between two randomly chosen nodes in the giant component of a graph with N vertices is of
asymptotic order log log N . The first analytical, but mathematically nonrigorous, evidence for
this general phenomenon can be found, for example, in Cohen and Havlin [3] or Dorogovtsev et
al. [10], and there are also some early papers with rigorous results for specific network models,
in particular the work of Reittu and Norros [14] and the work of Chung and Lu [4].

In the present paper we refine this observation and identify graph distances including constant
factors. Our main result is a universal technique for proving lower bounds for typical distances,
which in a wide range of examples matches the upper bounds known from the recent literature.
The result is presented in the form of two theorems, which reveal that ultrasmall networks
can be divided into two different universality classes. For the class of ultrasmall preferential
attachment models, the typical distances turn out to be twice as large as for fitness models.
This difference corresponds to different structures of typical shortest paths in the network. We
show that the two classes can be easily identified from the form of the attachment probability
densities in the networks. We remark here that our work is focused on typical distances in
networks, as results on diameters (see, e.g. [6]) tend to be model dependent and universality
results are not to be expected.
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At least informally, we have some structural insight into typical shortest paths in ultrasmall
networks; see, for example, [13]. For the class we call fitness models, it turns out that typical
vertices in the giant component can be connected with a few steps to a core of the network.
Within this core there is a hierarchy of layers of nodes with increasing connectivity and at the
top a small inner core of highly connected nodes with very small diameter. A typical shortest
path inside the core runs from one layer to the next until the inner core is reached, and then
climbing down again until a vertex in the lowest layer of the core is again connected to a typical
vertex.

A high degree of a vertex is an indicator of its fitness and, thus, increases its connectivity to
any other vertex. Hence, the layers can be identified by vertex degrees. Very roughly speaking,
the j th layer consists of vertices with degree kj , where

log kj ≈ (τ − 2)−j

and there are about
log log N

− log(τ − 2)

layers. The graph distance of two randomly chosen vertices in the giant component is therefore

(2 + o(1))
log log N

− log(τ − 2)
.

These asymptotics are rigorously confirmed for two variants of an inhomogeneous random
graph model by Chung and Lu [4] and Norros and Reittu [12], and for the configuration model
by van der Hofstad et al. [17]. See also van der Hofstad [16] for a summary of various results
with detailed proofs. In general, upper bounds on the distances can be obtained by verifying
the above strategy, while our Theorem 1 provides a flexible (i.e. model-independent) approach
to the lower bound.

For the more complex class of ultrasmall preferential attachment models, existing results are
far less complete. The work of Dommers et al. [6] strongly suggests that, for various ultrasmall
preferential attachment models, the typical distance of two vertices in the giant component is
bounded from above by

(4 + o(1))
log log N

− log(τ − 2)
.

A corresponding lower bound, and, hence, confirmation of the exact factor 4, is stated as an
interesting open problem by van der Hofstad and Hooghiemstra in [18, Section IV.B] and
again in [6] (see the remark therein following Theorem 1.7 and Section 1.2). Our main result,
Theorem 2, provides this bound and confirms, somewhat surprisingly, that the upper bound is
sharp. Besides the models given in [6] we will also describe other examples of random network
models in the same universality class, in which Theorem 2 applies.

Loosely speaking, the shortest paths in the class of preferential attachment models can be
described as follows. Again, inside a core of highly connected vertices paths run from bottom
to top and back through a hierarchy of layers defined as before. However, by construction of
the preferential attachment models, a high degree of a vertex does not increase its connectivity
to all vertices but only to those introduced late into the system (which are typically outside the
core). Therefore, a path cannot directly connect one layer to another in one step, but it requires
two steps. The paths run from one layer to a young vertex and from there back into the next
higher layer. The distance between two typical vertices is therefore increased by a factor of two.
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In the following section we formulate the precise results, consisting of two simple hypotheses
on a random network leading to the two different lower bound results; see Theorems 1 and 2.
We also provide a brief sketch of the proof technique and introduce the notation used in the
proofs. In Section 3 we then discuss several examples of networks in the two universality
classes. In all these examples upper bounds can either be found in the literature or derived by
simple modifications of these proofs. Section 4 is devoted to the proofs of our main results.

2. Main results

A (dynamic) network model is a sequence of random graphs (GN)N∈N with the set of vertices
of GN given by [N ] := {1, 2, . . . , N} and the set of unoriented edges of GN given by a random
symmetric subset of [N ]× [N ]. Occasionally, we shall allow multiple edges between the same
pair of vertices, but this has no bearing on the connectivity problems discussed here and is for
convenience only. We write v ↔ w if the vertices v and w are connected by an edge in the
graph GN . The graph distance is given by

dN(v, w) := min{n : there exists v = v0, v1, . . . , vn = w ∈ GN such that vi−1 ↔ vi

for all 1 ≤ i ≤ n}.
The main aim of this paper is to provide techniques to find lower bounds on the typical distance,
i.e. the asymptotic graph distance between two randomly chosen vertices in the graph GN .

We start with the easier of the two results, which is based on the following assumption.

Assumption FM(γ ). There exists κ such that, for all N and pairwise distinct vertices v0, . . . ,

v� ∈ [N ],
P{v0 ↔ v1 ↔ v2 ↔ · · · ↔ v�} ≤

�∏
k=1

κv
−γ

k−1v
−γ

k N2γ−1.

In random networks with power-law exponent τ , Assumption FM(γ ) is typically satisfied
for all γ > (τ − 1)−1, and we expect these networks to be ultrasmall if 1

2 < γ < 1.

Theorem 1. Let (GN)N∈N be a dynamic network model that satisfies Assumption FM(γ ) for
some γ satisfying 1

2 < γ < 1. Then, for random vertices V and W chosen independently and
uniformly from [N ], we have

dN(V, W) ≥ 2
log log N

log(γ /(1 − γ ))
+ O(1) with high probability as N → ∞.

Five examples of network models in which Theorem 1 can be applied will be given in
Section 3. Examples 3–5 in that section refer to the class of fitness models in which every
vertex receives an a-priori fitness value which determines its likelihood to form future edges,
including the configuration model, in which the fitness of a vertex equals its degree. In all
these cases, if the degree distribution has power-law exponent τ ∈ (2, 3), Assumption FM(γ )

is satisfied for all γ > (τ − 1)−1, and Theorem 1 implies that

dN(V, W) ≥ (2 + o(1))
log log N

− log(τ − 2)
with high probability as N → ∞.

For all examples of fitness models, matching upper bounds are known from the literature.
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While Theorem 1 applies to preferential attachment models, it does not give an optimal lower
bound. Our main result is based on a strictly stronger assumption, which is tailored for the use
in preferential attachment models and which gives an optimal lower bound for these models.

Assumption PA(γ ). There exists κ such that, for all N and pairwise distinct vertices v0, . . . ,

v� ∈ [N ],

P{v0 ↔ v1 ↔ v2 ↔ · · · ↔ v�} ≤
�∏

k=1

κ(vk−1 ∧ vk)
−γ (vk−1 ∨ vk)

γ−1.

In preferential attachment models with power-law exponent τ ,Assumption PA(γ ) is typically
satisfied for all γ > (τ − 1)−1. Hence, we again expect these networks to be ultrasmall if and
only if 1

2 < γ < 1. Theorem 2 below, our main result, gives a lower bound on the typical
distance under this assumption.

Theorem 2. Let (GN)N∈N be a dynamic network model that satisfies Assumption PA(γ ) for
some γ satisfying 1

2 < γ < 1. Then, for random vertices V and W chosen independently and
uniformly from [N ], we have

dN(V, W) ≥ 4
log log N

log(γ /(1 − γ ))
+ O(1)

with high probability.

Examples of network models in which Theorem 2 can be applied will be given as Examples 1
and 2 in Section 3. They comprise various preferential attachment models with power-law
exponent τ ∈ (2, 3). In all these cases Assumption PA(γ ) is satisfied for all γ > (τ − 1)−1,
and Theorem 2 implies that

dN(V, W) ≥ (4 + o(1))
log log N

− log(τ − 2)
with high probability as N → ∞.

Matching upper bounds are known from the literature.
The proof of both theorems is based on a constrained or truncated first-order method, which

we now briefly explain. We start with an explanation of the (unconstrained) first moment bound
and its shortcomings. Let v and w be distinct vertices of GN . Then, for δ ∈ N,

P{dN(v, w) ≤ 2δ} = P

( 2δ⋃
k=1

⋃
(v1,...,vk−1)

{v ↔ v1 ↔ · · · ↔ vk−1 ↔ w}
)

≤
2δ∑

k=1

∑
(v1,...,vk−1)

k∏
j=1

p(vj−1, vj ),

where (v0, . . . , vk) is any collection of pairwise distinct vertices in GN with v0 = v, and
vk = w, and, for m, n ∈ N,

p(m, n) :=
{

κ(m ∧ n)−γ (m ∨ n)γ−1 if Assumption PA(γ ) holds,

κm−γ n−γ N2γ−1 if Assumption FM(γ ) holds.

Note that we can assign to each path (v0, . . . , vk) the weight

p(v0, . . . , vk) :=
k∏

j=1

p(vj−1, vj ),
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and the upper bound is just the sum over the weights of all paths from v to w of length no more
than 2δ. The shortcoming of this bound is that the paths that contribute most to the total weight
are those that connect v or w quickly to vertices with extremely small indices. Since these are
typically not present in the network, such paths have to be removed in order to get a reasonable
estimate.

To this end, we define a decreasing sequence (�k)k=0,...,δ of positive integers and consider
a tuple of vertices (v0, . . . , vn) as admissible if vk ∧ vn−k ≥ �k for all k ∈ {0, . . . , δ ∧ n}. We
denote by A

(v)

k the event that there exists a path v = v0 ↔ · · · ↔ vk in the network such that
v0 ≥ �0, . . . , vk−1 ≥ �k−1, vk < �k , i.e. a path that traverses the threshold after exactly k steps.
For fixed distinct vertices v, w ≥ �0, the truncated first moment estimate is

P{dN(v, w) ≤ 2δ} ≤
δ∑

k=1

P(A
(v)

k ) +
δ∑

k=1

P(A
(w)

k ) +
2δ∑

n=1

∑
(v0,...,vn)
admissible

P{v0 ↔ · · · ↔ vn}, (1)

where the admissible paths in the last sum start with v0 = v and end with vn = w. By
assumption,

P{v0 ↔ · · · ↔ vn} ≤ p(v0, . . . , vn),

so, for v ≥ �0 and k = 1, . . . , δ,

P(A
(v)

k ) ≤
N∑

v1=�1

· · ·
N∑

vk−1=�k−1

�k−1∑
vk=1

p(v, v1, . . . , vk). (2)

Given ε > 0, we choose �0 = �εN� and (�j )j=0,...,k decreasing fast enough so that the first
two summands on the right-hand side of (1) together are no larger than 2ε. For k ∈ {1, . . . , δ},
set

µ
(v)

k (u) := 1{v≥�0}
N∑

v1=�1

· · ·
N∑

vk−1=�k−1

p(v, v1, . . . , vk−1, u),

and set µ
(v)

0 (u) = 1{v=u}. To rephrase the truncated moment estimate in terms of µ, note that
p is symmetric, so, for all n ≤ 2δ and n∗ := 
n/2�,

∑
(v0,...,vn)
admissible

P{v0 ↔ · · · ↔ vn} ≤
N∑

v1=�1

· · ·
N∑

vn∗=�n∗
· · ·

N∑
vn−1=�1

p(v, . . . , vn∗)p(vn∗ , . . . , w)

=
N∑

vn∗=�n∗
µ

(v)

n∗(vn∗)µ(w)

n−n∗(vn∗). (3)

Using the recursive representation

µ
(v)

k+1(n) =
N∑

m=�k

µ
(v)

k (m)p(m, n),

we establish upper bounds for µ
(v)

k (u), and use these to show that the rightmost term in (1)
remains small if δ is chosen sufficiently small. Using the input from Assumptions PA(γ ),
respectively FM(γ ), this will lead to the lower bounds for the typical distance in Theorem 2,
respectively Theorem 1. Detailed proofs will be given in Section 4.
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3. Examples

In this section we give five examples, corresponding to the best understood models of
ultrasmall networks in the mathematical literature. Examples 1–2 are of preferential attachment
type and will be discussed using our main result, Theorem 2, while Examples 3–5 are of fitness
type and will be discussed using Theorem 1.

Example 1. (Preferential attachment with fixed outdegree.) This class of models was studied
in the work of Hooghiemstra, van der Hofstad, and coauthors. We base our discussion on [6],
where three qualitatively similar models were considered; see also [16] for a survey. We focus
on the first model studied in [6], which is the most convenient to define, as the two variants can
be treated with the same method. The model depends on two parameters, an integer m ≥ 1
and a real δ > −m. Roughly speaking, in every step a new vertex is added to the network and
connected to m existing vertices with a probability proportional to their degree plus δ. Note
that in the case m = 1 the network has the metric structure of a tree, making this a degenerate
case of less interest. The case famously studied by Bollobás and Riordan [2] corresponds to
δ = 0 and m ≥ 2, and leads to a network with τ = 3 and typical distance log N/ log log N , so
that it lies outside the class of ultrasmall networks.

We first generate a dynamic network model (GN) for the case m = 1. By Z[n, N ], n ≤ N ,
we denote the degree of vertex n in GN (with the convention that self-loops add two towards
the degree of the vertex to which they are attached).

• G1 consists of a single vertex, labelled 1, with one self-loop.

• In each further step, given GN , we insert one new vertex, labelled N + 1, and one new
edge into the network such that the new edge connects the new vertex to vertex m ∈ [N ]
with probability

P{m ↔ N + 1 | GN } = Z[m, N ] + δ

N(2 + δ) + 1 + δ
,

or to itself with probability
1 + δ

N(2 + δ) + 1 + δ
.

To generalise the model to arbitrary values of m, we take the graph G′
mN constructed using

parameters m′ = 1 and δ′ = δ/m, and merge vertices m(k − 1) + 1, . . . , mk in the graph G′
mN

into a single vertex denoted k, keeping all edges. We obtain asymptotic degree distributions
which are power laws with exponent τ = 3+δ/m, so we expect the model to be in the ultrasmall
range if and only if −m < δ < 0.

Proposition 1. For independent, uniformly chosen vertices V and W in the giant component
of the preferential attachment model with parameters m ≥ 2 and −m < δ < 0, we have

dN(V, W) = (4 + o(1))
log log N

− log(1 + δ/m)
with high probability.

Remark 1. The upper bound can be proved by an adaption of the argument in [6]; see below.
This paper leaves the problem of finding a lower bound open. We resolve this problem by
verifying Assumption PA(γ ) for γ = (2 + δ/m)−1 and applying Theorem 2.
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Proof of Proposition 1. For the lower bound, we look at m = 1 first. In this case we have,
for 1 ≤ m < n ≤ N ,

P{m ↔ n} = E Z[m, n − 1] + δ

n(2 + δ) − 1
. (4)

It is easy to see that

E[Z[m, n] + δ | Z[m, n − 1]] = (Z[m, n − 1] + δ)
n(2 + δ)

n(2 + δ) − 1
,

and, hence,

E[Z[m, n] + δ] = (1 + δ)
�(n + 1)�(m − 1/(2 + δ))

�(n + (1 + δ)/(2 + δ))�(m)
.

In particular, there exist constants 0 < c < C such that

c

(
n

m

)1/(2+δ)

≤ E Z[m, n] ≤ C

(
n

m

)1/(2+δ)

for all 1 ≤ m < n.

Combining this with (4) yields, for γ = 1/(2 + δ) and a suitable κ1 > 0,

P{m ↔ n} ≤ C(n/m)γ + δ

n(2 + δ) − 1
≤ κ1n

γ−1m−γ for all 1 ≤ m < n. (5)

To verify Assumption PA(γ ), following [6, Lemma 2.1] we find that, for distinct vertices
v0, . . . , vl , all events of the form {vj−1 ↔ vj ↔ vj+1} with j ∈ {1, . . . , l − 1} and vj <

vj−1, vj+1, and all events {vj−1 ↔ vj } which are not part of these, are nonpositively correlated,
in the sense that the probability of all of them occurring is smaller than the product of the
probabilities. Recalling also (5), it remains to show that, for m < v, w,

P{v ↔ m ↔ w} ≤ κ2v
γ−1wγ−1m−2γ (6)

for some finite constant κ2 > 0. To this end, we let {(Z(k,m)
n )n≥m : k, m ∈ N} denote the

collection of right-continuous Markov jump processes starting at Z
(k,m)

m− = k, jumping instantly
at time m and subsequently at integer time steps following the rule

P{Z(k,m)

n = Z
(k,m)

n− + 1 | Z
(k,m)

n− } = Z
(k,m)

n− + δ

n(2 + δ) − δ
= 1 − P{Z(k,m)

n = Z
(k,m)

n− | Z
(k,m)

n− }.

Note that (Z[m, n])n≥m = (Z
(1,m)
n )n≥m in law and that, for m < n, the event {m ↔ n}

corresponds to {�Z
(k,m)
n = 1}, where we write �Z

(k,m)
n := Z

(k,m)
n − Z

(k,m)

n− . Note also that Z
(k0,m)

n

is stochastically dominated by Z
(k,m)
n for k ≥ k0. Hence, for m < n1 < n2,

E[Z(2,m)

n2
| �Z(2,m)

n1
= 1] =

m−n2+2∑
j=2

m−n1+1∑
k=2

j P{Z(2,m)

n2
= j | Z

(2,m)

n1− = k, �Z(2,m)

n1
= 1}

× P{Z(2,m)

n1− = k | �Z(2,m)

n1
= 1}

≤
m−n2+2∑

j=2

m−n1+1∑
k=2

j P{Z(k+1,n1)

n2 = j}(k + δ) P{Z(2,m)

n1− = k}
(n1(2 + δ) + 1 + δ) P{�Z

(2,m)
n1 = 1}

=
m−n1+1∑

k=2

(k + δ) P{Z(2,m)

n1− = k} E Z
(k+1,n1)

n2

(n1(2 + δ) + 1 + δ) P{�Z
(2,m)
n1 = 1} .
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As in the derivation of (5), the expectation in the last line can be bounded from above by
c0(k + 1)n

γ
2 n

−γ
1 for some c0 > 0. Similarly, we obtain P{�Z

(2,m)
n1 = 1} ≥ c1n

γ−1
1 m−γ and

E[(Z(2,m)

n1− )2] ≤ c2m
−2/(2+δ)n

2/(2+δ)
1

for further constants c1, c2 > 0. Summarising, we obtain

E[Z(2,m)

n2
| �Z(2,m)

n1
= 1] ≤ c3n

γ
2 n

−2γ
1 mγ

m−n1+1∑
k=2

k2 P{Z(2,m)

n1− = k} ≤ c4n
γ
2 m−γ

for some c3, c4 > 0, and this establishes (6). Finally, passing from m = 1 to general m can be
achieved by a simple union bound.

For the upper bound, we work in the graph G2N with m ≥ 2 and δ ∈ (−m, 0). Using the
terminology of [6], we define the core of G2N to be

coreN = {m ∈ [N ] : Z[m, N ] ≥ (log N)σ },
where σ > −m/δ. Dommers et al. [6, Theorem 3.1] stated that the diameter of the core in
G2N is bounded by (4 + o(1)) log log N | log(1 + δ/m)|−1; thus, all we need to show is that,
for fixed ε > 0, a uniformly chosen vertex V ∈ [
(2 − ε)N�] can be connected to the core
using no more then o(log log N) edges in G2N . This is done in two steps. For the first step,
we explore the neighbourhood of V in GM for M = 
(2 − ε)N� until we find a vertex w with
degree Z[w, N ] ≥ u0, where u0 will be determined below. Denote by Sk, k ≥ 0, the set of
all vertices in GM that can be reached from V using exactly k different edges from GM . If we
fix u ∈ N and set T

(V )
u = min{k : Sk ∩ {n : Z[n, N ] ≥ u} �= ∅}, then it is straightforward to

verify, similarly to the proof of [6, Theorem 3.6], that we can find a large constant Cu,ε > 0
such that

P{T (V )
u > Cu,ε} < ε, (7)

if N is sufficiently large. The second step is to show that any vertex w satisfying Z[w, N ] ≥ u0
for sufficiently large u0 can be joined to the core by using O(log log log N) edges. To this
end, we apply [6, Lemma A.1], as in the proof of [6, Proposition 3.3], to obtain, for any vertex
j ∈ M = {�(2 − ε)N�, . . . , 2N} and any vertex a ∈ [N ] with Z[a, N ] ≥ ua ,

P{j ↔ a, j ↔ b for some b with Z[b, N ] ≥ ub | GM} ≥ cuau
−(1+δ/m)
b

N

for a positive constant c with probability exceeding 1 − o(N−1), and as long as both ua and ub

do not exceed a small power of N . Hence, with the same probability,

P{there exists j ∈ M : j ↔ a, j ↔ b for some b withZ[b, N ] ≥ ub | GM}

≤
(

1 − cuau
−(1+δ/m)
b

N

)#M

≤ exp(−2cεuau
−(1+δ/m)
b ). (8)

Starting from the initial vertex w with Z[w, N ] ≥ u0 and defining, for k ≥ 1,

uk+1 =
(

εcuk

log(k + 1) − (log ε)/2

)1/(1+δ/m)

, (9)
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it is straightforward to check that, for ua = uk and ub = uk+1, the right-hand side of (8)
equals ε(k + 1)−2. Summing over these error bounds, we therefore find that (9) defines an
increasing sequence (uk)

K
k=0 of lower bounds on degrees at time N , for which we know that,

with probability at least 1 − π2ε/6, there is a path of length 2K which alternates between high
degree vertices and vertices from M and connects w to a vertex of degree uK . The recursive
definition (9) implies that

log uK ≥
(

1

1 + δ/m

)K

(log u0 − Cε)

for some large Cε > 0; thus, if u0 = exp(2Cε), we can connect w to a vertex belonging to
coreN by choosing K ≥ Dσ,ε log log log N , where Dσ,ε > 0 depends only on σ and ε. Fixing
u = exp(2Cε) in (7) and starting the above construction in u0 = u, we obtain, for a uniformly
chosen vertex V ∈ G2N ,

P{d2N(V, coreN) > 2Dσ,ε log log log N + Ce2Cε ,ε} ≤
(

2 + π2

6

)
ε,

if N is sufficiently large, showing that the diameter of coreN is the dominating contribution to
typical distances in G2N .

A different class of preferential attachment models was introduced in [7] and further studied
in [9]. Here a new vertex is connected to any existing vertex independently with a probability
depending (possibly nonlinearly) on its degree. In this model the number of edges created in
every step is asymptotically Poisson distributed.

Example 2. (Preferential attachment with variable outdegree.) This model was studied in the
work of Dereich, Mörters, and coauthors; see [8] for a survey. The model depends on a concave
function f : N ∪ {0} → (0, ∞), which is called the attachment rule. Roughly speaking, in
every step a new vertex is added to the network and oriented edges from the new vertex to
existing vertices are introduced independently with a probability proportional to the current
degree of the existing vertex.

More precisely, to generate a dynamic network model (GN), we assume that f satisfies
f (0) ≤ 1 and f (1) − f (0) < 1. An important parameter derived from f is the limit

γ := lim
n→∞

f (n)

n
,

which always exists with 0 ≤ γ < 1, by concavity. By Z[n, N ], n ≤ N , we denote the number
of younger vertices to which vertex n is connected in GN .

• G1 consists of a single vertex, labelled 1, and no edges.

• In the (N + 1)th step, given GN , we insert one new vertex, labelled N + 1, and
independently for any m ∈ [N ], we introduce an edge from N + 1 to m with probability

f (Z[m, N ])
N

.

By [7, Theorem 1.1(b)], the conditional distribution given GN of the number of edges created
in the (N + 1)th step converges to a Poisson distribution and the empirical distribution of the
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degrees converges to a power law with exponent τ = 1 + 1/γ , or, more precisely, to a random
probability vector (µk) satisfying

lim
k→∞

log µk

log k
= 1 + 1

γ
.

We therefore expect the network to be ultrasmall if and only if γ > 1
2 .

Proposition 2. For independent, uniformly chosen vertices V and W in the giant component
of the preferential attachment model with attachment rule f and derived parameter γ > 1

2 , we
have

dN(V, W) = (4 + o(1))
log log N

log(γ /(1 − γ ))
with high probability.

Remark 2. The upper bound can be proved by adapting the argument of [6]; see the forthcom-
ing thesis [11] for details. For the lower bound, we verify Assumption PA(γ + ε) for any ε > 0
and apply Theorem 2.

Proof of Proposition 2. We first note that, for v < w ∈ [N ],

P{v ↔ w} = E f (Z[v, w − 1])
w − 1

.

To estimate the expectation, we note that, by concavity, given ε > 0, there exists k such that,
for all n ≥ k, we have f (n) ≤ f (k)+(γ +ε)(n−k). An easy calculation (see [9, Lemma 2.7])
shows that

E f (Z[v, w − 1]) ≤ C1w
γ+εv−γ−ε for a suitable constant C1 > 0. (10)

We now use (10) to verify Assumption PA(γ + ε). For v < w ∈ [N ], all events {v ↔ w}
with different values of v are independent. Hence, P{v0 ↔ · · · ↔ vn} can be decomposed
into factors of the form P{vj−1 ↔ vj ↔ vj+1} with vj < vj−1, vj+1 and factors of the form
P{vj−1 ↔ vj } for the remaining edges. It remains to estimate factors of the former form. We
may assume that v < u < w and obtain

P{u ↔ v ↔ w} = E[f (Z[v, u − 1])f (Z[v, w − 1])]
(u − 1)(w − 1)

.

Arguing as in the derivation of (10) we obtain, for a suitable constant C2 > 0,

E[f (Z[v, w − 1]) | Z[v, u − 1] = k] ≤ C2f (k)wγ+εu−γ−ε.

Hence,

E[f (Z[v, u − 1])f (Z[v, w − 1])] ≤ C2 E[f (Z[v, u − 1])2]wγ+εu−γ−ε,

and, using a similar argument as above, we obtain C3 > 0 such that

E[f (Z[v, u − 1])2] ≤ C3u
2(γ+ε)v−2(γ+ε).

Summarising, we obtain a constant C4 > 0 such that

P{u ↔ v ↔ w} ≤ C4u
γ−1+εv−2(γ+ε)wγ−1+ε,

as required to complete the proof.
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We now give three examples of random networks in the universality class of fitness models.
The first two belong to the wide class of inhomogeneous random graphs, whose essential feature
is the independence between different edges.

Example 3. (Expected degree random graph.) This model was studied in the work of Chung
and Lu; see [4] or [5] for a survey. In its general form the model depends on a triangular scheme
w

(N)

1 , . . . , w
(N)

N of positive weights, where the weight w
(N)

i plays the role of the expected degree
of vertex i in GN . The model is defined by the following two requirements:

• for every pair (i, j) with 1 ≤ i �= j ≤ N , the events {i ↔ j} are independent,

• for every pair (i, j) with 1 ≤ i �= j ≤ N , we have

P{i ↔ j} = w
(N)

i w
(N)

j

�N

∧ 1, where �N :=
N∑

i=1

w
(N)

i .

Proposition 3. For independent, uniformly chosen vertices V and W in the expected degree
random graph with weights satisfying

c

(
N

i

)γ

≤ w
(N)

i ≤ C

(
N

i

)γ

for all 1 ≤ i ≤ N,

for some γ > 1
2 and constants 0 < c ≤ C, we have

dN(V, W) = (2 + o(1))
log log N

log(γ /(1 − γ ))
with high probability.

Proof. The upper bound is sketched in [4]. For the lower bound, we have to check Assump-
tion FM(γ ). Note that, using the upper bound on the weights,

P{i ↔ j} ≤ w
(N)

i w
(N)

j

�N

≤ C2 N2γ

�N

(ij)−γ .

From the lower bound on the weights we obtain �N ≥ cN for some c > 0, and, hence,
P{i ↔ j} ≤ κN2γ−1i−γ j−γ for a suitable κ . Using the independence assumption, we see that
Assumption FM(γ ) holds, and the lower bound follows from Theorem 1.

Example 4. (Conditionally Poissonian random graph.) This model was studied in the work of
Norros and Reittu; see [12]. It is based on drawing an independent, identically distributed
sequence �1, �2, . . . of positive capacities. Conditional on this sequence, the dynamical
network model is constructed as follows.

• G1 consists of a single vertex, labelled 1, and no edges.

• In the (N + 1)th step, given GN , we insert one new vertex, labelled N + 1, and
independently for any m ∈ [N ], we introduce a random number of edges between N + 1
and m according to a Poisson distribution with parameter

�i�N+1

LN+1
for Ln :=

n∑
k=1

�k.
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• We further remove each edge in GN independently with probability 1 − LN/LN+1, and,
thus, obtain GN+1.

Recall that having possibly several edges between two vertices has no relevance for the typical
distances in the giant component. In order to be in the ultrasmall regime, we require the law of
the capacities to be power laws with exponent 2 < τ < 3.

Proposition 4. Assume that the capacities in the conditionally Poissonian random graph satisfy

P{�1 > x} = x1−τ (c + o(1)) for all sufficiently large x,

where 2 < τ < 3 and c > 0 is constant. For independent, uniformly chosen vertices V and W

in the giant component, we have

dN(V, W) = (2 + o(1))
log log N

− log(τ − 2)
with high probability.

Remark 3. The upper bound was proved in [12, Theorem 4.2], where it was also shown that a
giant component exists. For the lower bound, we verify Assumption FM(γ ) for γ = 1/(τ − 1)

and apply Theorem 1.

Proof of Proposition 4. We check that Assumption FM(γ ) holds with high probability,
conditionally given the capacities. For fixed N , we put the capacities in decreasing order,

�
(1)

N > �
(2)

N > · · · > �
(N)

N ,

and relabel the vertices so that the j th vertex has weight �
(j)

N . We recall from [12, Proposi-
tion 2.1] that the number of edges between vertices i and j in GN is Poisson distributed with
parameter �

(i)

N �
(j)

N /LN . As the edges are conditionally independent, we only have to verify
that, given ε > 0, there exists κ > 0 such that

1 − exp

(
−�

(i)

N �
(j)

N

LN

)
≤ κN2γ−1i−γ j−γ for all 1 ≤ i < j ≤ N,

with probability greater than or equal to 1−2ε. By the law of large numbers, LN is of order N ,
so it suffices to establish that �

(i)

N ≤ κ(N/i)γ for all 1 ≤ i ≤ N . To this end, we denote by
S

(i)

N the number of potential values exceeding κ(N/i)γ . The random variable S
(i)

N is binomially
distributed with parameters N and p := P{�1 > κ(N/i)γ } ≤ c(κ)i/N , where c(�) ↓ 0 for
� ↑ ∞. By Bernstein’s inequality, see, e.g. [1, Equation (8)],

P{S(i)

N > 2i} ≤ exp

( −i2/2

var(S(i)

N ) + i/3

)
≤ e−3i/8 if c(κ) < 1.

Hence, we may choose M large enough so that
∑∞

i=M exp(− 3
8 i) < ε, ensuring that, with

probability exceeding 1−ε, we have �
(2i)

N ≤ κ(N/i)γ for all i ≥ M . It remains to give bounds
on �

(1)

N , . . . , �
(2M)

N . By a standard Poisson approximation result, see, e.g. [15, Proposition
3.21], we note that, for any 1 ≤ i ≤ 2M , S

(i)

N converges weakly to a Poisson distribution with
parameter λ := limN→∞ N P{�1 > κ(N/i)γ } ≤ 2c(κ)M , and, hence, by choosing κ large,
we can ensure that, for large N , we have

∑2M
i=1 P{S(i)

N > i} ≤ ε, which completes the proof.

A model which also falls in the universality class of fitness models is the random network
with fixed degree sequence, or configuration model. This model is well studied and very
detailed results on average distances in the case of power laws with exponent τ ∈ (2, 3) have
been obtained, in particular by van der Hofstad et al. [17].
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Example 5. (Random networks with fixed degree sequence.) The idea behind this class of
models is to enforce a particular power-law exponent by fixing the degree sequence of the
network in a first step. We therefore choose a sequence D1, D2, . . . of independent and
identically distributed random variables with values in the nonnegative integers. For given
N , we assume that

LN :=
N∑

j=1

Dj

is even, which may be achieved by replacing DN by DN − 1 if necessary. Thus, given
D1, . . . , DN , we construct the network GN as follows.

• To any vertex m ∈ [N ] we attach Dm half-edges or stubs.

• The LN stubs are given an (arbitrary) order.

• We start by pairing the first stub with another (uniformly) randomly chosen stub, and
continue pairing the lowest numbered unpaired stub with a remaining randomly chosen
stub until all stubs are matched.

• Any pair of stubs connect to form an edge.

Obviously, the resulting network can have self-loops and double edges, but this has no relevance
for the typical distances in the giant component. In order to be in the ultrasmall regime, we
require the law of the degrees to be a power law with exponent 2 < τ < 3.

Proposition 5. Assume that there exists c > 0 such that

P{D1 > x} = x1−τ (c + o(1)) for all sufficiently large x.

For independent, uniformly chosen vertices V and W in the giant component, we have

dN(V, W) = (2 + o(1))
log log N

− log(τ − 2)
with high probability.

Remark 4. This and much more is proved in [17, Theorem 1.2]. For an alternative approach
to the lower bound, we now verify Assumption FM(γ ) for any γ < 1/(τ − 1) and paths of
length up to � = O(log log N), which is clearly sufficient to apply Theorem 1.

Proof of Proposition 5. We observe that, given D1, . . . , DN , for pairwise disjoint vertices
v1, . . . , v�+1,

P{v� ↔ v�+1 | v1 ↔ v2 ↔ · · · ↔ v�−1 ↔ v�} ≤ Dv�
Dv�+1

LN − 2
∑�

k=1 Dvk

,

where the denominator is a rough lower bound on the number of stubs unaffected by the
conditioning event. In particular, P{i ↔ j} ≤ DiDj/(LN − 2Di). Using the law of large
numbers, we can easily see that there exists a c > 0 such that

LN − 2
�∑

k=1

Dvk
≥ cN with high probability

for any choice of v1, . . . , v� if � = O(log log N). Therefore, to verify Assumption FM(γ ), we
only need to find appropriate bounds on the degrees of given vertices, which can be achieved
(using the same relabelling) by a similar argument as in Example 4.
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4. Proofs

4.1. Proof of Theorem 2

In this section we assume the validity of Assumption PA(γ ) for a γ ∈ ( 1
2 , 1) with a fixed

constant κ . Given a vector (q(1), . . . , q(n)), we use the notation

q[m] :=
m∑

i=1

q(i) for all 1 ≤ m ≤ n.

We adopt the notation of the discussion at the end of Section 2. In particular, recall the definition
of µ

(v)

k and the key estimates (1), (2), and (3), which combine to give

P{dN(v, w) ≤ 2δ} ≤
δ∑

k=1

µ
(v)

k [�k − 1] +
δ∑

k=1

µ
(w)

k [�k − 1] +
2δ∑

n=1

N∑
u=�n∗

µ
(v)

n∗(u)µ
(w)

n−n∗(u). (11)

The remaining task of the proof is to choose δ ∈ N and 2 ≤ �δ ≤ · · · ≤ �0 ≤ N which allow
the required estimates for the right-hand side. To do so, we will make use of the recursive
representation

µ
(v)

k+1(n) =
N∑

m=�k

µ
(v)

k (m)p(m, n) for k ∈ {0, . . . , δ − 1} and n ∈ [N ],

where µ
(v)

0 (n) = 1{v=n} and

p(m, n) = κ(m ∧ n)−γ (m ∨ n)γ−1.

Denote by µ̄
(v)

k (m) = 1{m≥�k} µ
(v)

k (m) the truncated version of µ
(v)

k , and conceive µ
(v)

k and µ̄
(v)

k

as row vectors. Then
µ

(v)

k+1 = µ̄
(v)

k PN, (12)

where PN = (p(m, n))m,n=1,...,N . Our aim is to provide a majorant of the form

µ
(v)

k (m) ≤ αkm
−γ + 1{m>�k−1} βkm

γ−1

for suitably chosen parameters αk, βk ≥ 0. Key to this choice is the following lemma.

Lemma 1. Suppose that 2 ≤ � ≤ N , α, β ≥ 0, and q : [N ] → [0, ∞) satisfies

q(m) ≤ 1{m≥�}(αm−γ + βmγ−1) for all m ∈ [N ].
Then there exists a constant c > 1 (depending only on γ and κ) such that

qPN(m) ≤ c

(
α log

(
N

�

)
+ βN2γ−1

)
m−γ + 1{m>�} c

(
α�1−2γ + β log

(
N

�

))
mγ−1

for all m ∈ [N ].
Proof. We have

qPN(m) = 1{m>�}
m−1∑
k=�

q(k)p(k, m) +
N∑

k=m∨�

q(k)p(k, m)

≤ 1{m>�}
m−1∑
k=�

κ(αk−γ + βkγ−1)k−γ mγ−1 +
N∑

k=m∨�

κ(αk−γ + βkγ−1)kγ−1m−γ
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≤ κ

(
α

N∑
k=m∨�

k−1 + β

N∑
k=m∨�

k2γ−2
)

m−γ

+ 1{m>�} κ

(
α

m−1∑
k=�

k−2γ + β

m−1∑
k=�

k−1
)

mγ−1

≤ κ

(
α log

(
m

� − 1

)
+ β

2γ − 1
N2γ−1

)
m−γ

+ 1{m>�} κ

(
α

1 − 2γ
(� − 1)1−2γ + β log

(
m

� − 1

))
mγ−1.

This immediately implies the assertion since � ≥ 2 by assumption.

We apply Lemma 1 iteratively. Fix ε > 0 small and start with

�0 = �εN�, α1 = κ(εN)γ−1, and β1 = κ(εN)−γ .

Fix v ≥ �0. Then, for all m ∈ [N ],
µ

(v)

1 (m) = p(v, m) ≤ κ�
γ−1
0 m−γ + 1{m>�0} κ�

−γ
0 mγ−1

≤ α1m
−γ + 1{m>�0} β1m

γ−1.

Now suppose that, for some k ∈ N, we have chosen αk, βk , and an integer �k−1 such that

µ
(v)

k (m) ≤ αkm
−γ + βkm

γ−1 for all m ∈ [N ].
We choose �k to be an integer satisfying

6ε

π2k2 ≥ 1

1 − γ
αk�

1−γ

k , (13)

and assume that �k ≥ 2. Pick αk+1 and βk+1 such that

αk+1 ≥ c

(
αk log

(
N

�k

)
+ βkN

2γ−1
)

, βk+1 ≥ c

(
αk�

1−2γ

k + βk log

(
N

�k

))
. (14)

By the induction hypothesis we can apply Lemma 1 with � = �k and q(m) = µ̄
(v)

k (m). Then,
using (12),

µ
(v)

k+1(m) ≤ αk+1m
−γ + 1{m>�k} βk+1m

γ−1 for all m ∈ [N ], (15)

showing that the induction can be carried forward up to the point where �k < 2, say in step K .
Summing (15) over m ≤ �k − 1 and using (13), we obtain

µ
(v)

k [�k − 1] ≤ 1

1 − γ
αk�

1−γ

k ≤ 6ε

π2k2 .

Hence, the first two summands on the right-hand side of (11) are together smaller than 2ε. It
remains to choose δ = δ(N) as large as possible while ensuring that δ < K and

lim
N→∞

2δ∑
n=1

N∑
u=�n∗

µ
(v)

n∗(u)µ
(w)

n−n∗(u) = 0.
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To this end, assume that �k is the largest integer satisfying (13), and that the parameters αk and
βk are defined via the equalities in (14). To establish lower bounds for the decay of �k , we
investigate the growth of ηk := N/�k > 0.

Going backwards through the definitions yields, for an integer k ≥ 0 with k + 1 < K and
if the right-hand side is smaller or equal to (N/3)1−γ ,(

η−1
k+2 + 1

N

)γ−1

≤ c2(k + 2)2

k2 η
γ

k + 2c2 (k + 2)2

(k + 1)2 η
1−γ

k+1 log ηk+1.

In particular, it follows that K > k + 2 in this case.
It is easy to check inductively that, for any solution of this system, there exist constants

b, B > 0 (not depending on N ) such that

ηk ≤ b exp

(
B

(√
γ

1 − γ

)k)
(16)

for k < K and, moreover, the right-hand side exceeds (N/3)1−γ before step K . We now use
(15) to estimate

2δ∑
n=1

N∑
u=�k

µ
(v)

n∗(u)µ
(w)

n−n∗(u) ≤ 2
δ∑

k=1

N∑
u=�k

(αku
−γ + βku

γ−1)2

≤ 4

2γ − 1

δ∑
k=1

(α2
k�

1−2γ

k + β2
k N2γ−1)

≤ 4

2γ − 1
δ(α2

δ �
1−2γ
δ + β2

δ N2γ−1).

Using (13) and (16), the first summand in the bracket can be estimated as

α2
δ �

1−2γ
δ ≤

(
δ−2 6ε

π2 (1 − γ )

)2

�−1
δ ≤

(
6ε

bπ2 (1 − γ )

)2 1

Nδ4 exp

(
B

(
γ

1 − γ

)δ/2)
.

Using equality in (14), we obtain βδ ≤ c(αδ�
1−2γ
δ + αδN

1−2γ log(N/�δ)). Noting that the
second summand on the right-hand side is bounded by a multiple of the first, we find a constant
C1 > 0 such that β2

δ N2γ−1 ≤ C1α
2
δ �

1−2γ
δ , and, thus, for a suitable constant C2 > 0,

2δ∑
n=1

N∑
u=�k

µ
(v)

n∗(u)µ
(w)

n−n∗(u) ≤ C2
1

Nδ3 exp

(
B

(
γ

1 − γ

)δ/2)
.

Hence, for a suitable constant C > 0, choosing

δ ≤ log log N

log
√

γ /(1 − γ )
− C,

we find that the term we consider goes to 0 as O((log log N)−3). Note from (16) that this choice
also ensures that �δ ≥ 2. We have thus shown that

P{dN(v, w) ≥ 2δ} ≤ 2ε + O((log log N)−3),

whenever v, w ≥ �0 = �εN�, which implies the statement of Theorem 2.
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4.2. Proof of Theorem 1

In this section we assume the validity ofAssumption FM(γ ) for some γ ∈ ( 1
2 , 1) with a fixed

constant κ ≥ 1. Recall again the notation and framework from the introductory section. We
use the same approach as in the proof of Theorem 2, but now we have to consider the symmetric
matrix PN := (p(m, n))m,n∈[N ] given by

p(m, n) := κm−γ n−γ N2γ−1 for m, n ∈ [N ]. (17)

We obtain the following lemma, which is the analogue of Lemma 1.

Lemma 2. Suppose that 2 ≤ � ≤ N and q : [N ] → [0, ∞) satisfies

q(m) ≤ 1{m≥�} mγ−1�−γ for all m ∈ [N ].
Then, for all m ∈ [N ],

qPN(m) ≤ κm−γ Nγ−1
(

N

�

)γ

log

(
N

� − 1

)
.

Proof. By (17) and the assumption on q,

qPN(m) =
N∑

i=1

q(i)p(i, m) ≤ κm−γ �−γ N2γ−1
N∑

i=�

1

i
≤ κm−γ �−γ N2γ−1 log

(
N

� − 1

)
,

which implies the statement of the lemma.

For fixed ε > 0, we first construct inductively a strictly decreasing sequence of integers (�k)

by letting �0 = �εN� and defining �k+1 as the largest integer such that

κ

1 − γ

(
�k+1

N

)1−γ

≤ 6ε

π2(k + 1)2

(
log

(
N

�k − 1

))−1(
�k

N

)γ

. (18)

We stop once we find �k ≤ 1, say in step K . Recall the definition and recursive formula
for µ

(v)

k , and let µ̄
(v)

k (m) := 1 {m≥�k}µ
(v)

k (m). Then µ
(v)

k+1(m) = µ̄
(v)

k PN(m). We now show for
k = 1, . . . , K − 1 that

µ
(v)

k (m) ≤ κm−γ Nγ−1
(

N

�k−1

)γ

log

(
N

�k−1 − 1

)
≤ m−γ �

γ−1
k for all m ∈ [N ]. (19)

Indeed, for k = 1, the statement follows from (17) and (18). We then continue by induction
using Lemma 2. Considering the truncated first moment estimate (1) for δ < K and our choice
of (�k), we obtain, from (19),

P(A
(v)

k ) ≤ µ
(v)

k [�k − 1] ≤ κ

1 − γ

(
�k

N

)1−γ (
N

�k−1

)γ

log

(
N

�k−1 − 1

)
.

Hence, (18) entails that
∑δ

k=1 P(A
(v)

k ) ≤ ε. The last step is to choose δ = δ(N) as large as
possible while ensuring that δ < K and

2δ∑
n=1

N∑
u=�n∗

µ
(v)

n∗(u)µ
(w)

n−n∗(u) (20)
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goes to 0 as N → ∞. By (19), this term can be bounded by a constant multiple of N2γ−2 ∑δ
k=1

�
1−2γ

k . To verify (20), we have to bound the growth of the values ηk := N/�k . The choice
made in (18) implies that, for k < K and if the right-hand side is smaller than (N/3)1−γ ,(

η−1
k+1 + 1

N

)γ−1

<
π2κ

1 − γ

(k + 1)2

6ε
η

γ

k log(2ηk) for k ≥ 0.

In particular, we have k + 1 < K in this case.
From this, it is straightforward to verify inductively the existence of constants b, B > 0,

which only depend on ε, κ , and γ , such that

ηk ≤ b exp

(
B

(
γ

1 − γ

)k)
for k < K,

and, moreover, the right-hand side exceeds (N/3)1−γ before step K . Hence, we may choose a
suitable constant C > 0 such that, for

δ ≤ log log N

log(γ /(1 − γ ))
− C,

we have �δ ≥ 2. To complete the proof, we note that

N2γ−2
δ∑

k=1

�
1−2γ

k ≤ 1

N

δ∑
k=1

η
2γ−1
k ≤ δbNB(γ/(1−γ ))−C−1,

which implies convergence in (20) when C is chosen large enough.
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