
12 A. G. WALKER

Riemann's formula (6.3). The Lebesgue sums use a "horizontal "
division of the ^/-values, while the Riemann sums have a " vertical "
division of the #-axis.

The following characterisation of the Riemann integrable
functions will throw a final light on our subject: A function f(x) is
integrable in the Riemann sense if, and only if, it is measurable and
bounded in (a, b), and if the set of its points of discontinuity has the
linear Lebesgue measure zero.
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Finite protective geometry.

By A. G. WALKER.

1. The following description of the projective geometry of a
finite number of points in 2-space is almost certainly known to those
acquainted with projective geometry or with modern algebra. The
object of this brief account is to show how certain finite systems can
be presented in a form easily understood by students, and how they
provide simple but instructive examples of fundamental ideas and
" constructions." The fact that these examples belong to a geometry
which is essentially non-Euclidean has great teaching value to those
students who are apt to confuse projective geometry with the
" method of projection " in Euclidean geometry. The underlying
algebra is described briefly in § 4, but an understanding of this is not
essential to the geometry. This algebraic work may, however, be of
interest to those to whom Galois fields are fairly new.

2. The axioms generally adopted for projective geometry of
2-space are nine in number, being the three axioms of incidence
(there is one and only one line passing through two points, and two
lines have a point in common), the three axioms of extension (there
is at least one line and at least three points on every line, and not all
points lie on the same line), the axiom of perspective triangles
(Desargues' theorem), the projective axiom (Pappus' theorem), and
the diagonal axiom (the three diagonal points of a quadrangle are not
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collinear). These axioms are found to be sufficient to give those
properties of points, lines, conies, etc., which are familiar as projective
invariants of Euclidean geometry. Euclidean geometry (with infinity)
is not, however, the only system satisfying the above axioms, and
there are others which are particularly interesting in that each consists
of only a finite number of points. A well known example is the
system of 13 points and 13 lines with four points on each; denoting
the points by 0, 1, 2, . . . . . 12, then the linear sets of points are the
columns in the following array:

0
1

3
9

1
2
4
10

2
3
5
11

3
4

6
12

4
5
7
0

5
6

8
1

6
7
9
2

7
8

10
3

8
9
11
4

9
10
12

5

10
11
0
6

11
12
1

7

12
0
2
8.

It can be verified that all nine axioms are satisfied by this system.
The problem of finding the most general finite system which

satisfies the projective axioms is algebraic, but the results can always
be expressed in a non-algebraic form as in the case of the above
13-point system. A system of this kind exists for every pair of
positive integers p, m, where p is a prime number (p > 2). Writing
n = pm and N — n (n + 1), then there are in this system N -f- 1 points
and N + 1 lines, with n + 1 points on every line and n + 1 lines
through every point. There are also n2(n3— 1) conies, and n• + 1
points on every conic. For a given conic, \n(n + 1) lines are chords,
n + 1 lines are tangents (i.e. meet the conic only once), and the
remaining \n(n — 1) lines do not meet the conic. Every point has a
polar, but this line need not meet the conic, i.e. the polar is not
always the chord of contact of tangents. All these results and many
others can be deduced immediately from the axioms and the fact
that there are exactly n + 1 points on at least one line.

It is an interesting fact that the iV + 1 points of the general finite
system can be denoted by 0, 1, 2, .. .., N in such a way that the
N + 1 lines are the columns of a cyclic array, as in the case of the
13-point system described above (n — 3). For such an arrangement,
all that need be known is the first column, and the remaining N
columns are then obtained by cyclic progression. This first column
will be called the key of the system, thus the key of the 13-point
system is 0, 1, 3, 9.

In the following table are keys calculated for a number of systems,
the case p = 2 (in which the diagonal axiom is denied) being included

https://doi.org/10.1017/S0950184300002731 Published online by Cambridge University Press

https://doi.org/10.1017/S0950184300002731


14 A. G. WALKBB

for algebraic interest. Their calculation, and the meaning of the
third column, will be explained later.

n
2
3
22

5
7
23

32

11

N
6
12
20

30
56
72

90
132

Generating cubic
xs — x — 1

X3 — X — 1

XS + X - 1

xz - x - 2

a;3->- 1 (/=j+l)
a;3 - to - 1 (A;2 = 2)

Key
0, 1,3
0, 1, 3, 9
0, 1, 4, 14, 16
0, 1, 3, 8, 12, 18
0, 1, 3, 13, 32, 36, 43, 52
0, 1, 3, 7, 15, 31, 36, 54, 63
0, 1, 3, 9, 27,49, 56, 61, 77, 81
0, 1, 3, 15, 46, 71, 75, 84, 94, 101.

112, 128,

3. A convenient system which is useful for demonstration
purposes is that given by n = 5, the complete cyclic array being

0
1
3
8
12

1
2
4
9
13

2
3
5
10
14

3
4
6
13
15

4
5
7
12
16

5
6
8
13
17

6
7
9
14
18

7
8
10
15
19

8
9
11
16
20

9
10
12
17
21

10
11
13
18
22

11
12
14
19
23

12
13
15
20
24

13
14
16
21
25

14
15
17
22
26

15
16
18
23
27

16
17
19
24
28

17
18
20
25
29

18
19
21
26
30

19
20
22

20
21.
23

27 28
0 1

21
22
24

22
23
25

29 30
2 3

23
24
26
0
4

24
25
27
1
5

25
26
28
2
6

26
27
29
3
7

27
28
30
4
8

28 29
29 30
0
5
9

1
6
10

30
0
2
7
11

18 19 20 21 22 23 24 25 26 27 28 29 30 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17

The line whose column is headed by r will be denoted by f, and
we shall write r.s for the line joining points r and s, r.s for the point
of intersection of lines f and s, and r.s: u.v for the point of intersection
of lines r.s and u.v. A few simple examples of suitable problems in
this particular system are as follows.

(i.) On the line 0, find the harmonic conjugate of 0 with respect to
12 and 18.

The usual quadrangular construction is as follows. Take two
points collinear with 0, say 2 and 7 on line 30. Then from the array
we find

2.12: 7.18 = 25.6 = 6, 2.18: 7.12 = T5.T = 16.
The required point is therefore the intersection of 0 and 6.16, i.e. is
0.29 = 1.

(ii.) Prove that the points 5, 10, 12, 18, 24, 29 lie on a conic.
Testing by Pascal's theorem, the meets of opposite sides of thi&

hexagon are found to be

5.10:18.24 = 2 .6= 14, 10.12:24.29= 9.21 = 21, 12.18:29.5 = 0.28=0.
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The three points 14, 21, 0 are collinear (13) as required.

(iii.) Find the tangent at the point 5 of the conic of (ii).
The simplest method is to note that of all the lines through 5,

5 is the only one which does not meet the conic again; 5 is therefore
the tangent. Another method is to apply Pascal's theorem to the
hexagon 5, 5, 10, 12, 18, 24.

(iv.) Find the polar of the point 2 with respect to the conic of (ii).
Examining the lines through 2, we see that two of them, 15 and

25, each meet the conic just once, at 18 and 12 respectively. These
lines are therefore tangents, and the polar of 2 is the chord of contact,
i.e. the line 18.12 = 0. Another method is described in (v).

(v.) Find the polar of 0 with respect to the conic of (ii).
In this case we find that there are no tangents from the point to

the conic, and our method now is to use the harmonic properties of
an inscribed quadrangle. Two ohords through 0 are 0 and 23, meeting
the conic at 12, 18 and 10, 24 respectively. The polar of 0 is the line
joining the other two diagonal points of the quadrangle formed by
these four points, and we find

12.10:18.24 ="9.6= 9, 12.24:18.10 = 12.10=13, 9 .13=1 .

Hence I is the required line. It may be noted that this line passes
through the point found in ex. (i), as would be expected.

These are only a few of the many elementary but instructive
exercises which can be set in this particular system of geometry.

4. The algebra associated with a finite system of projective
geometry is that of a Galois field, G. The order, or number of
elements, is of the form n = pm where p is prime, and there are p
"integers," which can be written1 0, 1, 2, . . . . , p — 1. A point is
now defined as (x, y, z) where x, y, z belong to G and are not all zero,
and (kx, ky, kz) is the same point for all &=j=0. A line is defined as
{a, b, c}, where a, b, c belong to G and are not all zero, and is the
class of points satisfying ax + by + cz = 0. I t now follows that the
first eight projective axioms are satisfied, and that the diagonal axiom
is satisfied provided p > 2. Also, there are n + 1 points on every line,

1 An algebraic combination of these integers in G is the numerical residue mod. p.
Thus when p = 5, we have 2 + 2 = 4.. 3 -+- 4 = 2, 2 x 4 = 3, 1/3 = 2 et
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etc., and we therefore have an algebraic representation of the general
finite system described earlier.

We shall now show how a cyclic array as described in § 2
can be determined for any finite system. Consider a cubic
C — x3 — ax2 — bx — c, where a, b, c belong to O and are such that C
is irreducible, i.e. G = 0 has no root in 0. Then it can be proved
that G divides xN+1 — c, where JV = n{n + 1) as before. It is also
possible that G divides xM — d for some d of G and some M < N + 1;
if no such M exists, we shall say that C is primitive. When n = 7,
for example, we find that x3 — x — 1 is reducible, being (x + 2) x
(x2 — 2x + 3), that x3 — 3x — 1 is irreducible but not primitive since
it divides x19 + 3, and that xs — x — 2 is primitive. It is easily
verified that when N + 1 is prime, then every irreducible cubic is
primitive.

Suppose now that the above cubic is primitive, and consider the
sequence ur of elements in G defined by

u0 = 0 , ux = 0, M2 = 1, ur+3 = aur+2 + bur+1 + cur (r = 0, 1, 2, ).

Then it can be proved that uN+s = cus_1 (s = 1, 2, . . . . ) , and that no
relation of this form holds (for all s) with c replaced by any element
of G and N replaced by a lesser number. The sequence is thus
periodic with period N + 1 except for the multiplier c which enters at
each new period. If now a point r is defined as (ur, ur+i, ur+2) for
each r, then we get distinct points for r = 0, 1, 2, N, after which
there is cyclic repetition. These 2V + 1 points are therefore all the
points of the 2-space under consideration, and they have the desired
cyclic symmetry in the order in which they arise. The lines are given
by the columns in the array of which the key consists of the
successive values of r for which ur = 0 (this key being the line x = 0).

There are different primitive cubics for the same Galois field, and
these generate different cyclic arrays for the same geometrical
system. Except in the case n = 22 we can always choose a = 0, so
that the key starts with 0, 1, 3. We also take c = 1 whenever
possible, for then the sequence ur is truly periodic. The primitive
cubics which generate the keys given in § 2 are seen in the third
column of the table. As an example of an alternative, there is also
for n — 5 the key 0, 1, 3, 10, 14, 26, which is generated by x3 — 3% — 1.

As an illustration of the general method, consider n = 5, and
take the primitive cubic x3 + x — 1 given in the table. Then the
sequence ur is found to be
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0 5 10 15 20 25 30

00104 11303 32012 44301 34341 43211 1,0010

As expected, the sequence recurs after 31 terms. The coordinates of
the point r are now (ur, ur+u ur+«) taken from this sequence; thus the
point 25 is (4, 3, 2) or a set of elements proportional to these, such as
(1, 2, 3) = 4 (4, 3, 2). The line f joins the points r and r + 1, and it
can be verified that this line is {vr+2, vr, ?V+i} where

v0 = 0, vx = 0, v 2 = 1, «r + 3 = vr+2 + vr (r = 0, 1, 2, . . . . ) .

The sequence vr is
0 5 10 15 20 25 30
00111 23414 34310 34421 02330 31140 1,0011

and recurs after 31 terms.
The problems solved from the array in § 3 can now be worked

algebraically. It can be verified, for example, that the six points in
(ii) lie on the conic 4x2 + y2 + z2 + 2zz = 0. The point 5 is (1, 1, 3)
and by the usual formula the tangent at this point is {2, 1, 4} oc {4, 2, 3}
which is line 5, as found in (iii). The point 2 is (1, 0, 4), and its polar
is {3, 0, 0} x {1, 0, 0} which is line 0, as found in (iv). And so on, for
other examples.

5. In conclusion it may be mentioned that the extension of
these results to spaces of higher dimensions is obvious. In
3-space, for example, there are n3 + n2 + n + 1 points and the
same number of planes, with n2 + n + 1 points on each plane and
n+ 1 points on each line; here n is of the form pm as before.
Algebraically, the points in 3-space are given by (ur, ur+u ur+2, ur+3),
r = 0, 1, 2 , n3 + n2 + n, where u0 == ux = u2 = 0, uz — 1, and ur

is generated by means of a primitive quartic in the Galois field. The
system can be described by a cyclic array of n2 + n + 1 rows and
n3 + n2 + n + 1 columns, the points in each column being coplanar.
For example, with n = 2, writing 0, 1, . . . . , 14 for the 15 points of
3-space, then the array giving the 15 planes has in the first column
0, 1, 2, 4, 5, 8, 10, and the other columns are found by cyclic pro-
gression. In this example the primitive quartic is x* — x — 1.
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