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The article studies an initial boundary value problem (ibvp) for the radial solutions
of the nonlinear Schrödinger (NLS) equation in a radially symmetric region Ω ∈ Rn

with boundaries. All such regions can be classified into three types: a ball Ω0 centred
at origin, a region Ω1 outside a ball, and an n-dimensional annulus Ω2. To study the
well-posedness of those ibvps, the function spaces for the boundary data must be
specified in terms of the solutions in appropriate Sobolev spaces. It is shown that
when Ω = Ω1, the ibvp for the NLS equation is locally well-posed in
C([0, T ∗];Hs(Ω1)) if the initial data is in Hs(Ω1) and boundary data is in

H
2s+1

4 (0, T ) with s ≥ 0. This is the optimal regularity for the boundary data and
cannot be improved. When Ω = Ω2, the ibvp is locally well-posed in
C([0, T ∗];Hs(Ω2)) if the initial data is in Hs(Ω2) and boundary data is in

H
s+1
2 (0, T ) with s ≥ 0. In this case, the boundary data requires 1/4 more derivative

compared to the case when Ω = Ω1. When Ω = Ω0 with n =2 (the case with n > 2
can be discussed similarly), the ibvp is locally well-posed in C([0, T ∗];Hs(Ω0)) if the

initial data is in Hs(Ω0) and boundary data is in H
s+1
2 (0, T ) with s > 1 (or

s > n/2). Due to the lack of Strichartz estimates for the corresponding boundary
integral operator with 0 ≤ s ≤ 1, the local well-posedness can only be achieved for
s > 1. It is noted that the well-posedness results on Ω0 and Ω2 are the first ones for
the ibvp of NLS equations in bounded regions of higher dimension.

Keywords: nonlinear Schrödinger equations; initial boundary value problems;
well-posedness; radial solutions; radially symmetric regions

2020 Mathematics Subject Classification: Primary: 35Q55; 35G16; 35G31

© The Author(s), 2024. Published by Cambridge University Press on behalf of
The Royal Society of Edinburgh

1

https://doi.org/10.1017/prm.2024.120 Published online by Cambridge University Press

mailto:sun@math.vt.edu
https://orcid.org/0000-0002-0818-4700
mailto:fyan1@alumni.nd.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2024.120&domain=pdf
https://doi.org/10.1017/prm.2024.120


2 S.M. Sun and F. Yan

1. Introduction

The article studies the well-posedness of the initial boundary value problem (ibvp)
for the general nonlinear Schrödinger (NLS) equation in Rn, which is given by:

iut +∆u+ λ|u|p−2u = 0, (x1, . . . , xn) ∈ Ω, t ∈ (0, T ), T <
1

2
, (1.1a)

u(x1, . . . , xn, 0) = u0(x1, . . . , xn), (x1, . . . , xn) ∈ Ω, (1.1b)

u(x1, . . . , xn, t) = g(t), (x1, . . . , xn) ∈ ∂Ω, t ∈ (0, T ) , (1.1c)

where p ≥ 3, ∆u = ∂2x1u+ · · ·+ ∂2xnu and Ω is a radially symmetric region in Rn.
The radially symmetric regions can be a ball centred at the origin, the outside of
this ball, and an annulus between two spheres. In dimension 2, we have sketched
the graph of these three regions in figures 1–3. Of course, the most general radially
symmetric regions can be a combination of the regions mentioned above. Since we
can decompose the general radially symmetric regions into the above three regions
and this decomposition allows us to analyse each region independently, in this work,
we consider three regions:

Ω0
.
= {(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n < 1},

Ω1
.
= {(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n > 1},

Ω2
.
= {(x1, . . . , xn) ∈ Rn : π2 < x21 + · · ·+ x2n < (2π)2}.

Figures 1–3 depict the regions Ω0–Ω2, respectively, for the case of n =2.
Equation (1.1a) can be classified as either focusing (indicated by the ‘λ> 0’) or

defocusing (indicated by the ‘λ< 0’). When p=4, it becomes the well-known cubic
NLS equation (λ = ±1)

iut + uxx ± |u|2u = 0, (1.2)

which is a ubiquitous model in various areas of mathematical physics, including
water waves, plasmas, optics, and Bose–Einstein condensates. The cubic NLS equa-
tion has been rigorously derived for water waves of small amplitude over infinite or
finite depth and in the context of nonlinear optics [2, 15, 33]. It has also been pro-
posed as a model for rogue waves [14, 31]. In addition to its physical significance, the
cubic NLS equation exhibits a complex mathematical framework as the archetypal
illustration of a fully integrable system in one dimension. It features an unbounded
hierarchy of symmetries and laws of conservation. In the one-dimensional case, the
equation’s integrability is particularly noteworthy, as characterized by the existence
of a Lax pair of the form:

Ψx =

(
−ik u

∓1
2 ū ik

)
Ψ, Ψt =

(
−2ik2 ± i

2 |u|
2 2ku+ iux

∓kū± i
2 ūx 2ik2 ∓ i

2 |u|
2

)
Ψ, k ∈ C.

(1.3)
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Figure 1. Region Ω0.
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Figure 2. Region Ω1.
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Figure 3. Region Ω2.

The Lax pair formulation (1.3) allows the study of the initial value problem
(ivp) for the cubic NLS equation under the assumption of initial data with suf-
ficient smoothness and decay at infinity using the inverse scattering transform
method [36]. Well-posedness of the ivp for the NLS equation on the circle in
Sobolev spaces Hs with s > 0 has been proven by Bourgain [8] using modern
harmonic analysis techniques. Earlier results include the works of Cazenave and
Weissler [13], Ginibre and Velo [22], Kenig, Ponce and Vega [29], and Tsutsumi
[34]. In addition, the sharp well-posedness result on R was recently established
in [24].
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Boundary value problems are particularly significant in real-world applications.
For example, in the work [28], the authors study the dynamics of Bose–Einstein
condensates confined in cigar-shaped traps, where the trap’s edges impose the
boundary conditions. Although ibvps for Eq. (1.1a) are more relevant to real-world
applications, they have received relatively little attention due in part to the lack of
a Fourier transform in the case of bounded or semi-bounded spatial domains, which
poses a significant obstacle to their analysis for dispersive equations like NLS and
Korteweg-de Vries (KdV) equations. Nonetheless, researchers have explored various
approaches to studying the ibvps, such as using the Riemann–Liouville fractional
integration operator [18, 25], the Laplace transform [5–7], and the Fokas unified
transform method [20, 21]. Additionally, the ibvp of NLS in two dimensions has been
studied in [27, 32]. The regularity properties for the cubic NLS equations on the half-
line are discussed in [19] and the global well-posedness in one-dimensional spaces
is addressed in [7]. However, the corresponding ibvps for Eq. (1.1a) in bounded
regions of higher dimension have not been explored and the goal of this article is
to delve into this uncharted territory and establish a foundation for understanding
the solution behaviour in more complex and realistic settings.

Here, we investigate the ibvp in Ωj , j = 0, 1, 2, which are radially symmet-
ric regions of Rn. We assume that the initial condition u0 satisfies the following
condition of radial symmetry:

u0(x1, . . . , xn) = u0(r), where r =
√
x21 + · · ·+ x2n. (1.4)

We seek to find radially symmetric solutions of the ibvp. We equip the ibvp with
different boundary conditions in three different domains. In Ω0, we use the boundary
condition:

u(x1, . . . , xn, t) = g2(t), x21 + · · ·+ x2n = 1, t ∈ (0, T ). (1.5)

In Ω1, we use the boundary condition:

u(x1, . . . , xn, t) = g(t), x21 + · · ·+ x2n = 1, t ∈ (0, T ). (1.6)

In Ω2, we use the boundary condition:u(x1, . . . , xn, t) = g1(t), x21 + · · ·+ x2n = π2, t ∈ (0, T ),

u(x1, . . . , xn, t) = g2(t), x21 + · · ·+ x2n = (2π)2, t ∈ (0, T ).
(1.7)

In addition to these boundary conditions, we have established compatibility
conditions for each of the problems:

The ibvp in Ω0 : u0(1) = g2(0), 1 < s < 2, (1.8a)

The ibvp in Ω1 : u0(1) = g(0),
1

2
< s <

3

2
, (1.8b)

The ibvp in Ω2 : u0(π) = g1(0) and u0(2π) = g2(0),
1

2
< s < 2. (1.8c)
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Furthermore, it is important to highlight that in this article, the lifespan T ∗

satisfies 0 < T ∗ ≤ T < 1
2 , and it depends on both the norm of initial data and

the norm of boundary data. In addition, in the theorems that follow, the solutions
are radially symmetric. With these clarifications, we can now present the primary
outcomes and conclusions of our study.

In the following, Hs(Ω) is denoted as the classical L2-based Sobolev space in Ω
with Sobolev inex s and Hs

0(Ω) is the subspace of H2(Ω) which is the closure of
functions in Hs(Ω) with compact supports in Ω (formal definitions of those spaces
will be given in §2).

Theorem 1.1 Let n= 2. Suppose u0 ∈ Hs
0(Ω0), satisfying condition (1.4), and

g2 ∈ H
s+1
2

0 (0, T ). If 1 < s < 2, p ≥ 3 and p is an even integer, then the ibvp within
domain Ω0, subject to the compatibility condition (1.8a), is locally well-posed in
C([0, T ∗];Hs(Ω0)), where the lifespan T ∗ depends on ‖u0‖Hs(Ω0)

, ‖g2‖
H
s+1
2 (0,T )

and p.

Here, the use of spaces Hs
0(Ω0) and H

s+1
2

0 (0, T ) for initial and boundary
data merely makes the proof of theorem 1.1 slightly more straightforward since
the compatibility conditions for the initial and boundary data are automatically
satisfied.

Theorem 1.2 Let n ≥ 2, u0 ∈ Hs(Ω1), which satisfies the condition (1.4), and

g ∈ H
2s+1
4 (0, T ).

• If 0 ≤ s < 1
2 and 3 ≤ p < 6−4s

1−2s , then the ibvp in domain Ω1 is locally
well-posed in C([0, T ∗];Hs(Ω1)).

• If 1
2 < s < 3

2 and p ≥ 3, then the ibvp in domain Ω1 with compatibility
condition (1.8b) is locally well-posed in C([0, T ∗];Hs(Ω1)).

In both cases, the lifespan T ∗ depends on ‖u0‖Hs(Ω1)
, ‖g‖

H
s+1
4 (0,T )

and p.

Theorem 1.3 Let n ≥ 2, u0 ∈ Hs(Ω2), which satisfies the condition (1.4), g1 ∈
H
s+1
2 (0, T ) and g2 ∈ H

s+1
2 (0, T ).

• If 0 ≤ s < 1
2 and 3 ≤ p ≤ 4, then the ibvp in domain Ω1 is locally well-posed

in C([0, T ∗];Hs(Ω2)).
• If 1

2 < s < 2, s 6= 3
2 and p ≥ 3, then the ibvp in domain Ω2 with compatibility

condition (1.8c) is locally well-posed in C([0, T ∗];Hs(Ω2)).

In both cases, the lifespan T ∗ depends on ‖u0‖Hs(Ω2)
, ‖g1‖

H
s+1
2 (0,T )

,

‖g2‖
H
s+1
2 (0,T )

and p.

We remark that the above theorems address a notable gap in current research,
which is significantly important in the study of non-homogeneous boundary value
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problems for the NLS equations. In particular, theorem 1.2 gives an optimal regu-
larity of the boundary data for the ibvp of NLS equations in Ω1, while theorems 1.1
and 1.3 provide the first account on the well-posedness issue for the ibvp of NLS
equations in bounded regions of higher dimensions. Thus, the results in the article
contribute to the limited body of knowledge on the ibvp of NLS equations and add
valuable insights to the field, shedding light on a previously under-studied aspect
of NLS equations, which we believe will be instrumental to the future research.
Moreover, we note that the global well-posedness of ibvps in one-dimensional spaces
has been addressed in [7], though it imposes some restrictions on the nonlinearity.
For the problems studied in this article, the global well-posedness can be analysed
similarly with restrictions on the nonlinearity, utilizing energy conservation and
boundary data estimates.

For s < 0, [17] showed that the ivp for the cubic NLS equation is ill-posed because
the mapping from initial data to solutions fails to be uniformly continuous. For the
ibvp in the regions Ω1 and Ω2, we reduce this problem to the one-dimensional
ibvp and prove well-posedness holds for s ≥ 0. Therefore, in terms of the uniform
continuity of the data-to-solution map, theorems 1.2 and 1.3 are sharp. However, in
the recent work [24], the ivp for the cubic NLS equation was shown to be well-posed
for s > −1

2 , which is sharp. We have not yet achieved this sharp result for the ibvp,
but we aim to explore this in future work.

Regarding the ibvp in the region Ω0, the non-zero boundary conditions compli-
cate the derivation of Strichartz estimates. Thus, in theorem 1.1, we only establish
local well-posedness for s > 1. The absence of these Strichartz estimates limits the
sharpness of our result.

For the unforced case with zero boundary conditions, global well-posedness
results have been achieved. In [9, 10], the authors proved global well-posedness
for the ibvp of the NLS equation on the two-dimensional and three-dimensional
unit balls for 0 < s < 1

2 , utilizing and thoroughly discussing Strichartz estimates.
Additionally, in [4], Strichartz estimates were established for the Schrödinger

equation on Riemannian manifolds (Ω, g) with zero boundary conditions. This
applies both to compact cases and when Ω is the exterior of a smooth, non-trapping
obstacle in Euclidean space. Using these estimates, the Schrödinger equation was
shown to be well-posed in H1(Ω) for three-dimensional space (see theorems 5.1 and
6.3 in [4]).

Here, we note that although the works [4, 9, 10] indeed derive Strichartz esti-
mates for problems with zero boundary conditions, our study focuses on the ibvps
with non-zero boundary conditions. The Strichartz estimates available in those
literatures do not directly apply to such ibvps, which involve boundary integral
operators, and as a result, there is a lack of established estimates for the cases we
consider. This distinction is crucial to the novelty and challenges for the problem
considered here.

In this article, we have not been able to derive the necessary Strichartz estimates
for the boundary integral operator Wballh defined by (5.27), which are required to
prove the local well-posedness of the ibvp in the region Ω0. Hence, the presence of
non-zero boundary conditions complicates the derivation of Strichartz estimates,
and local well-posedness can only be achieved for s > 1. However, we have gained
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insights from the works mentioned above and plan to explore this direction further
in future research.

Next, we provide an overview of the proof of the main results, which is comprised
of four essential steps:

• Step 1. We begin by reducing the ibvp (1.1) to the NLS equation in one
dimension when Ω = Ω1 or Ω = Ω2. For Ω = Ω0, due to the singularity at
r =0 if changing the equation in one dimension, we still use Ω0 in Rn.

• Step 2. We derive a solution formula for the corresponding linear forced
ibvp, which will be crucial in obtaining estimates for the linear problem.

• Step 3. Using classical analysis, we obtain linear estimates for the data
and forcing in suitable function spaces, which we refer to as ‘good’ solution
spaces.

• Step 4. We prove that the iteration map defined by the solution formula,
with the forcing replaced by the nonlinearity, is a contraction in ‘good’
solution spaces. This will allow us to use the contraction mapping principle
to establish the existence of a unique solution to the nonlinear problem.

Here, we remark that, since the solutions and the domains are radially symmetric,
we may change the ibvps for Ω = Ω1 or Ω2 to 1D NLS equations on a half line or
a finite interval with one or two boundary points. These 1D problems have been
studied in [7, 21]. If we require certain linear estimates from [7, 21] in our proof,
we may either cite them or provide shorter or more elegant proof.

Paper organization: In §2, we introduce crucial preliminary results that are
foundational for our subsequent proofs. Section 3 is dedicated to establishing the
well-posedness result for regions outside a ball, with a specific focus on proving
theorem 1.2. In §4, we delve into the well-posedness result within an annulus and
provide the proof for theorem 1.3. Section 5 is dedicated to demonstrating the
well-posedness result within a ball centred at the origin, presenting the proof for
theorem 1.1. Additionally, we include an Appendix section where we provide proofs
that may have been omitted in earlier sections.

2. Preliminary

In this section, since we only consider the solutions of (1.1) with radial form, we
rewrite (1.1) as

iut + urr +
n− 1

r
ur + λ|u|p−2u = 0, r ∈ (r1, r2), t ∈ (0, T ), (2.1a)

u(r, 0) = u0(r), r ∈ (r1, r2), (2.1b)

u(r1, t) = g1(t) , u(r2, t) = g2(t), t ∈ (0, T ), (2.1c)
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8 S.M. Sun and F. Yan

where r1, r2 are chosen appropriately for Ωj , j = 0, 1, 2 and r = (x21 + · · · + x2n)
1
2 .

Here,

∆u = ∂2x1u+ · · ·+ ∂2xnu = u′′(r) +
n− 1

r
u′(r) (2.2)

has been used.
The corresponding linear ibvp is

iut + urr +
n− 1

r
ur = f(r, t), r ∈ (r1, r2), t ∈ (0, T ), (2.3a)

u(r, 0) = u0(r), r ∈ (r1, r2), (2.3b)

u(r1, t) = g1(t) , u(r2, t) = g2(t), t ∈ (0, T ). (2.3c)

If r1 6= 0, we can use a change of dependent variable u(r, t) = r−
n−1
2 · v(r, t) to

derive the equations for v, that is

ivt + vrr = r
n−1
2 f(r, t) +

n2 − 4n+ 3

4
r−2 · v, r ∈ (r1, r2), t ∈ (0, T ), (2.4a)

v(r, 0) = r
n−1
2 u0(r) = v0(r), r ∈ (r1, r2), (2.4b)

v(r1, t) = r
n−1
2

1 g1(t) , v(r2, t) = r
n−1
2

2 g2(t), t ∈ (0, T ). (2.4c)

From the theory of the ivp (1.1) in Rn, it is known that if the initial data u0

of radial form is in W s,2(Ωj), j = 0, 1, 2, then u0(r) is in W
s,2

rn−1(r1, r2) for r1 6= 0,

which implies that v0(r) ∈ W s,2(r1, r2). Here, the weighted Sobolev space Wm,p
ω

over the open region Ω is given by (see [35]),

‖u‖Wm,p
ω (Ω) =

( ∑
|α|≤m

∫
Ω

|Dαu|pωdx
)1/p

. (2.5)

Hence, we only need to discuss the solutions of (2.4) in L2-based Sobolev spaces if
r1 6= 0.

If r1 = 0, then the above change of dependent variables introduces a singularity
at r =0 and cannot be used, which implies that the weighted Sobolev spaces are
necessary. For the case that r2 = ∞, the problem (2.1) is the NLS equation posed
in Rn with radial symmetric initial data. If we consider the following ivp of linear
Schrödinger equation

iUt +∆U = F, (x1, . . . , xn) ∈ Rn, t ∈ (0, T ), (2.6a)

U(x1, . . . , xn, 0) = U0(x1, . . . , xn), (x1, . . . , xn) ∈ Rn , (2.6b)

then using Fourier transform, we have
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U = Sn[U0;F ]
.
=

1

(2π)n

∫
Rn
eiξ·x−i|ξ|

2tÛ0(ξ1, . . . , ξn)dξ1 · · · dξn (2.7a)

− i

(2π)n

∫ t

0

∫
Rn
eiξ·x−i|ξ|

2(t−t′)F̂ x(ξ1, . . . , ξn, t
′)dξ1 · · · dξndt′, (2.7b)

where ξ · x = ξ1x1 + · · · + ξnxn and |ξ|2 = ξ21 + · · · + ξ2n. Also, we have following
claim.
Claim. If U 0 and F are radially symmetric, that is, for r ≥ 0 we have

U0(x1, . . . , xn) = U0(r), F (x1, . . . , xn, t) = F (r, t), x21 + · · ·+ x2n = r2,

then the solution of the above ivp (2.6) is also radially symmetric.

Proof. The above claim follows from the next result.

Lemma 2.1. If f is radially symmetric, then f̂ is also radially symmetric.
Conversely, if f̂ is radially symmetric, then f is radially symmetric.

Now, since the term (2.7a) is the inverse Fourier transform of

e−i|ξ|
2tÛ0(ξ1, . . . , ξn), by lemma 2.1, the term (2.7a) is radially symmetric.

Similarly, since term (2.7b) is the integral of the inverse Fourier transform

e−i|ξ|
2(t−t′)F̂ (ξ1, . . . , ξn, t

′), lemma 2.1 implies that this term is also radially
symmetric. This completes the claim. �

Proof of lemma 2.1. Here, we only prove that the Fourier transform of a radially
symmetric function is radially symmetric. The Fourier transform of function f (x )
in Rn is defined as:

f̂(ξ) =

∫
Rn
f(x)e−iξ·xdx, (2.8)

where ξ · x = ξ1x1 + · · ·+ ξnxn denotes the dot product of the vectors ξ and x. To
show that f̂(ξ) is also radially symmetric, we need to show that f̂(ξ) is invariant
under rotations, i.e., if we rotate the vector ξ in Rn by an angle θ, the Fourier
transform f̂(ξ) remains the same.

Let R be a rotation matrix in Rn, i.e., R is an n ×n orthogonal matrix with
determinant 1. Then, we have:

f̂(Rξ) =

∫
Rn
f(r)e−i(Rξ)·xdx =

∫
Rn
f(r)e−iξ·R

−1xdx
y=R−1x

=

∫
Rn
f(r)e−iξ·ydy

=f̂(ξ),

where we have used the fact that R−1 = RT for an orthogonal matrix R.
Thus, we have shown that the Fourier transform of a radially symmetric function

in Rn is also radially symmetric, i.e., f̂(ξ) = f̂(|ξ|). This completes the proof of
lemma 2.1. �
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Therefore, by above discussion, we can use the well-posedness theory of the
NLS equations in Rn to establish the well-posedness of (2.1) with r1 = 0 and
r2 = ∞ under the assumption that u0(r) ∈ W s,2

rn−1(R) with s ≥ 0. We note that

the boundary condition for (2.1) at r =0 must be vr(0) = 0 and the solution space
is W s,2

rn−1(R) with s ≥ 0. Hence, in the following, we will only consider the cases
with 0 < r1 < r2 = ∞, 0 < r1 < r2 <∞, and 0 = r1 < r2 <∞.

Here, we recall the linear estimate for the solution Sn[U0;F ].

Proposition 2.2. [Strichartz estimates for linear Schrödinger equation]
For s ≥ 0, if (q, γ) and (q1, γ1) are admissible, which are given below in definition

2.3. Then the solution U = Sn[U0;F ] of ivp (2.6) satisfies∥∥Sn[U0;F ]
∥∥
Lq(0,T ;Ws,γ(Rn)) . ‖U0‖Hs(Rn) +

∥∥F∥∥
L
q′1(0,T ;W

s,γ′1(Rn))
. (2.9)

The proof of proposition 2.2 can be found in [11] (see theorem 2.3.3).
Throughout this work, we shall use the familiar time localizer ψ(t), which is

defined as follows:

ψ ∈ C∞
0 (−1, 1), 0 ≤ ψ ≤ 1 and ψ(t) = 1 for |t| ≤ 1

2
. (2.10)

Moreover, we introduce the notion of admissible pair

Definition 2.3. We say that a pair (q, γ) is admissible (in n dimension), if

2

q
+
n

γ
=
n

2
, (2.11)

and

2 ≤ γ ≤ 2n

n− 2
, (2 ≤ γ ≤ ∞if n = 1, 2 ≤ γ <∞if n = 2) . (2.12)

Additionally, the Sobolev space Hs(Rn) consists of all temperate distributions F
with the norm

‖F‖Hs(Rn)
.
=
(∫

Rn
(1 + |ξ|)2s|F̂ (ξ)|2dξ

)1/2
, (2.13)

where F̂ (ξ) is the Fourier transform defined by

F̂ (ξ)
.
=

∫
Rn
e−iξ·xF (x)dx.

For an open set Ω ⊂ Rn, the space Hs(Ω) is defined by

Hs(Ω)
.
=
{
f :f=F

∣∣
Ω
where F ∈Hs(Rn) and ‖f‖Hs(Ω)

.
= inf
F∈Hs(Rn)

‖F‖Hs(Rn)<∞
}
.

(2.14)
Here, we remind the reader that the space Hs

0(Ω) is the subspace which is the
closure of the class of functions in Hs(Rn) whose support lies in Ω.
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Finally, we define the Sobolev space on a torus, which will be used to study the
problem on annulus. For s ≥ 0, the Sobolev space Hs(T) is defined by

Hs(T) .=
{
f ∈ L2(T) : ‖f‖s

.
=

(∑
n∈Z

(1 + |n|)2s|f̂(n)|2
)1/2

<∞
}
. (2.15)

Also, recall the Fourier transform

f̂(n) =

∫ π

−π
e−inxf(x) dx, n ∈ Z, (2.16)

and the inverse Fourier transform

f(x) =
1

2π

∑
n∈Z

f̂(n)einx. (2.17)

Equations (2.16) and (2.17) present identities that hold in the sense of distributions.

Specifically, for functions f such that f ∈ L1, the Fourier transform f̂ is in `1,
ensuring the validity of the identities as stated.

3. NLS equations on a half-line (i.e., outside of a ball)

In this section, we study (2.1) on a half-line with r ∈ (1,∞) (i.e., outside of a ball)
and a boundary condition u(1, t) = g(t), where r1 = 1 is chosen for the sake of
convenience. We first discuss the corresponding linear problem and then obtain the
well-posedness of the nonlinear problem.

3.1. Solutions of linear problems with estimates in Sobolev Spaces

If f1(r, t)
.
= r

n−1
2 f(r, t)+ n2−4n+3

4 r−2 ·v and v0(r) = r
n−1
2 u0(r), then (2.4) becomes

ivt + vrr = f1(r, t), r > 1, t ∈ (0, T ), (3.1a)

v(r, 0) = v0(r), r > 1, (3.1b)

v(1, t) = g(t), t ∈ (0, T ). (3.1c)

Also, by using the compatibility (1.8b), the above ibvp is equipped with the
following compatibility condition

g(0) = v0(1),
1

2
< s <

3

2
. (3.2)

Next, we solve the ibvp (3.1) and begin with decomposing the above ibvp into
simpler problems. In fact, using superposition principle, the linear ibvp (3.1) can
be expressed as the homogeneous ibvp
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ivt + vrr = 0, r > 1, t ∈ (0, T ), (3.3a)

v(r, 0) = v0(r) ∈ Hs(1,∞), r > 1, (3.3b)

v(1, t) = g(t) ∈ H
2s+1
4 (0, T ), t ∈ (0, T ), (3.3c)

and the forced linear ibvp with zero initial and boundary data

ivt + vrr = f1(r, t), r > 1, t ∈ (0, T ), (3.4a)

v(r, 0) = 0, r > 1, (3.4b)

v(1, t) = 0, t ∈ (0, T ). (3.4c)

Also, we can do further decomposition. In fact, the homogeneous ibvp (3.3) can
be expressed as the homogeneous ivp and the pure ibvp. The homogeneous ivp is
given by:

iVt + Vrr = 0, t ∈ (0, T ), (3.5a)

V (r, 0) = V0(r) ∈ Hs(R), (3.5b)

where V 0 is the extension of v0 from (1,∞) to R such that

‖V0‖Hs(R) ≤ 2‖v0‖Hs(1,∞). (3.6)

The pure ibvp is given by:

ivt + vrr = 0, r > 1, t ∈ (0, T ), (3.7a)

v(r, 0) = 0, r > 1, (3.7b)

v(1, t) = g(t)− V (1, t) ∈ H
2s+1
4 (0, T ), t ∈ (0, T ). (3.7c)

For the inhomogeneous ibvp (3.4), it can be decomposed as a forced ivp and a
pure ibvp:

iWt +Wrr = F (r, t), r > 1, t ∈ (0, T ), (3.8a)

W (r, 0) = 0, (3.8b)

where F is the extension of f 1 from (1,∞) to R such that

‖F‖
L
q′
t (0,T ;Ws,γ′ (R))

≤ 2‖f1‖
L
q′
t (0,T ;Ws,γ′ (1,∞))

. (3.9)
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The pure ibvp is given by:

ivt + vrr = 0, r > 1, t ∈ (0, T ), (3.10a)

v(r, 0) = 0, r > 1, (3.10b)

v(1, t) = −W (1, t) t ∈ (0, T ). (3.10c)

Linear estimate for homogeneous ivp (3.5). The solution to this problem
is obtained by Fourier transform

V (r, t) = S[V0; 0](r, t)
.
=

1

2π

∫
R
eiξr−iξ

2tV̂0(ξ)dξ, (3.11)

where V̂0 is the Fourier transform of V 0, that is

V̂0
.
=

∫
R
e−iξrV0(r)dr.

We have the following estimates for S[V0; 0], whose proof can be found in [12, 25].

Proposition 3.1. Homogeneous ivp estimates The solution V = S[V0; 0] of the
homogeneous linear Schrödinger ivp (3.5) given by formula (3.11) satisfies the space
estimate:

sup
t∈[0,T ]

‖S[V0; 0](t)‖Hs(R) = ‖V0‖Hs(R), s ∈ R. (3.12)

Also, S[V0; 0] satisfies the time estimate

sup
r∈R

‖S[V0; 0](r)‖
H

2s+1
4 (0,T )

. ‖V0‖Hs(R), s ∈ R. (3.13)

In addition, if 2
q + 1

γ = 1
2 and γ ≥ 2, then S[V0; 0](r, t) satisfies the following

Strichartz estimate

‖S[V0; 0]‖Lqt (R;Ws,γ(R)) . ‖V0‖Hs(R), s ≥ 0. (3.14)

Linear estimate for forced ivp (3.8). The solution to this problem is given
by

W = S[0;F ](r, t)
.
=− i

2π

∫ t

t′=0

∫
R
eiξr−iξ

2(t−t′)F̂ r(ξ, t′)dξdt′ (3.15a)

=− i

∫ t

t′=0

S[F (·, t′); 0](r, t− t′)dt′ , (3.15b)

where F̂ r is the Fourier transform of F and S[F (·, t′); 0] denotes the solution of
homogeneous ivp (3.5) with initial datum F (r, t′). We have the following estimates
for S[0;F ](r, t), whose proof also can be found in [12, 25]
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14 S.M. Sun and F. Yan

Proposition 3.2. Forced ivp estimates The solution W = S[0;F ] of the forced
ivp (3.8) given by formula (3.15) satisfies the space estimate:

sup
t∈[0,T ]

‖S[0;F ](t)‖Hs(R) ≤ T sup
t∈[0,T ]

‖F (t)‖Hs(R), s ∈ R. (3.16)

Also, S[0;F ] satisfies the time estimate

sup
r∈R

‖S[0;F ](r)‖
H

2s+1
4

t (0,T )

. (1 + T )
1
4 ‖F‖

L
q′
t (0,T ;Ws,γ′ (R))

, −1

2
< s <

1

2
,

(3.17)

sup
r∈R

‖S[0;F ](r)‖
H

2s+1
4

t (0,T )

.
∥∥F∥∥

L1
(
0,T ;Hs(R)

), 1

2
< s <

3

2
. (3.18)

In addition, if 2
q + 1

γ = 1
2 , and γ ≥ 2, then S[0;F ](r, t) satisfies the following

Strichartz estimate

‖S[0;F ]‖Lqt (0,T ;Ws,γ(R)) . ‖F‖
L
q′
t (0,T ;Ws,γ′ (R))

, s ≥ 0. (3.19)

Next, we study the following ibvp

ivt + vrr = 0, r > 1, t ∈ (0, T ), (3.20a)

v(r, 0) = 0, r > 1, (3.20b)

v(1, t) = g1(t) ∈ H
2s+1
4 (0, T ), t ∈ (0, T ). (3.20c)

Also, we extend the boundary data g1(t) from (0, T ) to R by the following result
whose proof can be found in [21, 30].

Lemma 3.3. For a general function h∗(t) ∈ Hm
t (0, 2) with m ≥ 0, let the extension

h̃∗(t)
.
=

h∗(t), t ∈ (0, 2),

0, elsewhere.

If 0 ≤ m < 1
2 , then the extension h̃∗ ∈ Hm(R) and for some cm > 0 we have

‖h̃∗‖Hmt (R) ≤ cm‖h∗‖Hmt (0,2). (3.21)

If 1
2 < m < 3

2 , then for estimate (3.21) to hold we must have the condition

h∗(0) = h∗(2) = 0. (3.22)

In fact, for −1
2 < s < 1

2 or 0 ≤ 2s+1
4 < 1

2 , we define

h(t)
.
=

g1(t), t ∈ (0, T ),

0, t 6∈ (0, T ).
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Then, using lemma 3.3, it is obtained that h(t) is compactly supported in (0, 2)
and

‖h‖2s+1
4 (R) . ‖g1‖2s+1

4 (0,T )
.

For 1
2 < s < 3

2 or 1
2 < 2s+1

4 < 1, we first extend g1 from (0, 2) to R such that
‖g2‖ 2s+1

4 (R) ≤ 2‖g1‖ 2s+1
4 (0,T )

. Next, we define

h(t)
.
=

g2(t), t ∈ (0, 2),

0, t 6∈ (0, 2).

Again, by lemma 3.3, h(t) is compactly supported in (0, 2) and ‖h‖ 2s+1
4 (R) .

‖g1‖ 2s+1
4 (0,T )

. Therefore, the ibvp (3.20) becomes

ivt + vrr = 0, r > 1, t ∈ (0, T ), (3.23a)

v(r, 0) = 0, r > 1, (3.23b)

v(1, t) = h(t) ∈ H
2s+1
4 (0, 2), t ∈ (0, 2), (3.23c)

where h(t) is compactly supported in (0, 2). Using Laplace transform (see [7])
or the Fokas method (see [21]), we derive the solution for the reduced pure ibvp
(3.23)

v = Sb[0, h; 0]
.
=

1

2π

∫ 0

−∞
eiβtei

√
−β(r−1)h̃(iβ)dβ +

1

2π

∫ ∞

0

eiβte−
√
−β(r−1)h̃(iβ)dβ

= I1 + I2, (3.24)

where the integrals I 1 and I 2 are defined by

I1(r, t)
.
=

1

2π

∫ 0

−∞
eiβtei

√
−β(r−1)h̃(iβ)dβ =

1

π

∫ ∞

0

e−iβ
2teiβ(r−1)βh̃(−iβ2)dβ,

(3.25)

r > 1, (3.25)

I2(r, t)
.
=

1

2π

∫ ∞

0

eiβte−
√
−β(r−1)h̃(iβ)dβ =

1

π

∫ ∞

0

eiβ
2te−β(r−1)βh̃(iβ2)dβ, r > 1.

(3.26)

Since h(t) is compactly supported in (0, 2), we have

h̃(−iβ2) =

∫ ∞

0

eiβ
2th(t)dt =

∫
R
eiβ

2th(t)dt = ĥ(−β2) and h̃(iβ2) = ĥ(β2).

(3.27)
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Proposition 3.4. The solution v = Sb[0, h; 0] of the ibvp (3.20) given by formula
(3.24) satisfies the space estimate:

sup
t∈[0,T ]

‖Sb[0, h; 0](t)‖Hs(1,∞) . ‖h‖
H

2s+1
4 (R)

, s ≥ 0. (3.28)

Also, if 2
q +

1
γ = 1

2 then Sb[0, h; 0](r, t) satisfies the following Strichartz estimate

‖Sb[0, h; 0]‖Lqt (0,T ;Ws,γ(1,∞)) . ‖h‖
H

2s+1
4 (R)

, s ≥ 0. (3.29)

Proof of proposition 3.4. For the proof of estimate (3.28), we refer to [7, 21]. Here,
we only provide the proof of Strichartz estimate (3.29), which was also discussed
in [7]. In this exposition, we offer an alternative proof.

Proof of Strichartz estimate (3.29). The proof for I 1 is similar to that of
estimate (3.14) and here we omit it. Next, we prove estimate (3.29) for I 2. Making
the change of variables τ = β2, we get

I2(r, t) '
∫ ∞

0

eiτte−
√
τ(r−1)ĥ(τ)dτ =

∫ ∞

0

Kt(r, τ) · (1 + |τ |)
1
4 ĥ(τ)dτ, r > 1,

(3.30)

where the kernel Kt(r, τ) is defined as follows

Kt(r, τ)
.
= eiτte−

√
τ(r−1)(1 + |τ |)−

1
4 , r > 1. (3.31)

Also, we see that estimate (3.29) follows from the following result

∥∥∥∫ ∞

0

Kt(r, τ)f̂(τ)dτ
∥∥∥
L
q
t (0,T ;Lγ(1,∞))

. ‖f‖L2 ,
2

q
+

1

γ
=

1

2
and 2 ≤ γ ≤ ∞.

(3.32)
The proof of estimate (3.32) is provided in Appendix. Now, using (3.32), we show
the estimate (3.29). To do this, we will consider the following two cases.

Case 1: s ∈ N. Taking partial derivative ∂sr , we have

∂srI2(r, t) '
∫ ∞

0

eiτte−
√
τ(r−1)(−

√
τ)sĥ(τ)dτ '

∫ ∞

0

Kt(r, τ) · |τ |
s
2 (1 + |τ |)

1
4 ĥ(τ)dτ.

(3.33)

Next, apply (3.32) with f̂(τ) = |τ |
s
2 (1 + |τ |)

1
4 ĥ(τ) to obtain

∥∥∥I2∥∥∥
L
q
t (0,T ;Ws,γ(1,∞))

=
∥∥∥∂srI2∥∥∥

L
q
t (0,T ;Lγ(1,∞))

.
(∫

R
|τ |s(1 + |τ |)

1
2 |ĥ(τ)|2dτ

)1/2
. ‖h‖

H
2s+1
4

,

which is the desired estimate (3.29).
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Case 2: s ≥ 0 and s 6∈ N. We prove this by interpolation. In fact, any s ≥ 0 can
be written as s = (1− θ)bsc+ θ(bsc+ 1). Furthermore, in Case 1, we proved that∥∥I2∥∥Lqt (0,T ;Wbsc,γ(1,∞))

. ‖h‖
H

2bsc+1
4

and
∥∥I2∥∥Lqt (0,T ;Wbsc+1,γ(1,∞))

. ‖h‖
H

2(bsc+1)+1
4

,

which implies that I 2 is a continuous linear operator from H
2bsc+1

4 to

Lqt (0, T ;W
bsc,γ(1,∞)) as well as from H

2(bsc+1)+1
4 to Lqt (0, T ;W

bsc+1,γ(1,∞)).
Thus, according to Theorem 5.1 of [30] (see also [3]), we see that I 2 is a con-

tinuous linear operator from H
2s+1
4 to Lqt (0, T ;W

s,γ(1,∞)). This completes the
proof of Case 2 and estimate (3.29). �

Now, we can derive the linear estimate for the solution of ibvp (3.1). In fact, this
solution is given by

v(r, t) = Λ[v0, g; f1]
.
= S[V0; 0] + S[0;F ] + Sb[0, g − S[V0;F ](1, t); 0], r > 1,

(3.34)

t ∈ (0, T ), (3.34)

where V 0 is an extension of v0 satisfying inequality (3.6) and F is an extension of
f 1 satisfying inequality (3.9). Combining propositions 3.1–3.4 and using inequalities
(3.6) and (3.9), we obtain the following linear estimate.

Theorem 3.5 The following estimates hold.

(1) Suppose that 0 ≤ s < 1
2 . If v0 ∈ Hs(1,∞), g ∈ H

2s+1
4 (0, T ) and f1 ∈

Lq
′
t

(
0, T ;W s,γ′(1,∞)

)
, where (q, γ) is admissible with n= 1, then Λ[v0, g; f1]

defines a solution to the linear ibvp (3.1), which satisfies

sup
t∈[0,T ]

∥∥Λ[v0, g; f1](t)∥∥Hs(1,∞)
+
∥∥Λ[v0, g; f1]∥∥Lqt (0,T ;Ws,γ(1,∞))

. ‖v0‖Hs(1,∞) + ‖g‖
H

2s+1
4 (0,T )

+ ‖f1‖
L
q′
t (0,T ;Ws,γ′ (1,∞))

. (3.35)

(2) Suppose that 1
2 < s < 3

2 . If v0 ∈ Hs(1,∞), g ∈ H
2s+1
4 (0, T ) and f1 ∈

L1
(
0, T ;Hs(1,∞)

)
then Λ[v0, g; f1] defines a solution to the linear ibvp (3.1)

with compatibility condition (3.2), which satisfies

sup
t∈[0,T ]

∥∥Λ[v0, g; f1](t)∥∥Hs(1,∞)
.‖v0‖Hs(1,∞) + ‖g‖

H
2s+1
4 (0,T )

+
∥∥f1∥∥

L1
(
0,T ;Hs(1,∞)

). (3.36)
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3.2. Proof of well-posedness for ibvp in domain Ω1, i.e., theorem 1.2

Existence of solutions for nonlinear problems on half line. Since the ibvp
in Ω1 is reduced to the ibvp (2.1) for r ∈ (1,∞) with u(1, t) = g(t). Now, it suffices
to prove the existence of solutions of ibvp (3.1) with forcing f 1 giving by

f1(r, t) = −λr
n−1
2 |u|p−2u+

n2 − 4n+ 3

4
r−2 · v = −λr−

(n−1)(p−2)
2 |v|p−2v

+
n2 − 4n+ 3

4
r−2 · v. (3.37)

The case. 0 ≤ s < 1
2 .. In the solution formula (3.34), replacing f 1 by the

nonlinearity above, we obtain the iteration map

v = Λ
[
v0, g; f1] = Λ

[
v0, g;−λr−

(n−1)(p−2)
2 |v|p−2v +

n2 − 4n+ 3

4
r−2 · v

]
. (3.38)

Next, we will show that the iteration map (3.38) is a contraction in the following
solution space

Z = C([0, T ∗];Hs(1,∞)) ∩ Lqt (0, T ∗;W s,γ(1,∞)), (3.39)

where (q, γ) is an admissible pair (with n =1), which are defined as

q
.
=

4p

(p− 2)(1− 2s)
and γ

.
=

p

1 + (p− 2)s
. (3.40)

We notice that q and γ satisfy γ ≥ 2 and q ≥ 2
(

2
1−2s + 1

)
. The linear estimate

(3.35) implies

sup
t∈[0,T∗]

∥∥Λ[v0, g; f1](t)∥∥Hs(1,∞)
+
∥∥Λ[v0, g; f1]∥∥Lqt (0,T∗;Ws,γ(1,∞))

. ‖v0‖Hs(1,∞)

+ ‖g‖
H

2s+1
4 (0,T )

+ |λ|‖r−
(n−1)(p−2)

2 |v|p−2v‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

+ ‖r−2 · v‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

. (3.41)

Now, we need to bound the nonlinear terms in the above inequality.

Estimate for. ‖r−
(n−1)(p−2)

2 |v|p−2v‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

. We extend

r−
(n−1)(p−2)

2 from (1,∞) to R such that the extension k(r) ∈ C∞(R) and
it is described as followsk(r) = |r|−

(n−1)(p−2)
2 , |r| > 1,

k(r) ≤ 2, |r| ≤ 1.

Also, we extend v from (1,∞)× (0, T ∗) to R× (0, T ∗) such that the extension V
satisfies

‖V ‖Lqt (0,T∗;Ws,γ(R)) ≤ 2‖v‖Lqt (0,T∗;Ws,γ(1,∞)). (3.42)
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Now, we have

‖r−
(n−1)(p−2)

2 |v|p−2v‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

≤ ‖k(·)|V |p−2V ‖
L
q′
t (0,T∗;Ws,γ′ (R))

.

Furthermore, using the chain rule (see lemma 5 in [25]) and using ‖k‖L∞ ≤ 2, we
obtain

‖k(·)|V |p−2V (t)‖
Ws,γ′ (R)) .‖k(·)|V |p−2(t)‖

Lγ
′′‖DsV (t)‖Lγ

≤‖k‖L∞‖|V |p−2(t)‖
Lγ

′′‖DsV (t)‖Lγ

.‖|V |p−2(t)‖
Lγ

′′‖DsV (t)‖Lγ ,

where 1
γ′′ = 1

γ′ −
1
γ = 1 − 2

γ . Moreover, applying Sobolev–Gagliardo–Nirenberg

inequality (we refer to theorem 1.3.4 in [12] and corollary 1.5 in [23]) with 1
(p−2)γ′′ =

1
γ − s, it is obtained that ‖|V |p−2(t)‖

Lγ
′′ . ‖DsV (t)‖p−2

Lγ . Finally, combining above

inequalities with Hölder’s inequality and using inequality (3.42) give

‖r−
(n−1)(p−2)

2 |v|p−2v‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

. T ∗σ‖V ‖p−1

L
q
t (0,T

∗;Ws,γ(R))
(3.43)

. T ∗σ‖v‖p−1

L
q
t (0,T

∗;Ws,γ(1,∞))
, (3.43)

for some σ> 0. Working similarly to inequality (3.43) (see also [25, 27]), we have

‖r−
(n−1)(p−2)

2 (|v1|p−2v1 − |v2|p−2v2)‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

.T ∗σ(‖v1‖p−2

L
q
t (0,T

∗;Ws,γ(1,∞))
+ ‖v2‖p−2

L
q
t (0,T

∗;Ws,γ(1,∞))
)‖v1 − v2‖Lqt (0,T∗;Ws,γ(1,∞)) .

(3.44)

Estimate for ‖r−2v‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

. Since r−2 ∈ C∞(1,∞) and it is

bounded by 1, we derive

‖r−2v‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

. T ∗σ‖v‖Lqt (0,T∗;Ws,γ(1,∞)), (3.45)

‖r−2(v1 − v2)‖
L
q′
t (0,T∗;Ws,γ′ (1,∞))

. T ∗σ‖v1 − v2‖Lqt (0,T∗;Ws,γ(1,∞)). (3.46)

Combining linear estimate (3.41) with inequalities (3.44) and (3.45), we can show
that the iteration map (3.38) is contraction in solution space Z for small T ∗. Since
the argument is standard, we omit it here. This completes the proof for the case
0 ≤ s < 1

2 .
The case 1

2 < s < 3
2 . In this case, we choose q = ∞ and γ=2. Since the

argument is similar to the case 0 ≤ s < 1
2 , the proof is omitted here.

Uniqueness and Lipschitz continuity of data-to-solution map. The argu-
ment for uniqueness and Lipschitz continuity of data-to-solution map is similar to
that in [25] and hence is omitted here. We complete the proof of theorem 1.2.
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4. ibvp on annulus

In this section, we study the ibvp on annulus, that is, Eq. (2.1) with 0 < r1 < r2 <
+∞. The boundary conditions are

v(r1, t) = g̃1(t) = r
n−1
2

1 g1(t) , v(r2, t) = g̃2(t) = r
n−1
2

2 g2(t) .

For the sake of convenience, we choose r1 = π and r2 = 2π.

4.1. Linear problem on the annulus

We first consider the linear Schrödinger equation on the interval, i.e.,

ivt + vrr = f1(r, t), π < r < 2π, t ∈ (0, T ), (4.1a)

v(r, 0) = v0(r), π < r < 2π, (4.1b)

v(π, t) = g̃1(t), v(2π, t) = g̃2(t), t ∈ (0, T ), (4.1c)

where f1(r, t)
.
= r

n−1
2 f(r, t)+ n2−4n+3

4 r−2 ·v. Also, by letting w(r, t) = v(r+π, t)
and f2(r, t) = f1(r + π, t), we change the problem (4.1) to the interval (0, π). In
fact, the ibvp for w is

iwt + wrr = f2(r, t), 0 < r < π, t ∈ (0, T ), (4.2a)

w(r, 0) = w0(r) ∈ Hs(0, π), 0 < r < π, (4.2b)

w(0, t) = g̃1(t) ∈ H
s+1
2 (0, T ), w(π, t) = g̃2(t) ∈ H

s+1
2 (0, T ), t ∈ (0, T ).

(4.2c)

Also, from the compatibility condition (1.8c), we have the following compatibility
conditions

g̃1(0) = w0(0) and g̃2(0) = w0(π),
1

2
< s < 2. (4.3)

Using this, for 1
2 < s < 2, we can assume that w0(0) = w0(π) = g̃1(0) = g̃2(0) = 0.

Next, we solve the ibvp (4.2) by decomposing it into simpler problems. In
fact, using superposition principle, the linear ibvp (4.2) can be expressed as the
homogeneous ibvp

iwt + wrr = 0, 0 < r < π, t ∈ (0, T ), (4.4a)

w(r, 0) = w0(r), 0 < r < π, (4.4b)

w(0, t) = g̃1(t), w(π, t) = g̃2(t), t ∈ (0, T ), (4.4c)

and the forced linear ibvp with zero initial and boundary data
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iwt + wrr = f2(r, t), 0 < r < π, t ∈ (0, T ), (4.5a)

w(r, 0) = 0, 0 < r < π, (4.5b)

w(0, t) = 0, w(π, t) = 0, t ∈ (0, T ). (4.5c)

In addition, we decompose the ibvp (4.4) as an ibvp with homogeneous boundary
data

ivt + vrr = 0, 0 < r < π, t ∈ (0, T ), (4.6a)

v(r, 0) = ω0(r), 0 < r < π, (4.6b)

v(0, t) = 0, v(π, t) = 0, t ∈ (0, T ), (4.6c)

and an ibvp with zero initial data:

iwt + wrr = 0, 0 < r < π, t ∈ (0, T ), (4.7a)

w(r, 0) = 0, 0 < r < π, (4.7b)

w(0, t) = h1(t), w(π, t) = h2(t), t ∈ (0, T ), (4.7c)

where h1 = g̃1(t) and h2 = g̃2(t).
Solving the ibvp (4.6). We will solve this problem by reflection. In fact, in order
to solve this problem, it suffices to solve the following periodic problem

iVt + Vrr = 0, − π < r < π, t ∈ (0, T ), (4.8a)

V (r, 0) = V0(r), − π < r < π, (4.8b)

V (−π, t) = V (π, t), Vr(−π, t) = Vr(π, t), t ∈ (0, T ), (4.8c)

where V0(r) is the odd extension of w0(r), i.e.,

V0(r) =


w0(r), 0 < r < π,

0, r = 0,

−w0(−r), −π < r < 0.

(4.9)

By using the standard separation of variables, the solution to the periodic ivp (4.8)
is

V =W0(t)w0
.
=

∞∑
n=1

Bn sin(nr)e
−in2t, (4.10)
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where

Bn =
2

π

∫ π

0

w0(r) sin(nr)dr, n ∈ Z. (4.11)

The solution formula W0(t)w0 can also be written in the complex form

W0(t)w0 =
1

2i

∞∑
n=−∞

B̃ne
inre−in

2t, with B̃n =


Bn, if n ≥ 1,

0, if n = 0,

−B−n if n ≤ −1.

(4.12)
Furthermore, for w0, we define Hs(0, π)-norm by its Fourier coefficients as follows

‖w0‖2Hs(0,π)
.
=

∞∑
n=1

(1 + n)2sb2n, (4.13)

where the Fourier coefficient bn = Bn is defined as follows

bn
.
=

2

π

∫ π

0

w0(r) sin(nr)dr = Bn, n ≥ 1. (4.14)

Finally, we state the following result for the solution W0(t)w0 given by (4.10).

Proposition 4.1. Let w0 ∈ Hs(0, π), where 0 ≤ s ≤ 2 and s 6= 1
2 ,

3
2 . Then, the

solution defined by (4.10) satisfies the following estimates

sup
t∈[0,T ]

‖W0(t)w0‖Hs(0,π) ≤ CT,s‖w0‖Hs(0,π). (4.15)

In addition, for s ∈ N, we have

‖ψ∂srW0(t)w0‖L4((0,π)×R) ≤ CT ‖w0‖Hs(0,π). (4.16)

Proof of proposition 4.1. By the solution formula (4.10), we see that the Fourier

series for V (x, t) is Bne
−in2t, where Bn is given by (4.11). Thus, by the definition

(4.13), the space estimate (4.15) is obtained. Next, we prove estimate (4.16). As
the proof for s = 1, 2, 3, . . . resembles that of s =0, we focus solely on establishing
estimate (4.16) for the case of s =0. It follows from the next result. �

Lemma 4.2. Let (x, t) ∈ T× R and let (n, λ) ∈ Z× R be the dual variables. Then
there is a constant c> 0 such that

‖f‖L4(T×R) ≤ c‖(1 + |λ+ n2|)
3
8 f̂‖L2(Z×R), (4.17)

for any test function f on T× R.

The above result was proved in [8]. Now, we use it to complete the proof of
estimate (4.16). Noticing that the solution formula (4.10) defines an odd function
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of r over (−π, π), we keep the same notation and we shall prove that ‖ψV ‖L4(T×R) .
‖w0‖Hs(0,π). To do this, letting f = ψV , we have

‖f‖L4(T×R) . ‖(1 + |λ+ n2|)
3
8 f̂‖L2(Z×R).

Furthermore, using complex formula (4.12) and taking Fourier transform, it is

deduced that f̂(n, λ) ' ψ̂(λ+ n2)B̃n, which implies that

‖(1 + |λ+ n2|)
3
8 f̂‖2

L2(Z×R) .
∑
n∈Z

∫
R
(1 + |λ+ n2|)

3
4 |ψ̂(λ+ n2)|2dλ · B̃2

n

.
∞∑
n=1

B2
n . ‖w0‖2L2(0,π).

Combining the above estimates yield the estimate (4.16) for s =0. This completes
the proof of proposition 4.1.

Solving the ibvp (4.5). For this problem, we extend f 2 oddly and use the fact
that the solution to this ibvp is given by

w(r, t) = −i
∫ t

0

W0(t− τ)f2(·, τ)dτ = −i
∞∑
n=1

sin(nr)

∫ t

0

e−in
2(t−t′)f̂r2 (n, t

′)dt′,

(4.18)

where W 0 is given by (4.10) and f̂2(n, t
′) is defined as

f̂r2 (n, t
′) =

2

π

∫ π

0

f2(r, t
′) sin(nr)dr, n ∈ Z.

We define the odd extension of f2(r, t) with respect to r

F2(r, t)
.
=


f2(r, t), 0 < r < π,

0, r = 0,

−f2(−r, t), −π < r < 0.

(4.19)

Then, we have F̂ r2 (n, t
′) =

∫ π
−π F2(r, t)e

inrdr = −
∫ 0

−π f2(−r, t)e
inrdr +∫ π

0
f2(r, t)e

inrdr = iπf̂r2 (n, t
′). Using the fact that F 2 is an odd function, we get

F̂ r2 (n, t
′) = −F̂ r2 (−n, t′). Thus, working similarly as in the formula (4.12), we have

w(r, t) '
∫ t

0

W0(t− τ)f2(·, τ)dτ '
∑
n∈Z

einr
∫ t

0

e−in
2(t−t′)F̂ r2 (n, t

′)dt′. (4.20)

Also, it is derived that

‖f2‖L4/3((0,π)×(0,T ))
' ‖F2‖L4/3(T×(0,T ))

.
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Furthermore, for t /∈ (0, T ) we set F2 = 0 (keeping the same notation) and we
obtain

‖f2‖L4/3((0,π)×(0,T ))
' ‖F2‖L4/3(T×R). (4.21)

For the solution formula (4.18), we have the following result.

Proposition 4.3. Let f2 ∈ L1(0, T ;Hs(0, π)), where 0 ≤ s ≤ 2 and s 6= 1
2 ,

3
2 .

Then, considering the solution defined by (4.18), the following estimates hold

sup
t∈[0,T ]

∥∥∥∫ t

0

W0(t− t′)f2(·, t′)dt′
∥∥∥
Hs(0,π)

≤ CT,s‖f2‖L1(0,T ;Hs(0,π)). (4.22)

In addition, for s ∈ N, if ∂srf2 ∈ L4/3((0, π)× (0, T )), the following estimate holds:∥∥∥ψ∂sr ∫ t

0

W0(t− t′)f2(·, t′)dt′
∥∥∥
L4((0,π)×R)

≤ CT ‖∂srf2‖L4/3((0,π)×(0,T ))
. (4.23)

Proof of proposition 4.3. Using the space estimate (4.15) for the homogeneous IVP
(4.8), i.e.,

sup
t∈[0,T ]

‖W0(t)w0‖Hs(0,π) ≤ CT,s‖w0‖Hs(0,π),

we have∥∥∥∫ t

0

W0(t− t′)f2(·, t′)dt′
∥∥∥
Hs(0,π)

≤
∫ t

t′=0

∥∥∥W0(t− t′)f2(·, t′)
∥∥∥
Hs(0,π)

dt′

.
∫ t

t′=0

‖f2(t′)‖Hs(0,π)dt
′ ≤

∫ T

t′=0

‖f2(t′)‖Hs(0,π)dt
′,

which is the desired space estimate (4.22). �

Proof of estimate (4.23) with s =0. For this estimate, similar to the proof
of estimate (4.16), we will use the formula (4.20). Also, we notice that it defines an
odd function of r over (−π, π). Hence, we prove the following estimate,∥∥∥ψ ∫ t

0

W0(t− t′)f2(·, t′)dt′
∥∥∥
L4(T×R)

≤ CT ‖f2‖L4/3((0,π)×(0,T ))
. (4.25)

To do this, using space-time Fourier transform, we express F 2 in the phase space
(n, λ). More precisely, substituting in (4.20)

F̂ r2 (n, t
′) =

1

2π

∫
R
eiλt

′
F̂2(n, λ)dλ,

we obtain

ψ(t)w(r, t) ' ψ(t)
∑
n∈Z

einr
∫ t

0

e−in
2(t−t′)

∫
λ∈R

eiλt
′
F̂2(n, λ)dλdt

′.
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Performing the t
′
integration first, it is

∫ t

0

ei(λ+n
2)t′dt′ = −ie

i(λ+n2)t − 1

λ+ n2
.

Then, the solution ψ(t)w(r, t) becomes

ψ(t)w(r, t) ' ψ(t)
∑
n∈Z

∫
λ∈R

einre−in
2t e

i(λ+n2)t − 1

λ+ n2
F̂2(n, λ)dλ. (4.27)

Finally, adding and subtracting ψ(λ + n2) inside the integral (localizing near the
singularity λ = −n2) gives the following decomposition of ψ(t)w(r, t)

ψ(t)w(r, t) '− ψ(t)
∑
n∈Z

∫
λ∈R

einreiλt
1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ (4.28)

+ ψ(t)
∑
n∈Z

∫
λ∈R

einre−in
2t 1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ (4.29)

− ψ(t)
∑
n∈Z

∫
λ∈R

einre−in
2tψ(λ+ n2)(ei(λ+n

2)t − 1)

λ+ n2
F̂2(n, λ)dλ. (4.30)

Estimate for (4.28). Let

f(r, t) =
∑
n∈Z

∫
R
einreiλt

1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ.

Since ψ ∈ C∞
0 (R), we have

‖(4.28)‖L4(T×R) ' ‖ψ(·)f(·, ·)‖L4(T×R) ≤ ‖ψ‖L∞t ‖f‖L4(T×R).

Also, computing the Fourier transform of f with respect to r gives

f̂r(n, t) '
∫
R
eiλt

1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ.

Therefore,

f̂(n, λ) =
1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ).

Now, we need the following result, which is provided in [8].
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Proposition 4.4. If the multiplier M =M(n, λ) satisfies

|M(n, λ)| . (1 + |λ+ n2|)−
3
4 , for all n ∈ Z and λ ∈ R, (4.31)

then M acts boundedly from L4/3(Z× R) to L4(Z× R), that is∥∥∥∥∥
∞∑
n=1

einr
∫
R
M(n, λ)f̂(n, λ)eiλtdλ

∥∥∥∥∥
L4(T×R)

. ‖f‖
L4/3(T×R). (4.32)

Proposition 4.4 is due to lemma 4.2 and duality (see corollary 4.5). Now, from
this, we finish the proof of estimate (4.25) for (4.28). In fact, by the definition of
ψ(t), the integrand is non-zero only for |λ + n2| ≥ 1

2 . Therefore, 1 + |λ + n2| ≤
2|λ+ n2|+ |λ+ n2| = 3|λ+ n2| and so

‖f‖L4(T×R) . ‖F2‖L4/3(T×R),

which, together with the inequality (4.21), gives us the desired estimate (4.25) for
term (4.28).
Estimate for (4.29). To estimate ‖(4.29)‖L4(T×R), we first find the Fourier
transform of the function

f(r, t) = (4.29) = ψ(t)
∑
n∈Z

∫
R
ei(nr+n

2t) 1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ.

It is clearly seen that f̂r(n, t) ' ψ(t)ein
2tCn, where

Cn =

∫
R

1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ.

Then, computing the Fourier transform of f̂r with respect to t gives

f̂(n, λ) = Cnψ̂(λ+ n2).

Applying estimate (4.17), it is obtained that

‖(4.29)‖L4(T×R) .‖(1 + |λ+ n2|)
3
8Cnψ̂(λ+ n2)‖L2(Z×R)

=

(∑
n∈Z

∫
λ∈R

(1 + |λ+ n2|)3/4|Cnψ̂(λ+ n2)|2dλ

)1
2

.

(∑
n∈Z

|Cn|2
)1

2

=

(∑
n∈Z

∣∣∣ ∫
R

1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ

∣∣∣2)1
2

.

(4.33)
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Furthermore, for the dλ-integral in the above estimate, applying the
Cauchy–Schwarz inequality gives∣∣∣∣∫

R

1− ψ(λ+ n2)

λ+ n2
F̂2(n, λ)dλ

∣∣∣∣2 ≤
∫
R

∣∣∣1− ψ(λ+ n2)

λ+ n2

∣∣∣5/4dλ
·
∫
R

∣∣∣1− ψ(λ+ n2)

λ+ n2

∣∣∣3/4|F̂2(n, λ)|2dλ

.
∫
R
(1 + |λ+ n2|)−3/4|F̂2(n, λ)|2dλ. (4.34)

Now, we need the following dual estimate of lemma 4.2 (see [8]).

Corollary 4.5. For any test function f, we have

‖(1 + |λ+ n2|)−
3
8 f̂‖L2(Z×R) ≤ c‖f‖

L4/3(T×R). (4.35)

Finally, combining estimates (4.33) and (4.34) with corollary 4.5 and using
estimate (4.21), it is deduced that

‖(4.29)‖L4(T×R) .

(∑
n∈Z

∫
R
(1 + |λ+ n2|)−3/4|F̂2(n, λ)|2dλ

)1
2

= ‖(1 + |λ+ n2|)−
3
8 F̂2‖L2(Z×R)

.‖F2‖L4/3(T×R) ' ‖f2‖L4/3(T×(0,T ))
.

This completes the estimate for (4.29).
Estimate for (4.30). From Taylor’s series at λ+ n2 = 0, we can expand

ei(λ+n
2)t − 1 =

∞∑
k=1

tk(λ+ n2)k

k!
.

Thus, (4.30) '
∞∑
k=1

ik+1

k! fk, where

fk(r, t)
.
= tkψ(t)

∑
n∈Z

∫
R
einre−in

2tψ(λ+ n2)(λ+ n2)k−1F̂2(n, λ)dλ .

The Fourier transform of the function fk yields

f̂rk (n, t) = Ck(n)t
kψ(t)e−in

2t,

where

Ck(n) =

∫
R
ψ(λ+ n2)(λ+ n2)k−1F̂2(n, λ)dλ.
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Therefore,

f̂k(n, λ) = Ck(n)t̂kψ(λ+ n2).

Let us now estimate (4.30) using the expression of f̂k(n, λ).

‖(4.30)‖L4(T×R) .

∥∥∥∥∥
∞∑
k=1

ik+1

k!
fk

∥∥∥∥∥
L4(T×R)

.
∞∑
k=1

1

k!
‖fk‖L4(T×R) . (4.36)

Applying estimate (4.17), we obtain

‖fk‖L4(T×R) .‖(1 + |λ+ n2|)
3
8Ck(n)t̂kψ(λ+ n2)‖L2(Z×R)

=

(∑
n∈Z

∫
λ∈R

(1 + |λ+ n2|)3/4|Ck(n)t̂kψ(λ+ n2)|2dλ

) 1
2

.

(∑
n∈Z

|Ck(n)|2
) 1

2

=

(∑
n∈Z

∣∣∣ ∫
R
ψ(λ+ n2)(λ+ n2)k−1F̂2(n, λ)dλ

∣∣∣2) 1
2

.

(4.37)

Furthermore, for the dλ-integral in the above estimate, the Cauchy–Schwartz
inequality gives

∣∣∣ ∫
R
ψ(λ+ n2)(λ+ n2)k−1F̂2(n, λ)dλ

∣∣∣2
≤
∫
R
|ψ(λ+ n2)(λ+ n2)k−1|2(1 + |λ+ n2|)3/4dλ ·

∫
R
(1 + |λ+ n2|)−3/4|F̂2(n, λ)|2dλ

.
∫
R
(1 + |λ+ n2|)−3/4|F̂2(n, λ)|2dλ. (4.38)

Finally, combining estimates (4.36), (4.37), and (4.38) with corollary 4.5 and using
estimate (4.21), it is obtained that

‖(4.30)‖L4(T×R) .
∞∑
k=1

1

k!

(∑
n∈Z

∫
R
(1 + |λ+ n2|)−3/4|F̂2(n, λ)|2dλ

)1
2

.‖(1 + |λ+ n2|)−
3
8 F̂2‖L2(Z×R)

.‖F2‖L4/3(T×R) ' ‖f2‖L4/3(T×(0,T ))
.

We complete the proof of estimate (4.23) with s =0.
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Proof of estimate (4.23) with s ∈ N+. Consider the periodic function F2(r, t).
Employing integration by parts, we can express the Fourier transform of the spatial
derivative ∂srF2 as

∂̂srF
r

2(n, t
′) ' nsF̂ r2 (n, t

′).

Utilizing this result and the complex formula (4.20), we derive

∂sr

∫ t

0

W0(t− τ)f2(·, τ)dτ '
∑
n∈Z

einrns
∫ t

0

e−in
2(t−t′)F̂ r2 (n, t

′)dt′

'
∑
n∈Z

einr
∫ t

0

e−in
2(t−t′)∂̂srF

r

2(n, t
′)dt′.

Consequently, by applying estimate (4.23) with s =0 for ∂srF2, we obtain the desired
estimate (4.23) with s ∈ N+. The proof of proposition 4.3 is completed. �
Solving the ibvp (4.7). For this problem, the solution is given by the following
formula, which is provided in [7]

u(r, t) = 2πi
∞∑
n=1

n sin(nr)

∫ t

0

e−in
2(t−t′)[h1(t

′)− (−1)nh2(t
′)]dt′ (4.39)

=

∫ t

0

W0(t− t′)q(·, t′)dt′, (4.39)

where

q(x, t)
.
= 2πi

[ ∞∑
n=1

n sin(nx)h1(t)−
∞∑
n=1

(−1)nn sin(nx)h2(t)
]
. (4.40)

Next, we define the following boundary operator

Wbh
.
= 2i

∞∑
n=1

n sin(nr)

∫ t

0

e−in
2(t−t′)h(t′)dt′, (4.41)

which has the form

Wbh =
∑
n∈Z

neinr
∫ t

0

e−in
2(t−t′)h(t′)dt′, r ∈ T, t ∈ R. (4.42)

The following result can be proved.

Proposition 4.6. Let h ∈ H
1/2
00 (0, T ). Then, the solution defined by (4.41)

satisfies the following estimates

sup
t∈[0,T ]

∥∥∥ψWbh
∥∥∥
L2(T)

. ‖h‖
H1/2(0,T )

, (4.43)
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30 S.M. Sun and F. Yan∥∥∥ψWbh
∥∥∥
L4(T×R)

. ‖h‖
H1/2(0,T )

. (4.44)

In addition, for 0 ≤ s ≤ 2, if h ∈ H
s+1
2

0 (0, T ) (for s an even integer h ∈

H
s+1
2

00 (0, T )), then we have

sup
t∈[0,T ]

∥∥∥ψ∂srWbh
∥∥∥
L2(T)

+
∥∥∥ψ∂srWbh

∥∥∥
L4(T×R)

. ‖h‖
H(s+1)/2(0,T )

. (4.45)

Proof of proposition 4.6. The proof of this proposition is similar to the proof of
proposition 4.3 and was also given in [7] (see propositions 4.7 and 4.8). Here, we
only provide the proof for estimates (4.43) and (4.44), and we give a different
proof by modifying and simplifying the proof in [7]. We start with writing h(t′) =
1
2π

∫
R e

iλt′ ĥ(λ)dλ, which, together with formula (4.42), implies

ψ ·Wbh =
ψ(t)

2π

∞∑
n=−∞

neinr
∫ t

0

e−in
2(t−t′)

∫
R
eiλt

′
ĥ(λ)dλdt′. (4.46)

Performing the t
′
integration first gives

∫ t

0

ei(λ+n
2)t′dt′ = −ie

i(λ+n2)t − 1

λ+ n2
.

Then, the above solution ψ(t)w(r, t) becomes

ψ(t)Wbh(r, t) = − iψ(t)
2π

∑
n∈Z

∫
λ∈R

einre−in
2t e

i(λ+n2)t − 1

λ+ n2
· nĥ(λ)dλ = I+ + I−,

(4.47)

where I+ is the integral over (0,∞) and I− is the integral over (−∞, 0). More
precisely, we have

I+
.
=− iψ(t)

2π

∑
n∈Z

∫ ∞

0

einre−in
2t e

i(λ+n2)t − 1

λ+ n2
· nĥ(λ)dλ, (4.48)

I−
.
=− iψ(t)

2π

∑
n∈Z

∫ 0

−∞
einre−in

2t e
i(λ+n2)t − 1

λ+ n2
· nĥ(λ)dλ. (4.49)

To estimate I+, we split it as I+ = I+1 − I+2 , where

I+1
.
= − iψ(t)

2π

∑
n∈Z

∫ ∞

0

einr
eiλt

λ+ n2
· nĥ(λ)dλ and

I+2
.
= − iψ(t)

2π

∑
n∈Z

∫ ∞

0

einr
ein

2t

λ+ n2
· nĥ(λ)dλ.
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Estimate for I+1 . Let

f(r, t) =
∑
n∈Z

einr
∫ ∞

0

eiλt
1

λ+ n2
· nĥ(λ)dλ.

First, we prove L2 estimate (4.43) for I+1 . Since ψ is compactly supported in (0, 1),
we have

sup
t∈[0,T ]

‖I+1 ‖L2(T) ≤ sup
t∈[0,1]

‖f‖L2(T).

Taking the Fourier transform with respect to r yields

f̂r(n, t) '
∫ ∞

0

eiλt
1

λ+ n2
· nĥ(λ)dλ, (4.50)

which, by Plancherel theorem, implies that

‖f‖2
L2(T) .

∑
n∈Z

∣∣∣ ∫ ∞

0

eiλt
1

λ+ n2
· nĥ(λ)dλ

∣∣∣2 ≤
∑
n∈Z

[ ∫ ∞

0

∣∣∣ 1

λ+ n2
· nĥ(λ)

∣∣∣dλ]2.
(4.51)

Now, applying Cauchy–Schwarz inequality in dλ, for ε> 0 and small, it is derived
that

[ ∫ ∞

0

∣∣∣ 1

λ+ n2
· nĥ(λ)

∣∣∣dλ]2 ≤
∫ ∞

0

n2(1 + λ)2ε

(λ+ n2)2
(1 + λ)|ĥ(λ)|2dλ ·

∫ ∞

0

1

(1 + λ)1+2ε
dλ

.
∫ ∞

0

n2(1 + λ)2ε

(λ+ n2)2
(1 + λ)|ĥ(λ)|2dλ.

Thus, combining above estimates, we get

‖f‖2
L2(T) .

∑
n∈Z

∫ ∞

0

n2(1 + λ)2ε

(λ+ n2)2
(1 + λ)|ĥ(λ)|2dλ

≤
∫ ∞

0

[∑
n∈Z

n2(1 + λ)2ε

(λ+ n2)2

]
(1 + λ)|ĥ(λ)|2dλ.

Furthermore, using λ+n2 ≥ max{λ, n2}, for all λ ≥ 0 and for 2− 2ε > 3
2 or ε < 1

4 ,
we obtain

∑
n∈Z

n2(1 + λ)2ε

(λ+ n2)2
≤
∑
n∈Z

n2

(λ+ n2)2−2ε
· (1 + λ)2ε

(λ+ n2)2ε
≤
∑
n∈Z

n2

(λ+ n2)
3
2+

.
∞∑
n=1

1

n1+
. 1.

Therefore, the desired L2 estimate (4.43) for I+1 is reached.
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L4 estimate (4.44) for I+1 . Fubini’s theorem implies

I+1 (r, t) =− iψ(t)

2π

∫ ∞

0

∑
n∈Z

neinr

λ+ n2
· eiλtĥ(λ)dλ = − iψ(t)

2π
· 2i
∫ ∞

0

∞∑
n=1

n sin(nr)

λ+ n2

· eiλtĥ(λ)dλ

=
ψ(t)

π

∫ ∞

0

∞∑
n=1

n sin(nr)

λ+ n2
· eiλtĥ(λ)dλ.

Since λ ≥ 0, we see that λ+ n2 is away from 0 and λ+ n2 ≥ max{λ, n2}. Thus, by
Cauchy–Schwarz inequality, we have

|I+1 (r, t)|2 . ψ(t)
∑
n∈Z

∫ ∞

0

n2

|λ+ n2|2(1 + λ)
dλ ·

∫ ∞

0

(1 + λ)|ĥ(λ)|2dλ.

Then, for any 0 < ε < 1
2 ,

∑
n∈Z

∫ ∞

0

n2

|λ+ n2|2(1 + λ)
dλ .

∑
n∈Z

∫ ∞

0

n2

|λ+ n2|2−ε|n2 + λ|ε(1 + λ)
dλ .

∞∑
n=1

1

|n2|1−ε

·
∫ ∞

0

1

(1 + λ)1+ε
dλ . 1.

Hence, the above estimate yields

|I+1 (r, t)| ≤ ψ(t)‖h‖
H1/2 , −π < r < π, t ∈ R,

which gives

‖I+1 ‖L4(T×R) . ‖h‖
H1/2 .

Estimate for I+2 . The L2 estimate(4.43) for I+2 is similar to the L2 estimate for
I+1 and hence we omit it here. For the L4 estimate (4.44), taking Fourier transform
with respect to r, we have

Î+2
r

(n, t) ' ψ(t)ein
2tCn,

where

Cn =

∫ ∞

0

n

λ+ n2
ĥ(λ)dλ.

Then, the Fourier transform of f̂r with respect to t gives

f̂(n, λ) = Cnψ̂(λ+ n2).
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Applying (4.17) yields

‖I+2 ‖L4(T×R) .‖(1 + |λ+ n2|)
3
8Cnψ̂(λ+ n2)‖L2(Z×R)

=

(∑
n∈Z

∫
λ∈R

(1 + |λ+ n2|)3/4|Cnψ̂(λ+ n2)|2dλ

)1
2

.

(∑
n∈Z

|Cn|2
) 1

2

=

(∑
n∈Z

∣∣∣ ∫ ∞

0

n

λ+ n2
ĥ(λ)dλ

∣∣∣2)1
2

, (4.52)

which reduces to the estimate (4.51). We complete the estimates for I+2 .
Estimate for I−. Adding and subtracting ψ(λ + n2) inside the integral

(localizing near the singularity λ = −n2) gives the following decomposition of
I−,

I− =− iψ(t)

2π

∑
n∈Z

∫ 0

−∞
einreiλt

1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ (4.53)

+
iψ(t)

2π

∑
n∈Z

∫ 0

−∞
einre−in

2t 1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ (4.54)

− iψ(t)

2π

∑
n∈Z

∫ 0

−∞
einre−in

2tψ(λ+ n2)(ei(λ+n
2)t − 1)

λ+ n2
· nĥ(λ)dλ. (4.55)

Estimates for (4.53). First, we prove (4.43) for this term. Let

f(r, t) =
∑
n∈Z

einr
∫ 0

−∞
eiλt

1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ .

Since ψ is compactly supported in (0, 1), we have sup
t∈[0,T ]

‖(4.53)‖L2(T) ≤

sup
t∈[0,1]

‖f‖L2(T). Taking the Fourier transform of f with respect to r gives

f̂r(n, t) '
∫ 0

−∞
eiλt

1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ, (4.56)

which implies that

‖f‖2
L2(T) .

∑
n∈Z

∣∣∣ ∫ 0

−∞
eiλt

1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ

∣∣∣2 (4.57)

≤
∑
n∈Z

[ ∫ 0

−∞

∣∣∣1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)

∣∣∣dλ]2. (4.57)
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Also, making the change of variables λ = −µ2 and using n
n2−µ2 = 1

2

[
1

n−µ + 1
n+µ

]
,

it is deduced that

‖f‖2
L2(T) .

∑
n∈Z

[ ∫ ∞

0

|µĥ(−µ2)|| 1

n− µ
+

1

n+ µ
|[1− ψ(n2 − µ2)]dλ

]2
.

Now we need the following estimate, whose proof is provided in [7],∑
n∈Z

∣∣∣ ∫ ∞

0

F̂ (µ)
1

n− µ
(1− ψ(n2 − µ2))dµ

∣∣∣2 .
∫ ∞

0

(1 + µ)|F̂ (µ)|2dµ.

In fact, applying the above estimate twice with F̂ (µ) = |µĥ(−µ2)| implies

‖f‖2
L2(T) .

∫ ∞

0

(1 + µ)|µĥ(µ2)|2dµ .
∫
R
(1 + |λ|1/2)|λ|1/2|ĥ(λ)|2dλ . ‖h‖2

H1/2 .

L4 estimate (4.44) for (4.53). To show this estimate, we will split the dλ-

integral at λ = −n2

2 . More precisely, we have

(4.53) = − iψ(t)
2π

f1 −
iψ(t)

2π
f2,

where

f1
.
=
∑
n∈Z

∫ −n
2

2

−∞
einreiλt

1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ,

f2
.
=
∑
n∈Z

∫ 0

−n22

einreiλt
1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ.

For iψ(t)
2π f1, since ψ is compactly supported in (0, 1), we have ‖ iψ(t)2π f1‖L4(T×R) .

‖f1‖L4(T×R). Also, we have |n|2 . |λ|. Thus, applying estimate (4.17) gives

‖f1‖2L4(T×R) .
∑
n∈Z

∫
R
(1 + |λ+ n2|)

3
4χ

λ<−n22
(λ)
∣∣∣1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)

∣∣∣2dλ
.
∑
n∈Z

∫
R

1

(1 + |λ+ n2|)5/4
· |λ||ĥ(λ)|2dλ

.
∫
R

∑
n∈Z

1

(1 + |λ+ n2|)5/4
· |λ||ĥ(λ)|2dλ

.
∫
R
|λ||ĥ(λ)|2dλ . ‖h‖

H1/2 .

For iψ(t)
2π f2, again since ψ(t) is compactly supported in (0, 1), it suffices to show

that

‖f2‖L∞T×R
. ‖h‖

H1/2 . (4.58)
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By Cauchy–Schwarz inequality,

|f2| ≤
∑
n∈Z

∫ 0

−n22

n2
1− ψ(λ+ n2)

|λ+ n2|2(1 + |λ|)
dλ ·

∫ 0

−n22

(1 + |λ|)|ĥ(λ)|2dλ.

For the first integral in the above estimate, choosing 0 < ε < 1
2 , we have

∑
n∈Z

∫ 0

−n22

n2
1− ψ(λ+ n2)

|λ+ n2|2(1 + |λ|)
dλ .

∑
n∈Z

∫ 0

−n22

n2

(1 + |λ+ n2|)2−ε

· 1

(1 + |λ|)(1 + |λ+ n2|)ε
dλ

.
∑
n∈Z

∫ 0

−n22

n2

(1 + n2)2−ε
· 1

(1 + |λ|)1+ε
dλ

≤
∑
n∈Z

n2

(1 + n2)2−ε
·
∫
R

1

(1 + |λ|)1+ε
dλ . 1.

Combining the above estimates yields the desired estimate (4.58).
Estimates for (4.54). We let

f(r, t)
.
= ψ(t)

∑
n∈Z

∫ 0

−∞
einre−in

2t 1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ.

Taking Fourier transform with respect to r, it is obtained that

f̂r(n, t) ' ψ(t)e−in
2tCn,

where

Cn =

∫ 0

−∞

1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ.

Hence, by Plancherel’s theorem, we have

‖(4.54)‖L2(T) ' ‖f‖L2(T) '

(∑
n∈Z

|Cn|2
)1

2

=

(∑
n∈Z

∣∣∣ ∫ 0

−∞

1− ψ(λ+ n2)

λ+ n2
· nĥ(λ)dλ

∣∣∣2)1
2

,

which is reduced to the estimate (4.57). Concerning L4 estimate of (4.54),

computing the Fourier transform of f̂r with respect to t gives

f̂(n, λ) = Cnψ̂(λ+ n2).
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Estimate (4.17) gives ‖I+2 ‖L4(T×R) . ‖(1 + |λ + n2|)
3
8Cnψ̂(λ + n2)‖L2(Z×R). This

implies

‖I+2 ‖L4(T×R) .

(∑
n∈Z

∫
λ∈R

(1 + |λ+ n2|)3/4|Cnψ̂(λ+ n2)|2dλ

)1
2

.

(∑
n∈Z

|Cn|2
) 1

2

.

Again, we arrive at estimate (4.57). This completes L4 estimate of (4.54).
Estimates for (4.55). Using Taylor’s series at λ+ n2 = 0, we obtain

ei(λ+n
2)t − 1 =

∞∑
k=1

(it)k(λ+ n2)k

k!
.

Thus, (4.55) '
∞∑
k=1

ik+1

k! fk, where

fk(r, t)
.
= tkψ(t)

∑
n∈Z

∫ 0

−∞
einre−in

2tψ(λ+ n2)(λ+ n2)k−1nĥ(λ)dλ.

For the L2 estimate of (4.55), we have

‖(4.55)‖L2(T) .
∥∥ ∞∑
k=1

ik+1

k!
fk
∥∥
L2(T) .

∞∑
k=1

1

k!
‖fk‖L2(T).

Taking the Fourier transform of the function fk, it is deduced that

f̂rk (n, t) = Ck(n)t
kψ(t)e−in

2t,

where

Ck(n) =

∫ 0

−∞
ψ(λ+ n2)(λ+ n2)k−1nĥ(λ)dλ.

Since ψ is compactly supported in (0, 1), by the Plancherel theorem and
Cauchy–Schwarz inequality, it is obtained that

‖fk(t)‖2L2(T) .
∑
n∈Z

|Ck(n)|2 =
∣∣∣ ∫ 0

−∞
ψ(λ+ n2)(λ+ n2)k−1nĥ(λ)dλ

∣∣∣2
.
∫ 0

−∞
ψ(λ+ n2)(λ+ n2)2(k−1)dλ ·

∫ 0

−∞
ψ(λ+ n2)n2|ĥ(λ)|2dλ .

Since ψ ∈ C∞
0 (0, 1), the first integral is bounded. Also, for the second integral,

|λ+ n2| < 1, which implies that n2 . (1 + |λ|). Hence,

‖fk(t)‖2L2(T) .
∫ 0

−∞
(1 + |λ|)|ĥ(λ)|2dλ . ‖h‖2

H1/2 .
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For the L4 estimate of (4.55), we have

‖(4.55)‖L4(T×R) .

∥∥∥∥∥
∞∑
k=1

ik+1

k!
fk

∥∥∥∥∥
L4(T×R)

.
∞∑
k=1

1

k!
‖fk‖L4(T×R).

To bound the L4 norm of fk, taking the full Fourier transform, we obtain

f̂k(n, λ) = Ck(n)t̂kψ(λ+ n2).

Applying estimate (4.17) gives

‖fk‖L4(T×R) .‖(1 + |λ+ n2|)
3
8Ck(n)t̂kψ(λ+ n2)‖L2(Z×R)

=

(∑
n∈Z

∫
λ∈R

(1 + |λ+ n2|)3/4|Ck(n)t̂kψ(λ+ n2)|2dλ

) 1
2

.

(∑
n∈Z

|Ck(n)|2
)1

2

,

which is the estimate needed. This completes the proof of proposition 4.6. �

Now, we can derive linear estimate for the solution to the linear ibvp (4.2). In
fact, for 0 < r < π and 0 < t < T , this solution is given by

w(r, t) = K[w0, g̃1, g̃2; f2]
.
=W0(t)w0 − i

∫ t

0

W0(t− τ)f2(·, τ)dτ (4.59)

+

∫ t

0

W0(t− t′)q(·, t′)dt′, (4.59)

where W 0 is defined by (4.12) and q is given by (4.40) with h1(t) = g̃1(t), h2(t) =
g̃2(t). Combining propositions 4.1, 4.3, and 4.6, the following linear estimate holds
for solution formula K[w0, g̃1, g̃2; f2].

Theorem 4.7 (1) Let s ∈ N. If w0 ∈ Hs(0, π), g̃1, g̃2 ∈ H
s+1
2

0 (0, T ) (for even s,

g̃1, g̃2 ∈ H
s+1
2

00 (0, T )), and ∂srf2 ∈ L4/3
(
(0, π)×(0, T )

)
, then K[w0, g̃1, g̃2; f2] defines

a solution to the ibvp (4.2), which satisfies

sup
t∈[0,T ]

∥∥K[w0, g̃1, g̃2; f2](t)
∥∥
Hs(0,π)

+
∥∥∂srK[w0, g̃1, g̃2; f2]

∥∥
L4((0,π)×(0,T ))

. ‖ω0‖Hs(0,π) + ‖g̃1‖
H
s+1
2 (0,T )

+ ‖g̃2‖
H
s+1
2 (0,T )

+ ‖∂srf2‖L4/3
(
(0,π)×(0,T )

).
(4.60)
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(2) Suppose 1
2 < s < 2 and s 6= 3

2 . If w0 ∈ Hs(0, π), g̃1, g̃2 ∈ H
s+1
2 (0, T ) and

f2 ∈ L1
(
0, T ;Hs(0, π)

)
then K[w0, g̃1, g̃2; f2] defines a solution to the ibvp (4.2)

with compatibility condition (4.3), satisfying

sup
t∈[0,T ]

∥∥K[w0, g̃1, g̃2; f2](t)
∥∥
Hs(0,π)

.‖ω0‖Hs(1,∞) + ‖g̃1‖
H
s+1
2 (0,T )

+ ‖g̃2‖
H
s+1
2 (0,T )

+
∥∥f2∥∥

L1
(
0,T ;Hs(0,π)

).
4.2. Proof of well-posedness for ibvp in domain Ω2, i.e., theorem 1.3

Since the ibvp in Ω2 is reduced to the ibvp (2.1) for r ∈ (π, 2π) with u(π, t) = g1(t)
and u(2π, t) = g2(t), it suffices to prove the well-posedness of ibvp (4.2) with forcing
f 2 giving by

f2(r, t) = f1(r + π, t) = −λ(r + π)−
(n−1)(p−2)

2 |w|p−2w +
n2 − 4n+ 3

4
(r + π)−2 · w.

(4.61)

Furthermore, since both multipliers −(r+π)−
(n−1)(p−2)

2 and (r+π)−2 are smooth
and bounded for 0 < r < π, similar to the proof of theorem 1.2, we can bound them
by using the L∞-norm. Therefore, the well-posedness proof is similar to the proof
of theorem 4.10 and proposition 4.11 in [7]. Hence, the details are omitted here.

5. ibvp in a ball centred at origin

In this section, we study the ibvp of (2.1) for r ∈ (0, 1). For the sake of convenience
and simplicity, we only discuss the case with n =2. The cases for n ≥ 3 can be
studied similarly.

5.1. Linear problem

The forced linear ibvp within the region Ω0 can be described by the following
equations

iut +∆u = f(x1, x2, t), (x1, x2, t) ∈ Ω0, t ∈ (0, T ), (5.1a)

u(x1, x2, 0) = u0(x1, x2), (x1, x2) ∈ Ω0, (5.1b)

u(x1, x2, t) = g(t), x21 + x22 = 1, t ∈ (0, T ). (5.1c)

We also decompose the ibvp (5.1) into the following two separate problems.
Problem 1. ibvp with homogeneous boundary condition

iut +∆u = f(x1, x2, t), (x1, x2, t) ∈ Ω0, t ∈ (0, T ), (5.2a)

u(x1, x2, 0) = u0(x1, x2), (x1, x2) ∈ Ω0, (5.2b)
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u(x1, x2, t) = 0, x21 + x22 = 1, t ∈ (0, T ). (5.2c)

Problem 2. ibvp with non-homogeneous boundary condition

iut +∆u = 0, (x1, x2, t) ∈ Ω0, t ∈ (0, T ), (5.3a)

u(x1, x2, 0) = 0, (x1, x2) ∈ Ω0, (5.3b)

u(x1, x2, t) = g(t), x21 + x22 = 1, t ∈ (0, T ). (5.3c)

In the subsequent sections, we will investigate these two problems separately.
Estimate for Problem 1. In order to analyse this problem, we will employ

the semigroup method. Following the methodology outlined in [11] (refer to section
2.1), we introduce the operator A acting on functions in L2(Ω0), defined as follows:

D(A) =
{
u ∈ H1

0 (Ω0), ∆u ∈ L2(Ω0)
}
,

A(u) = ∆u for u ∈ D(A).
(5.4)

It is worth noting that D(A) = H2(Ω0)∩H1
0 (Ω0). Additionally, we observe that A

is a self-adjoint operator and A ≤ 0, as indicated by the following

< Au, v >=< ∆u, v >= − < ∇u,∇v >=< u,∆v >=< u,A∗v >=⇒ A = A∗,

and

< Au, u >= − < ∇u,∇u >≤ 0 =⇒ A ≤ 0.

Moreover, let (J (t))t∈R represent the group of isometries generated by iA within
any of the following spaces: D(A), H1

0 (Ω0), L
2(Ω0), H

−1(Ω0), or (D(A))∗. By
utilizing the property that iA is skew-adjoint, i.e., (iA)∗ = −iA, we deduce the
following relation

J (t)∗ = J (−t). (5.5)

Furthermore, the solution for the forced linear ibvp (5.2) is defined by

u(x, t) = SJ [u0; f ]
.
= J (t)u0(x) + i

∫ t

0

J (t− s)f(x, s)ds, x ∈ Ω0, t ∈ [0, T ].

(5.6)
With these foundations in place, we can now proceed to establish the following
results.
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Proposition 5.1. If u0 ∈ L2(Ω0) and f ∈ L1
t

(
0, T ;L2

x(Ω0)
)
, then we have

SJ [u0; f ] ∈ C([0, T ];L2
x(Ω0)) and it satisfies the following estimate

sup
t∈[0,T ]

‖SJ [u0; f ](·, t)‖L2x(Ω0)
. ‖u0‖L2(Ω0)

+ ‖f(·, t)‖
L1t

(
0,T ;L2x(Ω0)

). (5.7)

In addition, if u0 ∈ H2
0 (Ω0) and f ∈ L1

t

(
0, T ;H2

0 (Ω0)
)
, then we have SJ [u0; f ] ∈

C([0, T ];H2
0 (Ω0)) and it satisfies the following estimate

sup
t∈[0,T ]

‖SJ [u0; f ](·, t)‖H2(Ω0)
. ‖u0‖H2(Ω0)

+ ‖f(·, t)‖
L1t

(
0,T ;H2(Ω0)

). (5.8)

Finally, for 1 < s < 2, if u0 ∈ Hs
0(Ω0) and f ∈ L1

t

(
0, T ;Hs

0(Ω0)
)
, then we have

SJ [u0; f ] ∈ C([0, T ];Hs
0(Ω0)) and it satisfies the following estimate

sup
t∈[0,T ]

‖SJ [u0; f ](·, t)‖Hs(Ω0)
. ‖u0‖Hs(Ω0)

+ ‖f(·, t)‖
L1t

(
0,T ;Hs(Ω0)

). (5.9)

Proof 5.1. Proof of proposition 5.1. The proof of estimate (5.9) can be deduced
through interpolation and the estimates (5.7) and (5.8). Additionally, the proof
of estimate (5.8) closely parallels the proof of estimate (5.7). Therefore, in this
exposition, we shall exclusively present the proof for estimate (5.7). Using the
relation (5.5), we obtain

< J (t)u0(x),J (t)u0(x) >L2(Ω0)
= < u0(x),J (t)∗J (t)u0(x) >L2(Ω0)

= < u0(x),J (−t)J (t)u0(x) >L2(Ω0)

= < u0(x), u0(x) >L2(Ω0)
.

This gives us that

sup
t∈[0,T ]

‖J (t)u0(·)‖L2(Ω0)
= ‖u0‖L2(Ω0)

. (5.10)

Using the identity (5.10), we derive

sup
t∈[0,T ]

∥∥∥∫ t

0

J (t− s)f(x, s)ds
∥∥∥ ≤ sup

t∈[0,T ]

∫ t

0

‖J (t− s)f(·, s)‖L2(Ω0)ds

≤ sup
t∈[0,T ]

∫ t

0

‖f(·, s)‖L2(Ω0)ds ≤ ‖f(·, t)‖
L1

t

(
0,T ;L2(Ω0)

).
(5.11)

Combining estimates (5.10) with (5.11), we establish the inequality (5.7). This
concludes the proof of proposition 5.1 �

Estimate for Problem 2. We initiate our analysis by finding the solution to
the ibvp (5.3). Utilizing the expression ∆u = u′′(r) + 1

ru
′(r), we reformulate this

ibvp as follows
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iut + urr +
1

r
ur = 0, 0 < r < 1, t ∈ (0, T ), (5.12a)

u(r, 0) = 0, 0 < r < 1, (5.12b)

u(1, t) = h(t), t ∈ R. (5.12c)

Here, h(t) extends the boundary data g(t) from the interval (0, T ) to the entire
real line R. By making use of lemma 3.3, we assume that h is compactly supported
in the interval (0, 2). Additionally, at r =0, the equation in (5.12) implies the
following boundary condition

ur(0, t) = 0. (5.13)

We will solve the reduced pure ibvp (5.12) and commence with solving the
following ibvp

iUt + Urr +
1

r
Ur = 0, 0 < r < 1, t ∈ (0, T ), (5.14a)

U(r, 0) = U0(r), 0 < r < 1, (5.14b)

Ur(0, t) = U(1, t) = 0, t ∈ (0, T ). (5.14c)

By employing the standard method of separation of variables, we can find the
general solution for (5.14) as

U(r, t) = Sball(t)U0(r)
.
=

∞∑
n=0

βnJ0(λnr)e
−iλ2nt , (5.15)

where J0(z) represents the Bessel function of order 0, and λn, n = 0, 1, 2, . . . , are
the positive zeros of the Bessel function J 0, meaning J0(λn) = 0. The coefficients
βn, n = 0, 1, . . . , are determined by the initial condition U0(r) and can be calculated
as follows

∞∑
n=0

βnJ0(λnr) = U0(r),

which gives us that

βn =
2

J2
1 (λn)

∫ 1

0

rU0(r)J0(λnr)dr. (5.16)

Remark 5.2. The Fourier–Bessel series for a function f (x ) on the interval (0, 1)
with respect to the Bessel function J 0 can be expressed as:

f(x) =
∞∑
n=0

anJ0(λnx),
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where the coefficients an are given by

an =
2

J2
1 (λn)

∫ 1

0

xf(x)J0(λnx)dx, (5.17)

and λn, n = 0, 1, 2, . . . , are the positive zeros of the Bessel function J 0, i.e., J0(λn) =
0.

Remark 5.3. The Bessel functions J0(λnx), n = 0, 1, 2, . . . , are orthogonal over
the interval (0, 1) with respect to the weight function x, meaning:

∫ 1

0

xJ0(λmx)J0(λnx)dx =
1

2
δmn[J1(λn)]

2, (5.18)

where δmn is the Kronecker delta, defined as:

δmn =

1 if m = n,

0 otherwise.

This allows us to express the coefficient an in terms of inner products of f (x ) with
the Bessel function J0(λnx).

Solving forced ibvp. Now, let us address the following forced problem

iVt + Vrr +
1

r
Vr = F (r, t), 0 < r < 1, t ∈ (0, T ), (5.19a)

V (r, 0) = 0, 0 < r < 1, (5.19b)

Vr(0, t) = V (1, t) = 0, t ∈ (0, T ). (5.19c)

Utilizing Duhamel’s principle, the solution to the forced ibvp (5.19) is given by

V (r, t) = −i
∫ t

0

Sball(t− t′)F (r, t′)dt′
.
= −i

∞∑
n=0

J0(λnr)

∫ t

0

e−iλ
2
n(t−t

′)Bn(t
′)dt′,

(5.20)
where

Bn(t
′) =

2

J2
1 (λn)

∫ 1

0

rF (r, t′)J0(λnr)dr. (5.21)

Solving ibvp (5.12). Defining v(r, t) = u(r, t)− h(t), we obtain the ibvp for v
as follows

https://doi.org/10.1017/prm.2024.120 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.120


Radial solutions of NLS equations in Rn 43

ivt + vrr +
1

r
vr = Fh(r, t), 0 < r < 1, t ∈ (0, T ), (5.22a)

v(r, 0) = 0, 0 < r < 1, (5.22b)

vr(0, t) = v(1, t) = 0, t ∈ (0, T ), (5.22c)

where Fh = −ih′(t). Employing the solution formula (5.20) with F = Fh, we
have

v = −
∞∑
n=0

J0(λnr)bn

∫ t

0

h′(t′)e−iλ
2
n(t−t

′)dt′, (5.23)

where bn represents the Fourier–Bessel coefficient of 1, and can be computed as

bn =
2

J2
1 (λn)

∫ 1

0

r · J0(λnr)dr =
2

J2
1 (λn)

· J1(λn)
λn

=
2

J1(λn)λn
. (5.24)

Further, by performing integration by parts and utilizing the initial condition
h(0) = 0, we obtain

v = −h(t)− i
∞∑
n=0

J0(λnr)
2λn
J1(λn)

∫ t

0

h(t′)e−iλ
2
n(t−t

′)dt′. (5.25)

Therefore, the solution to the ibvp (5.12), denoted as u = v + h, is expressed as

u =Wballh
.
= −2i

∞∑
n=0

J0(λnr)
λn

J1(λn)

∫ t

0

h(t′)e−iλ
2
n(t−t

′)dt′. (5.26)

In addition, if we switch back to the variables (x1, x2), then we have

u(x1, x2, t) =Wballh
.
= −2i

∞∑
n=0

J0

(
λn

√
x21 + x22

) λn
J1(λn)

∫ t

0

h(t′)e−iλ
2
n(t−t

′)dt′.

(5.27)

Next, we will prove the following result.

Proposition 5.4. Let h ∈ H
1/2
00 (0, T ). Then, the solution defined by (5.26)

satisfies the following estimate

sup
t∈[0,T ]

∥∥∥r1/2 ·Wballh
∥∥∥
L2(0,1)

. ‖h‖
H1/2(0,T )

. (5.28)

Furthermore, if h ∈ H
(s+1)/2
0 (0, T ) for 0 ≤ s ≤ 2 (for s = 0, 2, h ∈ H

s+1
2

00 (0, T )),
then the solution defined by (5.27) satisfies the following estimates

sup
t∈[0,T ]

∥∥∥Wballh
∥∥∥
Hs(Ω0)

. ‖h‖
H(s+1)/2(0,T )

. (5.29)
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To show the above result, we need Parseval’s identity for Fourier–Bessel
series, which is stated as follows.

Lemma 5.5. Let x1/2f(x) ∈ L2(0, 1). If the Fourier–Bessel series of f(x) is given
by

f(x) =
∞∑
n=0

cnJ0(λnr),

where cn = 2

J21 (λn)

∫ 1

0
xf(x)J0(λnx)dx , then we have

∫ 1

0

x|f(x)|2dx =
1

2

∞∑
n=0

|cn|2[J1(λn)]2. (5.30)

Proof 5.1. Proof of lemma 5.5. By straightforward computation, we get

∫ 1

0

x|f(x)|2dx =

∫ 1

0

xf(x)f(x)dx =
∞∑
n=0

∞∑
m=0

cncm

∫ 1

0

xJ0(λnx)J0(λmx)dx.

Now, applying the orthogonal identity (5.18), i.e.,

∫ 1

0

xJ0(λmx)J0(λnx)dx =
1

2
δmn[J1(λn)]

2, (5.31)

we obtain the desired identity (5.30). This completes the proof of lemma 5.5. �

Proof 5.1. Proof of proposition 5.4. We will begin by providing the proof of estimate
(5.28), which is similar to the proof of estimate (4.43). We start by expressing h(t′)
as follows

h(t′) =
1

2π

∫
R
eiλt

′
ĥ(λ)dλ.

Using this expression and formula (5.26), we can write

ψ ·Wballh =
−iψ(t)
π

∞∑
n=0

J0(λnr)
λn

J1(λn)

∫ t

0

e−iλ
2
n(t−t

′)
∫
R
eiλt

′
ĥ(λ)dλdt′. (5.32)

Now, let us perform the integration with respect to t
′
using the computation

∫ t

0

ei(λ+λ
2
n)t

′
dt′ = −ie

i(λ+λ2n)t − 1

λ+ λ2n
.
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With this, the expression for ψ(t)Wballh becomes

ψ(t)Wballh =
iψ(t)

π

∞∑
n=0

J0(λnr)
1

J1(λn)

∫
λ∈R

e−iλ
2
nt
ei(λ+λ

2
n)t − 1

λ+ λ2n
· λnĥ(λ)dλ

(5.33)

' I+ + I−, (5.33)

where I+ is the integral over (0,∞) and I− is the integral over (−∞, 0). More
precisely, we have

I+
.
= ψ(t)

∞∑
n=0

J0(λnr)
1

J1(λn)

∫ ∞

0

e−iλ
2
nt
ei(λ+λ

2
n)t − 1

λ+ λ2n
· λnĥ(λ)dλ, (5.34)

I−
.
= ψ(t)

∞∑
0

J0(λnr)
1

J1(λn)

∫ 0

−∞
e−iλ

2
nt
ei(λ+λ

2
n)t − 1

λ+ λ2n
· λnĥ(λ)dλ. (5.35)

�

Estimate of weighted L2-norm for I+. Let

f(r, t) = r1/2 ·
∞∑
n=0

J0(λnr)
1

J1(λn)

∫ ∞

0

e−iλ
2
nt
ei(λ+λ

2
n)t − 1

λ+ λ2n
· λnĥ(λ)dλ.

First, we prove L2 estimate (5.28) for I+1 . Since ψ is compactly supported in (0, 1),
we have sup

t∈[0,T ]

‖r1/2 · I+1 ‖L2(0,1) ≤ sup
t∈[0,1]

‖f‖L2(0,1). Using Parseval’s identity for

Fourier–Bessel series (identity (5.30)), we get

‖f‖2
L2(0,1)

.
∑
n∈Z

∣∣∣ ∫ ∞

0

e−iλ
2
nt
ei(λ+λ

2
n)t − 1

λ+ λ2n
· λnĥ(λ)dλ

∣∣∣2 (5.36)

≤
∑
n∈Z

[ ∫ ∞

0

∣∣∣ 1

λ+ λ2n
· λnĥ(λ)

∣∣∣dλ]2. (5.36)

Now, applying Cauchy–Schwarz inequality in dλ, for ε> 0 (small), we obtain

[ ∫ ∞

0

∣∣∣ 1

λ+ λ2n
· λnĥ(λ)

∣∣∣dλ]2 ≤
∫ ∞

0

λ2n(1 + λ)2ε

(λ+ λ2n)2
(1 + λ)|ĥ(λ)|2dλ ·

∫ ∞

0

1

(1 + λ)1+2ε
dλ

.
∫ ∞

0

λ2n(1 + λ)2ε

(λ+ λ2n)2
(1 + λ)|ĥ(λ)|2dλ.

Thus, combining above estimates, it is deduced that

‖f‖2
L2(0,1)

.
∑
n∈Z

∫ ∞

0

λ2n(1 + λ)2ε

(λ+ λ2n)
2

(1 + λ)|ĥ(λ)|2dλ

≤
∫ ∞

0

[∑
n∈Z

λ2n(1 + λ)2ε

(λ+ λ2n)
2

]
(1 + λ)|ĥ(λ)|2dλ.
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Furthermore, using λ+λ2n ≥ max{λ, λ2n} and λn ≈ (n− 1
4 )π ' n, for all λ ≥ 0 and

2− 2ε > 3
2 or ε < 1

4 , we get

∑
n∈Z

λ2n(1 + λ)2ε

(λ+ λ2n)2
≤
∑
n∈Z

λ2n
(λ+ λ2n)2−2ε

· (1 + λ)2ε

(λ+ λ2n)2ε
.
∑
n∈Z

n2

(λ+ n2)
3
2+

.
∞∑
n=1

1

n1+
. 1.

Therefore, the desired estimate (5.28) for I+ is obtained.
Estimate of weighted L2-norm for I−. Adding and subtracting ψ(λ + λ2n)

inside the integral (localizing near the singularity λ = −λ2n) gives the following
decomposition of I−

I− =ψ(t)
∞∑
0

J0(λnr)
1

J1(λn)

∫ 0

−∞

[
e−iλ

2
nt(ei(λ+λ

2
n)t − 1)

]1− ψ(λ+ λ2n)

λ+ λ2n
· λnĥ(λ)dλ

(5.37)

+ψ(t)
∞∑
0

J0(λnr)
1

J1(λn)

∫ 0

−∞
e−iλ

2
nt

(ei(λ+λ
2
n)t − 1)ψ(λ+ λ2n)

λ+ λ2n
· λnĥ(λ)dλ. (5.38)

Estimate of weighted L2-norm for (5.37). Let us start with the first part
of I−, as given by (5.37). We define a function f(r, t) as follows

f(r, t) = r1/2 ·
∞∑
0

J0(λnr)
1

J1(λn)

∫ 0

−∞

[
e−iλ

2
nt(ei(λ+λ

2
n)t− 1)

]1− ψ(λ+ λ2n)

λ+ λ2n
·λnĥ(λ)dλ.

Since ψ is compactly supported in (0, 1), we have sup
t∈[0,T ]

‖r1/2 · (5.37)‖L2(0,1) ≤

sup
t∈[0,1]

‖f‖L2(0,1). Using Parseval’s identity (5.30), we deduce that

‖f‖2
L2(0,1)

.
∑
n∈Z

∣∣∣ ∫ 0

−∞

[
e−iλ

2
nt(ei(λ+λ

2
n)t − 1)

]1− ψ(λ+ λ2n)

λ+ λ2n
· λnĥ(λ)dλ

∣∣∣2
.
∑
n∈Z

[ ∫ 0

−∞

∣∣∣1− ψ(λ+ λ2n)

λ+ λ2n
· λnĥ(λ)

∣∣∣dλ]2. (5.39)

Making the change of variables λ = −µ2 and using the identity λn
λ2n−µ2

=

1
2

(
1

λn−µ + 1
λn+µ

)
, we get

‖f‖2
L2(0,1)

.
∑
n∈Z

[ ∫ ∞

0

|µĥ(−µ2)|| 1

λn − µ
+

1

λn + µ
|[1− ψ(λ2n − µ2)]dλ

]2
.

Now we need the following estimate (similar to the proof of Lemma A-1 in [7])

∑
n∈Z

∣∣∣ ∫ ∞

0

F̂ (µ)
1

λn − µ
(1− ψ(λ2n − µ2))dµ

∣∣∣2 .
∫ ∞

0

(1 + µ)|F̂ (µ)|2dµ.

https://doi.org/10.1017/prm.2024.120 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.120


Radial solutions of NLS equations in Rn 47

Applying this estimate twice with F̂ (µ) = |µĥ(−µ2)|, we obtain

‖f‖2
L2(T) .

∫ ∞

0

(1 + µ)|µĥ(µ2)|2dµ .
∫
R
(1 + |λ|1/2)|λ|1/2|ĥ(λ)|2dλ . ‖h‖2

H1/2 .

This completes the proof of desired estimate (5.28) for (5.37).
Estimate of weighted L2-norm for (5.38). Now, we move on to the second

part of I−, as given by (5.38). We will first consider a decomposition of the term.
Using Taylor’s series at λ+ λ2n = 0, we have

ei(λ+λ
2
n)t − 1 =

∞∑
k=1

(it)k(λ+ λ2n)
k

k!
.

Thus, we can write (5.38) '
∞∑
k=1

ik

k! fk, where

fk(r, t)
.
= tkψ(t)

∞∑
0

J0(λnr)
1

J1(λn)

∫ 0

−∞
e−iλ

2
ntψ(λ+ λ2n)(λ+ λ2n)

k−1λnĥ(λ)dλ.

We can now estimate the weighted L2-norm for this term, starting with the following

‖r1/2 · (5.38)‖L2(0,1) .
∥∥r1/2 · ∞∑

k=1

ik

k!
fk
∥∥
L2(0,1)

.
∞∑
k=1

1

k!
‖r1/2 · fk‖L2(0,1).

The Fourier–Bessel series coefficients for fk are given by tkψ(t)e−iλ
2
ntCk(n), where

Ck(n) =
1

J1(λn)

∫ 0

−∞
ψ(λ+ λ2n)(λ+ λ2n)

k−1λnĥ(λ)dλ.

Since ψ is compactly supported in (0, 1), we can use Parseval’s identity (5.30) and
Cauchy–Schwarz inequality to obtain

‖r1/2 · fk(t)‖2L2(T) .
∑
n∈Z

|Ck(n)|2|
1

J1(λn)
|2 =

∣∣∣ ∫ 0

−∞
ψ(λ+ λ2

n)(λ+ λ2
n)

k−1λnĥ(λ)dλ
∣∣∣2

.
∫ 0

−∞
ψ(λ+ λ2

n)(λ+ λ2
n)

2(k−1)dλ ·
∫ 0

−∞
ψ(λ+ λ2

n)λ
2
n|ĥ(λ)|2dλ.

Using the fact that ψ ∈ C∞
0 (0, 1), we can show that the first integral is bounded.

For the second integral, note that |λ+ λ2n| < 1, which implies that λ2n . (1 + |λ|).
Therefore, we have

‖r1/2 · fk(t)‖2L2(T) .
∫ 0

−∞
(1 + |λ|)|ĥ(λ)|2dλ . ‖h‖2

H1/2 .

This completes the desired estimate (5.28) for (5.38).
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Proof of estimate (5.29). Using estimate (5.28), we prove this estimate for
s =0. Then, we will extend the proof to s =2. We note that Wballh defined by
(5.27) satisfies the ibvp (5.12), which can be expressed as

iut + ux1x1 + ux2x2 = 0, x21 + x22 < 1, t ∈ (0, T ),

u(x1, x2, 0) = 0, x21 + x22 < 1,

u(x1, x2, t) = h(t), x21 + x22 = 1, t ∈ (0, T ).

If we let ut = v, then v(x1, x2, 0) = 0 and v satisfies the same ibvp with h
replaced by ht, and we have

sup
t∈[0,T ]

∥∥∥r1/2v∥∥∥
L2(0,1)

= sup
t∈[0,T ]

∥∥∥(Wballh
)
t

∥∥∥
L2(Ω0)

≤ CT ‖ht‖H1/2(0,T )
.

Hence, for a fixed value of t, the function u =Wballh satisfies

ux1x1 + ux2x2 = −i
(
Wballh

)
t
, x21 + x22 < 1,

u(x1, x2, t) = h(t), x21 + x22 = 1,

which is an elliptic problem on Ω0. Since
(
Wballh

)
t
∈ L2(Ω0) and h(t) is a constant

for a fixed t, the theory of elliptic equations implies that u ∈ H2(Ω0) and

‖Wballh‖H2(Ω0) ≤ C

(∥∥∥(Wballh
)
t

∥∥∥
L2(Ω0)

+ |h(t)|
)

≤ C
(
‖ht‖H1/2(0,T ) + ‖h‖H1(0,T )

)
≤ C‖h‖H3/2(0,T ),

where C is a constant dependent only on the domain Ω0. This completes the proof
of estimate (5.29) for s =2. The result for 0 < s < 2 follows from interpolation.
Therefore, we complete the proof of proposition 5.4.

Now, we are able to state the linear estimate for the solution of ibvp (5.1). To
do this, we first express the solution for this ibvp

u = B[u0, g; f ]
.
= SJ [u0; f ] +Wball

(
g
)
, (x1, x2) ∈ Ω0, t ∈ (0, T ). (5.41)

Furthermore, using propositions 5.1 and 5.4, we obtain the linear estimate in the
following solution spaces.

Theorem 5.6 Suppose that 0 ≤ s ≤ 2. If u0 ∈ Hs
0(Ω0), g ∈ H

s+1
2

0 (0, T ) (for

s = 0, 2, g ∈ H
s+1
2

00 (0, T )) and f ∈ L1
(
0, T ;Hs

0(Ω0)
)
, then B[u0, g2; f ] defines a

solution to the linear ibvp (5.1) with compatibility condition (3.2), which satisfies

sup
t∈[0,T ]

∥∥B[u0, g; f ](t)
∥∥
Hs(Ω0)

. ‖u0‖Hs(Ω0)
+ ‖g‖

H
s+1
2 (0,T )

+
∥∥f∥∥

L1
(
0,T ;Hs(Ω0)

).
(5.42)
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5.2. Nonlinear problem

We will now investigate the well-posedness of the nonlinear problem (1.1) for
(x1, x2) ∈ Ω0 with the boundary condition u(x1, x2, t) = g(t) at x21 + x22 = 1.
In the solution formula (5.41), by replacing the forcing term f with −λ|u|p−2u, we
obtain the following iteration map

u = B[u0, g; f ] = B[u0, g;−λ|u|p−2u]. (5.43)

Remark. In (5.43), it is worth noting that for s > 1, we need the condition that
f = −λ|u|p−2u ∈ L1

(
0, T ;Hs

0(Ω0)
)
. Thus, we can express (5.43) differently. Let

w(t) = −λ|u|p−2u|x21+x22=1 = −λ|g|p−2g,

and v(t) = −i
∫ t
0
w(s)ds. Then, (5.43) can be transformed into the form

u = v(t) +B[u0, g − v;−λ|u|p−2u− w],

where −λ|u|p−2u−w = 0 at x21 + x21 = 1, which is the desired boundary condition.
Here, v(t) is one order smoother than g if s > 1, which does not introduce any
difficulties in deriving the relevant estimates. For the sake of simplicity, we will
only consider (5.43) in the following.

Next, we will demonstrate that the iteration map defined by (5.43) is a contrac-
tion in the solution space C([0, T ∗];Hs(Ω0)), for 1 < s ≤ 2. To do this, we can use
the linear estimate (5.42) to obtain

sup
t∈[0,T∗]

∥∥B[u0, g; f ](t)
∥∥
Hs(Ω0)

. ‖u0‖Hs(Ω0)
+ ‖g‖

H
s+1
2 (0,T )

+ |λ|
∥∥|u|p−2u

∥∥
L1
(
0,T∗;Hs(Ω0)

).
To estimate the nonlinear term |u|p−2u, we extend u from Ω0 × (0, T ∗) to R2 ×
(0, T ∗), such that the extension U satisfies

‖U‖
L1
(
0,T∗;Hs(R2)

) ≤ 2‖u‖
L1
(
0,T∗;Hs(Ω0)

).
Hence, by applying Sobolev–Gagliardo–Nirenberg inequality (see [1]) and Sobolev
embedding theorem in R2, for s > 2

2 = 1 (if Ω0 is in Rn, then s > n
2 ), we obtain

∥∥|u|p−2u(t)
∥∥
Hs(Ω0)

.
∥∥|U |p−2U(t)

∥∥
Hs(R2)

s>1
≤ ‖U(t)‖p−1

Hs(R2) . ‖u(t)‖p−1
Hs(Ω0)

.

Working similarly, for s > 1, we get

∥∥|u|p−2u(t)− |v|p−2v(t)
∥∥
Hs(Ω0)

.
(
‖u(t)‖p−2

Hs(Ω0)
+ ‖v(t)‖p−2

Hs(Ω0)

)
‖(u− v)(t)‖Hs(Ω0).
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Finally, using Hölder’s inequality in t integral, we arrive at∥∥|u|p−2u
∥∥
L1(0,T∗;Hs(Ω0))

. T ∗ sup
t∈[0,T∗]

‖u(t)‖p−1
Hs(Ω0)

,∥∥|u|p−2u(t)− |v|p−2v(t)
∥∥
L1(0,T∗;Hs(Ω0))

. T ∗ sup
t∈[0,T∗]

(
‖u(t)‖p−2

Hs(Ω0)
+ ‖v(t)‖p−2

Hs(Ω0)

)
‖(u− v)(t)‖Hs(Ω0)

.

Using the above estimates, we find that the iteration map (5.43) is a contraction in
C([0, T ∗];Hs(Ω0)) for s > 1, as long as T ∗ > 0 is sufficiently small. Thus, we obtain
a unique solution u ∈ C([0, T ∗];Hs(Ω0)). Given the radial symmetry of the initial
and boundary conditions, and due to the uniqueness and rotational invariance of
this problem, the solution is also radially symmetric. Consequently, u is a function
of r =

√
x21 + x22 in terms of spatial variables.
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Appendix A

Proof of estimate (3.32). We define the operator J : L2 → Lqt (R;Lγ(1,∞)) as
follows

J [f ](r, t)
.
=

∫ ∞

0

Kt(r, τ)f̂(τ)dτ. (A.1)

To establish estimate (3.32), it suffices to demonstrate that J is bounded. To do
this, we will show that the adjoint operator of J is bounded. Utilizing duality, we
have ∥∥∥∥∫ ∞

0

Kt(r, τ)f̂(τ)dτ

∥∥∥∥
L
q
t (R;L

γ(1,∞))

= sup
‖ψ‖

Lq
′
(R;Lγ′ )

=1

ψ∈Cc([0,T ];D(1,∞))

∫
R

∫ ∞

r=1

[ ∫ ∞

0

Kt(r, τ)f̂(τ)dτ
]
· ψ(r, t) drdt.

Now, utilizing (3.31), we obtain the t-Fourier transform of
∫∞
0
Kt(r, τ)f̂(τ)dτ ,

which is

F
[ ∫ ∞

0

Kt(r, τ)f̂(τ)dτ
]
'

e−
√
τ(r−1)(1 + |τ |)−

1
4 f̂(τ), τ > 0,

0, τ < 0.

Combined with the Plancherel theorem, we obtain∫
R

∫ ∞

r=1

[ ∫ ∞

0

Kt(r, τ)f̂(τ)dτ
]
· ψ(r, t) drdt =

∫ ∞

r=1

∫ ∞

τ=0[
e−

√
τ(r−1)(1 + |τ |)−

1
4 f̂(τ)

]
· ψ̂(r, τ) dτdr

=

∫ ∞

τ=0

f̂(τ)

∫ ∞

r=1

[
e−

√
τ(r−1)(1 + |τ |)−

1
4 · ψ̂(r, τ)

]
drdτ

'
∫
t∈R

f(t)
[∫ ∞

τ=0

∫ ∞

r=1

eiτte−
√
τ(r−1)(1 + |τ |)−

1
4 · ψ̂(r, τ)drdτ

]
dt

=

∫
t∈R

f(t)
[∫ ∞

r=1

J [ψ](r, t)dr
]
dt.

Thus, the adjoint operator of J is given by

J∗[ψ](t)
.
=

∫ ∞

r=1

J [ψ](r, t)dr. (A.2)

Furthermore, using the Hölder inequality, to establish that J is bounded, it suffices
to show∥∥∥∫ ∞

r=1

J [ψ](r, ·)dr
∥∥∥
L2t (R)

≤ C‖ψ‖
Lq

′
(0,T ;Lγ

′
)
, ψ ∈ Cc([0, T ];D(R)). (A.3)
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We have∥∥∥∥∫ ∞

r=1

J [ψ](r, ·)dr
∥∥∥∥2

L2
t (R)

=

∫
t∈R

∣∣∣∣∫ ∞

r=1

J [ψ](r, ·)dr
∣∣∣∣2 dt

=

∫
t∈R

∣∣∣∣∫ ∞

r=1

∫ ∞

0

Kt(r, τ)f̂(τ)dτdr

∣∣∣∣2 dt
=

∫
t∈R

∣∣∣∣∫ ∞

0

eiτt
(∫ ∞

r=1

e−
√
τ(r−1)(1 + |τ |)−

1
4 ψ̂(r, τ)dr

)
dτ

∣∣∣∣2 dt.
Applying Plancherel theorem to dt, we have∥∥∥∥∫ ∞

r=1

J [ψ](r, ·)dr
∥∥∥∥2
L2t (R)

=

∫ ∞

τ=0

∣∣∣∣∫ ∞

r=1

e−
√
τ(r−1)(1 + |τ |)−

1
4 ψ̂(r, τ)dr

∣∣∣∣2 dτ
=

∫ ∞

τ=0

(∫ ∞

r1=1

e−
√
τ(r1−1)(1 + |τ |)−

1
4 ψ̂(r1, τ)dr1

)
(∫ ∞

r2=1

e−
√
τ(r2−1)(1 + |τ |)−

1
4 ψ̂(r2, τ)dr2

)
dτ.

Using Fubini’s theorem, we can simplify the expression to∥∥∥∥∫ ∞

r=1

J [ψ](r, ·)dr
∥∥∥∥2
L2t (R)

=

∫ ∞

r1=1

∫ ∞

τ=0

ψ̂(r1, τ)(∫ ∞

r2=1

e−
√
τ(r1+r2−2)(1 + |τ |)−

1
2 ψ̂(r2, τ)dr2

)
dτdr1.

Furthermore, applying Plancherel’s theorem to dτ , we have∥∥∥∥∫ ∞

r=1

J [ψ](r, ·)dr
∥∥∥∥2
L2

t (R)

'
∫ ∞

r1=1

∫
t∈R

ψ(r1, t)

(∫ ∞

τ=0

∫ ∞

r2=1

eiτte−
√
τ(r1+r2−2)(1 + |τ |)− 1

2 ψ̂(r2, τ)dr2dτ

)
dtdr1.

Moreover, applying Holder’s inequality to dr1 and dt, we get

∥∥∥∥∫ ∞

r=1

J [ψ](r, ·)dr
∥∥∥∥2

L2
t (R)

≤‖ψ‖
L

q′
t [R;Lγ′

r1
(1,∞)]

∥∥∥∥∥
∫ ∞

τ=0

∫ ∞

r2=1

eiτte−
√
τ(r1+r2−2)(1 + |τ |)− 1

2 ψ̂(r2, τ)dr2dτ

∥∥∥∥∥
L

q
t [R;L

γ
r1

(1,∞)]

=‖ψ‖
L

q′
t [R;Lγ′

r1
(1,∞)]

∥∥∥∥∫ ∞

τ=0

∫ ∞

r2=1

eiτte−
√
τ(r1+r2−2)(1 + |τ |)−

1
2 ψ̂(r2, τ)dr2dτ

∥∥∥∥
L

q
t [R;L

γ
r1

(1,∞)]

.
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Now, to prove the inequality (A.3), it is enough to show that

∥∥∥∥∥
∫ ∞

τ=0

∫ ∞

r2=1

eiτte−
√
τ(r1+r2−2)(1 + |τ |)−

1
2 ψ̂(r2, τ)dr2dτ

∥∥∥∥∥
L
q
t [R;L

γ
r1

(1,∞)]

. ‖ψ‖
L
q′
t [R;Lγ′ (1,∞)]

. (A.6)

To proceed, we will use the convolution property: F−1(f · g) = F−1(g) ∗ F−1(g).
This allows us to rewrite the integral as

∫ ∞

τ=0

∫ ∞

r2=1

eiτte−
√
τ(r1+r2−2)(1 + |τ |)−

1
2 ψ̂(r2, τ)dr2dτ

'
∫
t1∈R

[ ∫ ∞

r2=1

(∫ ∞

τ=0

eiτ(t−t1)e−
√
τ(r1+r2−2)(1 + |τ |)−

1
2 dτ

)
ψ(r2, t1)dr2

]
dt1.

Additionally, following a similar approach to the proof in reference [7], we obtain

∥∥∥∫ ∞

r2=1

(∫ ∞

τ=0

eiτ(t−t1)e−
√
τ(r1+r2−2)(1 + |τ |)−

1
2 dτ

)
ψ(r2, t1)dr2

∥∥∥
L
γ
r1

(1,∞)

.|t− t1|
1
γ− 1

2 ‖ψ(·, t1)‖
L
γ′
r2

(1,∞)
, 2 ≤ γ ≤ ∞. (A.7)

Finally, we combine the above estimate with the following result to obtain the
desired estimate (A.6).

Lemma A.1. Hardy–Littlewood–Polya [26] section 10.17, theorem 382 If F,G ≥ 0
then

∫
R

∫
R

F (x)G(y)

|x− y|λ
dxdy ≤ C‖F‖

LPx (R)‖G‖LQx (R)
, C > 0, (A.8)

with P > 1, Q > 1, 1
P + 1

Q > 1, λ = 2− 1
P − 1

Q .
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It can be observed that

A
.
=

(∫ ∞

t=−∞

∣∣∣∣∣
∫ ∞

t1=−∞
|t− t1|

1
γ−1

2 ‖ψ(·, t1)‖Lγ′dt1

∣∣∣∣∣
q

dt

)1/q

=

(∫ ∞

t=−∞

∣∣∣∣∣
∫ ∞

t1=−∞
|t− t1|

1
γ−1

2 ‖ψ(·, t1)‖Lγ′dt1

∣∣∣∣∣
·

∣∣∣∣∣
∫ ∞

t1=−∞
|t− t1|

1
γ−1

2 ‖ψ(·, t1)‖Lγ′dt1

∣∣∣∣∣
q−1

dt

1/q

=

(∫ ∞

t=−∞

∫ ∞

t1=−∞
|t− t1|−λ‖ψ(·, t1)‖Lγ′G(t)dt1dt

)1/q

.

(
‖ψ‖

Lγ
′
L
q′
t1

‖G‖
L
q′
t

)1/q

,

where we have taken λ = 1
2 − 1

γ , G(t) =
∣∣∣∫∞
t1=−∞ |t− t1|

1
γ−1

2 |ψ(·, t1)|Lγ′dt1
∣∣∣q−1

,

and set P = Q = q′. It is easy to verify that the admissible condition 2
q + 1

γ = 1
2

implies that λ = 2− 1
P − 1

Q . In fact, we have

λ =
1

2
− 1

γ
=

1

2
− (

1

2
− 2

q
) =

2

q
= 2− 2

q′
= 2− 1

P
− 1

Q
.

Additionally, we have

‖G‖
L
q′
t (R)

=

∫
t∈R

∣∣∣∣∣
∫ ∞

t1=−∞
|t− t1|

1
γ− 1

2 ‖ψ(·, t1)‖Lγ′dt1

∣∣∣∣∣
(q−1)q′

dt

1/q′

.

Combining the above identity with 1
q′ = 1− 1

q , or q
′ = q

q−1 , we get

‖G‖
L
q′
t (R)

=

(∫
t∈R

∣∣∣∣∣
∫ ∞

t1=−∞
|t− t1|

1
γ−1

2 ‖ψ(·, t1)‖Lγ′dt1

∣∣∣∣∣
q

dt

)1/q′

= Aq/q
′
.

Thus, we find

A .

(
‖ψ‖

Lγ
′
L
q′
t1

‖G‖
L
q′
t (R)

)1/q

=

(
‖ψ‖

Lγ
′
L
q′
t1

Aq/q
′
)1/q

= ‖ψ‖1/q
Lγ

′
L
q′
t1

A1/q′ .

Therefore, we have A1−1/q′ = A1/q . ‖ψ‖1/q
Lγ

′
L
q′
t1

or A . ‖ψ‖
L
q′
t [R;Lγ′ (1,∞)]

, which

combined with inequality (A.7) gives the desired estimate (A.6). This completes
the proof of estimate (3.32). �
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