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EXTENSION AND RESTRICTION FOR BERGMAN
SCALE OF SPACES AND ONE-DIMENSIONAL

SUBVARIETIES ON CONVEX
FINITE TYPE DOMAINS

M. JASICZAK

Abstract. We prove that the extension problem from one-dimensional subva-

rieties with values in Bergman space H1(D) on convex finite type domains can

be solved by means of appropriate measures. We obtain also almost optimal

results concerning the extension problem for other Bergman spaces and one-

dimensional varieties.

§1. Introduction

In [15], Diederich and Mazzilli showed that there exists a pseudoconvex

domain D ⊂ C3 with smooth polynomial boundary and a subvariety A=

{z1 = 0} such that for any positive Borel measure ν

RD ∩A[H2(D)] 6=H2(D ∩A, dν).

The symbol RD ∩A is the operator of restriction to the subvariety D ∩A,

H2(D) stands for Bergman space

H2(D) =

{
f ∈H(D) :

∫
D
|f |2 dV <∞

}
and H2(D ∩A, dν) is the space of all functions holomorphic in D ∩A such

that ∫
D ∩A

|f |2 dν <∞.

It seems therefore interesting that there are domains D, essentially of the

type considered in [15], and subvarieties A such that the extension problem

can be completely, or as we show almost completely, solved by means of

measures. This is the subject of this paper. We investigate bounded convex
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domains of finite type with smooth boundary and linear affine subvarieties

of D of higher codimension. The class of domains that we consider includes,

in particular, complex pseudoellipsoids which were studied in [15]. Our main

results concern subvarieties of dimension one

A=A(l1, . . . , ln−1) := {z ∈ Cn : l1(z) = · · ·= ln−1(z) = 0},

where

li(z) = ai1z1 + · · ·+ ainzn + bi, i= 1, . . . , n− 1,

with aij , bi ∈ C. We prove the following.

Theorem 1. Assume that D is a bounded convex domain of finite type

in Cn, n > 1 with smooth boundary. Let l1 . . . , ln−1 be linear affine maps

such that D ∩A(l1, . . . , ln−1) 6= ∅ and dimA(l1, . . . , ln−1) = 1.

There exists a measure ω supported on D ∩A(l1, . . . , ln−1) such that

RD ∩A
[
H1(D)

]
=H1(D ∩A(l1, . . . , ln−1), ω).

The measure ω is equal to

|∂l1 ∧ · · · ∧ ∂ln−1|2N dVD ∩A.

Thus, the class of functions that admit a holomorphic extension in H1(D)

is the space H1(D ∩A, ω). In other words, the extension and restriction

problem for the space H1(D) and one-dimensional subvarieties can be

completely solved by means of a measure.

The notation used in Theorem 1 requires explanation. The symbol

dVD ∩A = dVD ∩A(l1,...,ln−1)

stands for the volume measure on the intersection D ∩A(l1, . . . , ln−1).

This is meaningful since D is assumed to be equipped with the standard

Hermitian metric and therefore the linear affine subspace A(l1, . . . , ln−1)

carries the natural metric, and, as a result, also the volume form. The

symbol |∂l1 ∧ · · · ∧ ∂ln−1|N stands for a non-isotropic norm of the (n− 1, 0)-

differential form ∂l1 ∧ · · · ∧ ∂ln−1 (cf. Definition 1 below). It is important

to notice that although li, i= 1, . . . , n− 1 are affine linear the norm ζ 7→
|∂l1 ∧ · · · ∧ ∂ln−1|N (ζ) is not constant.

Theorem 1 provides a necessary and sufficient condition for extension

from one-dimensional subvarieties with values in H1(D). It is natural to

look for analogous results for other Hp(D), 1< p <∞ spaces. The result

that we prove is ε-optimal – there is an ε > 0 gap between the condition

that is necessary for the extension and the one that is sufficient.
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Theorem 2. Assume that D is a bounded convex domain of finite type

in Cn, n > 1 with smooth boundary. Let l1 . . . , ln−1 be linear affine maps

such that D ∩A(l1, . . . , ln−1) 6= ∅ and dimA(l1, . . . , ln−1) = 1.

For any 1< p <∞ it holds that

RD ∩A(l1,...,ln−1)

[
Hp(D)

]
⊂Hp(D ∩A(l1, . . . , ln−1), |∂l1 ∧ . . . ∂ln−1|2N dVD ∩A(l1,...,ln−1)).

On the other hand, for any ε > 0 and 1< p <∞ there exists an operator

ED ∩A

ED ∩A :Hp(D ∩A, |∂l1 ∧ · · · ∧ ∂ln−1|2−εN dVD ∩A)→Hp(D)

such that

RD ∩A ◦ ED ∩A = id.

Another striking fact proved by Diederich and Mazzilli in [15] is that there

exist pseudoconvex domains and subvarieties with no “regularity gain” in

H2(D) space. This is in contrast to our results. Both Theorems 1 and 2 say

that the class of holomorphic in D ∩A functions that admit an extension

in Hp(D) is strictly larger than Hp(D ∩A) when A=A(l1, . . . , ln−1) is

one-dimensional and 1 6 p <∞.

What is important in the proofs of Theorems 1 and 2 is the fact that the

dimension of A is equal to one. It is natural to seek analogous results for

subvarieties of higher dimension. This was investigated by the author in [24]

for subvarieties of codimension one. Here, we formulate a generalization of

a different nature.

Theorem 3. Assume that D is a bounded convex domain of finite

type in Cn, n > 1 with smooth boundary. Let l1 . . . , lm, 1 6m6 n− 1 be

linear affine maps such that D ∩A(l1, . . . , lm) 6= ∅ and dimA(l1, . . . , lm) =

n−m.

Assume that there exists an open neighborhood U of A(l1, . . . , lm) ∩ bD
and a constant c > 0 such that for any z ∈ U there exists an |r(z)|-extremal

basis (u1, . . . , un) at z ∈ U such that for any indices 1 6 j1 < · · ·< jm 6 n

(∂l1 ∧ · · · ∧ ∂lm)(uj1 , . . . , ujm) 6= 0⇒ |(∂l1 ∧ · · · ∧ ∂lm)(uj1 , . . . , ujm)|> c.

Then

RD ∩A[H1(D)] =H1(D ∩A(l1, . . . , lm), |∂l1 ∧ · · · ∧ ∂lm|2N dVD ∩A).
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Moreover, for any 1< p <∞ it holds that

RD ∩A(l1,...,lm)

[
Hp(D)

]
⊂Hp(D ∩A(l1, . . . , lm), |∂l1 ∧ . . . ∂lm|2N dVD ∩A(l1,...,lm)),

and for any ε > 0 and 1< p <∞ there exists an extension operator ED ∩A
such that

ED ∩A :Hp(D ∩A, |∂l1 ∧ · · · ∧ ∂lm|2−εN dVD ∩A)→Hp(D).

Our results suggest that the solution to the extension problem depends

on the minimum of the dimension and the codimension of A. This seems to

be consistent with the results in [15]. We pursued this observation further

in [25].

Arguably the most important result concerning extension of holomorphic

functions in several variables is Ohsawa–Takegoshi’s Theorem [32]. It

concerns holomorphic L2-extensions of holomorphic L2-functions on general

pseudoconvex domains. Compared with this result Theorem 2 says that

under the additional assumption that D is of finite type and convex

the class of functions that admit an extension is strictly larger than

H2(D ∩A(l1, . . . , ln−1)) (cf. [25] for more information in this direction).

Similar results for strictly pseudoconvex domains were obtained by Cumenge

in [11]. It is, however, a feature of the finite type case that the results are

non-isotropic. This is reflected, for instance, in the definition of the measure

|∂l1 ∧ · · · ∧ ∂ln−1|2N dVD ∩A(l1,...,ln−1) and the estimates in Lemmas 2 and 3

below.

A convex domain D = {r < 0} with smooth boundary is of finite type if

the maximal order of contact of bD with complex lines is finite (cf. [6, 29, 33]

for explanation of this equivalent definition). The finite type conditions were

discovered in connection with the ∂-Neumann problem (see the fundamental

works of Kohn [26, 27] and Catlin [9, 10], see also [12] for more information

on the type condition). The correct, from the viewpoint of complex analysis,

geometric structure on convex finite type domains was introduced by

Bruna et al. [8] and McNeal [29, 30]. In [7], Bruna et al. showed how

to estimate integral kernels in terms of this geometric structure. Another

important step was made by Diederich and Fornaess [14], who constructed

support functions for this class of domains. This made it possible to answer

many analytic questions such as the quantitative behavior of the ∂-equation

on Lp-spaces [18, 20, 21] and Hölder spaces [13, 19]. The extension problem
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for bounded holomorphic functions and linear subvarieties on convex finite

type domains was studied by Diederich and Mazzilli in [16]. The case of

non-linear subvarieties was investigated by Alexandre in [2]. This research

generalizes the important results obtained by Henkin [22] and Amar [3] for

strictly pseudoconvex domains. Other aspects of function theory on convex

finite type domains such as duality problems were also studied (see [28]

for example). We remark that recently Nikolov et al. [31] found a mistake

in [29] and [30]. This, however, has no influence on our work since crucial

estimates, in particular formula (6) below, remain valid.

In Section 2 we define the fundamental object in our study, that is the

non-isotropic norm | · |N . Section 3 is divided into two subsections. The

first one contains the proof of the necessary condition for an extension with

values in Hp(D). This says that if a function f ∈H(D ∩A(l1, . . . , ln−1))

admits an extension to a function in Hp(D), then it belongs to Hp(D ∩
A(l1, . . . , ln−1), ω) for the measure ω. Section 3.2 contains the construction

of the extension operator ED ∩A following the method of Berndtsson [5],

which is based on previous results by Berndtsson and Andersson [4] (we refer

the reader to the monograph [1] for more information on integral formulas).

In this subsection we also provide arguments that prove continuity of the

operator ED ∩A. It contains also the proof of Theorem 3.

§2. Convex finite type domains and the non-isotropic norm

Let D = {r < 0} be a bounded convex domain with C∞-boundary. We

may assume that r has been chosen to be convex on Cn and smooth in

Cn \ {0}. Indeed, we may choose r to be equal to pD − 1, where pD is the

Minkowski functional of D

pD(z) := inf
{
λ > 0 : z ∈ λD

}
.

Such a defining function is everywhere convex (we may assume that D

contains 0). It follows from the implicit function theorem that r is also

smooth close to bD, since it is defined by the equation r̃(z/(1 + r(z))) = 0,

where r̃ is any defining function smooth near bD (for instance the signed

distance to bD). Since pD(tz) = tpD(z) for z ∈ Cn, t > 0, the function r =

pD − 1 is smooth in Cn \ {0}.
We assume that the domain D is of type M . This means that the maximal

order of contact of bD with complex lines is equal to M .

We do not include separate background on the geometry of convex

finite type domains. Such information can naturally be found in articles
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by McNeal [29, 30]. It was also given in many papers on convex finite type

domains – we refer the reader, for instance, to [7] or [13]. What is important

is the fact that some neighborhood U of D̄ is equipped with a geometric

structure consisting of polydisks Pε(ζ), ζ ∈ U, ε > 0. These polydisks are

defined with respect to a distinguished basis, the so-called ε-extremal basis

(cf. [29, 30] and [20, 21] for further generalizations). The choice of the basis

is made in such a way that the polydisks reflect the shape of bD and other

level sets of the defining function. It is also important that the family of

these polydisks furnish U with a structure of a space of homogeneous type.

This is crucial in the proof of Lemma 1 and Theorem 5.

The basic object in our study is the non-isotropic norm defined on

covectors.

Definition 1. Assume that Ω is an (m, 0)-covector at ζ ∈D. Set

|Ω|N (ζ) := sup

|Ω(v1, . . . , vm)|
m∏
j=1

τ(ζ, vj , |r(ζ)|) : v1, . . . , vm 6= 0

 .

The function τ is a complex boundary distance

τ(ζ, v, ε) := max{c : |r(ζ + λv)− r(ζ)|< ε ∀ λ ∈ C, |λ|< c},

ζ ∈D, v ∈ Cn, ε > 0 (cf. [29, 30] and [7, 13]).

§3. Proofs

3.1 Necessary condition

We concentrate now on the necessity part of Theorems 1 and 2, that is

we intend to show that for any 1 6 p <∞ it holds that

(1) RD ∩A[Hp(D)]⊂Hp(D ∩A(l1, . . . , ln−1), ω),

where

dω = |∂l1 ∧ · · · ∧ ∂ln−1|2N dVD ∩A.

In order to prove (1) one shows first the following.

Theorem 4. Assume that D is a bounded convex domain of finite

type in Cn, n > 1 with smooth boundary. Let l1, . . . , lm, 1 6m6 n− 1 be

affine linear maps such that D ∩A(l1, . . . , lm) 6= ∅ and dimA(l1, . . . , lm) =

n−m.
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Let µ be a positive Borel measure supported on D ∩A(l1, . . . , lm). If for

any sufficiently small c > 0

(2) sup

{
µ(Pc|r(q)|(q) ∩A(l1, . . . , lm))

V (Pc|r(q)|(q))
: q ∈D ∩A(l1, . . . , lm)

}
<∞,

then for 1 6 p <∞

RD ∩A(l1,...,lm)

[
Hp(D)

]
⊂Hp(D ∩A(l1, . . . , lm), µ).

Observe that Theorem 4 holds true for 1 6m6 n− 1, not only for n− 1.

Condition (2) in Theorem 4 is a Carleson type condition where instead of

Carleson boxes one considers polydisks Pc|r(q)|(q). It says that the measure

µ behaves on the intersection D ∩A(l1, . . . , lm) precisely like the volume

measure dV on the whole domain D.

The proof of Theorem 4 is similar to the corresponding result for

subvarieties of codimension one. Therefore we only comment on it. In order

to prove it one first establishes the existence of a Whitney type cover of

D ∩A(l1, . . . , lm) consisting of polydisks Pε(q) with ε uniformly comparable

with |r(q)|.

Lemma 1. Assume that D is a bounded convex domain of finite type in

Cn, n > 1 with smooth boundary. Let A(l1, . . . , lm) be the zero set of affine

linear maps l1, . . . , lm, 1 6m6 n− 1 such that D ∩A(l1, . . . , lm) 6= ∅ and

dimA(l1, . . . , lm) = n−m.

For any c1 > 0 sufficiently small there exist a constant C2 > 0 and a family

P = {Pε1(q1), Pε2(q2), . . . } such that

(1) p1, p2, · · · ∈D ∩A(l1, . . . , lm);

(2) the polydisks P ∈ P are disjoint;

(3)

D ∩A(l1, . . . , lm)⊂
∞⋃
i=1

PC1ε1(qi);

(4) εi = c1|r(qi)|, i ∈ N;

(5)

sup
q∈D
|{PC2

1εi
(qi) ∈ P : q ∈ PC1εi(qi)}|<C2.

The constant C1 that appears in Lemma 1 is the constant from the

engulfing property of the polydisks Pε(q):

Pε(q1) ∩ Pε(q2) 6= ∅⇒ Pε(q1)⊂ PC1ε(q2).
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This property was established in [30]. The proof of Lemma 1 is standard.

As we have already written, it relies on the fact that the polydisks Pε(ζ)

furnish U ⊃ D̄ with the structure of a space of a homogeneous type.

Now, in order to prove Theorem 4 one uses the cover for Lemma 1 and

the mean value property

|f(q)|p 6 1

V (Pc|r(q)|)

∫
Pc|r(q)|(q)

|f |p dV.

Since the argument is the same as in codimension one considered in [23], we

omit the details. What remains to be proved is the fact that the measure

|∂l1 ∧ · · · ∧ ∂ln−1|2N dVD ∩A satisfies condition (2). Observe that here it is

important that m= n− 1.

Theorem 5. Assume that D is a bounded convex domain of finite

type in Cn, n > 1 with smooth boundary. Let l1, . . . , ln−1 be affine linear

maps such that D ∩ V (l1, . . . , ln−1) 6= ∅ and dim V (l1, . . . , ln−1) = 1. The

measure

|∂l1 ∧ · · · ∧ ∂ln−1|2N dVD ∩A(l1,...,ln−1)

satisfies condition (2). As a result, for any 1 6 p <∞

RD ∩A(l1,...,ln−1)

[
Hp(D)

]
⊂Hp(D ∩A(l1, . . . , ln−1), |∂l1 ∧ . . . ∂ln−1|2N dVD ∩A(l1,...,ln−1)).

Proof. We deal with the measure

dω(ζ) := |∂l1 ∧ · · · ∧ ∂ln−1|2N (ζ) dVD ∩A(l1,...,ln−1)(ζ),

where l1, . . . , ln−1 are affine linear. In order to have control on ω we use

Wirtinger’s formula.

Consider a point q ∈D ∩A(l1, . . . , ln−1), and for a given small c > 0

consider the c|r(q)|-extremal basis (u1, . . . , un) at q (cf. [29, 30] or [20, 21]

for the definition). Let (η1, . . . , ηn) be the corresponding coordinates of a

point ζ ∈D

ζ = q +

n∑
j=1

ηjuj .

Let Φ be a unitary transformation such that

η = Φ−1(ζ − q),

and let ϕ be defined by the relation

(3) ζ = Φ(η) + q = ϕ(η).
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By definition of A(l1, . . . , ln−1), we have

l1(ζ) = · · ·= ln−1(ζ) = 0,

for ζ ∈A(l1, . . . , ln−1). Thus, l1 ◦ ϕ(η) = · · ·= ln−1 ◦ ϕ(η) = 0 when η ∈
ϕ−1(A(l1, . . . , ln−1)). Therefore,

0 = d(li ◦ ϕ(η)) =

n∑
j=1

∂(li ◦ ϕ)

∂ηj
dηj , i= 1, . . . , n− 1

on ϕ−1(A(l1, . . . , ln−1)). Hence, for any permutation j1, . . . , jn of 1, . . . , n

n−1∑
α=1

∂(l1 ◦ ϕ)

∂ηjα
dηjα =−∂(l1 ◦ ϕ)

∂ηjn
dηjn ,

. . .
n−1∑
α=1

∂(ln−1 ◦ ϕ)

∂ηjα
dηjα =−∂(ln−1 ◦ ϕ)

∂ηjn
dηjn ,

and, as a result,

(4)

 dηj1
. . .

dηjn−1

=−


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjn−1

. . .
∂(ln−1◦ϕ)
∂ηj1

. . . ∂(ln−1◦ϕ)
∂ηjn−1


−1 

∂(l1◦ϕ)
∂ηjn

dηjn
. . .

∂(ln−1◦ϕ)
∂ηjn

dηjn


on ϕ−1A(l1, . . . , ln−1).

According to Wirtinger’s formula

dVD ∩A =

√
−1

2
(dζ1 ∧ dζ̄1 + · · ·+ dζn ∧ dζ̄n)|D ∩A,

and, as a result,

ϕ∗(dVD ∩A) =

√
−1

2
(dη1 ∧ dη̄1 + · · ·+ dηn ∧ dη̄n)|ϕ−1(D∩A),

where ϕ∗(dVD ∩A) denotes the pullback of the volume form dVD ∩A.

We apply (4) and obtain the following estimate:

(5) ϕ∗(dVD ∩A) 6 C

∣∣∣∣∣∣∣∣det


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjn−1

. . .
∂(ln−1◦ϕ)
∂ηj1

. . . ∂(ln−1◦ϕ)
∂ηjn−1


∣∣∣∣∣∣∣∣
−2

d<ηjn ∧ d=ηjn ,

provided the determinant is non-zero.
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In order to prove Theorem 5 we need to deal with the expression |∂l1 ∧
· · · ∧ ∂ln−1|N . If ζ ∈ Pε(q), then τ(ζ, u, ε)∼ τ(q, u, ε) for any unit vector

u with uniform constants [30, Proposition 2.3]. Moreover, if ζ ∈ Pc|r(q)|(q)
with c small enough, then r(ζ)∼ r(q). Furthermore, if u=

∑n
j=1 αjuj , where

u1, . . . , un is the ε-extremal basis at q, then

(6)
1

τ(q, u, ε)
∼

n∑
j=1

|αj |
τj(q, ε)

.

This is in [30, Proposition 2.2] (cf. also [31]). From these facts it is easy to

deduce that there is a uniform constant C such that if ζ ∈ Pc|r(q)|(q), then

|∂l1 ∧ · · · ∧ ∂ln−1|2N (ζ)

6 C

n∑
j1,...,jn−1=1

jα 6=jβ,α6=β

∣∣∣∣∣∣∣∣det


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjn−1

. . .
∂(lm◦ϕ)
∂ηj1

. . . ∂(ln−1◦ϕ)
∂ηjn−1


∣∣∣∣∣∣∣∣
2

n−1∏
i=1

τ2ji(q, |r(q)|).(7)

The map ϕ is associated, as in (3), with the c|r(q)|-extremal basis at the

point q ∈D.

We briefly indicate how to prove inequality (7). Let (u1, . . . , un) be the

c|r(q)|-extremal basis. For any vectors v1, . . . , vn−1 we may write

vi =

n∑
j=1

aijuj

for some aij ∈ C, and, as a result,

(∂l1 ∧ · · · ∧ ∂ln−1)(v1, . . . , vn−1)

=

n∑
j1=1

· · ·
n∑

jn−1=1

a1j1 . . . an−1jn−1(∂l1 ∧ · · · ∧ ∂ln−1)(uj1 , . . . , ujn−1)

=

n∑
j1,...,jn−1=1

jα 6=jβ,α6=β

a1j1 . . . an−1jn−1 det


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjn−1

. . .
∂(ln−1◦ϕ)
∂ηj1

. . . ∂(ln−1◦ϕ)
∂ηjn−1

 .

It follows from (6) that

(8) τ(q, vi, |r(q)|) 6 C
τ(q, uj , |r(q)|)

|aij |
,
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if aij 6= 0, and we only have to take this case into account. Therefore, for

any vectors v1, . . . , vn−1

|(∂l1 ∧ · · · ∧ ∂ln−1)(v1, . . . vn−1)|2
n−1∏
i=1

τ2(q, vi, |r(q)|)

6 C

n∑
j1,...,jn−1=1

jα 6=jβ,α6=β

∣∣∣∣∣∣∣∣det


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjn−1

. . .
∂(lm◦ϕ)
∂ηj1

. . . ∂(ln−1◦ϕ)
∂ηjn−1


∣∣∣∣∣∣∣∣
2

n−1∏
i=1

τ2ji(q, |r(q)|),

since according to (8) coefficients aij cancel out. The right-hand side does

not depend on v1, . . . , vn−1. This implies (7), since if ζ ∈ Pε(q), then

τ(ζ, v, ε)∼ τ(q, v, ε), and if ζ ∈ Pc|r(q)|(q), then r(ζ)∼ r(q). Obviously, since

l1, . . . , ln−1 are affine linear

(∂l1 ∧ · · · ∧ ∂ln−1)(ζ)(v1, . . . , vn−1) = (∂l1 ∧ · · · ∧ ∂ln−1)(q)(v1, . . . , vn−1).

Finally, we can check condition (2). We have

ω(A(l1, . . . , ln−1) ∩ Pc|r(q)|(q))

=

∫
A(l1,...,ln−1)∩Pc|r(q)|(q)

|∂l1 ∧ · · · ∧ ∂ln−1|2N (ζ) dVD ∩A(l1,...,ln−1)(ζ)

=

∫
ϕ−1A(l1,...,ln−1)∩{|ηj |6τj(q,c|r(q)|)}

|∂l1 ∧ · · · ∧ ∂ln−1|2N

× (ϕ(η))ϕ∗ dVD ∩A(l1,...,ln−1).

It remains to estimate the last integral. We use (7) first and then apply for

each set of indices j1, . . . , jn−1, if the corresponding determinant is non-

zero, estimate (5). In this way we obtain

|∂l1 ∧ · · · ∧ ∂ln−1|2N (ϕ(η))ϕ∗ dVD ∩A(l1,...,ln−1)

6 C
∑

j1,...,jn

n−1∏
l=1

τ2jl(q, |r(q)|)d<ηjn ∧ d=ηjn ,

when ζ = ϕ(η) belongs to Pc|r(q)|(q). Therefore,
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A(l1,...,ln−1)∩Pc|r(q)|(q)

dω(ζ)

6 C
∑

j1,...,jn

n−1∏
l=1

τ2jl(q, |r(q)|)
∫
|ηαn |6τjn (q,c|r(q)|)

d<ηjn ∧ d=ηjn

6 C

n∏
j=1

τ2j (q, c|r(q)|) = CV (Pc|r(q)|(q)).

This completes the proof of estimate (2). In view of Theorem 4 we

immediately have

RD ∩A(l1,...,ln−1)

[
Hp(D)

]
⊂Hp(D ∩A(l1, . . . , ln−1), |∂l1 ∧ · · · ∧ ∂ln−1|2N dVD ∩A(l1,...,ln−1)).

3.2 Sufficient conditions: the extension operator

We intend to complete the proofs of Theorems 1 and 2. In order to

accomplish this task we need the extension operator ED ∩A. We use the

operator constructed by Berndtsson in [5]. The construction is based on

methods worked out in [4] (we refer the reader also to [1] for detailed

information concerning integral formulas). We write down the corresponding

formulas for z ∈D sufficiently close to the boundary bD – the corresponding

estimates for z in some relatively compact subset of D become trivial.

Let A=A(l1, . . . , lm), 1 6m6 n− 1 be such that D ∩A 6= 0 and dimA=

n−m. As in [16] we obtain

END ∩Af(z)

= C

∫
D ∩A

(
dV # c

(
f(ζ)

rN+n−m(ζ)

(r(ζ) + S(z, ζ))N+n−m

×
(
∂
( 1

r(ζ)
Q(z, ζ)

)n−m)
∧ Ω[l1, . . . , lm]

))
dVD ∩A,(9)

where

Ω[l1, . . . , lm] =

∑n
j=1 a1jdζj ∧ · · · ∧

∑n
j=1 amjdζj ∧ ∂l1 ∧ · · · ∧ ∂ln−1

‖∂l1 ∧ · · · ∧ ∂lm‖
.

The symbol S stands for the support function constructed for convex

finite type domains by Diederich and Fornaess in [14]. The coefficients Qj
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of the form

Q(z, ζ) =

n∑
j=1

Qj(z, ζ)dζj

satisfy the formula

S(z, ζ) =
n∑
j=1

Qj(z, ζ)(zj − ζj).

The form Q was constructed in [13]. We use estimates of the form Q proved

in [18].

The symbol c stands for the contraction between (n, n)-vectors and (n, n)-

covectors. Thus, the operator END ∩A is an integral operator of the form

END ∩Af(z) =

∫
D ∩A

f(ζ)END ∩A(ζ, z) dVD ∩A(ζ).

What is important in (9) is the functorial property of the contraction.

The proof of Theorem 1 follows from the following lemma, which we

proved in [25].

Lemma 2. For sufficiently large N there exists a constant C such that∫
D
|END ∩A(ζ, z)| dV (z) 6 C|∂l1 ∧ · · · ∧ ∂ln−1|2N (ζ).

Proof of Theorem 1. In view of Theorem 5 it suffices to show that

END ∩A :H1(D ∩A, |∂l1 ∧ · · · ∧ ∂ln−1|2N dVD ∩A)→H1(D).

This follows from Fubini’s Theorem from Lemma 2.

Proof of Theorem 2. It is easy to prove the following modification of

Schur’s test (we wrote the details in [24]).

Proposition 1. Let µ, ν be positive Borel measures on X, and let W be

a positive weight function. If there exist non-negative functions h1, h2 such

that ∫
X
K(x, y)h1(y)qW−q/p(y) dµ(y) 6 C1h2(x)q,∫

X
K(x, y)h2(x)p dν(x) 6 C2h1(y)p,
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then the operator

Tf(x) =

∫
X
f(y)K(x, y) dµ(y)

is a bounded operator between Lp(X,Wdµ) and Lp(X, dν).

We use Proposition 1 for the operator END ∩A. For this we choose dν =

dV , dµ= dVD ∩A, h2 ≡ 1 and h1(ζ) = |∂l1 ∧ · · · ∧ ∂ln−1|2/pN (ζ) and W (ζ) =

|∂l1 ∧ · · · ∧ ∂ln−1|(2−ε)N with small ε > 0. It follows from Proposition 1, in

view of Theorem 5, that the proof of Theorem 2 will be completed once we

show the following estimate for the kernel of the operator END ∩A.

Lemma 3. For any ε > 0 there exists a constant C = Cε such that∫
D ∩A

|END ∩A(ζ, z)||∂l1 ∧ · · · ∧ ∂ln−1|εN (ζ) dVD ∩A(ζ) 6 C.

Proof. First of all observe that since l1, . . . , ln−1 are affine linear we have

Ω[l1, . . . , ln−1] =
∂l1 ∧ · · · ∧ ∂ln−1 ∧ ∂l1 ∧ · · · ∧ ∂ln−1

‖∂l1 ∧ · · · ∧ ∂ln−1‖
.

This will be important when we change coordinates.

Since

τ(ζ, v, ε) . ε1/M ,

uniformly for unit vectors v, where M stands for the type of the domain,

we have

(10) |∂l1 ∧ · · · ∧ ∂ln−1|N (ζ) 6 C(−r(ζ))(n−1)/M .

Only this property of the norm is used in the proof (note, however, that the

non-isotropic nature of the estimates was crucial in the proof of Theorem 1).

Fix z ∈D. We may assume that z is close to the boundary. It is a

consequence of (10) that it is sufficient to estimate the following integral:∫
D ∩A ∩ Pε0 (z)

|END ∩A(ζ, z)|(−r(ζ))ε((n−1)/M) dVD ∩A(ζ),

where ε0 is an appropriately chosen constant. The estimates uniformly far

from z follow easily from properties of the support function S. We consider

a cover P|r(z)|(z), P
i
|r(z)|(z), where P i|r(z)|(z) are polyannuli

P i|r(z)|(z) := CP2i|r(z)|(z) \ 1
2P2i|r(z)|(z).
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The constant C is chosen to guarantee that CPε/2(ζ)⊃ 1
2Pε(ζ). We refer

the reader to [13] for details. We will show that

(11)∫
D ∩A ∩ P i|r(z)|(z)

|END ∩A(ζ, z)|(−r(ζ))ε((n−1)/M) dVD ∩A 6 C(2i|r(z)|)α

for some constants C > 0 and α > 0. From this we immediately have∫
D ∩A ∩ Pε0 (z)

|END ∩A(ζ, z)|(−r(ζ))ε((n−1)/M) dVD ∩A(ζ)

6 C

Cdlog2 (ε0/|r(z)|)e∑
i=0

(2i|r(z)|)α 6 C.

We will estimate a typical term of END ∩A.

In order to show (11) we use the following.

Lemma 4. There exist an open cover U ⊃ bD and a constant c > 0 such

that if z, ζ ∈ U and ζ ∈ Pc(z) \ P2i|r(z)|(z) with 2i|r(z)|< c, then

(12) |r(ζ) + S(z, ζ)|& 2i|r(z)|.

Lemma 4 can be proved in the same way as [13, Lemma 4.2] or [17,

Lemma 3.3]. Therefore we omit the proof.

It can also be easily shown that for any z, ζ ∈D

(13) |r(ζ) + S(z, ζ)|& |r(ζ)|.

With (12) and (13) we obtain the following estimate of the integral:∫
D ∩A ∩ P i|r(z)|(z)

|END ∩A(ζ, z)|(−r(ζ))ε((n−1)/M) dVD ∩A(ζ)

6 C

∫
D ∩A ∩ P i|r(z)|(z)

(2i|r(z)|)−1

·
∣∣∣(dV )# c

(( n∑
j=1

∂Qj(z, ζ) ∧ dζj
)
∧ Ω[l1, . . . , ln−1]

)∣∣∣ dVD ∩A(ζ).

We choose a 2i|r(z)|-extremal basis at z and change coordinates. We use

the notation from the proof of Theorem 5.
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D ∩A ∩ P i|r(z)|(z)

|END ∩A(ζ, z)|(−r(ζ))ε((n−1)/M) dVD ∩A(ζ)

6 C

∫
ϕ−1(D∩A)∩{|ηj |6τj(z,2i|r(z)|)}

(2i|r(z)|)−1

·
∣∣∣(ϕ∗ dV )# c

(
ϕ∗
( n∑
j=1

∂Qj(z, ζ) ∧ dζj

)
∧ ϕ∗Ω[l1, . . . , ln−1]

)∣∣∣
· (−r(ϕ(η)))ε((n−1)/M)ϕ∗ dVD ∩A(η).

If ζ ∈ P2i|r(z)|(z), then |r(ζ)|. 2i|r(z)|. Therefore, it follows from [18,

Lemma 3.3] and estimates of the form

ϕ∗Ω[l1, . . . , ln−1]

that∫
D ∩A ∩ P i|r(z)|(z)

|END ∩A(ζ, z)|(−r(ζ))ε((n−1)/M) dVD ∩A(ζ)

6 C(2i|r(z)|)ε((n−1)/M)

·
∑

16j1<···<jn−16n

1

τ2jn(z, 2i|r(z)|)

∣∣∣∣∣∣∣∣det


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjn−1

. . .
∂(ln−1◦ϕ)
∂ηj1

. . . ∂(ln−1◦ϕ)
∂ηjn−1


∣∣∣∣∣∣∣∣
2

·
∫
|ηjn |6τjn (z,2i|r(z)|)

ϕ∗ dVD ∩A(η),

where {j1, . . . , jn}= {1, . . . , n}.
Moreover, we showed in (4) that

ϕ∗(dVD ∩A) 6 C

∣∣∣∣∣∣∣∣det


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjn−1

. . .
∂(ln−1◦ϕ)
∂ηj1

. . . ∂(ln−1◦ϕ)
∂ηjn−1


∣∣∣∣∣∣∣∣
−2

d<ηjn ∧ d=ηjn ,

provided that the determinant is non-zero. This argument completes the

proof.

This also proves Theorem 2.
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Proof of Theorem 3. We now consider an affine linear subvariety

A(l1, . . . , lm) of codimension m. The proof is similar to the proofs of

Theorems 1 and 2. Therefore we only sketch it. We use the same notation.

The main point is that under the assumption of the theorem

(14) ϕ∗(dVD ∩A) 6 Cd<ηjm+1 ∧ d=ηjm+1 ∧ · · · ∧ d<ηjn ∧ d=ηjn ,

with a uniform constant whenever

(15) det


∂(l1◦ϕ)
∂ηj1

. . . ∂(l1◦ϕ)
∂ηjm

. . .
∂(lm◦ϕ)
∂ηj1

. . . ∂(lm◦ϕ)
∂ηjm

 6= 0

and {j1, . . . , jn}= {1, . . . , n}. This follows from the fact that

(16) ϕ∗ dVD ∩A =
( √

−1

2(n−m)!

)n−m( n∑
j=1

dηj ∧ dη̄j
)n−m

,

which is a consequence of Wirtinger’s formula. Hence, we can again use

the fact that l1 ◦ ϕ(η) = · · ·= lm ◦ ϕ(η) = 0 for η ∈ ϕ−1(D ∩A) to get rid

of dηj1 , . . . , dηjm and their conjugates in (16). Naturally, this is possible if

condition (15) holds true. With (14) one immediately obtains that

ω(A(l1, . . . , lm) ∩ Pc|r(q)|(q)) 6 CV (Pc|r(q)|(q)).

The same estimates for the measure ϕ∗ dVD ∩A show, as in the proof of

Lemma 3, that∫
D ∩A

|ED ∩A(ζ, z)||∂l1 ∧ · · · ∧ ∂lm|εN (ζ) dVD ∩A(ζ) 6 C.

Lemma 2 and Proposition 1 complete the proof.
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