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Background
Healthcare decision makers require accurate long-term eco-
nomic models to evaluate the cost-effectiveness of new mental
health interventions.

Aims
To assess the suitability of current patient-level economic mod-
els to estimate long-term economic outcomes in severe mental
illness.

Method
We undertook pre-specified systematic searches in MEDLINE,
Embase and PsycINFO to identify reviews and stand-alone pub-
lications of economic models of interventions for schizophrenia,
bipolar disorder and major depressive disorder (PROSPERO:
CRD42020158243). We screened paper titles and abstracts to
identify unique patient-level economic models. We conducted a
structured extraction of identified models, recording the pres-
ence of key predefined model features. Model quality and val-
idation were appraised using the 2014 ISPOR and 2016 AdViSHE
model checklists.

Results
We identified 15 unique patient-level models for psychosis and
major depressive disorder from 1481 non-duplicate records.
Models addressed schizophrenia (n = 6), bipolar disorder (n = 2)
and major depressive disorder (n = 7). The predominant model
type was discrete event simulation (n = 9). Model complexity and

incorporation of patient heterogeneity varied considerably, and
only fivemodels extrapolated costs and outcomes over a lifetime
horizon. Key model parameters were often based on low-quality
evidence, and checklist quality assessment revealed weak
model verification procedures.

Conclusions
Existing patient-level economic models of interventions for
severe mental illness have considerable limitations. New mod-
elling efforts must be supplemented by the generation of good-
quality, contemporary evidence suitable for model building.
Combined effort across the research community is required to
build and validate economic extrapolation models suitable for
accurately assessing the long-term value of new interventions
from short-term clinical trial data.
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Severe mental illness typically causes significant functional impair-
ment and consequent poor physical health.1,2 Excess mortality
among people with severe mental illness is as much as 2–3 times
higher than in the general population, with multiple interacting
causes.3 These include much higher rates of preventable chronic
disease, such as diabetes and cardiovascular disease.3–5 Premature
death from non-communicable disease is up to 60% more likely
in people with severe mental illness.6 Life expectancy with severe
mental illness is 10–20 years shorter in high-income countries
and 30 years shorter in low-income countries.7–9 Recent discussions
have suggested that people with severe mental illness should be
prioritised for COVID-19 vaccination, given their increased risk of
severe infection and COVID-19-related morbidity and mortality.10

Schizophrenia, bipolar disorder and major depressive disorder
are all major contributors to the global burden of disease.11 These
three conditions are identified as severe mental illness in this
review. All three conditions are associated with the pattern of
excess mortality described above.12–14 Quality of life is also severely
diminished in individuals affected by each of these conditions15 and
each is associated with substantial functional impairment.16–19

From an economic perspective, each of these mental disorders
also carries substantial lifetime costs, borne by both individuals
and health systems.20 Although major depressive disorder is not
always classified as a severe mental illness,15 we include it in this
review to capture severe depression that leads to psychiatric hospital
admission.

Clinical trials of new interventions for these conditions are gener-
ally short term, and therefore do not measure the full scale of lifetime
patient outcomes. Long-term evidence is necessary to inform deci-
sions of which interventions should be implementedwithin healthcare
systems such as the National Health Service (NHS).21 Economic
models that estimate lifetime health and cost outcomes for individual
patients are vital to understanding the long-term value of new inter-
ventions for severe mental illness.22 We therefore examine patient-
level economic models for the three conditions described.

Challenges in economic modelling in mental health are well
described,23 in particular those due to the short time horizon of
clinical trials in mental health24 and the wide scope of potential
economic effects of mental disorders – including productivity
losses and greater lifetime use of healthcare resources for the indi-
vidual directly affected, as well as spill-over effects on economic out-
comes for a patient’s family and their wider community.22 In severe
mental illness, a recent systematic review of economic models
assessing antipsychotic medication for schizophrenia found 90%
of models to have ‘very serious’ quality limitations based on
National Institute for Health and Care Excellence (NICE) checklist
appraisal.25,26 There is concern that poor-quality economic evi-
dence may be similarly widespread in bipolar disorder and major
depressive disorder.27,28 Poor-quality economic modelling may
lead to inefficient allocation of healthcare resources, misestimating
the health and cost effects of alternative interventions.29 With
increasing financial commitment and focus on improving outcomes
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in mental health,30 clinical commissioners urgently need accurate
evidence on cost-effective care in severe mental illness.

Informing national treatment guidelines

In the UK, NICE has separate guidelines for psychosis, encompassing
schizophrenia and bipolar disorder,31 and for major depressive dis-
order.32 In psychosis, guidelines recommend the use of psychological
therapies, such as cognitive–behavioural therapy (CBT) and family
intervention, alongside pharmacological treatment.31 Further treat-
ments are under development, such as the use of virtual reality therapy
to help patients overcome anxious avoidance of everyday social situa-
tions.33 However, the long-term effectiveness and cost-effectiveness of
new and existing treatments remain poorly understood, especially in
the context of varying real-world adherence to treatment.34,35

Studies available to inform NICE guidelines for psychosis are
largely characterised by short follow-up periods (up to 6 months)
and small samples (an average of 79 participants per study).36

NICE explicitly identifies this as a key limitation in their psychosis
guidance – as data for several parameters, including relapse and
treatment discontinuation probabilities, require extrapolation to a
lifetime horizon to capture the long-term impact of treatment
on patient outcomes and costs.31 Psychosis is a severe and often
enduring mental health problem, with most patients experiencing
multiple episodes or persistent symptoms.31,37,38 However, in the
absence of robust long-term evidence, it is not possible to confirm
whether any extrapolation of short-term data either over- or under-
estimates the cost-effectiveness of different psychosis treatments.31

Short follow-up in clinical studies similarly affects NICE guide-
lines for major depressive disorder. The bespoke economic model
constructed to inform current guidelines for pharmacological inter-
ventions in depression had a time horizon of only 14 months,
limited by short study follow-up.32 The NICE guidance explicitly
noted the variable methodological quality of the economic evalu-
ation studies that were available to inform its policy-making.32 As
in psychosis, economic models of major depressive disorder must
have capacity to estimate the impact of new interventions over the
expected duration of the long-term disease course. Major depressive
disorder can be a chronic condition with a high risk of recurrence
over a patient’s lifetime.39 In a large prospective observational
study in The Netherlands, nearly 20% of patients had a single major
depressive episode lasting longer than 24 months.40 Economic
modelling over a short time horizon does not give a fair reflection
of a new intervention’s value to the health system during each
patient’s lifetime.

The present review

The aim of this systematic review is to summarise health economic
models of schizophrenia, bipolar disorder and major depressive dis-
order and their potential to extrapolate short-term studies inform-
ing the long-term value of interventions for severe mental illness.
We undertook this review to inform the extrapolation of the
gameChange trial,33 to provide recommendations for the broader
research community to help identify patient-level models suitable
for extrapolating short-term trials in severe mental illness, and to
help improve the quality of future patient-level models in this area.

We focus on models designed to simulate individual patients
(patient-level models) as they capture variation in presentation
that leads to highly individualised patient experiences and outcomes
in severe mental illness, which cannot readily be subgrouped.41,42

Patient-level models are distinct from cohort models in explicitly
calculating the expected costs and benefits for each individual
patient, rather than estimating average outcomes across a patient
group.43 Compared with cohort model approaches, patient-level

model structures are better able to represent complex interactions
between patient characteristics and an evolving disease history44

and to capture non-linear relationships between individual risk
factors and modelled outcomes.43 By more closely representing
variation in disease course driven by individual patient histories
and characteristics as seen in severe mental illness, patient-level
models can generate more accurate estimates of health and cost out-
comes in the overall population.45

Method

The protocol for the literature review was registered in the
PROSPERO international prospective register of systematic reviews
(registration number CRD42020158243). Using OVID, we searched
MEDLINE, Embase and PsycINFO for health economic models of
psychosis, schizophrenia, bipolar disorder andmajor depressive dis-
order published between 1986 and 26 August 2020 (the date of
extraction). Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA 2009) guidelines46 were followed and
the checklist is reported in supplementary Appendix 1, available
at https://doi.org/10.1192/bjp.2021.121. Search terms are reported
in supplementary Appendix 2.

We used a two-stage approach to identify patient-level models in
the review. First, we identified previous reviews of economic models
for psychosis, schizophrenia, bipolar disorder and major depressive
disorder. To achieve this, two reviewers screened titles and abstracts
of identified records for reviews of economic models (both patient-
level and non-patient-level models). Full-text records were requested
for the reviews identified. Two reviewers extracted details of patient-
level models reported in each review, alongside the databases searched
and time periods covered by each review. Second, we updated the
identified reviews by searching for all economic models published
since the last date covered by the reviews.

The inclusion criteria used to identify relevant studies were as
follows:

(a) studies with decision models of disease progression (models
estimating risk factor progression) that reported health eco-
nomic outcomes such as costs, (quality-adjusted) life expect-
ancy and disease-related complications (such as psychotic or
depressive episodes and treatment side-effects);

(b) studies with a model-based economic evaluation of interven-
tion(s) in severe mental illness, such as cost–consequence,
cost–utility and cost-effectiveness studies.

Searches were restricted to English language studies owing to chal-
lenges in locating and assessing non-English studies, given limited
resources available to the research team, but no geographical restric-
tions were applied. Reference lists of identified economic models
were also searched to identify any additional patient-level models
missed by systematic searching. Abstracts and conference presenta-
tions reporting decision models were not included, as these did not
provide sufficient information to allow critical appraisal of the
models. For economic models identified across all conditions,
patient-level economic models were extracted by reviewing titles
and abstracts using keywords such as: ‘microsimulation’, ‘first-
order Monte Carlo simulation’, ‘(Markov) patient-level’, ‘individ-
ual-level’ and ‘discrete-event simulation’.45 References were
managed using ENDNOTE X9.

There are several types of patient-level model.45 A patient-level
decision tree estimates each patient’s expected health outcomes and
costs without accounting for the timing of each modelled event
(such as an in-patient stay or medication switch), other than the
sequence in which each event occurs. However, most patient-level
models do account for the timing as well as the sequence of
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modelled events. Patient-level Markov models simulate individual
patients flowing between several health states, with transitions
between states at fixed time cycles (such as each day, month or
year). In discrete-event simulation models, the timing of each
event is predicted precisely for each patient, so the timing of
changes in each patient’s health status is completely flexible,
rather than occurring at fixed intervals. We include all types of
patient-level model in our review.

A detailed extraction form was completed for each unique
model to assess the suitability of current patient-level economic
models to estimate long-term economic outcomes in severe
mental illness, which is reported in supplementary Appendix
3. Clinical and health economic experts within the authorship
group tailored the questions in the structured extraction to
capture the key economic drivers within the disease course. If a deci-
sion model was found to be associated with multiple publications,
data were extracted from the study that described the model in
greatest detail, supported by other publications and relevant
online documentation. Two reviewers each extracted all identified
studies, with disagreements resolved by consensus.

The main outcomes analysed were:

(a) the objective of the model
(b) the model structure (modelling method, modelled states and

links between states)
(c) the model’s inputs and corresponding assumptions for costs

and quality/length of life
(d) whether internal or external model validation/calibration was

undertaken and documented.

A standardised checklist ranking a hierarchy of evidence quality was
completed for eachmodel, in which the data source used to inform a
certain aspect of the model is awarded a score of 1 (highest quality)
to 6 (lowest quality).47 This provided a structured assessment of the
quality of input data for key model parameters. Full ranking criteria
for the grading of evidence sources are presented in supplementary
Appendix 4.

Two reviewers completed quality checklists for each patient-
level model identified. To assess model quality they used the
International Society for Pharmacoeconomics and Outcomes
Research (ISPOR) checklist, as published in a 2014 Good Practice
Task Force Report by ISPOR, the Academy of Managed Care
Pharmacy and the National Pharmaceutical Council (ISPOR-
AMCP-NPC).48 This checklist aims to establish amodel’s credibility
and relevance for decision-making, indicating any ‘fatal flaws’ that
could render the model’s results inaccurate or incomplete. To
assess model validation processes and reporting they used the
2016 Assessment of the Validation Status of Health-Economic
Decision Models (AdViSHE) checklist.49 The AdViSHE checklist
supports structured reporting of model validation and aims to
increase model transparency.

Findings from the review were synthesised narratively. This sys-
tematic review was exempt from ethics approval and consent of par-
ticipants, as this study was based on previously published work.

Results

Literature search

In total, 2479 papers were identified from the three databases, of
which 1481 were non-duplicates (Fig. 1); 39 review papers were
identified, with the 3most recent reviews in each condition covering
patient-level models published up to December 2015.25,28,50

Inclusion criteria for these reviews closely match this study and
are detailed in full in supplementary Appendix 5. To update

previous systematic reviews, 572 papers published between 1
January 2016 and 26 August 2020 were identified from the 1481
non-duplicate papers. An additional 5 patient-level economic
models not covered by previous systematic reviews were identified
from the 572 papers. Hence, we identified 15 unique patient-level
economic models from a total of 28 studies.51–65 Full detail of
records assessed is provided in supplementary Appendix 6.

Description of health economic models

An overview of the 15 models is provided in Table 1. Seven patient-
level models (47%) targeted major depressive disorder,59–65 six
(40%) targeted schizophrenia51–56 and two models (13%) targeted
bipolar I or bipolar II disorder.57,58 Five models (33%) examined
a UK setting,52,56,58,62,63 four models (27%) were set in North
America,52,53,55,65 three models (20%) had a European
setting54,57,59 and the remaining three models were set in Asia/
Oceania.60,61,64

The majority of models (n = 11, 73%) evaluated pharmaco-
logical interventions,51–54,56–61,63 five models (33%) evaluated
non-pharmacological individual interventions55,56,60,64,65 and one
model (7%) examined the effect of system-level reorganisation.62

Models were generally structured as discrete-event simulations
(n = 9, 60%)52,54,56–58,60–63 or individual-level Markov models
(n = 5, 33%),51,53,55,59,65 although there was also an individual-
level decision tree (n = 1, 7%).64 The majority of models (n = 12,
80%) took a health system or payer perspective51–58,61,62,64,65 and
three models (20%) considered a societal perspective.59,60,63

Five models (33%) considered a lifetime perspective for their
analysis,55,56,61,62,65 with themost common time horizon considered
being 5 years (n = 7, 47%).52,54,58–60,63,64 Two models (13%) consid-
ered a 1-year time horizon51,53 and one model (7%) used a time
horizon of only 100 days.57

Twelve models (80%) informed cost–utility analysis (CUA) and
estimated health outcomes in terms of quality-adjusted (QALY) or
disability-adjusted life-years (DALY).53–56,58–65 The remaining
three models (20%) estimated health outcomes such as
relapse,51,52,57 side-effects,51,57 treatment discontinuation51,57 and
time in a psychotic state.52,57 These three models estimated the
total disease costs and presented disaggregated results in the form
of cost–consequence analyses.51,52,57

Structural complexity

Table 2 summarises the features of the individual models. Simplified
model structures for each study are presented in supplementary
Appendix 7. All studies modelled an episodic/relapse state and a
separate health state representing time not in episode. All models
allowed participants to experience multiple relapses, except for
the single model (7%) structured as a decision tree, which allowed
only one relapse.64

Twomodels (13%) explicitly modelled incident disease in other-
wise healthy populations,56,62 whereas the remaining models con-
sidered populations with established psychosis or major
depressive disorder. All but one model (7%)62 incorporated an
excess mortality risk to reflect the increased risk of death by
suicide in populations with psychosis or major depressive disorder,
compared with the general population. Eleven models (73%) incor-
porated parameter uncertainty in their modelled results, conducting
a probabilistic sensitivity analysis informed by non-arbitrary par-
ameter distributions.52,54–56,58–62,64,65

In six models (40%) relapse severity was modelled expli-
citly.52,53,58,59,64,65 Of these, three models (20%) categorised two
types of severity: a more severe relapse requiring hospital admission
and a less severe relapse with the patient remaining in the commu-
nity.53,64,65 The remaining three models allowed a more continuous
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distribution of episode severity based on patient characteristics52,59

or simply modelled relapse severity based on random chance.58 The
latter three models varied time to remission from relapse, so specific
patients could experience a shorter or longer relapse than the cohort
average. One study52 modelled time-updated disease severity scores
for individual patients, which jointly determined the frequency,
length and symptom severity of each episode.

Nine models (60%) distinguished between those experiencing
temporary relief of symptoms (remission between episodes) and
those experiencing longer-term relief of symptoms (recovery),
with these states being characterised by different costs and/or
health outcomes.52,54,56,59,61–65 In six models (40%), recovery was
simulated by transition to a discrete ‘recovery state’.56,59,62–65

However, two models (13%) used a gradient of recovery (via a con-
tinuous variable or categorical variable with several levels) based on
the time since last relapse and category of disease severity as deter-
mined by baseline patient characteristics.52,54

Thirteen models (87%) explicitly simulated changes in treatment
status by incorporating treatment switches and/or periods of non-
adherence.51–58,60,62–65 Seven models (47%) considered both treatment
switching and treatment discontinuation,51–54,56–58 for example low
treatment adherence driving treatment switching, whereas six
models (40%) incorporated only treatment switching.55,61–65

Nine models (60%) predicted the impact of one or more side-
effects resulting from antipsychotic treatments on patient health

outcomes and costs.51–58,63,64 However, the type of side-effects
incorporated varied considerably between models. Eight models
(53%) incorporated the impact of extrapyramidal symptoms51–58

and seven models (47%) incorporated weight gain.51–54,56–58

Prolactin-related disorders,51,52,55 neutropenia52,55,56 and drowsi-
ness52,54,63 were each considered in three models (20%), and
tardive dyskinesia52,54 and sexual dysfunction54,63 were each consid-
ered in two models (13%). Four models (27%) considered a dispar-
ate range of other side-effects,53,54,63,64 including insomnia,
diarrhoea and post-injection syndrome.

Three models (20%) extended their modelling of medication-
related side-effects,53,55,56 explicitly simulating a pathway from
short-term transient side-effects into long-term comorbidities: dia-
betes53,55,56 and cardiovascular disease.53,55 The risk of developing
long-term comorbidities was conditional on side-effects such as
weight gain, via mediating pathways such as hyperlipidaemia and
impaired glucose tolerance. In contrast, one model accounted for
the long-term impact of comorbidities implicitly,60 with its
authors applying a utility adjustment to the whole patient cohort,
taking into account the incidence rate of medication-related
comorbidities and their average health effect across all patients.

The medication-related side-effects incorporated by each
model, and further detail of the precise modelling approach for
long-term comorbidities, are presented in supplementary
Appendix 8.
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Fig. 1 Literature search – PRISMA diagram.
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Table 1 Description of the 15 included studies

First author and year Country Patient population
Model
type Cycle length

Time
horizon Perspective Interventions considered Study design Authorship

Schizophrenia
Vera-Llonch, 200451 USA Schizophrenia or

schizoaffective
disorders

PLMM 1 month 1 year Health system/payer Olanzapine, risperidone CCAa Consultancy/pharma

Heeg, 200552 UK Schizophrenia (second/
third episode)

DES Event driven 5 years Health system/payer Hypothetical changes in medication
adherence

CCAb Consultancy/pharma

Furiak, 200953 USA Schizophrenia PLMM 3 months 1 year Health System/Payer Olanzapine, risperidone, quetiapine,
ziprasidone, aripiprazole

CUA (QALY) Consultancy/pharma

Dilla, 201454 Spain Schizophrenia DES Event driven 5 years Health system/payer Olanzapine, risperidone CUA (QALY) Consultancy/pharma
Health Quality Ontario, 201855 Canada First-episode psychosis PLMM 1 week Lifetime Health system/payer CBT, mixed antidepressant therapy CUA (QALY) Government
Jin, 202056 UK Clinically high risk and first-

episode psychosis
DES Event driven Lifetime Health system/payer CBT, family intervention, mutually

exclusive antidepressant therapies
CUA (QALY) Academia

Bipolar disorder
Klok, 200757 Netherlands Bipolar I (hospital

admissions)
DES Event driven 100 days Health system/payer Olanzapine, risperidone, quetiapine,

valproate, lithium, placebo
CCAc Consultancy/academia

Ekman, 201258 UK Bipolar I and II (acute
treatment)

DES Event driven 5 years Health system/payer Olanzapine, quetiapine CUA (QALY) Consultancy/pharma

Major depressive disorder
Sobocki, 200659 Sweden Mixed-severity depression

(in primary care)
PLMM 1 month 5 years Societal Hypothetical antidepressant therapy CUA (QALY) Consultancy/academia

Prukkanone, 201260 Thailand Major depressive disorder DES Event driven 5 years Societal CBT, fluoxetine, do nothing CUA (DALY) Academia
Saylan, 201361 Turkey Major depressive disorder DES Event driven Lifetime Health system/payer Aripiprazole, olanzapine, quetiapine CUA (QALY) Consultancy/pharma
Tosh, 201362 UK Treatment-resistant

depression
DES Event driven Lifetime Health system/payer Hypothetical changes to service

configuration
CUA (QALY) Academia

Vataire, 201463 UK Major depressive disorder DES Event driven 5 years Societal Hypothetical antidepressant therapy CUA (QALY) Consultancy/academia
Nguyen, 201564 Australia Treatment-resistant

depression
PLDT 2 months 5 years Health system/payer rTMS, mixed antidepressant therapy CUA (QALY) Academia

Health Quality Ontario, 201765 Canada Major depressive and
generalised anxiety
disorders

PLMM 1 week Lifetime Health system/payer CBT (individual or group), mixed
antidepressant therapy

CUA (QALY) Government

CBT, cognitive–behavioural therapy; CCA, cost–consequence analysis; CEA, Cost-effectiveness analysis; CUA, cost–utility analysis; DES, discrete-event simulation; PLDT, patient-level decision tree; PLMM, patient-level Markov model; QALY, quality-adjusted life-years; rTMS,
repetitive transcranial magnetic stimulation.
a. Incidence of relapse of symptoms and side-effects, therapy discontinuation, expected costs of antipsychotic therapy, psychiatric and non-psychiatric services.
b. Cost per relapse avoided, total time in psychosis, total costs of psychosis.
c. Time to response/remission, side-effects, non-adherence, length of stay, total costs.
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Table 2 Complexity of the 15 models

First author and
year

Structural complexity Modelled heterogeneity

Pre-
disease
states

Treatment
adherence
/switching

Side-effects of
treatment

Long-term
comorbidities explicitly

modelled
Recovery
allowed

Excess
mortality risk

PSA informed by
parameter
distributions

Heterogeneous relapse risks
informed by individual

characteristics

Relapse history
informs future
relapse risk

Several relapse
severities modelled

Schizophrenia
Vera-Llonch,

200451
✓ ✓ ✓

Heeg, 200552 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Furiak, 200953 ✓ ✓ ✓ ✓ ✓ ✓
Dilla, 201454 ✓ ✓ ✓ ✓ ✓ ✓

Health Quality
Ontario, 201855

✓ ✓ ✓ ✓ ✓ ✓

Jin, 202056 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bipolar disorder

Klok, 200757 ✓ ✓ ✓

Ekman, 201258 ✓ ✓ ✓ ✓ ✓
Major depressive disorder

Sobocki, 200659 ✓ ✓ ✓ ✓ ✓ ✓
Prukkanone,

201260
✓ ✓ ✓ ✓

Saylan, 201361 ✓ ✓ ✓

Tosh, 201362 ✓ ✓ ✓ ✓ ✓ ✓

Vataire, 201463 ✓ ✓ ✓ ✓ ✓ ✓
Nguyen, 201564 ✓ ✓ ✓ ✓ ✓ ✓

Health Quality
Ontario, 201765

✓ ✓ ✓ ✓ ✓ ✓ ✓
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Incorporation of individual heterogeneity and patient
history

Six patient-level models (40%) allowed the risk of a relapse to vary
conditional on patient characteristics52,56,59,62,63,65 – mainly disease
severity,52,56,59,62,63,65 age52,56,59,62,63 and gender.52,56,59,63 Full
details of all patient characteristics considered in each model are
provided in supplementary Appendix 8. The remaining nine
models (60%) assumed the risk of first relapse to be equal across
all individuals.51,53–55,57,58,60,61,64 In eight models (53%), including
five models that varied relapse risk on the basis of patient character-
istics, the risk of subsequent relapse was conditional on the number
of previous relapses modelled.52–55,59,62,63,65 The risk of subsequent
relapse varied in complexity. The simplest approach applied a single
hazard ratio adjustment if a patient had any previous relapse59 and
the most complex approach modelled future relapse risk as a
continuous function driven by the duration of and time between
previous relapses.52 In the remaining seven models (47%), the
relapse risk was independent of the number of previous relapses
modelled.51,56–58,60,61,64

Hierarchy of evidence informing the models

The hierarchy of evidence used in the models is summarised in Fig. 2,
ranging from high-quality evidence (ranked 1) to the lowest rank of
evidence (rank 6). Full ranking criteria for evidence sources across all
categories are presented in supplementary Appendix 4.

Quality of evidence informing the models was mixed, and few
models used high-quality evidence across all model elements.
Evidence was particularly poor for treatment effect extrapolation,
with seven models (47%) relying on expert opinion to inform
treatment effect extrapolation beyond observed data to model
efficacy over the whole simulated time.52–54,56,58,60,64 Often,
there was no report of external expert consultation, so the
opinion on the durability of the treatment effect over the time
horizon was tacitly assumed by the model authors.54,58,60,64

Two models (13%) did not attempt to extrapolate beyond their
observed evidence sources51,57 and two models (13%) evaluated
hypothetical treatments,62,63 meaning that this evidence category
was not applicable to these four studies. Side-effect data were also
often poorly evidenced, with studies often reporting several
sources of input data with poor reporting of how each evidence
source was used or how studies were combined to inform
model parameters.

Model quality and validity

Models generally performed reasonably against ISPOR 2014 check-
list criteria, which provide a broad overview of model quality and
relevance (Fig. 3). Model design and analysis were generally
adequate, with model credibility weakest in terms of data and
reporting. Although the ISPOR checklist provides a high-level per-
spective over many diverse model attributes, only one checklist item
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7%

20%

47%

7%7%

20%

13%

67%
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60%
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33%
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7%
13%
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20%
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80%

100%

Source of data for
primary treatment
effect measure(s)
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directly scrutinises the model structure. Individual checklist items
encompass multiple diverse topic areas. For example, short model
time horizons are only assessed within a broad checklist item asses-
sing the applicability of the model ‘context’. In terms of model cred-
ibility, the models performed poorly against ISPOR validation
criteria, as corroborated by poor performance on the AdVISHE val-
idation checklist (Fig. 3).

Of the 15 studies, 13 (87%) performed at least 1 of the 12 valid-
ation checks listed on the AdVISHE checklist.51–56,58,59,61–65

However, model validation was generally restricted to face validity
checks of model structure and the suitability of model inputs, and

checks of model structure and inputs against published literature.
Importantly, data and output validation was reported by only a
handful of models. Twomodels (13%) reported validation of regres-
sion model fit,59,64 one model (7%) reported testing with alternative
input data53 and three models (20%) reported validation checks
against empirical data.51,56,58 Validation of the model as implemen-
ted in software (i.e. the computerised model) was particularly infre-
quent. Model authors rarely sought external expert model appraisal
and rarely reported that basic model checks had been undertaken,
such as extreme value testing or patient tracking through the com-
puterised model. Jin et al (2020)56 was an exception – providing full
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details of their validation procedures in supplementary material,
documenting 10 of the 12 AdVISHE validation checks.

Full data for both quality checklists are presented in supplemen-
tary Appendix 9.

Discussion

Our review identified 15 unique patient-level economic models that
simulated the natural history of schizophrenia, bipolar disorder and
major depressive disorder. Our broad definition of severe mental
illness allowed us to capture additional models that included
severe depression leading to hospital admission. Antipsychotic
medications can be used to treat all the conditions considered,66,67

with common long-term comorbidities arising from specific medi-
cation-related side-effects. This is the first systematic review of eco-
nomic models comparing patient-level model structures across
schizophrenia, bipolar disorder and major depressive disorder,
thus examining common economic modelling considerations
across these patient groups.

We found considerable limitations in the quality and validity of
current models. Outdated input data, lack of structural complexity
and limited incorporation of patient heterogeneity are major con-
cerns limiting models’ applicability to contemporary populations
with severe mental illness. Only five models adopted the lifetime
time horizon required by health technology reimbursement agen-
cies.21 Current models therefore have limited potential to reliably
extrapolate the results of short-term studies and thus inadequately
inform decision makers’ assessment of the long-term value of exist-
ing and future interventions for severe mental illness.

Data quality

The data used to inform themodels were generally of poor quality or
were published more than 10 years ago. In psychosis, NICE treat-
ment guidelines in England were last published in 201431 and
more recent changes to the service pathway, including new
waiting-time targets, have also substantially altered baseline
care.68–70 Outdated model data are a significant concern, as projec-
tions derived from models are unlikely to be relevant to current
decision-making owing to shifts in best practice care over time. In
several models, related model parameters such as baseline relapse/
remission rates and treatment effectiveness were obtained from
different patient populations, with little or no adjustment to
account for varying patient characteristics between evidence
sources. Several models were informed by population data from
regions and countries outside the setting of the model’s decision
problem, raising concerns about data transferability. Furthermore,
despite the majority of models estimating QALYs or DALYs, the
data informing quality-of-life weights were generally of medium/
poor quality.

Decision models should be based on high-quality and contem-
porary evidence to ensure that estimates of the scale and severity of
disease burden and economic benefit of new interventions are suf-
ficiently reliable. If good economic evidence is not available to
support further investment in severe mental illness, healthcare deci-
sion makers will choose to prioritise the allocation of scarce health-
care resources in other disease areas where there is better evidence to
support potential economic benefit from any additional investment.
The poor quality and outdated data used in many of the identified
decision models suggests that new large high-quality studies in
severe mental illness are needed to construct economic models.
New evidence is needed in almost all model aspects – both clinical
and economic – with particular need to obtain contemporary
quality-of-life data in severe mental illness using modern methods.

Model complexity
Short-term side-effects and long-term comorbidities associated with
treatment

There was considerable variation in model complexity. Although
most models allowed for treatment switching, there was substantial
divergence in the simulation of treatment-related side-effects. Side-
effects are a primary driver of antipsychotic treatment switching.71

In clinical practice, a systematic approach to medication selection
may be complemented by an element of ‘trial and error’ of several
medications, in response to variation in the occurrence and accept-
ability of specific side-effects in different patients.72,73 Models there-
fore should incorporate all relevant side-effects resulting from
multiple possible treatment choices. This is particularly important
early in the disease course, when a patient’s individual presentation
is emerging and treatment switches are more frequent.74 Given evi-
dence of side-effects that are common to both first-generation ‘con-
ventional’ and second-generation ‘atypical’ antipsychotic drug
classes,75 it is therefore advisable for models to consider a wide
range of potential side-effects.

Most models failed to incorporate the link between short-term
side-effects and long-term medication-related comorbidities.
Diabetes and cardiovascular disease are common comorbidities in
populations with severe mental illness, and both have distinct
well-studied effects on length and quality of life, and related health-
care costs.76,77 Omitting comorbidities arising from medication
side-effects may bias a comparative assessment of the long-term
value of different treatments for severe mental illness. Bias is par-
ticularly likely when an intervention and comparator induce side-
effects of differing magnitude. By modelling distinct pathways for
patients who develop comorbidities, the health effects of medica-
tion-related comorbidities can be distinguished from health effects
and costs arising directly from a mental health condition. This
means that prevention and treatment strategies for comorbidities
can be easily scrutinised and updated with changes to current prac-
tice, without affecting the calculation of health and cost outcomes in
patients without medication-related comorbidities. However, only
two models55,56 identified in our review considered the impact of
these long-term comorbidities over a patient’s lifetime.

Patient heterogeneity

Few models incorporated all relevant aspects of patient heterogen-
eity and comprehensively estimated the impact of patient hetero-
geneity on health outcomes and costs. Only three models
estimated individualised severity and frequency of relapse, based
on each patient’s baseline characteristics and modelled relapse
history.52,59,65 Failure to model interactions between patient charac-
teristics and evolving disease history will produce inaccurate esti-
mates of population-level health outcomes and costs.44 For
example, in psychosis a significant proportion of health service
costs are driven by a subset of patients who have both a significant
history of relapse and high degree of dependency on statutory social
services.78 By incorporating all relevant aspects of patient hetero-
geneity, including patient heterogeneity in excess mortality risk,
models can more accurately estimate population-level outcomes.
Quantification of expected outcomes for individual patients is also
necessary to establish the overall value of stratified patient care.

Model validity

Beyond structural inadequacies, most models did not report rigor-
ous validation checks to establish confidence in their results.
Through the appraisal checklists, we found that authors were
most likely to report cross-comparability or face validity of their
model structure or results, based either on existing literature or
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on consultation with a clinical expert. However, few models docu-
mented more extensive validation efforts. Few models compared
model predictions against empirical data, tested the robustness of
model outputs using alternative input data or subjected the software
underlying the model to thorough checking procedures or an exter-
nal expert review. Only one model thoroughly documented most
validation procedures from the 2016 AdViSHE checklist.56

Nevertheless, decision makers need validated economic models
to provide a foundation for credible long-term policy-making and
treatment reimbursement decisions. Researchers also need evidence
that economic models are sufficiently valid to extrapolate data from
clinical trials. Validation efforts provide insight into model accuracy
and establish the credibility of evidence generated to inform health-
care investment decisions.79 Economic models generate predictions
regarding the stream of future costs and benefits from changes to
healthcare policy.Without internal and external validation, decision
makers have limited knowledge of whether an economic model pro-
duces sufficiently accurate predictions for their own setting. In this
regard, additional external validation of economic models is essen-
tial to enable decision makers to be confident in models’ ability to
discriminate between cost-effective and cost-ineffective health pol-
icies. Without validated models, healthcare decision makers may
judge the uncertainty involved with a new investment in severe
mental illness to be too great. The lack of high-quality and validated
models may result in patients being denied good-value care, as
depending on the model used, a range of long-term cost-effective-
ness estimates could be obtained indicating different policy
decisions.80

Limitations

This review has some limitations. First, we included only studies
published in English, and therefore models developed for non-
Anglophone decision contexts, where decision makers may have
different evaluation requirements are probably underrepresented.
Second, we did not include cohort-level models that could be
used to extrapolate short-term studies. However, given that
cohort models cannot fully capture the effect of patient heterogen-
eity in severe mental illness, these models were of limited interest.
Third, our assessment of model quality is non-context specific –
we did not address model suitability for each particular decision
problem being addressed, instead providing an overview of each
model’s performance against a general benchmark standard.
Finally, our assessment of model quality is contingent on the level
of detail provided in publications about the model – with publica-
tion detail potentially constrained by word-count limits.

Implications for future research and policy makers

The deficiencies of current models documented in this review across
multiple dimensions can be used to inform the design of future
models. In bipolar disorder and major depression, no structurally
complex lifetimemodels with well-documented validationwere iden-
tified. In schizophrenia, although Jin et al’s model56 was shown to be
of a higher quality and more structurally complex than its peers with
well-documented internal validity, additional research is needed to
demonstrate its external validity and accuracy to extrapolate clinical
trial data for informing healthcare decision-making.

Poor-quality economic models hinder policy makers’ ability to
allocate healthcare budgets appropriately. In turn, this reduces the
ability of clinicians to improve performance against NHS mental
health targets while simultaneously providing cost-effective care.
There is a clear need for further development of contemporary
and comprehensive patient-level decision models that capture the
full structural complexity of severe mental illness, in particular its
relation to long-term comorbidities. High-quality contemporary

evidence is needed on health-related quality of life and costs (col-
lected in line with current best practice), as well as on long-term
disease progression to inform the development of robust economic
models. Following extensive internal and external validation exer-
cises, new economic models could significantly reduce the time
needed to make health policy decisions by reliably extrapolating
short-term clinical trials to inform the cost-effectiveness of inter-
ventions for severe mental illness. Public research resources in
severe mental illness should be coordinated to prioritise these
objectives.
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