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The turbulence behaviour of current-dominated pulsating flows has been investigated.
Direct numerical simulations have been carried out for Stokes lengths over a range of
l+s = 5–26, and amplitudes spanning 90 % of the current-dominated regime, about a
mean flow of Re = 6275. The results show that the turbulence response in intermediate
and low-frequency pulsations is governed by a multistage turbulent–turbulent transition
process, which bears a strong similarity to the multistage response of non-periodic
acceleration. During the early acceleration period, the flow enters a pretransition stage,
in which a new laminar perturbation boundary layer forms at the wall, and the streamwise
velocity streaks are stretched. If the low-speed streaks destabilise prior to the deceleration
period, then the flow enters a transition stage in which the perturbation boundary layer
undergoes a bypass-like transition process. A unique feature of pulsating flows is the
ongoing mechanism of turbulence decay, which initiates during the deceleration period
and constitutes the main transient turbulence mechanism for much of the cycle. For
high-frequency pulsations, the perturbation boundary layer fails to reach the pretransition
stage prior to the deceleration period. Instead, the flow alternates between two inertial
stages which are characterised by two layers of amplified viscous force; one growing at the
wall, and one detached and moving towards the core.

Key words: turbulent transition, pipe flow boundary layer

1. Introduction

Unsteady flows arise throughout many engineering systems, as well as the natural
environment (e.g. nuclear power plants, hydraulic turbines, blood flow in large arteries and
sediment transport under sea waves). Unsteady flows can be categorised as non-periodic

† Email address for correspondence: m.seddighi@ljmu.ac.uk

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 982 A20-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:m.seddighi@ljmu.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.1025&domain=pdf
https://doi.org/10.1017/jfm.2023.1025


P.S. Taylor and M. Seddighi

and periodic flows. Non-periodic unsteady flows undergo a temporal acceleration or
deceleration from one bulk velocity to another. Periodic unsteady flows are subject to a
continuous velocity change represented by a sinusoidal temporal variation. Periodic flow
can be further subdivided into oscillating flow, for which the mean bulk velocity of the base
flow is zero, and pulsating flow, for which the bulk velocity of the base flow is non-zero. In
both cases, the flow oscillates with a frequency of ω, and an amplitude of either Ab or Auc,
which denote the amplitudes of the bulk velocity and centreline velocity, respectively. In
pulsating flow, Ab and Auc are scaled by the corresponding time-averaged mean velocity
values.

1.1. Turbulent–turbulent transient flows
A key feature governing accelerating flows is the delay in the response of the turbulence
flow field following an increase of the bulk flow rate. This delay was first observed in the
experimental study of Maruyama, Kuribayashi & Mizushina (1976), which identified that
the generation of new turbulence at the wall, and its propagation into the core of the flow,
was the dominant mechanism of the turbulence response. He & Jackson (2000) found that
the propagation of new turbulence into the core of the flow is preceded by two delays in the
turbulence response. Firstly, there is a delay in the production of new turbulence at the wall,
such that turbulence initially remains ‘frozen’ throughout the domain. Secondly, there is a
further delay between the production of new turbulent energy in the near-wall region, and
the transfer of that energy to the wall-normal and spanwise velocity components. The later
experiments by Greenblatt & Moss (2004) found that propagation of new turbulence into
the outer region eventually leads to the reignition of turbulence production away from the
wall, as a secondary mechanism of turbulence growth in this region.

A crucial breakthrough was made when He & Seddighi (2013) utilised high-resolution
direct numerical simulation to visualise and quantify the evolution of turbulence structures
during step-up acceleration in channel flow. They identified that the evolution of the
turbulence structures closely mimicked a bypass transition process, which occurs when
laminar–turbulent transition in a developing laminar boundary layer is triggered by
instabilities originating from turbulence in the free stream (Jacobs & Durbin 2001; Wu
& Moin 2009). They concluded that the generation of new turbulence following a step-up
acceleration originates from bypass transition in a newly formed laminar boundary layer
at the wall, and that the delay in the turbulent response is due to the time taken for the
boundary layer to destabilise. From these observations, He & Seddighi (2013) developed
the turbulent–turbulent transient concept for accelerating flows in which the flow moves
through three stages of evolution. The pretransition stage (i) is characterised by the growth
of a laminar perturbation flow, advection of a frozen turbulence field and elongation of the
existing streamwise velocity streaks at the wall. The transition stage (ii) is characterised by
the destabilisation of the low-speed velocity streaks, and an explosion of turbulence in the
perturbation boundary layer. The fully turbulent stage (iii) is characterised the propagation
of new turbulence into the core of the flow.

The multistage process of the turbulent–turbulent transient concept has since been
confirmed for temporally accelerating pipe flows (He, Seddighi & He 2016; Guerrero,
Lambert & Chin 2021), ramp-up, spatially accelerating channel flows (Falcone & He
2022), and ramp-up, temporally accelerating channel flow (Seddighi et al. 2014). The
more gradual, ramp-up acceleration rates resulted in an increase in the time period of
the pretransition stage, and a delay in the onset of transition. The experiments of Mathur
et al. (2018a) utilised two-component particle image velocimetry and flow visualisation,
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to confirm the growth of a perturbation boundary layer, and the dominant bypass transition
process, which was only previously observed in numerical studies. Further numerical
studies have explored the influence of Reynolds number and acceleration rate on the
turbulence response. He & Seddighi (2015) observed that the pretransition stage of step-up
accelerating channel flows was present even in weakly accelerated flow. However, as the
strength of the acceleration was decreased, the strength of the streamwise streaks in the
pretransition stage, and the strength of the subsequent turbulent spots, would diminish
until the typical bypass transition behaviour was no longer observable. After observing
similar trends in ramp-up channel flow, Jung & Kim (2017) suggested that bypass transition
may only occur if the additional impulse from the increased flow rate greatly exceeds the
additional impulse from the increased shear stress. On the other end of the scale, Mathur,
Seddighi & He (2018b) observed that increasing the ratio between the final and initial
Reynolds numbers amplified the length of the streaks during the pretransition stage, and
increased the strength of the turbulent spots at the onset of transition.

He & Seddighi (2015) found that, despite the differences in the transition process, all
accelerating boundary layers showed a strong similarity in their perturbation velocity
fields. During the pretransition stage, these profiles conformed to the theoretical Stokes
solution for a step-up accelerated laminar flow, which confirmed the initial laminar
behaviour of the perturbation boundary layer. The validity of the laminar Stokes
solution has since been demonstrated for a wide range of accelerating flows with linear
ramp-up acceleration rates (Sundstrom & Cervantes 2017) and arbitrary time-dependant
acceleration rates (Mathur et al. 2018a). Sundstrom & Cervantes (2018b) further identified
that, similar to accelerating flows, linear ramp-down decelerating flows produce a
perturbation velocity field which corresponds to the laminar Stokes solutions for a period
immediately following the onset of deceleration.

A recent study by Guerrero et al. (2021) identified an additional stage of the flow
response which precedes the pretransition stage, referred to as the ‘inertial’ stage. During
this stage, the viscous force (VF) in the near-wall region rapidly increases, starting in the
viscous sublayer. These amplified forces serve as a momentum sink in order to preserve the
no-slip condition at the wall. Then in the following ‘pretransition’ stage, the enhanced VF
rapidly decreases, whilst the turbulence field remains frozen. Guerrero, Lambert & Chin
(2023) found that the ‘inertial’ stage of a ramp-down decelerating flow is characterised by a
rapid increase in the magnitude of VF, as in acceleration. However, the sign of VF changes
during deceleration, to become positive, with VF serving as a source of momentum.

1.2. Periodic flows
Periodic flows are traditionally characterised by the formation of the Stokes boundary
layer adjacent to the wall. The thickness of this layer, ls, represents the perturbation
distance of the oscillating response from the wall. This distance is directly related to
the pulsation frequency, ω, such that ls = √

2ν/ω. Ramaprian & Tu (1983) showed that
the oscillations impose an influence on the turbulence flow field up to a distance lt
which lies far beyond the Stokes boundary layer. In the present study, lt is referred to
as the turbulent penetration depth in accordance with He & Jackson (2009), though in
previous studies it is also commonly referred to as the turbulent Stokes length/number.
Ramaprian & Tu (1983) constructed a groundbreaking model for characterising pulsating
flows, which decomposed the behaviour of the oscillating response into distinct regimes,
each defined by the magnitude of the turbulent penetration depth in relation to the
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channel width or pipe diameter. Scotti & Piomelli (2001) later refined and clarified the
limits and characteristic behaviour corresponding to each regime, and proposed a direct
relationship between the inner-scaling of ls and lt, dependant solely on the von Kármán
constant.

The high-frequency regime is defined as the frequency range for which the Stokes layer
lies entirely within the viscous sublayer. In theory, although the turbulent penetration
length extends into the buffer layer, the Stokes layer will be uninfluenced by the turbulence
modifications occurring beyond the viscous sublayer, and the velocity field will exhibit
quasilaminar behaviour. The experimental studies of Tardu, Binder & Blackwelder (1994)
and He & Jackson (2009), which utilised fixed amplitudes of Auc = 0.64 and Auc = 0.2,
respectively, both identified an upper limit of l+s < 10 for the high-frequency regime.
It is important to note that many observations in current-dominated pulsating flows,
including the high-frequency regime, are derived from studies in which the amplitude of
the pulsation does not exceed Auc = 0.7 ∼ 0.8. The high-resolution numerical simulations
of Manna, Vacca & Verzicco (2015, 2012) investigated the influence of amplitude on the
turbulent response of wave-dominated pulsating flows. Their direct numerical simulations
included one case with an amplitude of Auc = 1.0, and hence, lying on the limit of the
current-dominated regime. Although their fixed Stokes length of l+s = 3.1 lay within the
high-frequency regime, all Reynolds stress components showed significant variation far
beyond the theoretical turbulent penetration depth. Early experimental studies identified
an additional ‘very high-frequency regime’ (l+s < 7) in which the oscillating velocity
field would have lower amplitudes than the theoretical quasilaminar prediction (Mao &
Hanratty 1986; Tardu & Binder 1993). This was attributed to a resonance with turbulent
ejections, as the driving frequency approached the frequency of the turbulent bursting
process. The numerical investigations of Papadopoulos & Vouros (2016) confirmed
that for l+s < 6.8, velocity field and second-order turbulent statistics have a negligible
dependence on the amplitude of pulsation, for amplitudes up to Ab = 0.63, but reported
no significant interaction between the turbulent bursting process and the oscillations. For
similar amplitudes of Ab = 0.64, Cheng et al. (2020) proposed that such a regime does
exist, but can be characterised by an independence of the Reynolds shear stress cospectra,
and is bounded by its highest spectral frequency (l+s ≤ 2.4).

The intermediate-frequency regime is defined when the turbulent penetration length
extends beyond the buffer layer but does not reach close to the centreline; l+t < 0.5Reτ
(Scotti & Piomelli 2001). The turbulence in the core of the flow, beyond the turbulent
penetration length, remains effectively frozen whilst the velocity field oscillates as a
‘plug’ flow. The low-frequency regime is defined when the turbulent penetration length
covers the flow domain (l+t � O(Ret)). Tardu et al. (1994) found that such pulsations
produced the strongest growth of the streamwise Reynolds stress within the turbulence in
the buffer layer, which incidentally is the region which provides the greatest contribution
to the generation of new turbulent energy. He & Jackson (2009) used two-component
laser doppler anemometry to compare the streamwise and wall-normal Reynolds stress
components of low-amplitude pulsating pipe flows in the intermediate regime. They
observed that the response of the wall-normal Reynolds stress lagged behind the response
of the streamwise Reynolds stress during the cycle. The magnitude of this delay was
greatest in the buffer layer and decreased when moving away from the wall. This behaviour
established a similarity with the multistage response observed in their previous study of
accelerating flows (He & Jackson 2000), in which the delay was attributed to the time
taken for newly generated turbulent energy to transfer between the velocity components,
and its subsequent propagation into the core of the flow. Such a similarity was reinforced
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by Sundstrom & Cervantes (2018c), who compared experimental results for pulsating and
ramp-up pipe flows with acceleration periods beginning at comparable values of Reτ ,
and confirmed that the skin friction and Reynolds stress components followed similar
trends in their response to the acceleration. Scotti & Piomelli (2001) found that pulsations
of Auc ≈ 0.7 in the intermediate and low-frequency regimes significantly modified the
near-wall turbulent structures, which underwent multiple stages of evolution throughout
the cycle. This phenomenon will be discussed further in § 1.3.

1.3. Transition in periodic flows
Numerous experimental and numerical studies have observed the phenomenon of
laminar–turbulent transition in purely oscillating flows. When the flow alternates between
laminar and turbulent states, the transition has been observed to originate from the
growth and elongation of low- and high-speed velocity streaks (Vittori & Verzicco 1998;
Costamagna, Vittori & Blondeaux 2003). The experiments of Akhavan, Kamm & Shapiro
(1991) observed a suppression of turbulent energy production at the wall immediately
following the start of acceleration. The onset of flow transition was accompanied by
a sudden rapid growth of turbulent energy shortly before the end of the acceleration
period. Ozdemir, Hsu & Balachandar (2014) performed direct numerical simulations to
observe the receptivity of an initially laminar oscillating flow to initial perturbations,
for a wide range of Reynolds numbers. At first, the perturbations induced the growth
of two-dimensional spanwise vortical rollers during acceleration. For oscillating flows
in the ‘intermittently turbulent’ regime (Auc

√
ωv ≥ 600), these rollers would destabilise

prior to the end of acceleration, giving way to three-dimensional instabilities. In such
cases, this led to an explosive growth of turbulence which continued during the early
deceleration period. Ebadi et al. (2019) explored the temporal evolution of the momentum
balance in intermittently turbulent oscillating flows. Once the onset of transition occurred,
the turbulent inertia (TI) grew rapidly, in conjunction with a rapid increase in the rate
of energy transfer to the wall-normal and spanwise turbulent motions. This evolution
would bear some similarity to momentum balance evolution identified by Guerrero et al.
(2021) for non-periodic acceleration. Furthermore, the early decelerating regime of Ebadi
et al. (2019) was characterised by a shift in VF from a momentum sink to a momentum
source, which is also observed in ramp-down decelerating flows (Guerrero et al.
2023).

To date there is a significant lack of high-resolution numerical data for pulsating flows
in the intermediate and low-frequency regimes. Where such data exist (Scotti & Piomelli
2001; Weng, Boij & Hanifi 2016), a very limited range of amplitudes is considered. For
low-amplitude pulsation (Auc = 0.1), Weng et al. (2016) found that the flow remained in
a fully turbulent state throughout the cycle across a range of regimes, for 7 ≤ l+s ≤ 44.7.
From their relatively high amplitude (Auc ∼ 0.7) large-eddy simulations, Scotti & Piomelli
(2001) were able to visually investigate the occurrence and behaviour of laminar–turbulent
transition during the pulsation cycle. As the flow accelerated within the low-frequency
regime (l+s = 35), new streamwise velocity streaks formed and continued to grow in the
near-wall region. These elongated streaks eventually destabilised, leading to the formation
of turbulent spots concentrated around the low-speed streaks, which is consistent with
a bypass-transition process. Besides this early investigation, numerical studies which
have observed similar phenomena are rare. This is in part due to a strong focus on the
high-frequency regime.
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1.4. Present study
Within the past decade, significant advancements have been made in understanding
the evolution of non-periodic accelerating and decelerating flows, stemming from the
discovery the turbulent–turbulent transient concept of He & Seddighi (2013). The
experimental studies of He & Jackson (2009) and Sundstrom & Cervantes (2018c) have
opened the door to a new way of thinking about unsteady flows, in which periodic
and non-periodic applications are not truly dissimilar and disconnected. Instead, the
full pulsation period may be reframed as a decomposition of individual non-periodic
acceleration and deceleration periods which occur successively.

In the present study, the turbulent–turbulent transient concept is investigated for a
wide range of frequencies and amplitudes for current-dominated pulsating channel flow.
Three values of Stokes length are selected to represent the high-frequency (l+s = 5),
intermediate-frequency (l+s = 16) and low-frequency regimes (l+s = 26), whilst an
additional Stokes length of l+s = 10 represents the boundary between the high- and
intermediate-frequency regimes. For each value of l+s , a set of three amplitudes are
computed; Ab = 0.1, Ab = 0.5 and Ab = 1.0, spanning 90 % of the current-dominated
regime. The lowest amplitude has previously been explored by Weng et al. (2016) for a
wide range of frequencies and is mainly included here to serve as a reference case. The
highest amplitude of Ab = 1.0 lies on the upper limit of the current-dominated regime,
which has not been previously explored for the range of frequencies considered here.

2. Methodology

A series of pulsating flows were simulated using an in-house code CHAPSim (Seddighi
2011; He & Seddighi 2013; Wang & He 2015). Direct numerical simulations were
performed to solve the momentum and continuity equations for an incompressible flow,

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∇2ui, (2.1)

∇ui = 0, (2.2)

where x1, x2, x3 = x, y, z and u1, u2, u3 = u, v,w denote the coordinates and velocity
components in the streamwise, wall-normal and spanwise directions, respectively. All
length and velocity values are normalised using the channel half-height, δ, and the
time-averaged bulk velocity, Ub, respectively. The Reynolds number is defined as
Re = Ubδ/ν, or Re = Ubδ/ν (time-averaged). A fully explicit, low-storage, third-order
Runge–Kutta scheme is used for the temporal discretisation of the nonlinear and viscous
terms. The Poisson equation is solved using a fast Fourier transform. An additional
time-varying source term has been added to the streamwise Navier–Stokes equation to
generate a periodic pulsation flow rate. The bulk velocity follows the waveform in the
following (figure 1b), where ω = 2π/T denotes the driving frequency, and the amplitude,
Ab, is scaled by Ub:

Ub(t) = Ub(1 − Ab cos(ωt)). (2.3)

Table 1 displays the configuration of the pulsating flow cases which were computed for
the present study. All cases have a time-averaged, bulk Reynolds number of Re = 6275.
The superscript ‘+’ denotes inner-scaled variables based on the kinematic viscosity, ν, and
a reference friction velocity, uτ . For the present study, the reference value of uτ is taken
as the friction velocity of a smooth-wall, steady-state channel flow simulation with a bulk
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Figure 1. Numerical set-up of the code for (a) spatial configuration of the channel domain and (b) cosine
waveform of the driving force: (solid) Ab = 0.1; (dash) Ab = 0.5; (dot–dash) Ab = 1.0.

Case Ab l+s l+t ω+ TUb/δ T+

L05A01 0.1 4.98 12.21 0.08 3.8 78.0
L05A05 0.5 4.98 12.21 0.08 3.8 78.0
L05A10 1.0 4.98 12.21 0.08 3.8 78.0

L10A01 0.1 9.96 43.02 0.02 15.2 312.0
L10A05 0.5 9.96 43.02 0.02 15.2 312.0
L10A10 1.0 9.96 43.02 0.02 15.2 312.0

L16A01 0.1 15.76 104.16 0.008 38.0 799.9
L16A05 0.5 15.76 104.16 0.008 38.0 799.9
L16A10 1.0 15.76 104.16 0.008 38.0 799.9

L26A01 0.1 25.81 275.62 0.003 102.0 2093.4
L26A05 0.5 25.81 275.62 0.003 102.0 2093.4
L26A10 1.0 25.81 275.62 0.003 102.0 2093.4

Table 1. Numerical configurations used in the present study.

Reynolds number of Re = 6275. The approximation for the turbulent penetration depth, l+t ,
is taken from Scotti & Piomelli (2001), where κ ≈ 0.41 denotes the von Kármán constant:

l+t =
(
κl+2

s

2

)
+ l+s

√
1 +

(
κl+s
2

)2

. (2.4)

With the exception of case L26A10, the domain in each case has streamwise,
wall-normal and spanwise dimensions of Lx = 4πδ, Ly = 2δ and Lz = 2πδ, respectively
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(figure 1a), and a mesh distribution of Nx × Ny × Nz = 512 × 256 × 512. For case
L26A10, which combined the highest value of the pulsation amplitude Ab = 1.0 and
lowest driving frequency ω+ = 0.0032, the elongation of the streamwise velocity streaks
is significantly amplified during certain periods of the cycle, to the extent that the
streamwise length of the domain had to be increased to Lx = 8πδ. The number of
cells in the streamwise direction was increased to Nx = 1024. All other properties
of the domain geometry and mesh distribution remain unchanged. Adequacy of the
computational domain is justified by making sure that the two-point correlation of
turbulent fluctuation decays to approximately zero within the domain half-length. The
final mesh has streamwise and spanwise resolutions of �x+ = 8.83 and �z+ = 4.42,
a wall-normal resolution of �y+ = 0.50 at the wall and a wall-normal resolution of
�y+ = 5.51 at the channel centreline. Further details and discussion of the suitability
of the spatial resolution and channel geometry are given in the Appendix. The time step
was allowed to vary, and controlled by a Courant–Friedrichs–Lewy condition of CFL ≤ 1,
and maximum limit of �t+ ≤ 0.124.

2.1. Data reduction
The time-dependant flow statistics are calculated using ensemble averaging. The pulsation
cycle is divided into Nsamp = 32 evenly spaced phases, beginning at φ = 0. Multiple
consecutive cycles, Nt, are computed for each case. At each phase, the flow fields are
spatially averaged in the streamwise and spanwise directions, and temporally averaged
over multiple cycles. The method for calculating the phase-averaged statistics is

〈ψ〉(y, t) = 1
NtNxNz

Nt−1∑
nt=0

Nx∑
p=1

Nz∑
q=1

ψ(xp, y, zq, t + ntT). (2.5)

In order to minimise the size of the output flow field data, the fluctuating components of
the flow statistics are not calculated or stored prior to the ensemble-averaging procedure.
The fluctuating components are calculated from the phase-averaged values,

〈ψ ′
iψ

′
j 〉 = 〈ψiψj〉 − 〈ψi〉〈ψj〉. (2.6)

The time-averaged values of the flow statistics are calculated from a temporal-averaging
of the phase-averaged values,

ψ ′
iψ

′
j (y) = 1

Nsamp

Nsamp∑
n=1

〈ψ ′
iψ

′
j 〉(y, n). (2.7)

A total of 50 cycles are averaged for the highest frequency cases of l+s = 5, whilst a total
of 30 cycles are averaged for all cases of l+s = 10 and l+s = 16. For l+s = 26, the number
of cycles are varied based on the size of the domain. A total of 20 cycles are averaged
for amplitudes of Ab = 0.1 and Ab = 0.5. For Ab = 1.0, where the number of cells in the
streamwise direction is doubled, the number of cycles is reduced to 10.

2.2. Validity and scaling
It is first necessary to address the choice in scaling parameters for the phase-averaged
flow field. In non-periodic unsteady flows, the reference value for the friction velocity
is typically taken from the initial flow field, uτ0. Sundstrom & Cervantes (2018c)
demonstrated that pulsating flows of moderate amplitudes are directly comparable to
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Figure 2. Phase-variance of the skin friction coefficient for all cases in table 1.

non-periodic accelerating flows, by taking the value of uτ at φ = 0 as the reference
value of the initial flow field. A similar approach would be desirable in the present study,
however, such a reference value cannot be consistently applied across the wide range of
flow configurations outlined in table 1. Figure 2 displays the phase-averaged skin friction
coefficient, Cf = 〈τ 〉w/0.5ρUb

2
. In addition to the wide variation in uτ at φ = 0, there

is clear flow reversal at the wall for all values of l+s at the highest driving amplitude.
Flow reversal also occurs in the high-frequency regime for a lower amplitude of Ab = 0.5.
In such cases, the phase-averaged friction velocity vanishes towards zero as uτ changes
sign. Hence, in the present study, the reference value of uτ = 0.0572Ub is taken from a
steady-state smooth value channel flow at Re = 6275.

In order to assess the validity of the present method, the results are compared with
two previous numerical studies: Weng et al. (2016) for pulsating channel flows of Stokes
lengths l+s = 10 and l+s = 25.8, for a fixed amplitude of Auc = 0.1, where Auc denotes
the relative amplitude of the channel centreline velocity; and Manna et al. (2012) for
a high-frequency pulsating pipe flow of l+s = 3.1 and Auc = 1.0. Figure 3 displays the
time-averaged Reynolds stress and streamwise velocity profiles for all cases in table 1. At
low amplitudes, it would be expected that the pulsating motion would have a negligible
influence on the first- and second-order velocity statistics. As seen in figure 3, the profiles
for all four Reynolds stress components for Ab = 0.1 collapse onto a single profile across
the full width of the channel, which shows strong agreement with the results of Weng
et al. (2016), and the steady-state channel flow. As the amplitude grows, the time-averaged
profiles begin to diverge from the steady-state flow. The streamwise, wall-normal and
spanwise Reynolds stress profiles of case L05A10 show good agreement with the results
of Manna et al. (2012) up to y+ = 30.

Finally, a discrete Fourier transform is applied to the phase-averaged velocity field to
decompose the oscillating response into a number of sinusoidal waveforms,

〈u〉 = ū + ũ (− cos(ωt +Φu))+
∞∑

m=1

ũm (− cos(ωt +Φum)) , (2.8)

where the amplitude and phase-lead for a given Fourier mode of variable ψ are denoted
by ũ and Φu for the fundamental mode, and ũm and Φum for the various harmonic
modes (m = 1, 2, 3, . . .). Figure 4 displays the amplitude of the first harmonic mode,
and its phase-lead relative to the centreline velocity, of the streamwise velocity profiles
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Figure 3. Wall-normal profiles of the time-averaged streamwise velocity and Reynolds stresses. All cases in
table 1 are shown. The results of Weng et al. (2016) for a case of l+s = 10 at Auc = 0.1 (circles), and Manna
et al. (2012) for a case of l+s = 3.1 at Auc = 1.0 (triangles) are shown for comparison.
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Figure 4. Wall-normal distribution of the phase lead and the amplitude of the phase-averaged streamwise
velocity relative to the centreline velocity. The results of Weng et al. (2016) for cases of l+s = 10 and 26 at
Ab = 0.1 are shown for comparison. Lines and symbols are as defined in figure 3.

for all cases in table 1. For all cases of l+s = 5, the harmonic modes of the streamwise
velocity are negligible throughout the domain. The phase-lead and amplitude of the
dominant fundamental mode show no dependence on the driving amplitude, even at
the upper limit of the current-dominated regime. At the limit of the high-frequency
regime (l+s = 10) the fundamental mode remains overwhelmingly dominant, though its
phase-lead and amplitude begin to show a weak dependence on Ab in the near-wall region.
In the intermediate frequency regime (l+s = 16) the phase-lead is strongly dependant on
the driving amplitude and grows as Ab is increased. At this frequency, the amplitudes
of the harmonic modes relative to the fundamental mode become significant, and for
Ab = 1.0, the amplitude of the fundamental mode accounts for only 75 % of the sum of
the amplitudes of the first five modes. For l+s = 26, the influence of Ab on the phase-shift
is much weaker compared with that of the intermediate-frequency regime. The two lowest
amplitudes collapse towards a common profile and show strong agreement with the low
amplitude case of Weng et al. (2016) close to the wall, although they exhibit a slightly
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lower value outside of the viscous sublayer. For the highest amplitude of Ab = 1.0, the
relative amplitude of the fundamental mode deviates significantly from the prior cases,
with a significant reduction within y+ < 30, and a significant increase above y+ = 30. At
this amplitude and frequency, the contribution of the fundamental mode accounts for less
than 60 % of the first five modes.

3. Results

3.1. Flow visualisations
This section explores the evolution of the near-wall turbulent structures during the
pulsation cycle for three cases (L26A05, L26A10 and L10A10), to provide an overview
of the flow behaviour and turbulent mechanisms in play. The turbulent vortical structures
are visualised through isosurfaces of λ2, which denote the second eigenvalue of the
symmetric component of the velocity gradient tensor. The near-wall velocity streaks are
visualised through positive and negative values of the streamwise fluctuating velocity
component, u′ = u − 〈u〉. The mean velocity reference value of 〈u〉 is taken from the
phase-averaged value at the corresponding wall-normal location at each point. Each
visualisation comprises of eight flow fields which are evenly spaced by a phase interval of
0.25π. Two additional flow fields are included at φ = 0.875π and φ = 1.125π, in order to
provide greater clarity to the transitional behaviour of case L26A10.

At the start of the acceleration period in case L26A05 (figure 5), the near-wall flow is
still undergoing a process of turbulence decay, which was initiated during the preceding
deceleration phase. As the flow accelerates, the remaining vortical structures continue to
gradually degrade, whilst the streamwise velocity fluctuations are further suppressed. At
φ = 0.25π, the rate of decay in the vortical structures has slowed substantially, leaving the
remaining vortical structures, which remain loosely dispersed over the surface, to convect
downstream. At the same time, the remaining weak streamwise velocity streaks begin to
grow and elongate. As the flow passes the midpoint of the acceleration period, new vortical
structures begin to form in clusters that are mostly concentrated around the low-speed
velocity streaks. The clusters of vortical structures, which indicate the presence of highly
concentrated turbulent spots, continue to grow in size until they begin to merge. The
evolution of the vortical structures between φ = 0.25π and φ = 0.875π closely resembles
the pretransition stage of non-periodic acceleration (He & Seddighi 2015). By comparing
figure 5 to the ramp-up flow case of Seddighi et al. (2014) these similarities become even
more striking. During the remainder of the acceleration period and the early deceleration
period there is no significant change in the density or distribution of the vortical structures
at the wall. However, by φ = 1.5π the density of the vortical structures is visibly reduced
as turbulence begins to decay towards the weakly turbulent flow field seen at φ = 0.

As for case L26A05, the flow field at the start of acceleration in case L26A10 (figure 6)
is still in a stage of turbulence decay. However, in case L26A10 the vortical structures
continue to diminish until φ = 0.25π, when the flow in the near-wall region comes
close to resembling a fully laminar state. The flow does not immediately enter a stage
of velocity streak growth, and there is a delay in the formation of low- and high-speed
velocity streaks. The flow remains frozen in a weakly turbulent (almost laminar-like)
state until the first streamwise velocity streaks begin to form anew at φ = 0.375π. The
flow then follows the same pattern seen in figure 5 and Seddighi et al. (2014), and
thus begins a process of bypass-like transition. However, there are key differences in
the evolution of the flow in figure 6 when compared with the lower amplitude case in
figure 5. Firstly, and most notably, there is a delay in the formation of the turbulent
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Figure 5. Development of the streamwise velocity streaks and turbulent vortices for case L26A05:
λ2/(Ub/δ)

2 = −5 (red); u′/Ub = −0.2 (blue); u′/Ub = 0.2 (green).

spots around the low-speed streaks. These spots do not begin to form until φ = 0.75π,
at which time the turbulent spots in case L26A05 were already beginning to merge.
Due to this delay, there is insufficient time for the bypass-like transition process to
complete, and the flow reaches the start of the deceleration period before the turbulent
spots have started to merge. Secondly, the turbulent spots in case L26A10 are much more
refined, and consist of a greater number of vortical structures which are packed together
with greater density. Finally, the streamwise velocity streaks in case L26A10 undergo
far greater elongation, with a maximum length that is approximately three times larger
than that seen in case L26A05. Seddighi et al. (2014) identified such differences in the
growth of turbulent spots and velocity streaks when comparing ramp-up and step-up
acceleration in non-periodic accelerating flows at an equivalent Reynolds number. During
the acceleration, an amplitude of Ab = 0.5 (case L26A05) more closely mimics a ramp-up
flow acceleration, whilst an amplitude of Ab = 1.0 (case L26A10) more closely mimics
a step-up acceleration. As in the ramp-up acceleration of Seddighi et al. (2014), for an
amplitude of Ab = 0.5 the flow completes transition before the maximum bulk velocity is
reached, whilst this is not true for the higher amplitude of Ab = 1.0.

Figure 6 shows that the flow in case L26A10 begins the deceleration period in the
early stages of bypass-like transition. At this point, the developing turbulent spots are
limited to a few discrete locations and vortical structures are absent over the majority
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Figure 6. Development of the streamwise velocity streaks and turbulent vortices for case L26A10:
λ2/(Ub/δ)

2 = −5 (red); u′/Ub = −0.2 (blue); u′/Ub = 0.2 (green).

of the surface. It is natural to expect that such an incomplete transition process will fail to
reach a fully turbulent state under a continuously increasing deceleration rate. However,
during the initial deceleration period the turbulent spots continue to grow and start to
merge. By φ = 1.25π the vortical structures cover the majority of the surface. Throughout
the second half of the deceleration period, these vortical structures diminish along with
the streamwise velocity streaks, as the turbulence decays towards the weakly turbulent
state at φ = 0. The persistence of the transition process can be explained by considering
the response of an equivalent non-periodic flow. When a fully developed turbulent flow is
subject to a ramp-down deceleration, there is a delay in the response of the turbulence in
the early stages of deceleration (Guerrero et al. 2023). During this delay, the Reynolds
shear stress only undergoes a very gradual change in the near-wall region, such that
turbulence remains effectively frozen in its initial state. This delayed turbulence response
can also be confirmed for case L26A05, as can be seen in figure 5, and as will be further
discussed in more detail in § 3.3. These findings suggest that the concept of a frozen
turbulence response can be expanded in the context of pulsating flow to include both
the existing turbulence structures, and the temporally evolving mechanism of bypass-like
transition.
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The similarity between free-stream turbulence induced bypass transition and the
behaviour observed in figures 5 and 6 can be confirmed through the assessment of
turbulent kinetic energy variations during streak development. Figure 7 displays the
evolution of the wall-normal maximum values of the turbulent kinetic energy and its three
velocity components; 〈u′u′〉+max, 〈v′v′〉+max and 〈w′w′〉+max, throughout the cycle. In the early
stages of free-stream turbulence bypass transition, the elongation of the streaks is reflected
in the linear growth of 〈u′u′〉+max and turbulent kinetic energy (2〈TKE〉+max) with streamwise
distance (Matsubara & Alfredsson 2001; Fransson, Matsubara & Alfredsson 2005), or
time in the case of the pretransition stage of temporal acceleration (He & Seddighi 2013).
Furthermore, since this early growth of 〈u′u′〉+max is not caused by amplified turbulence
generation, the maximum wall-normal and spanwise velocity motions should be relatively
unaffected prior to the destabilisation of the streaks. From figures 5 and 6 it is clear that
in cases L26A05 and L26A10 the initial growth of turbulent energy is attributed almost
entirely to the amplification of the streamwise turbulent motions, whilst the gradual decay
of 〈v′v′〉+max and 〈w′w′〉+max adversely impacts the turbulent energy growth. Hence, it can
be concluded that the growth of 〈u′u′〉+max is an artificial amplification which is attributed
primarily to streak elongation, as characteristic of bypass transition. In figure 7(c,d)
similar behaviour is observed for cases L16A05 and L16A10, such that together, these
four cases represent the four instances of a bypass-like transition observed in the present
study. Reducing the Stokes length further (as shown in figure 7e) extends the artificial
growth of turbulent kinetic energy far into the deceleration period. The flow then deviates
from bypass-like transition behaviour, since the decay of 〈u′u′〉+max counteracts the natural
growth of 〈v′v′〉+max and 〈w′w′〉+max as the streaks destabilise.

When the Stokes length is reduced to l+s = 10, for an amplitude of Ab = 1.0 (case
L10A10, figure 8), the flow undergoes the early stages of bypass-like transition, but fails to
reach a fully turbulent state before the end of the deceleration period. Therefore, the critical
limit for which a current-dominated flow can undergo a full turbulent–turbulent transition
process can be assumed to lie within the range of l+s = 10 to l+s = 16. At the start of the
acceleration period, turbulence remains strong at the wall, with vortical structures covering
the surface, though with a greater density around the elongated low-speed velocity streaks.
At this point, the vortical structures and velocity streaks are convecting in the reverse
direction, due to a reversal of the flow at the wall during the late deceleration period.
As the flow accelerates, the turbulence starts to decay and the vortical structures are
diminished, whilst the streamwise velocity streaks break up. New streamwise velocity
streaks begin to form towards the end of the acceleration period, though by φ = π there
is no sign of turbulent spots, and a significant amount of ‘old’ turbulence still lingers in
the flow. At φ = 1.5π a clustering of new vortical structures can be observed around the
low-speed velocity streaks, indicating the growth of turbulent spots consistent with bypass
transition. Throughout the second half of the deceleration period these clusters grow very
slowly. This growth continues even as the near-wall flow is reversed, and the early stages
of merging can be observed. However, this is as far as the process gets, and growth
of turbulent spots is heavily suppressed throughout the remainder of the deceleration
period.

3.2. Streamwise velocity streaks
The properties of the near-wall velocity streaks can be quantified through a two-point
correlation of the streamwise velocity field (3.1a,b). The streamwise correlation R11x
quantifies the length of the streaks, whilst the spanwise correlation R11z quantifies the
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Figure 7. Phase-variance of the maximum Reynolds stress components and turbulent kinetic energy for cases
(a) L26A05, (b) L26A10, (c) L16A05, (d) L16A10 and (e) L10A10. Arrows indicate the respective axis for the
intersecting curves. Vertical blue lines indicate the initiation of turbulence growth/transition. The appropriate
location of each line was determined from the analysis in § 3.3.

spanwise spacing between the streaks, which is assumed to be equal to twice the spanwise
distance at which R11z reaches its minimum value, (Rz11)min. The magnitude of (Rz11)min
indicates the strength of the streaks relative to the surrounding flow in the corresponding
x–z plane (Mathur et al. 2018b; Falcone & He 2022),

Riix(y, x1) = 〈u′
i(x, y, z)u′

i(x + x1, y, z)〉
〈u′2

i (x, y, z)〉 , Riiz(y, z1) = 〈u′
i(x, y, z)u′

i(x, y, z + z1)〉
〈u′2

i (x, y, z)〉 .

(3.1a,b)

Case L26A05 starts the acceleration period with weak streaks with no clearly defined or
uniform spacing. However, figure 9(a) confirms that that by φ = 0.625π, strong velocity
streaks have formed, with a consistent spacing of 2z+ = 160. As the streaks are stretched,
they maintain this spacing, whilst growing in strength. Following their destabilisation
and resultant breakup, the strength of the streaks degrades, and their spacing shrinks,
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Figure 8. Development of the streamwise velocity streaks and turbulent vortices for case L10A10:
λ2/(Ub/δ)

2 = −5 (red); u′/Ub = −0.2 (blue); u′/Ub = 0.2 (green).

before plateauing around 2z+ = 80. This strength and spacing remains effectively frozen
during early deceleration. After φ = 1.25π the streaks begin to decay and lose their
form, until a clear minimum of Rz11 is no longer visible, though they never fully
dissipate.

During the initial acceleration period in case L26A10 (figure 9b), R11z remains positive
for all spacings of 2z+ < 400 throughout the domain. The velocity streaks that emerged
during the preceding turbulent–turbulent transition process have almost completely
decayed, and by φ = 0 their remaining decay has a minimal impact on the weak turbulence
field. At φ = 0.375π, new velocity streaks are beginning to take shape, which converge
to a clearly defined spacing of 2z+ ≈ 160 by φ = 0.5π (figure 9b). This approximate
spacing is maintained throughout the remaining life cycle of the streaks, right up until
their disintegration. The streaks elongate and grow in strength throughout the remainder
of the acceleration period, even after φ = 0.75π, when the magnitude of the minimum
value of R11z falls as the streaks begin to destabilise. The strength of the streaks prior
to transition is significantly greater than that in case L26A05. However, at φ = 1.25π,
Rz11 has once again become positive for 2z+ < 400 throughout the domain, indicating a
complete breakdown of the streaks by this point. This behaviour in R11z bears a strong
similarity to that observed in the step-up accelerating flows of Mathur et al. (2018b), in
which the Reynolds number was increased by a large factor of 6.5. When this factor was
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Figure 9. Distribution of the two-point correlation of spanwise velocity for cases (a) L26A05, (b) L26A10
and (c) L10A10.

raised to 19.3, for the same initial Reynolds number, the positive values of R11z at the point
of transition further increased in value, and the positive region spanned a significantly
greater spanwise spacing. Compare this to the weaker step-up of acceleration of He &
Seddighi (2013), which started with the same initial Reynolds number as Mathur et al.
(2018b), but only increased the Reynolds number by a factor of 2.62. Around the point of

982 A20-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1025


P.S. Taylor and M. Seddighi

transition, the profiles of R11z rapidly fell towards the zero axis with increasing spanwise
distance, only deviating from this trend for negative values of R11z. The present results
suggest that, at an amplitude of Ab = 1.0, the Stokes length of a pulsating flow may exert
a similar influence on the distribution of R11z around the point of transition, as that exerted
by the Reynolds number ratio during step-up acceleration.

Case L10A10 (figure 9c) starts off in a similar manner to case L26A05. During
acceleration, the existing streaks become much weaker as the existing turbulence continues
to decay following the preceding cycle. At φ = 0.875π a clearly defined spacing can be
observed, as new streaks begin to develop. By the end of the acceleration period the
spacing between the streaks has shrunk to 2z+ ≈ 100, and the strength of the streaks
has increased substantially. Throughout the first half of the deceleration period there is
minimal change in both the spacing and the strength of the streaks (figure 9c). However,
small sinuosities start to form in the low-speed streaks. Such sinusoidal deformations have
been identified as the initial instability from which streak breakdown typically occurs
in bypass transition (Schlatter et al. 2008). The development of the sinuosities is slow,
relative to the phase of the cycle, such that the elongated velocity streaks remain mostly
intact by φ = 1.5π. In terms of inner-scaled time, these sinuosities grow at comparable
rates between different strokes lengths for Ab = 1.0. Sinuosity development for l+s = 10
spans a period of �t+ = 78. Consider that the snapshots of case L26A10 in figure 10
are spaced by �t+ = 130.8 apart. After the appearance of the first sinuosity, it takes
�t+ = 130.8 for the instability to develop into a local breakdown of the streak, and at least
an additional �t+ = 130.8 for the turbulent spot to grow sufficiently to begin merging.
Additional time will be required before new turbulence growth will propagate into the
core (y+ = 106.4), where the turbulence field has shown only minor changes between
φ = 0.75π and φ = π. By comparison, time between the first sinuosity and the first
turbulent spot in a flow of l+s = 16 is �t+ = 100, with a further �t+ = 75.0 for merging
to occur. Although these processes occur at different phases in the cycle, and hence, at
different bulk velocities, the growth rate of the sinous instabilities appears to be unaffected
by the local bulk velocity, at least in the late acceleration period and early deceleration
period.

3.3. Turbulent statistics
During turbulent–turbulent transition in non-periodic acceleration, the temporal evolution
of the Reynolds stress components follow a multistage process which correlates to the
changes of near-wall turbulent structures (He & Seddighi 2015). These stresses are
important in accurately defining both the temporal limits and characteristic behaviours
of the distinct stages of the turbulent–turbulent transition process. To understand the
flow of energy between the components, we also assess the temporal evolution of the
terms in the turbulent energy budget for the streamwise Reynolds stress component
(3.2); the production P11, viscous dissipation e11, pressure strain Π11, pressure diffusion
Γ11, turbulent transport T11 and viscous diffusion D11. The wall-normal and spanwise
components do not gain energy directly from newly generated turbulence. Their primary
source comes from the transfer of energy from the streamwise component, which is
governed by the pressure strain. Hence, P11, which acts at the primary source of newly
generated turbulent energy, and Π11, serve as the most critical budget terms which govern
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φ = 0.75πy+ = 106.4 y+ = 106.4 y+ = 106.4φ = 0.875π φ = 1π

φ = 0.75πy+ = 12.4 y+ = 12.4 y+ = 12.4φ = 0.875π φ = 1π

0 0.1–0.1–0.4 –0.3 –0.2 0.2 0.3 0.4

u′/Ub

(a) (b) (c)

(d ) (e) ( f )

Figure 10. Growth of a secondary sinuous instability of the streamwise velocity streaks at y+ = 12.4, and its
propagation at y+ = 106.4, for case L26A10.

the turbulence response to unsteady forcing,

P11 = −2〈u′v′〉
〈
∂u
∂y

〉
, e11 = −2ν

〈
∂u′

∂y
∂u′

∂y

〉
,

Π11 = 2
〈
p′ ∂u′

∂x

〉
, Γ11 = −2

∂〈p′u′〉
∂x

,

T11 = −∂〈u
′v′w′〉
∂y

, D11 = ν
∂2〈u′u′〉
∂2y

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

The phase-variance of the production, pressure strain, viscous dissipation, turbulent
transport and viscous diffusion streamwise budget terms are displayed alongside the
Reynolds stress components for cases L26A05 (figure 11), L26A10 (figure 12) and
L16A10 (figure 13). The pressure-diffusion term Γ11 is negligible for the streamwise
component, and hence, is excluded from this analysis. The evolution of Reynolds stress
components and streamwise budgets terms (3.2) in case L16A05 closely resembles that of
case L16A10, and so the corresponding plots for the former case have been excluded for
clarity. For these pulsating flows, we have decomposed the turbulent–turbulent transition
cycle in five distinct stages: the (I) residual decay; (II) pretransition; (III) transition;
(IV) post-transition; (V) turbulence decay stages.

In case L26A05 (figure 11), immediately following acceleration there is a short delay
before the elongation of velocity streaks which signals the beginning of a pretransition
stage. During this delay, v′

rms and −〈u′v′〉 show minimal change at y+ = 12.0 and y+ =
5.4, whilst they gradually decay farther away from the wall. Meanwhile w′

rms shows a
continuous decay throughout the domain. These same trends are also observed in varying
degrees for other intermediate and low-frequency cases (figures 12 and 13). At first glance,
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Figure 11. Phase-variance of the Reynolds stress components and streamwise energy budget terms for
case L26A05.

it is tempting to attribute this behaviour of decay to the growth of a new laminar boundary
layer, and the displacement of existing turbulent structures away from the wall. However,
this cannot be the case, since in non-periodic accelerating flows the perturbation flow
field remains independent of the base flow, and exerts no significant change in v′

rms and
w′

rms, prior to the onset of transition (Seddighi et al. 2014; He & Seddighi 2015; Guerrero
et al. 2021). Instead, this response represents a continuation of ongoing turbulence decay
which started within the preceding deceleration period, as will be further discussed later

982 A20-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1025


Turbulent–turbulent transient concept in pulsating flows

0

2

4

6

0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.5

0

1

2

3

0

1

2

3

0

0.2

0.4

0.6

0 0.5π 1.0π 1.5π 2.0π
−1.5

−1.0

−0.5

0

−1

0

1

2

−1.5

−1.0

−0.5

0

e+
11

P+
11

w
′+ rm
s

–
〈u

′ v
′ 〉+

v
′+ rm
s

u′
+ rm
s

–Π+
11

y+ = 5.4 y+ = 12.4 y+ = 53.1 y+ = 106.4

T+
11 D+

11

φ

0.5π 1.0π 1.5π 2.0π

φ

0.5π 1.0π 1.5π 2.0π

0 0.5π 1.0π 1.5π 2.0π 0.5π 1.0π 1.5π 2.0π

0.5π 1.0π 1.5π 2.0π 0.5π 1.0π 1.5π 2.0π

φ

0 0.5π 1.0π 1.5π 2.0π

φ

0 0.5π 1.0π 1.5π 2.0π

φ

I II III V I II III V
(a) (b)

(c) (d)

(e) ( f )

(g) (h) (i)

Figure 12. Phase-variance of the Reynolds stress components and streamwise energy budget terms for
case L26A10.

in this section. We refer to the period of this delay as the ‘residual decay’ stage, which is
unique to periodic acceleration in pulsating flows.

The pretransition stage is marked by a gradual growth of u′
rms. As in the case of

non-periodic accelerating flow, the growth of u′
rms stems primarily from the elongation

of high- and low-speed streamwise velocity streaks and not from the generation of
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Figure 13. Phase-variance of the Reynolds stress components and streamwise energy budget terms for
case L16A10.

new turbulence. However, this elongation does produce a mild response in the streamwise
production term P11. This occurs because the streamwise production term depends on
the Reynolds shear stress, see (3.2), which in turn relies on the strength of both the
streamwise and wall-normal turbulent motions. Since v′

rms remains effectively frozen
during pretransition, the streak elongation causes production to grow gradually in line with

982 A20-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1025


Turbulent–turbulent transient concept in pulsating flows

u′
rms. Case L26A10 (figure 12) presents an exception to this behaviour, as the near-total

decay of v′
rms close to the wall ensures that the Reynolds shear stress, and hence streamwise

production, remains suppressed despite the growth of u′
rms. In contrast to non-periodic

acceleration, the wall-normal and spanwise Reynolds stresses do not remain frozen during
pretransition. Whilst v′

rms shows minimal change at the wall, its strength continues to
diminish within the core, w′

rms falls continuously throughout the domain. Clearly, the
ongoing process of turbulence decay, and its propagation into the core, from preceding
stages (I and V), remains active. Since the pressure strain is heavily suppressed prior to
destabilisation, this decay process initially constitutes the primary mechanism governing
the evolution of v′

rms and w′
rms.

In the present study, the transition stage is the most sharply defined out of all stages in
the periodic turbulent–turbulent transition process. Its beginning is marked by the rapid
shift in the growth rate in the streamwise production term. This is followed by a rapid
growth of Π11, which indicates that the critical turbulent mechanism of redistributing
energy to the wall-normal and transverse motions becomes highly active. The elongation
of velocity streaks is no longer the primary mechanism for extracting turbulent energy
from the flow, and the evolution of P11 now represents the amplification of true turbulent
energy production. Comparison between figures 5 and 6 makes it clear that this new
energy originates from destabilisation and breakup of low-speed velocity streaks, and the
growth of highly concentrated turbulent spots. In all cases, this process causes a ‘violent
explosion’ of the Reynolds stresses at the wall, at least in the case of v′

rms, w′
rms and

−〈u′v′〉. So far, this behaviour closely mimics the turbulent–turbulent bypass transition
of a perturbation boundary layer for non-periodic acceleration (He & Seddighi 2013). In
each case, the transition stage is marked by an accelerated growth rate in u′

rms, spurred
on by the enhanced production of new turbulent energy. However, at the end of transition,
case L26A05 (figure 5) is the only case to display an overshoot of u′

rms in the buffer layer,
as is characteristic of the transition in non-periodic acceleration (Jung & Kim 2017). The
reason for this relates to the deceleration period and will be elaborated on further in the
discussion of stage V.

In non-periodic acceleration, completion of transition is followed by a final stage of
relaxation, in which near-wall turbulence settles into a state of equilibrium, whilst the
core region waits to settle through the slow process of turbulent propagation from the
wall. In all cases where the transition stage extends into the deceleration period (figure 12
and 13) there is insufficient time for such relaxation, as the growing deceleration rate
quickly ensures that turbulence decay takes over as the main transient turbulence process.
However, in case L26A05, figure 11 shows that if the transition stage ends whilst the flow
is still accelerating, then an intermediate stage emerges. By φ = 0.875π the growth rates
of P11 and Π11 are beginning to slow down. As a result, the growth rates of all Reynolds
stress components in the near-wall region fall substantially, particularly in the case of u′

rms,
v′

rms and w′
rms. These three components then settle onto a relatively flat peak around their

maximums. Meanwhile the strength of Reynolds stress components away from the wall
(y+ = 106.4) continues to grow, as new turbulence at the wall continues to propagate into
the core. Whilst this stage shares many characteristics with the ‘core relaxation’ stage of
non-periodic acceleration (Guerrero et al. 2021), its lifespan is only a fraction of the time
scales needed for propagation of enough turbulence to bring the core into equilibrium.
By φ = 1.25π, the Reynolds stress components close to the wall have already begun to
decay whilst those at y+ = 106.4 are continuing to grow. Furthermore, at y+ = 5.4 and
y+ = 12.4 the production and viscous dissipation (figure 11e,g), which reached their peak
at the end of the transition stage, are becoming gradually weaker throughout the latter

982 A20-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1025


P.S. Taylor and M. Seddighi

half of stage IV. With these differences in mind, this stage of the pulsating cycle could be
reclassified in more general terms as a ‘post-transition’ stage, in which non-periodic and
periodic acceleration share a common characteristic of a continuous growth of Reynolds
stress components in the core, and a partially shared characteristic regarding the reduced
growth rate of these stresses in the near-wall region. Their only variation lies in the
severity of growth rate reduction, which does not completely reduce to zero in periodic
acceleration.

Over a majority of the deceleration period all Reynolds stress components show a
continuous reduction in strength which slows down as the flow approaches its initial state
at φ = 2π(0). In each case, the process begins at the wall, first with u′

rms, and then,
after a short delay, continuing with v′

rms and w′
rms, which occurs simultaneously. Each

response is precipitated by the reduction of its respective primary source term (P11 and
Π11). Once again, there is a delayed response in the core, as turbulence generated during
the preceding transition or post-transition stage is initially still propagating towards the
core region. For case L26A05, turbulent shear stress begins to decay at φ = π, whilst
for the remaining three cases its decay occurs simultaneously with that of v′

rms and w′
rms.

During the pretransition stage u′
rms and −〈u′v′〉 were shown to not be reliable indicators

of true turbulence generation. With this in mind, we opt to define a starting point for the
turbulence decay stage as the point at which v′

rms and w′
rms begin to decay.

It is important to note that, in the absence of a distinct post-transition stage (figures 12
and 13), any potential overshoot in u′

rms towards the end of transition is masked by the
sudden dominance of the decay process in the turbulence decay stage. By comparison,
this overshoot is clearly visible in figure 11, such that u′

rms peaks at the wall, before briefly
settling towards a pseudoequilibrium value. This distinction is important to keep in mind,
as the overshoot of u′

rms is a typical feature of turbulent–turbulent transition, and has been
offered as a reliable criterion for its detection in non-periodic acceleration (Jung & Kim
2017). The present results confirm that this criterion can be valid for certain pulsating
flows, but should be applied selectively based upon the phase within which the transition
stage concludes.

3.4. Perturbation flow field
The turbulent–turbulent transient process is initiated by the growth and destabilisation of
a temporally developing perturbation boundary layer at the wall. He & Seddighi (2015)
showed that the perturbation boundary layer can be obtained from a decomposition of
an unsteady flow into two flow fields: a perturbation flow and a base flow. The base
flow is time-independent, and is usually taken as either the initial flow field in the case
of non-periodic flow, or the time-averaged flow field in the case of periodic flow. The
perturbation flow is time-dependant and represents the difference between the flow field
at a point in time and the base flow. In practical terms, the perturbation flow represents
the change in the flow field which results from the unsteady forcing. Although the present
investigation concerns a pulsating flow, the perturbation flow is defined as though the flow
was a non-periodic accelerating flow. The base flow is taken as the flow field at the point
of minimum bulk velocity (φ = 0) for both the acceleration and deceleration periods of
the pulsation cycle. The perturbation velocity for the present case is given as

u∧(y, t) = 〈u〉(y, t)− 〈u〉(y, 0)
〈u〉(δ, t)− 〈u〉(δ, 0)

→ 〈u〉(y, t)− 〈u〉(y, 0)
Auc (1 − cos(ωt))

. (3.3)
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Two theoretical laminar flow scenarios are considered: Stokes first problem for a
flow accelerating from rest; and Stokes second problem for an oscillating flow. At
first glance, the former scenario may be assumed to be irrelevant in the context of
pulsating flows. However, as shown, Stokes first problem provides a close representation of
laminar perturbation development during the pretransition stage of certain low-frequency,
pulsating flows. The solution to Stokes second problem for a laminar flow in a channel is
given as

uosc = AucRe

[
i

(
cosh

(
y
√

iω/ν
)

cosh
(
δ
√

iω/ν
) − 1

)
eiωt

]
. (3.4)

For an accelerating or decelerating flow with an arbitrary, time-varying acceleration rate,
the solution to Stokes first problem is given by the extended Stokes solution, (Schlichting
& Gersten 2017)

uext(y, t) =
∫ t

0

dUb(ξ)

dξ
erf
(

y
2
√
ν(t − ξ)

)
dξ, (3.5)

where ‘erf’ represents the error function of the form erf(ψ) = (2/
√

π)
∫ ψ

0 e−γ 2
dγ .

The cosh function in (3.4) can be solved through a series expansion, although the
expansion is slow to converge for all but very low frequencies (ω → 0). For very high
frequencies (ω → ∞) the cosh function can be expressed in the asymptotic formula
cosh(ψ) → 0. This simplification produces the quasilaminar solution for Stokes second
problem which is valid in the high-frequency regime of pulsating turbulent flows (Manna
et al. 2012; Papadopoulos & Vouros 2016). In its current form the error function in (3.5)
must be solved either through numerical integration or approximation. The error function
can be eliminated by integrating (3.5), however, the resulting solution becomes highly
unstable as ξ → t. Hence, in the present study, (3.5) is approximated through numerical
integration using dξ = 3.125 × 10−6(2π/ω).

By taking t = 0 at φ = 0, the perturbation velocity in each Stokes solution can be
expressed in terms of a perturbation function, ζ , as follows:

u∧(y, t) = ζ(y, t)
1 − cos(ωt)

. (3.6)

Extending (3.5) to account for consecutive acceleration and deceleration periods, and
rearranging (3.4), produces two self-similar perturbation functions for a pulsating flow,
corresponding to the quasilaminar (3.7) regime of an oscillating flow, and the non-periodic
accelerating/decelerating solution (3.8), referred to here as the extended laminar solution,

ζql = e−ηs (cos(ωt − ηs)− cos(ηs))+ 1 − cos(ωt), for (ω → ∞), (3.7)

ζext(y, t) =
{

g(y, ωt), for 0 ≤ ωt ≤ π,

g(y,π)− g(y, ωt − π), for π ≤ ωt < 2π,
(3.8)

where ηs = y/ls, and g(y, χ) represents an integral function of the form

g(y, χ) =
∫ χ

0
sin(ξ) erf

(
y

ls
√

2(χ − ξ)

)
dξ. (3.9)

The perturbation velocity for all cases of l+s = 10, l+s = 16 and l+s = 26 is displayed
in figure 14, along with the quasilaminar solution, u∧

ql, and extended laminar solution,
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u∧
ext, for each specified frequency. The corresponding velocity profiles for l+s = 5 are

not shown. Within the high-frequency regime, l+s = 5, the perturbation velocity profile
corresponds very closely with the quasilaminar solution throughout the majority of the
cycle for all values of Ab considered. This would be expected as for l+s < 10 the laminar
Stokes boundary layer remains confined within the viscous sublayer (Scotti & Piomelli
2001; Papadopoulos & Vouros 2016).

Firstly, consider the relationship between the quasilaminar and extended laminar Stokes
solutions. Initially, for all cases the quasilaminar solution strongly overshoots the extended
laminar solution close to the wall. Given that the streamwise velocity in the near-wall
region has a phase-lead relative to the centreline velocity, the value of u − u0 will
grow at a faster rate than uc − uc0 during the early acceleration phase. Sundstrom &
Cervantes (2017) found that the small value of uc − uc0 at the beginning of acceleration
would magnify errors in the calculation of u∧. From figure 14, it would appear that
these small values also magnify the effect of the phase-lead in pulsating flows. As the
flow accelerates, the contribution of the phase-lead as a percentage of u∧

ql diminishes,
and the overshoot of the quasilaminar solution gradually shrinks as its profile moves
closer to that of the extended laminar solution. The two solutions maintain excellent
agreement with each other throughout the remainder of the cycle, although, due to
the phase-lead in the quasilaminar solution, a complete collapse is never achieved. As
the flow returns to the beginning of the cycle, both solutions predict a reversal of the
perturbation velocity field at the wall. The close similarity that is maintained by (3.7)
and (3.8) during this drastic change in flow behaviour shows that the proposed similarity
between periodic and non-periodic flows is supported by the underlying theoretical
models.

Out of all values of l+s , the progression of the perturbation velocity for l+s = 26
(figure 14c) shows the strongest dependence on Ab. At the smallest amplitude of Ab = 0.1
the perturbation velocity does not collapse towards either Stokes solution. The perturbation
velocity gradually increases in the near-wall region, until it starts to overshoot the extended
laminar solution at φ = 0.5π. Similarly, the perturbation velocity starts to undershoot the
extended laminar solution away from the wall, such that the profile resembles that of
a fully turbulent perturbation flow throughout the remainder of the acceleration period
and the first half of the deceleration period. Out of the three amplitudes considered,
the progression of u∧ for Ab = 0.5 (case L26A05) shows the strongest resemblance to
the progression of an accelerating flow undergoing turbulent–turbulent transition (He
& Seddighi 2015). Following the initial overshoot, u∧ converges towards the extended
laminar solution close to the wall. By φ = 0.125π, u∧ has achieved a complete collapse
within the region of y+ ≤ 10, and by φ = 0.25π this region has grown to y+ ≤ 25. The
laminar behaviour of u∧ within the newly formed perturbation boundary layer remains
virtually unchanged between φ = 0.25π and φ = 0.5π , i.e. the pretransition stage (II),
which can be explained by the frozen state of turbulent energy generation confirmed in
figure 11( f ). After φ = 0.5π, u∧ begins to grow within the region of y+ ≤ 25, such that it
now overshoots the extended laminar solution at the wall. At the same time, the profile of
u∧ undershoots the extended laminar solution, such that the profile of u∧ resembles that
of a turbulent perturbation boundary layer (He & Seddighi 2015; Mathur et al. 2018a).
The growth of u∧ coincides with the destabilisation of the near-wall velocity streaks
(figure 5), and the rapid growth of turbulent energy production at the wall (figure 11e,f ).
By the time that the streamwise Reynolds stress overshoots its pseudoequilibrium value
at φ = 0.875π (figure 11a), the profile of u∧ has shifted to overlap with the u∧ profile
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Figure 14. Growth of the perturbation velocity with time for cases of (a) l+s = 10, (b) l+s = 16 and (c) l+s =
26: (blue) Ab = 0.1; (red) Ab = 0.5; (green) Ab = 1.0; (black solid) quasilaminar solution to Stokes second
problem; (black dotted) extended laminar solution to Stokes first problem.
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of the case Ab = 0.1. The u∧ profile for Ab = 0.5 maintains a strong agreement with
that for Ab = 0.1 throughout the post-transition stage (IV), as the remaining Reynolds
stresses, v′

rms, w′
rms and −〈u′v′〉, and the turbulent energy production P11 settle around

their respective peaks (figure 11). For the highest driving amplitude of Ab = 1.0 (case
L26A10), the profile of u∧ also converges towards the extended laminar solution, although,
whilst the overshoot in u∧ falls significantly during the pretransition stage, it does not
achieve a complete near-wall collapse as seen for Ab = 0.5. Compared with Ab = 0.5,
there are significant delays in the departure of u∧ from the extended laminar solution. The
reasons for this delay are evident when considering the near-negligible values of v′

rms and
−〈u′v′〉 at the wall prior to φ = 0.8125π (figure 12b,d). The breakdown of the near-wall
velocity streaks in the perturbation boundary layer (figures 5 and 6) depends on existing
turbulence within the channel to induce the initial perturbations. Hence, in case L26A10
the pretransition stage (II) of the cycle is prolonged, during which time the perturbation
boundary layer remains in a near-laminar state. However, following the explosive growth
of the turbulence production term P11, the u∧ profile immediately follows the evolution
seen for Ab = 0.5; to diverge from the extended laminar solution and move towards the
profile for Ab = 0.1. The fact that the transition stage (III) extends into the decelerating
period appears to not significantly disrupt the evolution of u∧ during this process.
Given that case Ab = 0.1 shows no significant distortion of its boundary layer structures
throughout the cycle (see § 3.5), its profile for u∧ can be assumed to represent the reference
turbulent solution for the perturbation velocity field at higher amplitudes. Hence, the
transition stage of the turbulent–turbulent transition process for l+s = 26 is characterised
by the transition of the perturbation velocity profile between the theoretical extended
laminar solution in (3.8) to the numerical turbulent solution for a reference low amplitude
flow.

For cases L16A05 and L16A10, the perturbation velocity initially overshoots the
extended laminar solution, similar to cases L26SA05 and L26A10. As the flow accelerates,
the profiles of u∧ settle into the general form of the extended laminar solution, but maintain
a persistent overshoot prior to the onset of transition. During this period, the production
of new turbulent energy, as indicated by −Π11 in figure 13( f ), remains relatively static
(figure 13), indicating that the perturbation flow field remains in a laminar state. The rapid
growth of −Π11 during the transition stage, φ = 0.875π and φ = 0.9375 for cases L16A05
and L16A10, respectively, correlates to a sudden growth of u∧ at the wall, as seen for
l+s = 26. Similarly, above y+ ≈ 30 u∧ starts to rapidly decay. The relative changes in u∧
following φ = 0.875π mimics the transition-based response seen for the lower frequency
cases of l+s = 26. However, given the initial overshoot in u∧, comparing this response
with the extended laminar solution does not serve as a reliable criterion for identifying the
laminar, transitional and turbulent states of the perturbation boundary layer, as it does for
l+s = 26.

Since the perturbation velocity demonstrates a self-similar distribution for pulsating
flows, it follows that the skin friction coefficient for the perturbation flow field will also
demonstrate self-similarity. He & Seddighi (2015) introduced a perturbation form of the
skin friction coefficient for accelerating flows, C∧

f , in which the perturbation shear stress is
scaled by the initial friction velocity and the final perturbation bulk velocity. An equivalent
definition of C∧

f can be derived for pulsating flow, as follows, where 2Ab represents the
perturbation bulk velocity at the end of the acceleration period, and uτ is the reference
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friction velocity for a steady state flow at Re = 6275:

C∧
f (t) = 〈τw〉(t)− 〈τw〉(0)

1
2
ρ(2Ab)uτ

. (3.10)

The solution for C∧
f in Stokes second problem for ω → ∞ is obtained directly from the

derivation of (3.7), as follows:

1
ρ
τ∧

ql=ν
[

Ab
d
dy
(ζql)

]
y=0

= Ab
ν

ls
(1 + sin(ωt)− cos(ωt)) . (3.11)

The quasisteady solution of C∧
f is taken from the second-order approximation in Tardu

et al. (1994):
1
ρ
τqs = u2

τ

(
1 − 7

4
Auc cos(ωt)+ 21

32
A2

uc cos2(ωt)
)
. (3.12)

The derivation of the extended laminar solution for Stokes first problem, (3.5) and (3.9), is
unstable and relies heavily on the precision of the numerical integration of g(y, χ), due to
the vanishing of the denominator as ξ → χ . Therefore, the solution of C∧

f is approximated
by assuming a linear gradient of u∧ between the static wall, and an arbitrary point close to
the wall:

1
ρ
τ∧

ext= ν
ζext(y, t)

y

∣∣∣∣
y→0

. (3.13)

Figure 15 displays the transient behaviour of the perturbation skin friction coefficient
during the pulsation cycle. For cases L16A05, L16A10, L26A05 and L26A10 the distinct
stages of the transient–transient process, which are identified in § 3.3, are indicated in
their respective plots. Each value of l+s is compared with the quasilaminar (Stokes)
solution, C∧

f (ql), extended laminar (Stokes) solution, C∧
f (ext), and the quasisteady (turbulent)

approximation, C∧
f (qs). In all cases, there is a notable similarity between the trend of

the quasilaminar and extended laminar solutions for C∧
f in terms of both the phase

of the profile, and the relative amplitudes between their peaks. The extended laminar
solution underpredicts the quasilaminar solution throughout the cycle. However, the
relative magnitude of the discrepancy between these two solutions at different points in
the cycle remains consistent for varying values of the Stokes length. The magnitude of
|C∧

f (ql) − C∧
f (ext)| correlates with the value of C∧

f (ql), such that |C∧
f (ql) − C∧

f (ext)| grows as the
flow accelerates, reaching a peak at the same point at which C∧

f (ql) reaches its maximum.
Beyond this point |C∧

f (ql) − C∧
f (ext)| shrinks and the profiles converge, such that there is

good agreement between the two solutions for a majority of the deceleration period.
The high-frequency regime l+s = 5 (not shown) shows a strong agreement with the

quasilaminar solution, with the amplitude exerting no influence on C∧
f . This agreement is

also observed for l+s = 10 (figure 15a–c), particularly at the highest amplitude of Ab = 1.0;
however, as the amplitude is reduced, C∧

f starts to undershoot C∧
f (ql) as C∧

f approaches
its peak. This undershoot at l+s ≈ 10 is well known, with previous studies consistently
observing a ratio between the shear stress amplitude of the oscillating flow field to that
of the high-frequency Stokes solution of less than 1 (Weng et al. 2016; Sundstrom &
Cervantes 2018a). However, the observation that this undershoot exists independently of
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Figure 15. Phase-variance of the skin friction coefficient for the perturbation field C∧
f , during the pulsation

cycle: (a) L10A01; (b) L10A05; (c) L10A10; (d) L16A01; (e) L16A05; ( f ) L16A10; (g) L26A01; (h) L26A05;
(i) L26A10. The individual stages of the turbulent–turbulent transition are shown where applicable: residual
decay (I); pretransition (II); transition (III); post-transition (IV); turbulence decay (V).

the driving amplitude is not universal to the whole current-dominated regime, particularly
towards its upper limit, as shown in figure 15(c).

For l+s = 16 and l+s = 26, the behaviour of C∧
f during the cycle is heavily influenced by

the pulsation amplitude. At the lowest amplitude of Ab = 0.1 (figure 15d,g), C∧
f follows

a simple sinusoidal temporal profile, which approaches the quasisteady approximation
as the frequency is reduced (l+s = 16 → 26). For cases L16A05, L16A10, L26A05 and
L26A10, the behaviour of C∧

f varies considerably between the pretransition (II), transition
(III) and turbulence decay (V) stages identified in § 3.3. Firstly, it must be noted that in
all four cases the value of C∧

f does not undershoot the extended laminar solution at any
point in the cycle. Furthermore, C∧

f does not overshoot the quasilaminar solution prior to
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entering the transition stage (III). Hence, it would appear that in a pulsating flow exhibiting
a laminar-like response, C∧

f remains confined to a region which is bounded by these two
laminar solutions. In cases L26A05 and L26A10, the acceleration of u∧ at the wall during
the transition stage is reflected in the growth rate of C∧

f . During this stage, C∧
f overshoots

the quasilaminar solution, and rises towards the quasisteady approximation. This rapid
growth of C∧

f towards the quasisteady approximation is consistent with the observations
of Sundstrom & Cervantes (2018c) in experiments of pulsating pipe flow under similar
conditions to case L26A05. However, the present results further show that delaying the
transition stage until late in the accelerating period, as seen in case L26A10 (figure 15i),
does not seem to have a significant impact on the response of C∧

f . The delayed growth
of C∧

f simply leads to the intersection with the quasisteady approximation taking place at
a later point in the cycle. By comparing figures 15(h) and 15(i) with figures 11 and 12,
respectively, it can be seen that the shift of C∧

f is reflective of the rapid generation of new
turbulent energy at the wall, which can persist beyond the end of the accelerating period.
The transition stages of cases L16A05 and L16A10 (figure 15e,f ) are also characterised
by a departure of C∧

f from the bounded laminar region, and its convergence towards the
quasisteady approximation. However, unlike cases L26A05 and L26A10, this departure
is not the result of an accelerated growth of C∧

f , but instead a reduction in its rate of
decay. Despite the rapid growth of turbulent energy generation (figure 13f ), C∧

f effectively
plateaus. Eventually it reaches close proximity to the quasisteady approximation, after
which point, the rate of decay in C∧

f recovers, such that C∧
f temporally follows the trend of

the quasisteady approximation. Comparing figures 15( f ) and 13(d,f ) shows that the sudden
change in C∧

f correlates closely to the point at which the Reynolds stress reaches its peak,
which is subsequently followed by the rapid reduction of turbulent energy generation.
Whilst the evolution of C∧

f during the transition stage may vary for l+s = 16 and l+s = 26,
the underlying mechanisms governing its evolution are consistent. It can be concluded
that, as for non-periodic accelerating flow (He & Seddighi 2015; Sundstrom & Cervantes
2017, 2018a), the evolution of C∧

f provides a strong criterion for identifying the presence
of turbulent–turbulent behaviour in pulsating flows.

3.5. Momentum balance and the inertial regime
The temporal rate of change in momentum is governed by three forces: (i) VF, represented
by the wall-normal gradient of the local shear stress ∂2〈u〉+/∂y+2; (ii) TI, represented
by the wall-normal gradient of Reynolds shear stress −∂〈u′v′〉+/∂y+; (iii) pressure
force (PF), represented by the streamwise pressure gradient −〈∂p/∂x〉/ρ. Together they
form the mean momentum balance,

∂〈u〉+
∂t+

= −∂〈p〉+
∂x+ + ∂2〈u〉+

∂y+2 − ∂〈u′v′〉+
∂y+ . (3.14)

A fully developed channel flow can be divided into four distinct layers, each of which
is characterised by a specific distribution of the forces in (3.14) (Wei et al. 2005; Cheng
et al. 2020). Inside the classical viscous sublayer (y+ ≤ 5) there exists a secondary ‘inner
viscous balance’ layer (Layer 1) within which VF and the PF are in balance, and dominate
over TI. Within the ‘stress-gradient balance’ layer (Layer 2) VF and TI are balanced but
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with opposite signs such that they effectively counteract each other, whilst PF is close to
zero. The ‘meso viscous balance’ layer (Layer 3) contains the point at which TI crosses the
zero axis, such that TI transitions from a source term to a sink term. The final layer is the
inertial balance layer (Layer 4) where TI and PF are balanced whilst VF vanishes to zero.
Note that this interpretation represents a steady-state channel flow where ∂〈u〉/∂t ≈ 0,
whilst in the present case |∂〈u〉/∂t| > 0 due to the driving force.

Figures 16 and 17 show, respectively, the temporal variation of VF and TI during
the pulsation cycle for all cases in table 1. In figure 17, only positive values of TI are
shown. Our interest in exploring (3.14) for analysing pulsating flows comes from three
considerations. Firstly, the emergence a four-layer structure constitutes a robust criterion
for assessing the progress of laminar–turbulent (Ebadi et al. 2019) or turbulent–turbulent
(Guerrero et al. 2021) transition in unsteady flows. Secondly, TI is assumed to be the
primary momentum source which supplies the overshoot in the perturbation velocity field
(Sundstrom & Cervantes 2017) (see § 3.4). Finally, for a short period of time immediately
after non-periodic acceleration or deceleration, the shear stress and VF constitute the only
significant dynamic transient response, whilst the turbulent field remains frozen (Guerrero
et al. 2021, 2023). This final point is critical for defining the evolution of high-frequency
pulsating flows in the framework of the turbulent–turbulent transient concept, as discussed
below.

We first consider the evolution of VF for the highest pulsating frequency, l+s = 5. For
Ab ≥ 0.5 (figure 16b,c), the transient response is dominated by a pair of alternating viscous
layers which form at the wall and expand towards the core. One layer grows as the flow
begins to accelerate, and contains a negative VF which acts as an amplified momentum
sink. Within the second layer, which grows as the flow beings to decelerate, the sign of
the amplified VF is reversed, such that it now serves as a momentum source. The purpose
of each layer is to maintain the no-slip condition at the wall by counteracting the rapid
change of momentum in the flow brought about by the driving force. Taken in isolation,
these individual sink and source layers closely mimic the flow response in the inertial
stages of non-periodic acceleration and deceleration, respectively (Guerrero et al. 2021,
2023). For clarity, we refer to the individual stages in the acceleration and deceleration
periods as the ‘inertial sink’ and ‘inertial source’ stages, respectively. In non-periodic
acceleration, the ‘inertial sink’ stage serves as a precursor to the pretransition stage.
However, in case L05A05 (figure 16b) and case L05A10 (figure 16c), the pretransition
stage is never reached, as this is replaced by the ‘inertial sink’ stage. Since these stages
occur in immediate proximity, the existing viscous layer is forced away from the wall as
the new viscous layer forms. The detached layer is then pushed into the core of the flow
until it disperses. Whilst the presence of the existing layer does not appear to hamper the
growth of the new source or sink layer, it does lead to some distortion of TI (figure 17b,c),
which typically remains frozen during the inertial stage of non-periodic flows (Guerrero
et al. 2021, 2023). During the inertial source stage, the turbulent inertia shows significant
growth during the deceleration period within a region which slowly moves away from the
wall. This overshoot in TI occurs when the boundary between the developing momentum
source layer and the detached momentum sink layer passes through the buffer layer of the
mean flow field. This suggests that the temporal changes to TI in high-frequency pulsating
flow stems primarily from the presence of the detached momentum source layer which is
not present in non-periodic unsteady flows.

From figure 16 it can be seen that the strength of VF in the viscous layers becomes
weaker with decreasing amplitude and increasing Stokes length. More specifically,
figure 16 suggests that the existence of these viscous source/sink layers is dependant on
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Figure 16. Phase-variance of the wall-normal distribution of the phase-averaged VF for all cases: (a) L05A01;
(b) L05A05; (c) L05A10; (d) L10A01; (e) L10A05; ( f ) L10A10; (g) L16A01; (h) L16A05; (i) L16A10;
( j) L26A01; (k) L26A05; (l) L26A10.

the acceleration and deceleration rates of the flow. Guerrero et al. (2021) observed the
existence of an inertial stage for transient forcing periods of up to �t+ ≈ 208 (rescaled
based on Reτ in the present study). For l+s = 5, the equivalent forcing period of similar
magnitude is �t+ = 39, which explains the characteristic inertial behaviour even for low
amplitudes. However, since the acceleration rate is not independent of the time period
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Figure 17. Phase-variance of the wall-normal distribution of the phase-averaged TI for all cases: (a) L05A01;
(b) L05A05; (c) L05A10; (d) L10A01; (e) L10A05; ( f ) L10A10; (g) L16A01; (h) L16A05; (i) L16A10;
( j) L26A01; (k) L26A05; (l) L26A10.

of the cycle, figure 16 offers a further suggestion that distinct inertial stages cannot exist
within the same periodic cycle as the pretransition and transition stages.

For turbulent–turbulent pulsating flows, TI plays a critical role in the evolution the
perturbation boundary layer during the transition stage. To explore this role, we first
consider the momentum balance evolution of case L26A05 (figures 16k, 17k and 18k).

982 A20-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1025


Turbulent–turbulent transient concept in pulsating flows

Between φ = 0.5π and φ = 0.875, there is a rapid growth in TI at the wall, which
coincides with the onset of the transition stage. Referring back to figure 14(c), the impact
of this source is clear, as φ = 0.5π marks the point at which u∧ first begins to overshoot
the theoretical extended laminar solution at the wall. This growth of TI is counteracted
by a simultaneous growth of VF, which acts as an amplified momentum sink. During
the transition stage, TI grows at a faster rate than VF, which leads to the emergence of
the ‘stress-gradient balance layer’ (figure 18k). By the end of the transition stage, the
zero crossing of TI has slowed its decent and settled at a distance of y+ ≈ 24 from the
wall. During the post-transition stage, the zero crossing shows only minimal changes in its
wall-normal location, whilst the widths of the ‘stress-gradient balance’ and ‘meso viscous
balance’ layers remain fairly consistent. Within this short window of time, the near-wall
boundary layer structure is indicative of fully developed turbulent channel flow (Wei et al.
2005), which is also consistent with the core-relaxation stage of non-periodic acceleration
(Guerrero et al. 2021), upon which the present post-transition stage is derived. The VF/TI
balance may provide robust criteria for detecting the emergence of the post-transition stage
in pulsating flows. Furthermore, figure 18( j) shows that in case L26A01, the low-amplitude
pulsations do not significantly compromise the four layer structure of the boundary layer,
which supports the hypothesis in § 3.4, that case L26A01 may serve as a reference solution
of a fully turbulent perturbation velocity field for the higher amplitude cases of l+s = 26. It
is interesting then that the emergence of the four layer structure in case L26A05 correlates
to the complete collapse of u∧ (figure 14c) onto the corresponding profile for case L26A01.

The primary role of TI during the transition stage remains unchanged, regardless of
whether this stage occurs predominately in the acceleration or deceleration period. Cases
L16A05 (figure 17h), L16A10 (figure 17i), L26A05 (figure 17k) and L26A10 (figure 17l)
each show a rapid growth in TI which coincides with the grows of u∧ in the near-wall
region (see figure 14b,c). In the absence of a post-transition stage, the life-span of
this amplified momentum source is reduced, such that the magnitude of ∂TI/∂y at the
wall begins to fall immediately after it reaches its maximum. A comparison of these
four cases suggests that (∂TI/∂y)max at the wall grows with the amplitude, and shrinks
with increasing frequency. From § 3.3, this can be explained as (∂TI/∂y)max having a
dependence on the strength of −〈u′v′〉 within the perturbation boundary layer immediately
prior to the onset of transition. At the commencement of the turbulence decay stage (V)
the zero crossing of TI rapidly rises away from the wall, as the decay of −〈u′v′〉 shifts
the maximum towards the core of the flow. As it rises, the ‘stress-gradient balance’ layer
rapidly shrinks until it vanishes, and the remaining layers either disintegrate or disperse
into the core of the flow.

4. Conclusions

The present study has investigated the flow behaviour in pulsating flows based on the
turbulent–turbulent transient concept of non-periodic unsteady flows. Direct numerical
simulations have been performed for current-dominated pulsating channel flow at Re =
6275, over a wide range of frequencies, 0.003 ≤ ω+ ≤ 0.08, and amplitudes, Ab =
0.1, 0.5, 1.0. Previous interpretations have considered pulsating flow in terms of an
oscillating boundary layer, which imposes an oscillatory variation on the turbulence flow
field within a specified perturbation distance from the wall. However, this model begins
to break down outside of the high-frequency regime. In the present model, the pulsating
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Figure 18. Phase-variance of the wall-normal distribution of the ratio of VF and TI for all cases: (a) L05A01;
(b) L05A05; (c) L05A10; (d) L10A01; (e) L10A05; ( f ) L10A10; (g) L16A01; (h) L16A05; (i) L16A10;
( j) L26A01; (k) L26A05; (l) L26A10.

flow is reframed in terms of an accelerating flow starting at a minimum Reynolds number
that is where φ = 0, and undergoing consecutive periods of acceleration and deceleration,
which are comparable to the transient periods of individual non-periodic, accelerating and
decelerating flows. A pulsation amplitude of Ab = 0.1 is too low to excite sufficient growth
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or decay in the turbulent field to exhibit multistage turbulent–turbulent behaviour. Hence,
the observations made here only been confirmed for cases of Ab ≥ 0.5.

The residual decay stage (I) is the first stage to occur at the beginning of low-
and intermediate-frequency pulsating cycles. It constitutes the initial response of
the perturbation flow field immediately following acceleration relative to the base
flow field (φ = 0), which is taken as the minimum bulk velocity of the cycle:
(Ub)φ=0 = Ub(1 − Ab). The mechanisms of turbulent production and redistribution are
frozen. However, the process of decay from the preceding deceleration period remains
active. The wall-normal and shear Reynolds stress components become gradually weaker
away from the wall, whilst the spanwise component continues to decay throughout the
domain. It is important to note that the necessity of defining a distinct residual decay
stage is dependant on the relative position of φ = 0 in the cycle. In the turbulent–turbulent
transient concept, where φ = 0 lies at the point of minimum bulk velocity, the residual
decay stage is distinguished by the formation of a new perturbation boundary layer, the
growth of which is taken to originate at φ = 0. When the position of φ = 0 is shifted to
an arbitrary point in the cycle, this stage could justifiably be merged with the final stage of
the preceding cycle, in order to simplify the respective model.

As for non-periodic accelerating flows, the pretransition stage (II) of pulsating flows is
characterised by the stretching and elongation of high- and low-speed streamwise velocity
streaks, whilst the production and redistribution of new turbulent energy remains relatively
frozen. The perturbation flow field follows a self-similar laminar distribution, and remains
confined within a region bounded by the periodic quasilaminar Stokes solution and
non-periodic extended laminar Stokes solution. Reynolds stress components farther away
from the wall continue to fall, as the propagation of old turbulence from the preceding
residual decay and turbulence decay stages remains active, and serves as the dominant
transient turbulent process during this stage.

The transition stage (III) of a pulsating flow follows a very similar development to
the transition stage in a non-periodic accelerating flow. The elongated velocity streaks
in the perturbation boundary layer begin to destabilise, triggering a bypass-like transition
process. Turbulent spots begin to form around low-speed streamwise velocity streaks. The
spots grow and merge together until the near-wall region is populated by new vortical
structures. In pulsating flows, the transition stage is not limited to the acceleration period
of the cycle. Turbulent spots which form late in the acceleration period are able to continue
growing and merging even as the flow starts to decelerate. During pulsation, the frozen
turbulence phenomenon, in which the effects of the deceleration on the turbulence flow
field are initially delayed, extends to include ongoing turbulence transient processes, such
as bypass transition, in addition to the existing turbulence in the flow. During the transition
stage of the low-frequency regime, Cf grows rapidly such that it collapses towards the
quasisteady solution, whilst for the intermediate frequency regime Cf plateaus.

The post-transition stage (IV) only occurs when the transition stage concludes before
the end of the acceleration period. The Reynolds stress components settle around a
pseudoequilibrium value in the near-wall region, whilst there is a continuing growth of
these components in the core of the flow, as turbulence gradually propagates away from
the wall. The flow remains in the post-transition stage during the early deceleration period,
due to the delay in the turbulence response to the deceleration.

The turbulence decay stage (V) is characterised by a gradual decay of the Reynolds
stresses, as the streamwise velocity streaks break up and the vortical structures diminish
throughout the domain. The skin friction of the perturbation flow reduces in accordance
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with the theoretical solution for a quasisteady flow field. If the laminar–turbulent transition
process concludes within the first half of the deceleration period, the flow immediately
moves from the transition regime into the turbulence decay stage. In such cases, any
potential overshoot of the maximum value of the streamwise Reynolds stress, which serves
as a strong indicator of the occurrence of turbulent–turbulent bypass transition, is masked,
as no time is given for the turbulent statistics to settle towards any pseudoequilibrium
value.

In the high-frequency regime (l+s = 5), the vortical structures, streamlines and turbulent
statistics all show a very weak response throughout the cycle. However, significant
dynamic behaviour has been identified for the VF and TI terms of the mean momentum
balance. During the acceleration period, a new layer of highly amplified VF grows at the
wall, and acts as a momentum sink, in order to maintain the non-slip condition at the wall.
Similarly, a second layer grows during the deceleration period, though this time with VF
acting as a momentum source. The growth of such layers mimics the initial response,
or inertial stages, observed in non-periodic acceleration and deceleration, which are
precursors for either the onset of bypass transition or the suppression of turbulence in the
flow. However, the acceleration period in the current high-frequency regime is insufficient
for the perturbation boundary to interact with the buffer layer. The flow alternates between
two consecutive stages, referred to here as the inertial sink stage during the acceleration
period and the inertial source stage during the deceleration period. With this in mind, the
relative inactivity of the turbulence in the high-frequency regime can be attributed to the
failure of the flow to leave the inertial sink regime before the end of the acceleration period.
One critical difference in the inertial stages of periodic flows, compared with non-periodic
flows, is the existence an amplified VF layer from the preceding stage, which detaches from
the wall and moves into the flow as the new layer grows. Therefore, TI is not completely
inert, as its strength and distribution is influenced by the presence of the boundary between
two highly viscous but opposing regions passing through the buffer layer.
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Appendix

Figure 19 presents the streamwise and spanwise two-point correlations of the
streamwise velocity component at a wall-normal location of y+ = 12.4 for each of the
turbulent–turbulent transient cases: L16A05, L16A10, L26A05 and L26A10. The domain
length is L+

x = 9046 for case L26A10, and L+
x = 4523 for all other cases. In all cases,

the domain width is L+
z = 2261.5. In each case, R11x falls below zero within a streamwise
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Figure 19. Two-point streamwise (Rx11) and spanwise (Rz11) correlations of the streamwise velocity
component at y+ = 12.4. Phase-averaged results for cases (a,b) L16A05, (c,d) L16A10, (e,f ) L26A05 and
(g,h) L26A10.

distance of x+
1 < 0.5L+

x throughout the cycle. Furthermore, R11z falls to zero within a
spanwise distance of z+

1 < 0.5L+
z throughout the cycle. Figure 19 indicates that the width

and length of each domain is sufficient to capture at least two streak lengths in the
streamwise direction, and more than two streak widths in the spanwise direction, including
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Figure 20. Wall-normal distribution of the ratio of the (a) average cell width Δ and (b–d) directional cell
widths, �y, �x and �z, to the Kolmogorov length scale Δk, for case L26A10.

shortly after the point of transition, when the elongated streaks reach their maximum
length.

To assess the suitability of the mesh to adequately capture the Kolmogorov microscale,
we adopt the criterion of Grotzbach (1983) and Eggels et al. (1994), which recommends
that the ratio of the average cell width, Δ, and the Kolmogorov length scale, Δk,
should not exceed π. The Kolmogorov length scale is approximated as Δk = (ν3/ε)0.25,
where ε represents the viscous dissipation rate, and the average cell width is taken as
Δ = 3

√
�x�y�z. Figure 20 displays the phase-variance of these profiles for case L26A10,

which generates the smallest length scales in the present study. Throughout the majority of
the cycle, Δ remains below 3Δk. During transition, (φ ≈ 5/4π) Δ briefly exceeds 3.4Δk,
though this region of Δ > πΔk is confined close to the wall within the viscous sublayer
(figure 20a). In figure 20(b) the wall-normal cell width, �y, remains smaller than Δk in a
region close to the wall, including during the transition stage.

Figure 21 displays the one-dimensional streamwise velocity spectra at discrete phases
in the near-wall region of case L26A10. Once again, this case is selected as a
representation of worst-case scenario dictating the requirements of the spatial resolution
in the present study. The energy spectra is represented as 〈u′u′〉 = ∫∞

kx=0 E11x(kx) dkx

and 〈u′u′〉 = ∫∞
kz=0 E11z(kz) dkz in the streamwise and spanwise directions, respectively.

Throughout the majority of the cycle, the spectra profiles display a smooth and continuous
variation over the range of resolved wavelengths: kx and kz. As the bulk velocity reaches its
maximum at φ = π, there is a strong amplification of energy, E11z, amongst the smallest
length scales. However, the absence of an upsurge of energy at the cutoff wavelength
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Figure 21. Streamwise and spanwise energy spectra of the turbulent streamwise velocity component at
y+ = 12.4 for case L26A10.

((kz)max) is indicative that the cutoff wavelength imposed by the present spatial resolution
does not significantly impede the dissipation of energy at the smallest length scales (Manna
& Vacca 2008; Kochkov et al. 2021).
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