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Abstract. Messages for ETI written in a terrestrial language admit-
ting linear notation, should be supplied with extra-linguistic annotations
— also linearized in some way — as an aid for interpretation by recipients.
In several papers the first author has advocated the use at the second
level of an abstract system (a new Lingua Cosmica, still under develop-
ment), based on constructive logic — with a minimal set of primitives.
Expressions at the meta level explain the logic contents of messages.

The interaction between any LINCOS and text may suffice for in-
terpretation of both — provided the messages and annotations are of con-
siderable size. Finding a measure for the sizes involved is, however, a
non-trivial problem. As a result, one is interested in methods for inter-
preting a LINCOS without recourse to natural languages. The present
paper is concerned with the problem of interpretation of the new system
within itself. For that purpose, interpretation of parts of it and (complete)
propositional logic in terms of each other is considered (commutativity).
This leads to self-interpretation as all semantic terms reside in the closed
context of the system.

1. Introduction

A message, written in some unknown symbolism, supposedly meaningful, but
exempt from direct clues for its interpretation, presents formidable challenges:
what language is behind it, what are the syntactic and semantic characteristics of
it? An example of the kind of intricacies occurring in this respect is provided by
the long standing problem of deciphering Linear A — even today not completely
solved. The instance that there is no (natural) language behind a given message
is even more complex, and can only be resolved if the message contains indirect
clues (like references to e.g., pictograms) or, alternatively, elements for self-
interpretation.

For the task of constructing interstellar messages for extraterrestrial intelli-
gence, the problem can partly be circumvented by using large-size texts in some
natural language for formulating the messages themselves, supplemented with a
descriptive text about the contents — thus supplying at another level in part the
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semantics of messages. However, at that level the same problem might show up.
It is not @ prior: evident that a recipient will be able to understand the conven-
tions and semantics of the system providing the annotations. It would therefore
clearly be advantageous to employ a system admitting self-interpretation. The
new Lingua Cosmica system, under development by the first author, is capable
of doing this. This is because it is based on concepts of type theory, in the form
originally proposed and developed by P. Martin-Lof from Sweden (based on con-
cepts from intuitionistic logic formulated by L. Brouwer and A. Heyting in the
Netherlands) and later extensively implemented in the French Coq Project at
INRIA.

In the present contribution we explain how to use LINCOS for interpretation
of expressions in the simple case of propositional calculus, more in particular the
rules of inference (we discuss a complete set). As an illustrative example consider
the elimination rule for the logic conjunction, saying that if the conjunction of
X and Y is the case (the premise), then X is the case. The (compound) premise,
considered to be a type, is interpreted by giving a resident of it. The conclusion
that X is the case, is interpreted by constructing a resident of X. That YV
is also the case under the mentioned premise, is interpreted by constructing a
resident of Y. Along these lines all rules of inference are given interpretations
in the closed context of LINCOS, i.e., the system of propositional logic is not
only embedded in LINCOS but also interpreted in it. Thus self- interpretation
is achieved. A brief description of the theoretical background for this view is
contained in the paper.

2. Theory

In the present paper we consider the problem of interpretation for the classical
propositional calculus. This calculus consists of logical expressions, built of
elementary propositions, expressed by constants A, B, C,... combined with the
binary connectives ‘and’ (A), ‘or’ (V), ‘implication’ (—), and the unary ‘negation’
(~), for which the usual binding rules apply. Expressions may contain sub
expressions, enclosed in parenthesis. An argument, starting from suppositions
leading to a conclusion, is valid if deduction rules have been used. These rules
are axiomatic by nature, i.e., their validity within the system is assumed. They
can be given an interpretation outside the system, e.g., by using truth tables.
A set of deduction rules should be consistent, so that no contradictions can
be derived, and complete, i.e., that every valid expression in the calculus can
be derived. In order to achieve self-interpretation, this calculus including a
complete set of deduction rules can be embedded in LINCOS, itself based on
the implementation of constructive logic in the French Coq system. The paper
demonstrates how this is done, and how this road leads to self-interpretation of
the cosmic language.

3. Deduction Rules
By way of first example suppose that it is known that A and B is the case.

By the deduction rule ‘and elimination’ it can then be concluded that A is the
case. It can also be concluded that B is the case. Written formally AA B - A,
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and A A B+ B. We shall begin by formulating this rule in LINCOS, explaining
constructive aspects as they appear along the way.

There are some primitives in the language. Some basic ones are summarised
as follows. The set of propositions is Prop and that A is a constant (or elemen-
tary) proposition is expressed by the declaration CONSTANT A : Prop. A is
then a resident of Prop (or is in Prop). Compound propositions are obtained by
using binary and unary connectives in the usual way. That A is the case is ex-
pressed by CONSTANT a : A, i.e., declaring that A has a resident. In the same
way compound expressions can be supplied with residents, e.g., CONSTANT =z
: AN B. The language admits mappings. Supposing that A and B are residents
of Prop. Then A — B, also in Prop, couples residents of A with those of B. If
y:A— B,a: A, then y applied to a is in B, written (ya) : B.

Consider now above deduction rules. That A and B exist is expressed by a
declaration. That A and B is the case is expressed by the existence of a resident
of the expression A A B.

CONSTANT A, B : Prop.
CONSTANT x: A AB.

Constructive logic is able to express the validity of propositional deduction
rules. For the above deduction rules a resident of A and one of B needs to be
constructed using the information that z is a resident of the compound propo-
sition A A B. So z must be eliminated. The constructions follow in a moment.
First consider the element Elim_and, defined (or declared) as a hypothesis

HYPOTHESIS Elim_and : (ALL X,Y,P : Prop)(X - Y = P) » (XAY) = P.

This is clearly not a propositional constant — it is an expression in LINCOS,
obeying the following

(Elim.and ABA): (A —>B - A) > (AAB) = A.
(Elim_.and ABB): (A > B » B) > (AAB) - B.

Suppose that residents, z; : A - B — A, and o : A — B — B, which do
not exist globally (since they have not been declared) can be constructed. Then

(Elim_and ABAx;): (A AB) - A.
(Elim_and ABBx;) : (A AB) — B.

and, because z : AN B

(Elim_and ABAXx;x) : A.
(Elim_and ABBx3x) : B.

so that an element of A and one of B is constructed, precisely as required.

In order to construct the mentioned objects z; : A - B — A, and z» :
A — B — B one more instrument from constructive logic is needed, the so-
called LAMBDA abstraction for creating types. An example to show how this
works is as follows: let b: B, then [LAMBDA h : A]b: A — B. So, generalising
to two arguments

[LAMBDA hl: A,h2:Blhl1: A - B — A.
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[LAMBDA hl:A,h2:BJh2: A - B — B.

Summa summarum (‘and elimination’ rule)

HYPOTHESIS Elim.and : (ALL X,Y,P : Prop)(X - Y -+ P) = (XAY) = P.

CONSTANT A, B : Prop.
CONSTANT a: A AB.
Elim and ABA[LAMBDA hl: A h2:Blhla): A (interpretation of AAB F A).
Elim_and ABB[LAMBDA hl: A /h2:B]h2a): B (interpretation of AAB F B).
Consider next the deduction rule ‘or introduction’, written A+ AA B,or B
A A B. Two hypotheses are needed for the verification. The complete result is

( “or introduction” rule)

HYPOTHESIS Introorl: (AL X,Y : Prop)X - X VY.

HYPOTHESIS Introor2: (ALL X,Y : Prop)Y - X VY.
CONSTANT A,B: Prop.
CONSTANT a: A. CONSTANT b: B.
(Introorl ABa): AVB (interpretation of A+ AV B).
(Intro.or2 ABb): AVB (interpretation of B+ AV B).

The deduction rule “and introduction” written A,B - A A B, cannot be
verified in LINCOS, because there is no means for constructing a resident of
A A B, given residents of A and B. So this rule is added as a hypothesis

(“and introduction” rule)

HYPOTHESIS Intro.and : (ALL X,Y : Prop)(X AY).

CONSTANT A,B: Prop.
(Intro_.and AB): AAB (interpretation of A, B+ A A B).

An important rule is Modus Ponens (MP), which expresses: if A is the case
and if A implies B, then B is the case, written A)A — B+ B.

CONSTANT A,B: Prop.
CONSTANT a: A. CONSTANT x: A — B.
(xa):B (interpretation of A, A — B+ B).

Modus Tollens (MT) expresses: if B is not the case and if A implies B,
then A in not the case, written ~ B,A —+ B + ~ A. Can this be expressed
constructively? The following base (also called environment) must be used:

CONSTANT A,B: Prop.
CONSTANT p: ~ B. (expressing that B is not the case)
CONSTANT x: A —» B.

In classic propositional logic MT is justified as follows. Suppose that a : A
(A is the case), then by MP B is the case because (xa) : B. But B is not
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the case, so we have here a contradiction, and the supposition a : A must be
discarded and as a consequence A is not the case. This argument cannot be
used in constructive logic because there is no objection against p :~ B as well
as ¢ : B for some ¢q. Supplying A with a resident does not help, so in above base
a member of ~ A cannot be constructed. But Modus Tollens can be entered as
a hypothesis:

HYPOTHESIS MT : (ALL X,Y : Prop)(~ Y = (X - Y)) = ~ X.

4. Self-interpretation

The purpose of a formal language L, i.e., a symbolic system with (syntactical)
composition rules, is conveying information. So basic units of L as words and
sentences admit interpretation. Consider the case that L is a terrestrial, natural
language. Formalising (or modelling) the syntax of natural languages has been
done on the basis of rewriting rules (e.g., in Chomskyan generative grammars)
and is known as a rather complex undertaking in many ways. The difficulties
of defining the semantics of a natural language are considered in linguistics as
yet to be insurmountable. There is, on the other hand, the remarkable fact that
humans can learn to handle a natural language reasonably well in a relatively
short period of time (dependent on their ages). The predominant method for
achieving this seems to be the use of examples in the real world explained in
the language by teachers. Assigning meaning to terms (say sentences) in a lan-
guage is in practise done at first by referring to concrete objects and relations
in reality, while abstraction is entered in later stages in the learning process.
Once a language is mastered, a human can appreciate how a language can be
used to explain itself, say in textbooks, possibly with the help of more or less so-
phisticated formalisations. A kind of (partial) self-interpretation becomes then
operational in this setting. Using such material and/or by listening to accom-
plished orators and/or by reading, humans using a kind of bootstrapping can
increase their linguistic abilities.

Lingua Cosmica is a symbolic system as well with its own syntax and seman-
tics. It is meant to be used at a secondary level annotating messages written in a
natural language — it is therefore a meta language. How do we explain to an ETI
recipient the syntax and semantics of LINC(OS? The syntax is relatively simple.
Technically speaking, membership, functional application, lambda abstraction,
definitions, hypothesis and facts are all the ingredients. Given a sufficiently rich
sample of expressions, the rules of composition of well-formed terms should not
present much of a problem. On the other hand there is no immediate evidently
useful set of examples (common ground) between humans and ETIL.

The use of other symbolic logics, themselves outside LINCOS, seems to
be useful for explaining the syntax, but especially the semantics of the lan-
guage, subject to restrictions. The authors consider in the present contribution
a restricted form of self-interpretation, i.e., LINCOS is explained in terms of
LINCOS. The examples used are not from reality but occur in the realm of
one of the simplest forms of symbolic logic: propositional calculus, itself outside
LINCOS. Rules of propositional logic (in fact, a set of deduction rules) have
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been embedded in the system in the present paper. Each rule is first given a di-
rect interpretation and then transformed to a verifiable fact. The (constructive)
verifications of facts as propositional expressions are identical to their direct in-
terpretations. In other words, deduction rules explain their counterparts, the
facts, and vice versa. So deduction rules and the derived provable facts are two
sides of the same coin.

Fortunately this is not the only way of achieving the goal. Self-interpretation
can also be based on examples from predicate logic, and future work will show
how this can be done. Earlier work by the first author focused on the idea that
interaction between texts in a natural language and LINCOS can be used to ex-
plain LINCOS (and in fact perhaps even both, also by a kind of bootstrapping!).
Another idea is to use music for the purpose. The first author did a preliminary
study on this recently.
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