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Abstract. We show that linearly repetitive weighted Delone sets in groups of polynomial
growth have a uniquely ergodic hull. This result applies in particular to the linearly
repetitive weighted Delone sets in homogeneous Lie groups constructed in the companion
paper [S. Beckus, T. Hartnick and F. Pogorzelski. Symbolic substitution beyond Abelian
groups. Preprint, 2021, arXiv:2109.15210] using symbolic substitution methods. More
generally, using the quasi-tiling method of Ornstein and Weiss, we establish unique
ergodicity of hulls of weighted Delone sets in amenable unimodular locally compact
second countable groups under a new repetitivity condition which we call tempered
repetitivity. For this purpose, we establish a general sub-additive convergence theorem,
which also has applications concerning the existence of Banach densities and uniform
approximation of the spectral distribution function of finite hopping range operators on
Cayley graphs.
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1. Introduction
The theory of aperiodic order is concerned with (generalizations of) Delone sets displaying
some long-range order while at the same time being far from periodic. Until recently, the
theory has mostly been studied in Euclidean space or abelian locally compact groups—we
refer the reader to [1] for an extensive bibliography in the abelian setting. With any
(weighted) Delone set in an abelian locally compact group, one can associate a topological
dynamical system, the so-called hull system of the Delone set, and these systems play a
central role in the dynamical approach to the study of aperiodic order. A crucial question
in this context is how properties of the dynamical system are reflected in the structure of
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2 S. Beckus et al

the underlying Delone set and vice versa. For example, it is a famous result of Lagarias and
Pleasants in [30] that the hull of a linearly repetitive Delone set in Rn is uniquely ergodic.

Recently, the scope of the theory of aperiodic order was extended to the realm of
arbitrary (that is, not necessarily abelian) locally compact groups and, even more generally,
proper homogeneous metric spaces, cf. [7, 10–12] in collaboration with Björklund. Further
recent developments in this area can be found in [5, 8, 9, 13, 17, 22, 28, 36–38]. A
particular focus has been on (aperiodic) Delone sets in locally compact second countable
(lcsc) groups and, more specifically, in constructing interesting examples of such sets.
While the original focus of this program was on Delone sets arising from a non-abelian
version of Meyer’s cut-and-project construction, our most recent work [4] introduces
symbolic substitution techniques to a non-abelian setting. Using these techniques, we
are able to construct the first examples of aperiodic linearly repetitive Delone sets in
non-abelian Lie groups. By analogy with the Lagarias–Pleasants theorem mentioned
above, it is then natural to ask whether the hull dynamical systems of these Delone
sets are uniquely ergodic. We will see that the answer to this question is positive for
all examples provided in [4], but the proof of this fact will depend on a very peculiar
property of our examples, namely exact polynomial growth of the ambient Lie group. Our
construction in the companion paper [4] produces linearly repetitive Delone sets inside a
certain class of Lie groups called homogeneous Lie groups (see [23] or [21, Ch. 3] for
a more modern treatment). Lie groups from this class turn out to be nilpotent (hence, in
particular, amenable) and admit a canonical quasi-isometry class of left-invariant metrics
called homogeneous metrics, which induce the given topology.

If G is a homogeneous Lie group with homogeneous metric d, then a subset � ⊆ G is
called a Delone set if there exist R > r > 0 such that d(x, y) ≥ r for all distinct x, y ∈ �

and such that every x ∈ G is at distance at most R from �. It is called linearly repetitive
if there exists a constant c� ≥ 1 such that every pattern of radius ρ of � occurs in every
ball of radius c�ρ (this is made precise in Definition 4.6 below). By definition, the hull
of a linearly repetitive Delone set is its orbit closure with respect to the Chabauty–Fell
topology on the space of closed subsets of G. We then have the following generalization
of the Lagarias–Pleasents theorem, which we expect to draw interesting connections to
questions of spectral convergence via dynamical systems, cf. [3, 5].

THEOREM 1.1. (Unique ergodicity from linear repetitivity, homogeneous case) Let G be a
homogeneous Lie group with a homogeneous metric d. Then, the hull of every Delone set
in G that is linearly repetitive with respect to d is minimal and uniquely ergodic.

We emphasize that there are plenty of examples to which Theorem 1.1 applies. Indeed,
in [4], we were able to construct non-periodic repetitive Delone sets, which are linearly
repetitive with respect to a homogeneous metric on the ambient group, in 133 of the 149
families of indecomposable 1-connected nilpotent 7-dimensional real Lie groups classified
in [25]. In fact, these examples were a key motivation for us to establish Theorem 1.1.

We will actually prove a slightly stronger result than Theorem 1.1, which applies to all
weighted Delone sets which are almost linearly repetitive (this is made precise below).
Minimality of the hull holds in an even wider context, see Proposition 2.4 below, and can
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Linear repetitivity beyond abelian groups 3

be established by adapting ideas from [24] to the setting of weighted Delone sets. The
main contribution of the present article lies in proving unique ergodicity, and it is in this
part of the proof that we use the assumption that G is a homogeneous Lie group with
homogeneous metric d. As explained in [4], these assumptions imply that the pair (G, d)
has exact polynomial growth in the sense of the following definition (Definition 4.3 below).

Definition. Let G be an lcsc group with left-Haar measure mG and let d be an adapted
(that is, left-invariant, proper, and locally bounded) metric on G. We say that G has exact
polynomial growth with respect to d if there are constants C > 0 and q ≥ 0 such that

lim
t→∞

mG(Bt )

Ctq
= 1,

where Bt denotes the open ball of radius t around the identity of G.

Every compactly generated lcsc group which has exact polynomial growth with respect
to some metric d as above obviously has polynomial growth in the sense of geometric
group theory. Conversely, by a celebrated result of Breuillard [14], every compactly
generated lcsc group of polynomial growth admits an adapted metric of exact polynomial
growth, see Theorem 4.13. If G is moreover a connected Lie group, then this metric can be
chosen to be continuous (in fact, Riemannian and, in particular, real-analytic), but it seems
to be an open problem whether this is the case in general. It turns out that exact polynomial
growth is actually sufficient to establish Theorem 1.1.

THEOREM 1.2. (Unique ergodicity from linear repetitivity, exact case) If an lcsc group G
has exact polynomial growth with respect to an adapted metric d, then the hull of every
(weighted) Delone set in G that is (almost) linearly repetitive with respect to d is minimal
and uniquely ergodic.

We establish Theorem 1.2 in Theorem 4.9 below; note that by the previous remarks,
Theorem 1.1 is merely a special case. The assumption that G has exact polynomial growth
with respect to d implies that metric balls around the identity form a Følner sequence in
G, and even a strong Følner exhaustion sequence in the sense of Definition 3.2 below.
Linear repetitivity with respect to d can then be reformulated in terms of this Følner
sequence, and this leads to the notion of (almost) tempered repetitivity of a Delone set
with respect to a Følner sequence (see Definition 3.5 below). Using this notion, one
can reformulate Theorem 1.2 in terms of Følner sequences rather than metrics, and this
metric-free formulation actually holds in much greater generality.

THEOREM 1.3. (Unique ergodicity from tempered repetitivity) Let (Tm) be a strong Følner
exhaustion sequence in an amenable unimodular lcsc group G and let � be a weighted
Delone set in G. If � is almost tempered repetitive with respect to (Tm), then the hull of �
is minimal and uniquely ergodic.

Theorem 1.2 is indeed a special case of Theorem 1.3, since linear repetitivity with
respect to an adapted metric of exact polynomial growth is equivalent to tempered
repetitivity with respect to the corresponding strong Følner exhaustion sequence of balls
(see Proposition 4.7 below).
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4 S. Beckus et al

It seems to us that Theorem 1.3 is the most natural generalization of the
Lagarias–Pleasants theorem to the general amenable case. By Proposition 3.4 below,
strong Følner exhaustion sequences exist in all unimodular, amenable lcsc groups, but it
is not clear at all in which cases (beyond the case of exact polynomial growth) they can
be chosen to be balls with respect to a suitable metric; hence, the need for a metric free
formulation. Theorem 1.3 indicates that, in this metric-free context, tempered repetitivity is
the correct replacement for linear repetitivity; hence, we would like to advertise this notion.

While Theorem 1.3 is formulated in terms of Delone dynamical system, it is easy to
deduce a corresponding unique ergodicity result in the symbolic setting. To formulate
such a result, let A be a finite alphabet and � be a countable amenable group. We refer
to an element of A� as a coloring of � by A and equip A� with its natural compact
metrizable topology, given by the product topology. Given a coloring C ∈ A� , we refer to
its orbit closure in A� as the hull of C. Similarly to the case of Delone sets, one can also
define the notions of a symbolically tempered repetitive coloring (with respect to a Følner
sequence in �) or a symbolically linearly repetitive coloring (with respect to a left-invariant
metric on �), see Definition 5.3 below. In fact, the situation is slightly simpler than in
the Delone setting, since for countable groups, the notions of Følner sequence and strong
Følner sequence are equivalent by [47, Lemma 2.7(d)]. In any case, the following result
can then be deduced easily from Theorem 1.3, using the fact that colorings of � can be
identified with certain weighted Delone sets in � (see §5 for details).

THEOREM 1.4. (Unique ergodicity in the symbolic setting) Let � be a countable amenable
group and let A be a finite set. If C ∈ A� is symbolically tempered repetitive with respect
to a Følner exhaustion sequence, then the hull of C is minimal and uniquely ergodic. In
particular, if � has exact polynomial growth with respect to an adapted metric d� and if
C is symbolically linearly repetitive with respect to d� , then the hull of C is minimal and
uniquely ergodic.

Let us now discuss some of the ingredients of the proof of Theorem 1.3. As in the
cases of Theorems 1.1 and 1.2, the minimality result of Theorem 1.3 can be obtained by
adapting arguments from [24], whereas the unique ergodicity result requires new ideas.
Our approach is based on the observation by Damanik and Lenz [19] that in the Euclidean
setting, linear repetitivity implies the validity of a uniform sub-additive convergence
theorem for certain functions defined on the collection B(Rn) of all n-dimensional boxes
in Rn, which in turn can be used to ensure unique ergodicity. This observation has been
refined in many different directions, see e.g. [6, 24, 32–35, 43, 45, 47]. A different approach
is via strongly almost periodic translation bounded measures, see [31]. In Theorem 3.1
below, we establish a general version of such a convergence theorem for a large class of
amenable groups, which is general enough to allow us to deduce Theorem 1.3 (and thereby
also Theorems 1.1, 1.2, and 1.4). While the precise statement of the convergence theorem
is rather technical, let us highlight two of the main features of the theorem and its proof.
• The theorem works for general amenable unimodular lcsc groups and for a rather

general class of weight functions. To achieve this, the study of n-dimensional boxes
in Rn is replaced by the Ornstein–Weiss machinery of ε-quasi-tilings [41] and more
specifically its variant from [47].
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• There is no requirement that the Delone set under consideration has finite local
complexity (FLC). A consequence of this is that Theorem 1.2 also holds for almost
linearly repetitive Delone sets (and Theorem 1.3 also holds for almost tempered
repetitive Delone sets). This is achieved using ideas from Frettlöh and Richard [24].
Roughly speaking, to incorporate non-FLC situations, one has to identify not only
patches which are equal up to a translation, but also patches which are close up to a
translation. The fact that being δ-close for a small δ > 0 is not an equivalence relation
creates all kinds of technical difficulties.

It is well known in the abelian setting that uniform sub-additive convergence theorems
have applications beyond unique ergodicity of Delone dynamical systems, and this is no
different in our more general setting. We demonstrate the strength of our convergence
theorem by two such applications: one to Banach densities and one to the integrated
densities of states (IDS). We deduce the corresponding theorems along the lines of the
corresponding abelian situations.

Upper and lower Banach densities appear as an important combinatorial quantity in
many mathematical areas, see for instance a recent example [20] for countable amenable
groups. For sets with enough symmetry, the upper and the lower Banach density may
coincide, and one can just refer to the Banach density of a set. In analogy to the abelian
realm, this situation occurs for almost tempered repetitive weighted Delone sets. For the
definition of the upper and lower Banach density of a weighted Delone set, we refer to §6.
Given a weighted Delone set �, we denote by δ� the associated Dirac comb which is a
Radon measure on the group.

COROLLARY 1.5. Let G be an amenable unimodular lcsc group with Haar measure mG.
Suppose that � is a weighted Delone set that is almost tempered repetitive with respect to
a strong Følner exhaustion sequence (Tm) of G. Then, the Banach density

b� := lim
m→∞

δ�(T
−1
m )

mG(Tm)

exists uniformly in � ∈ H�.

The implications of our convergence theorem concerning the IDS are a bit more
technical to state. We give a sample result in the setting of finitely generated amenable
groups � whose elements are labeled by colors taken from a finite set A. Since each
coloring C ∈ A� can be interpreted as a weighted Delone set in �, it makes sense to
define a version of tempered repetitivity for a coloring. In this context, our convergence
theorem allows us to verify a criterion from [47] which then shows that the IDS for certain
pattern-equivariant operators on graphs can be uniformly approximated by finite volume
analogs. The precise class of considered operators is defined in Definition 6.2.

COROLLARY 1.6. Let � be a finitely generated amenable group and let C ∈ A� be a
coloring of the group by a finite set A. Suppose that C is symbolically tempered repetitive
as a weighted Delone set with respect to some strong Følner exhaustion sequence (Tm).
Then for every C-invariant self-adjoint operator H : �2(�) → �2(�) and for its integrated
density of states NH : R → [0, 1], we get

https://doi.org/10.1017/etds.2024.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.120


6 S. Beckus et al

lim
m→∞ ‖NH −NHm‖∞ = 0,

where the NHm denote the empirical eigenvalue distribution functions of restrictions Hm

of H to a subspace of �2(T −1
m ).

This article is organized as follows. In §2, we introduce Delone dynamical systems
and recall the equivalence of minimality of these systems and (almost) repetitivity of the
underlying set. Section 3 is devoted to the main convergence theorem, cf. Theorem 3.1,
which is stated and proven for so-called admissible weight functions defined on hulls of
almost tempered weighted Delone sets. From this, we derive in §4 the unique ergodicity
of the hulls of almost tempered repetitive weighted Delone sets, as stated in Theorem 1.3.
Moreover, we derive Theorems 1.2 and 1.1 from Theorem 1.3, cf. Theorem 4.9. Section 5
is devoted to symbolic systems over a finite set and the proof of Theorem 1.4. The
aforementioned applications including the proofs of the Corollaries 1.5 and 1.6 are carried
out in §6. Appendices A and B contain proofs of some technical lemmas on almost
sub-additive weight functions and topological aspects of dynamical systems induced by
weighted Delone sets.

2. Preliminaries on Delone dynamical systems
2.1. Delone dynamical systems. We recall that a subset P of a metric space (X, d) is
called:
1. uniformly discrete if there exists r > 0 such that d(x, y) ≥ r for all distinct x, y ∈ P ;
2. relatively dense if there exists R > 0 such that X is an R-neighborhood of P;
3. Delone if it is uniformly discrete and relatively dense.
If P is a Delone set, σ ≥ 1 and α : P → [σ−1, σ ] is a function, then the pair (P , α)
is called a weighted Delone set. We consider Delone sets as weighted Delone sets with
constant weight 1.

Let G be an lcsc group and let d be a metric on G. Following [18], we say that a metric
d on G is:
• left-invariant if d(gh, gk) = d(h, k) for all g, h, k ∈ G;
• proper if Bt := {g ∈ G | d(g, e) < t} is relatively compact for all t > 0;
• locally bounded if every g ∈ G admits a neighborhood of finite diameter with respect

to d;
• adapted if it is left-invariant, proper, and locally bounded.
By [18, Proposition 2.A.9], any continuous proper left-invariant metric generates the
topology on G. We observe that if d and d ′ are continuous metrics on G which are coarsely
equivalent (in the sense of [18, p. 11]), then they define the same class of Delone sets. We
will need the following facts concerning such metrics (see [18, §1.D]).

PROPOSITION 2.1. Every lcsc group admits a continuous proper left-invariant met-
ric d. Any such metric is automatically adapted and generates the underlying topology.
Moreover, any two adapted metrics on G are coarsely equivalent (even if they are not
continuous).
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Linear repetitivity beyond abelian groups 7

In view of the proposition, we say that a subset P ⊆ G is uniformly discrete, relatively
dense, or Delone if it has the corresponding property with respect to some (hence any)
continuous adapted metric. For the remainder of this section, we fix an adapted metric d
on G. Later on (see §4 below), we will have to choose an adapted metric with very peculiar
properties, but for the moment, the precise choice of metric will not matter to us. In view
of Proposition 2.1 and the previous considerations, we assume as well that d is continuous,
and we make this assumption throughout this and the next section. We then denote by

Bt := {g ∈ G | d(g, e) < t} and Bt := {g ∈ G | d(g, e) ≤ t}
the open, respectively closed, ball around the identity so that Bs ⊆ Bs ⊆ Bt for all s < t .
The open and closed balls around arbitrary centers g ∈ G are defined as Bt(g) = gBt and
Bt(g) = gBt , respectively. We emphasize that Br may be larger than the closure Br of Br .
For example, in the non-Archimedean case, Br = Br since the latter is compact. Due to
our continuity assumption on d, we know that Br is open and Br is closed; neither of these
statements would be true for a general (that is, possibly discontinuous) adapted metric.

By [7], a subset P ⊆ G is uniformly discrete with respect to d (or any other continuous
adapted metric on G) if and only if there exists an open relatively compact subset U ⊆ G

such that #(gU ∩ P) ≤ 1 for all g ∈ G, and relatively dense if and only if there exists a
compact subset K ⊆ G such that P is left-K-syndetic in the sense that P .K = G, where
for two subsets A, B ⊆ G, the notation A.B refers to the Minkowski product of A and B.
With a slight abuse of notation, we write gA for {g}.A, where g ∈ G and A ⊆ G. We then
say that P is U-uniformly discrete and K-relatively dense, respectively, and refer to a set
with both of these properties as a (U , K)-Delone set. Finally, we denote by

Del(U , K , σ) := {(P , α) : P is (U , K)-Delone and α : P → [σ−1, σ ]}
the collection of weighted Delone sets with uniform parameters U , K , σ . Note that G acts
on Del(U , K , σ) by g.(P , α) := (gP , g∗α), where g∗α(q) := α(g−1q).

We will identify each (P , α) ∈ Del(U , K , σ) with the associated Dirac comb

δ(P ,α) :=
∑
x∈P

α(x) · δx ,

and thereby think of Del(U , K , σ) as a G-invariant subset of the space of Radon measures
on G. We will always equip the latter space with the weak-∗ topology. Then by [2, 11], the
subspace Del(U , K , σ) is compact and the G-action on this space is jointly continuous.
The topology induced on the space Del(U , K , 1) of (unweighted) Delone sets is precisely
the Chabauty–Fell topology (see [11] and also [39, §2.1] and the references therein).

We will need yet another description of the topology on Del(U , K , σ). Given a
relatively compact subset S ⊆ G and two Radon measures μ and ν on G, we define

dS(μ, ν) := inf{δ > 0 : |μ(Bδ(y))− ν(Bδ(y))|<δ for all y ∈ S ∩ (supp(μ)∪ supp(ν))}.
(1)

In particular, using our identification of weighted Delone sets and their corresponding
Dirac combs, we define

dS(�, �) := dS(δ�, δ�) (2)

https://doi.org/10.1017/etds.2024.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.120


8 S. Beckus et al

for weighted Delone sets �, �. Then, given � ∈ Del(U , K , σ), the sets

US,δ(�) := {� ∈ Del(U , K , σ) : dS(�, �) < δ}
form a neighborhood basis of � in Del(U , K , σ), as δ and S vary over all positive real
numbers and all relatively compact subsets of G, respectively (cf. Proposition B.1 in
Appendix B). In particular, Delone sets �n converge to � in Del(U , K , σ) if and only
if limn→∞ dS(�n, �) = 0 for all relatively compact S.

Given � ∈ Del(U , K , σ), the orbit closure H� := {g.� : g ∈ G} is compact and the
G-action on H� is jointly continuous, that is, G � H� is a topological dynamical system
over G. We refer to H� as the hull of � and to G � H� as a Delone dynamical system.

2.2. Almost repetitivity and minimality. In this subsection, we give a combinatorial
characterization of minimality of Delone dynamical systems, generalizing results of
[24] in the unweighted case. Throughout this subsection, we fix a weighted Delone set
� = (P , α) ∈ Del(U , K , σ) with associated Dirac comb δ�. If S ⊆ T are two relatively
compact subsets of G and ν is a Radon measure on T, then we denote by ν|S the restriction
of ν to the Borel σ -algebra of S.

Given a relatively compact subset S ⊆ G, we refer to the pair �S := (δ�|S , S) as the
S-patch of �. If p = (μ, S) is a patch of �, we refer to μ as the underlying measure and
S as the support of p (which is not to be confused with the support of μ). For T ⊆ S, we
define the restriction of p to T by p|T := (μ|T , T ).

Two patches p = (μ, S) and q = (ν, T ) of � are called equivalent if there exists g ∈ G

with g.p := (g∗μ, gS) = (ν, T ), and an equivalence class of patches is called a pattern.
A pattern is said to be of size S for a relatively compact set S if the supports of its patches
are translates of S.

Given δ ≥ 0, we say that two patches p = (μ, S) and q = (ν, T ) of � are δ-similar if
there exists g ∈ G such that gS = T and dT (g∗μ, ν) < δ. By definition, two patches are
0-similar if and only if they are equivalent. In particular, 0-similarity is an equivalence
relation, whereas δ-similarity is not a transitive relation for δ > 0.

Given a relatively compact subset T ⊆ G and δ ≥ 0, we say that a pattern [p] of �
with representative p = (μ, S) δ-occurs in T if there is some g ∈ G such that gS ⊆ T

and p is δ-similar to �gS . If δ = 0, we simply say that [p] occurs in T. Similarly, a patch
p = (μ, S) (δ-)occurs in a patch q = (ν, T ) if there is some g ∈ G such that gS ⊆ T and
p is (δ-)similar to q|gS .

Definition 2.2. A function � : (0, 1)× [1, ∞) → [1, ∞) is called an almost repetitivity
function for � if for every δ ∈ (0, 1) and all R ≥ 1, every pattern of � of size BR δ-occurs
in B�(δ,R)(h) for all h ∈ G. If such a function exists, then � is called almost repetitive.

Note that �(δ, R) ≥ R for all δ > 0.

Remark 2.3. Some authors define linear repetitivity by asking the above condition to hold
for all R ≥ r0, where r0 > 0 is an arbitrary constant, whereas we insist here that r0 = 1.
While the two possible definitions are a priori different, this difference is irrelevant for
us. Namely, we can always rescale the metric by a constant to achieve that the condition
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Linear repetitivity beyond abelian groups 9

holds with r0 = 1. The reader is invited to check that all our results are invariant under
such rescalings, and hence all our theorems hold true for either definition. In view of this
fact, we will always assume r0 = 1 to keep the notation simple.

PROPOSITION 2.4. Let � be a weighted Delone set in G. Then, � is almost repetitive if
and only if the associated Delone dynamical system G � H� is minimal.

Proof. We closely follow the proof of [24, Theorem 3.11].
Suppose the hull of � = (P , α) is minimal. Let R ≥ 1 and fix � = (Q, β) ∈ H�.

Assume that 0 < ε < R. We further choose R′ ≥ R such that BR′ ∩Q = BR ∩Q. We set

UR,ε(�) = {� ∈ H� : dBR′ (�, �) < ε}.
Then, UR,ε(�) is a neighborhood of � in the weak-∗-topology, cf. Proposition B.1. By
minimality of �, every element in H� has a dense orbit. This gives

H� =
⋃
x∈G

x UR,ε(�).

By compactness of the hull, we find finitely many x1, x2, . . . , x� such that H� ⊆ ⋃�
j=1

xj UR,ε(�). We now choose �1(R) > 0 such that xj ∈ B�1(R) for all 1 ≤ j ≤ �. This
means that for all h ∈ G, there is some h∗ ∈ B�1(R) such that h.(P , α) = h∗.(D, γ ) and
(D, γ ) is some element in UR,ε(�). This also gives D ∩ BR′ = h∗ −1h P ∩ BR′ . Since the
patches (δ(Q∩BR′ ,β|Q∩B

R′ ), BR′) and (δ(D∩BR′ ,γ|D∩B
R′ ), BR′) are ε-similar, the left-invariance

of the metric tells us that also (δ(Q∩BR′ ,β|Q∩B
R′ ), BR′) is ε-similar to the R′-patch of P

centered at h−1h∗. We will now show that h−1h∗BRBε ⊆ B�1(R)+2R(h
−1). The condition

ε < R gives BRBε ⊆ B2R . Further, we have h∗B2R ⊆ B�1(R)B2R ⊆ B�1(R)+2R . Hence,
we obtain h−1h∗BRBε ⊆ B�1(R)+2R(h

−1), as claimed. Since � was chosen arbitrarily,
this shows that for all possible BR-patterns [p] of � and for each h ∈ G, there is some
R-patch of � contained in B�1(R)+2R(h) which is ε-similar to a representative of [p]. A
straightforward compactness argument shows that there is a finite number of patterns [pk]
such that every BR-patch of � is ε-similar to a representative of one of the [pk]. Hence,
repeating the above procedure finitely many times, we can set �(R) := maxk �k(R)+ 2R
and we find that � is almost repetitive with almost repetitivity function �.

Conversely, assume by contradiction that � = (P , α) is almost repetitive but H�

is not minimal. Let � = (Q, β) ∈ H� and {g.� : g ∈ G} is not dense in H�. This
implies � /∈ H� as well as H� � H�. We fix a compact neighborhood V ⊆ H�

of � containing the set {� ∈ H� : dB1/ε (�, �) < ε} for some small ε > 0 such
that V ∩ H� = ∅. We now take a compact set K ⊆ G with B1/ε(e) ⊆ K̊ and define
TK ,ε(�) = {g ∈ G : d

K̊
(g.�, �) < ε}.

Claim. The set TK ,ε(�) is right-relatively dense.

Assuming the validity of the claim for a moment, we see

G.� = (K ′TK ,ε(�)).� ⊆ K ′.V
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for some compact set K ′ ⊆ G. By compactness of V and the continuity of the G-action,
we find that the set K ′.V is compact. Hence, we arrive at H� ⊆ K ′.V . We get that
� = x.� for some x ∈ K ′ and some � ∈ V . Thus, � = x−1� contradicting the fact that
V ∩ H� = ∅.

It remains to show the claim. For this, we proceed along the lines of [24, proof of
Lemma 3.6, implication (iii) ⇒ (i)]. To this end, find some r ≥ 1 such that K̊ ⊆ Br and
set R := �(ε, r), where � is an almost repetitivity function of �. We fix a countable cover
of G of the form G = ⋃∞

i=1 BR(gi). By almost repetitivity, for all i ∈ N, we find xi ∈ G

such that x−1
i Br ⊆ BR(gi) and dBr (xi�, �) = d

x−1
i Br

(�, x−1
i �) < ε. Now to show the

claim, it clearly suffices to show that Tr ,ε := {xi : i ∈ N} ⊆ TK ,ε(�) is right-relatively
dense in G. For each b ∈ Br , we have x−1

i b ⊆ BR(gi) for all i ∈ N. This shows that
G = ⋃∞

i=1 B2R(x
−1
i b) = ⋃∞

i=1 x
−1
i B2R(b). For some fixed b ∈ Br , we define

K ′ := {g ∈ G : g−1b ∈ B2R(b)}.
This set is clearly compact. We will show K ′Tr ,ε = G. Take h ∈ G. This gives
h−1b ∈ x−1

i B2R(b) for some i ∈ N. This yields

h ∈ {g ∈ G : g−1b ∈ x−1
i B2R(b)} = {g ∈ G : xig

−1b ∈ B2R(b)}
= {y ∈ G : y−1b ∈ B2R(b)} · xi ⊆ K ′Tr ,ε.

Since h was chosen arbitrarily, the proof of the claim is finished.

While almost repetitivity arises naturally in the study of minimality of Delone dynami-
cal systems, a more classical notion is the following one.

Definition 2.5. A function � : [1, ∞) → [1, ∞) is called a repetitivity function for � if
for all R ≥ 1, every pattern of � of size BR occurs in B�(R)(h) for all h ∈ G. If such a
function exists, then � is called repetitive.

Remark 2.6. Similarly as for the almost repetitivity function, we have �(R) ≥ R and we
assume R ≥ 1.

We say that � = (P , α) ∈ Del(U , K , σ) has finite local complexity (FLC) if for ever
compact set S, the set {(x−1.�)|S : x ∈ P } is finite.

PROPOSITION 2.7. Let � ∈ Del(U , K , σ) be of finite local complexity. If � is almost
repetitive, then � is repetitive.

Proof. Without loss of generality, we assume that e ∈ U . Since � = (P , α) is of finite
local complexity, the set

P(r) := {(x−1.�)|Br : x ∈ P }
is finite for each r > 0. In particular, if r > 0 is such that the topological boundary
Br \ Br is not intersecting x−1P for any x ∈ P , then there is a δ > 0 such that
x−1P ∩ ∂Bδ1

(Br) = ∅ holds for all x ∈ P , where
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∂Bδ1
(Br) := {g ∈ G : Bδ1g ∩ Br �= ∅ ∧ Bδ1g ∩ (G \ Br) �= ∅}

is the Bδ1 boundary of the topological boundary of Br .
Let R > 0 be fixed. Since � is K-relatively dense and of finite local complexity, we can

choose an R1 > 0 and a δ1 > 0 such that:
(a) for each x ∈ G, there is a yx ∈ P satisfying x ∈ BR1(yx);
(b) for all y ∈ P , we have y−1P ∩ ∂Bδ1

(BR+R1) = ∅.
Consider an R-patch p := �BR(x) for x ∈ G. Let yx ∈ P be such that x ∈ BR1(yx).

Now consider the patch

p′ := (y−1
x ·�)BR+R1

= y−1
x · (�|BR+R1 (yx)

).

By construction, p occurs in p′. Let 0 < δ < min{δ1, σ−1} be such that Bδ ⊆ U and

q1, q2 ∈ P(R + R1) with dBR+R1
(δ(q1,BR+R1 )

, δ(q2,BR+R1 )
) ≤ δ �⇒ q1 = q2.

The latter is possible as P(R + R1) is finite.
Let h ∈ G. Since � is almost repetitive, p′ δ/2-occurs in B�(δ/2,R+R1)(h), where �

is an almost repetitivity function for �. Thus, there is a g ∈ G such that gBR+R1 ⊆
B�(δ/2,R+R1)(h) and dBR+R1

(δp′ , δg−1·qh) < δ/2, where qh := �BR+R1 (g)
. Thus,

dBR+R1
(p′, g−1qh)

= inf

{
ε > 0 :

|δ
y−1
g ·�|BR+R1

(Bε(y))− g−1∗ δ�|BR+R1 (g)
(Bε(y))| < ε

for all y ∈ (y−1
x P ∩ BR+R1) ∪ (g−1P ∩ BR+R1)

}
< δ/2

holds. By construction, δp′ has support on {e}, namely, δp′(e) > σ−1. Hence, there
is a unique yg ∈ P and g′ ∈ Bδ/2 such that g = ygg

′ using that δ < σ−1, P is
Bδ-uniformly discrete, and dBR+R1

(δp′ , δg−1.qh) < δ/2. Due to condition (b), we conclude
δ
y−1
g ·�|BR+R1

= δ
y−1
g ·�|BR+R1 (g

′) and so

g−1 · qh = g′−1(δ
y−1
g ·�|BR+R1(g′), BR+R1(g

′)) = g′−1(δ
y−1
g ·�|BR+R1 , BR+R1(g

′)).

By construction, (y−1
g ·�)BR+R1

occurs in B�(δ/2,R+R1)+δ/2(h) since g′ ∈ Bδ/2. Invoking
that δ < σ−1, P is Bδ-uniformly discrete, g′ ∈ Bδ/2, and dBR+R1

(δp′ , δg−1·qh) < δ/2, we
derive

dBR+R1

(
δp′ , δ

(y−1
g ·�)BR+R1

) ≤ δ.

Thus, (y−1
g ·�)BR+R1

= p′ follows by the choice of δ and since (y−1
g ·�)|BR+R1

, p′ ∈
P(R + R1). Since p occurs in p′ and (y−1

g ·�)BR+R1
occurs in B�(δ/2,R+R1)+δ/2(h), we

conclude that p occurs in B�(δ/2,R+R1)+δ/2(h).
Hence, the map �′ : (0, ∞) → (0, ∞) defined by �′(R) := �(δ/2, R + R1)+ δ/2

defines a repetitivity function. Note here that in the previous considerations, δ and R1

depend on R but not on h.
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Remark 2.8. Note that if � = (P , α) is repetitive, then � necessarily has FLC since
B�(R)(h) ∩ P is uniformly bounded in h ∈ G. Furthermore, every repetitive � is almost
repetitive, which can be seen by setting �(δ, R) := �(R) for R ≥ 1. In other words, for
Delone sets, we have the equivalence

� is repetitive ⇐⇒ (� is almost repetitive) and (� has FLC).

3. An abstract ergodic theorem
3.1. Statement of the theorem. Throughout this section, G will denote an amenable
unimodular lcsc group. We fix a Haar measure mG on G. The goal of this section is to
explain and prove the following theorem.

THEOREM 3.1. (Uniform sub-additive convergence theorem) Assume that:
• � is a weighted Delone set in G with hull H�;
• (Tm) is a strong Følner exhaustion sequence in G;
• � is almost tempered repetitive with respect to (Tm);
• w is an admissible weight function on G over H�.
Then, there exists Iw ∈ R (depending on � and w, but independent of (Tm)) such that

lim
m→∞ sup

�∈H�

∣∣∣∣w(Tm, �)
mG(Tm)

− Iw

∣∣∣∣ = 0.

Theorem 3.1 will be proved in §3.4 after introducing all the required terminology.
Tempered repetitivity with respect to a strong Følner exhaustion sequence will be defined
in §3.2 and admissible weight functions will be discussed in §3.3.

3.2. Strong Følner exhaustion sequences and tempered repetitivity. We recall that
amenability of G is equivalent to the existence of a Følner sequence, that is, a sequence
(Tm) of compact subsets of G of positive Haar measure such that for all compact subsets
K ⊆ G,

lim
m→∞

mG(Tm�KTm)
mG(Tm)

= 0.

In fact, one can choose a Følner sequence with additional properties. Given relatively
compact subsets L, S ⊆ G, we denote by

∂L(S) := {g ∈ G : Lg ∩ S �= ∅ ∧ Lg ∩ (G \ S) �= ∅}
the L-boundary of S, as defined in [41].

Definition 3.2. A Følner sequence (Tm) is called a strong Følner exhaustion sequence if:
(i) (Tm) is a strong Følner sequence in the sense of [47], that is, for all compact subsets

K ⊆ G,

lim
m→∞

mG(∂K(Tm))

mG(Tm)
= 0;

(ii) (Tm) is a strong exhaustion sequence, that is, {e} ⊆ Tm ⊆ T̊m+1 and
⋃

m Tm = G.
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Remark 3.3. We point out that by [46, Proposition 5.7], the notion of a strong Følner
sequence is equivalent to the concept of a van Hove sequence. The latter has been used
prominently in the literature on aperiodic order in locally compact abelian groups.

PROPOSITION 3.4. Every amenable unimodular group G admits a strong Følner exhaus-
tion sequence.

Proof. Building on the uniform Følner condition proven in [41], one observes that G
admits a strong Følner sequence (Sn), cf. [44, Lemma 2.8]. Moreover, the sequence (Sn)
can be turned into a strong Følner exhaustion sequence by the usual construction (cf. [26]).
By σ -compactness of G, we can now choose an exhaustion of G by compact subsets (Kn)

containing the identity. Set T1 := S1 and choose m1 such that T1 ⊆ K̊m1 . Then choose
� ∈ N large enough such that mG(∂Km1

(S�)) ≤ 1
2mG(S�). Thus, there is an h ∈ G such

that Km1h ⊆ S�. If we now set T2 := S�h
−1, then T1 ⊆ K̊m1 ⊆ T2. One now proceeds by

induction to construct the desired strong Følner exhaustion sequence (Tm).

From now on, T = (Tm) denotes a strong Følner exhaustion sequence in G and �

denotes a weighted Delone set in G.

Definition 3.5. The repetitivity index for � with respect to T is the function RT
� : [0, 1)×

N → N ∪ {+∞} given by

RT
�(δ, m) := inf{n ∈ N : every pattern of � of size T̊ −1

m δ-occurs in hT̊ −1
n for all h∈G},

where, by convention, inf ∅ = ∞. We then define the repetitivity portion of � with respect
to T as

ζ : [0, 1) → [0, 1], ζ(δ) := inf
m∈N

mG(Tm)

mG(TRT
� (δ,m))

,

where we use the convention that ζ(δ) = 0 if there is some m ∈ N such that RT
�(δ, m) =

∞. We say that � is almost tempered repetitive with respect to T if ζ(δ) > 0 for all δ > 0.
We say that � is tempered repetitive with respect to T if ζ(0) > 0.

Remark 3.6. Some comments on the definition are in order.
(i) Since (Tm) displays asymptotic invariance from the left, we use patterns arising

from the inverse sequence (T −1
m ) in the above definitions. In certain situations of

interest, one can choose the Tm to be symmetric, for instance, if they arise as certain
closed balls with respect to a suitable adapted metric, cf. §4.2.

(ii) Almost tempered repetitivity is the condition on Delone sets which will enable the
proof of our ergodic theorem. The terminology ‘tempered’ is chosen because in the
literature, it refers to a growth condition of Følner sequences used in the proofs of
ergodic theorems.

(iii) Since the repetitivity index is monotonically decreasing in δ, tempered repetitivity
implies almost tempered repetitivity.

(iv) If � is tempered repetitive, then RT
�(0, m) < ∞ for all m ∈ N, and if � is almost

tempered repetitive, then RT
�(δ, m) < ∞ for all m ∈ N and δ > 0. This can be used

to establish minimality of the associated Delone dynamical system.
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PROPOSITION 3.7. (Minimality) A weighted Delone set � is almost repetitive if and only
if RT

�(δ, m) < ∞ for all δ > 0 and all m ∈ N. In particular, every almost tempered
repetitive Delone set is almost repetitive, and hence the associated Delone dynamical
system is minimal.

Proof. We note that by the properties of a strong exhaustion sequence, we find for all
r > 0 some �(r) ∈ N such that Br ⊆ T̊�(r) and for each s ∈ N, we find some L(s) ∈
N such that Ts ⊆ BL(s). Moreover, by the left-invariance of the metric dG, we have

Bl = B−1
l and Bl = B

−1
l for all l > 0. Thus, the condition RT

�(δ, l) < ∞ for all δ > 0
and all l ∈ N implies for a given R ≥ 1, every BR-pattern δ-occurs in each ball of radius
L(RT

�(δ, �(R))). Conversely, for m ∈ N, we have that every T̊ −1
m -pattern must δ-occur in

every ball of radius �(δ, L(m)) (with � denoting an almost repetitivity function), whence
also in each hT̊ −1

M with M = �(�(δ, L(m))).

The following example shows that (almost) tempered repetitivity depends crucially on
the underlying strong Følner exhaustion sequence.

Example 3.8. Consider the Delone set D = Z (seen as weighted Delone set with constant
weight 1) in G = R. Then, D is tempered repetitive with respect to the sequence
T = (Bm)m, where Bl is the closed ball around 0 with radius l with respect to the
Euclidean metric. Now consider the sequence T ′ = (Brm)m with r1 := 1 and rm+1 := 2rm

for m ≥ 1. Note that an open ball with integer radius M ∈ N and integer center contains
2M − 1 points of Z, while balls of the same size around a non-integer center contain
2M points of Z. This implies RT ′

D (M) ≥ M + 1 for all M ∈ N. However, we have
limm(2rm − 1)/(2rm+1 − 1) = 0. Hence, D is not (almost) tempered repetitive with
respect to T ′.

3.3. Weight functions and ε-quasi-tilings. For the purpose of the following definition,
we denote by RK(G) the set of all relatively compact subsets of G. We also denote by
X a compact metrizable space on which G acts jointly continuously; in our applications,
G � X will always be a Delone dynamical system.

Definition 3.9. A function w : RK(G)×X → R is called an almost sub-additive weight
function over X if:
(W1) w(∅, x) = 0 for all x ∈ X (normalization);
(W2) there is a compact J ⊆ G and an η > 0 such that

|w(L, x)− w(K , x)| ≤ η · (mG(L \K)+mG(∂J (L))+mG(∂J (K)))

for all x ∈ X and all K , L ∈ RK(G) with K ⊆ L (almost-monotonicity);
(W3) there is a compact subset B ⊆ G and a θ ≥ 0 such that for any finite collection of

pairwise disjoint Ki ∈ RK(G), we have

w

( ⊔
i

Ki , x
)

≤
∑
i

w(Ki , x)+ θ ·
∑
i

mG(∂B(Ki))

for all x ∈ X (almost sub-additivity);
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(W4) there is a compact subset I ⊆ G and a ϑ ≥ 0 such that for each x ∈ X,
K ∈ RK(G), and h ∈ G, we have

|w(K , x)− w(Kh−1, hx)| ≤ ϑ ·mG(∂I (K)) (almost-equivariance) .

Remark 3.10. If w : RK(G)×X → R is any function satisfying properties (W1) and
(W2), then for every relatively compact subset L ⊆ G and every x ∈ X, we have the
boundedness property

|w(L, x)| ≤ η · (mG(L)+mG(∂J (L))).

From this inequality, we deduce that if w : RK(G)×X → R is an almost sub-additive
weight function and RK(G)+ denotes the set of relatively compact sets of positive Haar
measure, then we can define functions w+, w− : RK(G)+ ×X → R by

w+(S, x) := sup
g∈G

w(Sg, x)
mG(S)

, w−(S, x) := inf
g∈G

w(Sg, x)
mG(S)

. (3)

We will study these functions for a particular class of almost sub-additive weight
functions over a Delone dynamical system.

Definition 3.11. Let H� be the hull of a weighted Delone set � in G. Then, an almost
sub-additive weight function over H� is called an admissible weight function provided:
(W5) if (Tm) is any strong Følner exhaustion sequence, then for all ε > 0, there is a

δ > 0 and m0 ∈ N such that for all m ≥ m0,

d
T −1
m
(�, �) ≤ δ �⇒ |w(Tm, �)− w(Tm, �)| ≤ ε ·mG(Tm),

where d
T −1
m
(�, �) is defined as in equation (2).

Remark 3.12. Let (X, d) be a compact metric space on which G acts continuously. Then,
we can study almost sub-additive weight functions that additionally satisfy the following.
(W5*) If (Tm)m∈N is a strong Følner exhaustion sequence and d is a metric generating

the topology of X, then for all ε > 0, there is an m0 ∈ N such that for all m ≥ m0,
one can find δm > 0 such that

d(x, y) ≤ δm �⇒ |w(Tm, x)− w(Tm, y)| ≤ εmG(Tm).

This condition has the advantage that it can be defined for general (that is, not necessarily
Delone) dynamical systems. While it is sufficient for the proof of the Ornstein–Weiss type
lemma (Lemma 3.17), it is not sufficient for the proof of our main theorem.

Let us sketch an argument how axiom (W5) implies axiom (W5∗) for X := H�. First,
we can define a metric d∗ on H� by

d∗(�, �) := min{c∗, inf{δ > 0 : |δ�(Bδ(y))− δ�(Bδ(y))| < δ

for all y ∈ (B1/δ ∩ P) ∪ (B1/δ ∩Q)}},
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where � := (P , α), � := (Q, β) ∈ H�, and c∗ > 0 is chosen in such a way that Bc∗ ⊆ U

and c∗ < (2σ)−1. Now, the metric d∗ generates the topology of H� by Proposition B.1
in Appendix B, and axiom (W5) implies axiom (W5∗) for this specific choice of metric.
However, a straightforward computation shows that if axiom (W5∗) holds for some metric
d on H� defining the topology, then it holds for any such metric. We thus conclude that
indeed axiom (W5) implies axiom (W5∗) for X := H�.

At this point, we have defined all the terms in the statement of Theorem 3.1. We now
turn to its proof.

3.4. ε-quasi-tilings and the proof of the abstract ergodic theorem. Our proof of
Theorem 3.1 will follow the same strategy as the proofs in [24, 30]. The main difference
is that we have to replace box tilings in Euclidean space with the ε-quasi tile machinery
which was developed by Ornstein and Weiss [41]. We use the formulation as in [47] and
recall the necessary definition.

Definition 3.13. Let A ⊆ G be a relatively compact subset and ε > 0. Set N(ε) :=
�− log(ε/(1 − ε))� and let S1, . . . , SN(ε) be compact subsets of G and let CA

1 , . . . , CA
N(ε)

be finite subsets.
We say that A is ε-quasi tiled by the prototiles Sεi with center sets CA

i if the following
conditions are satisfied.
(T1) Sεi C

A
i ⊆ A for 1 ≤ i ≤ N(ε).

(T2) For each 1 ≤ i ≤ N(ε) and every c ∈ CA
i , there is a measurable set S̃εi (c) ⊆ Sεi c

satisfying:
• (1 − ε)mG(S

ε
i c) ≤ mG(S̃

ε
i (c)) ≤ mG(S

ε
i c);

•
⋃

c∈CA
i
Sεi c = ⊔

c∈CA
i
S̃εi (c), where the latter union consists of pairwise dis-

joint sets.
(T3) Sεi C

A
i ∩ SεjC

A
j = ∅ for 1 ≤ i < j ≤ N(ε).

(T4) mG(
⊔N(ε)

i=1 Sεi C
A
i ) ≥ (1 − 2ε)mG(A).

The following theorem guarantees the existence of certain ε-quasi-tilings. It is a
weaker statement than [47, Theorem 4.4(a)] and a slightly stronger version of [41,
Theorem 6]. Given relatively compact subsets S, T ⊆ G and δ > 0, we will say that T
is (S, δ)-invariant if

mG(∂S(T )) < δ ·mG(T ).

THEOREM 3.14. (Existence of ε-quasi tilings) Let 0 < ε < 1/10 and N(ε) :=
�− log(ε/(1 − ε))�. Then for every amenable unimodular lcsc group G, strong Følner
exhaustion sequence (Sl)l∈N, and natural number n, there exist sets Sε1 , . . . , SεN(ε) with
the following properties:

(i) Sεi ∈ {Sl : l ≥ max{i, n}};
(ii) Sn ⊆ Sε1 ⊆ · · · ⊆ SεN(ε);
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(iii) there is some δ0 > 0 such that for every (SεN(ε)S
ε −1
N(ε), δ0)-invariant compact set

A ⊆ G, there are finite sets CA
i ⊆ A such that A is ε-quasi tiled by the prototiles

Sεi with center sets CA
i .

We give some remarks on ε-quasi tilings.

Remark 3.15.
(i) According to condition (T3), the set A can be ε-quasi tiled by Sεi , 1 ≤ i ≤ N(ε)

such that tiles of different type do not overlap. However, tiles of the same type
might overlap, see condition (T2). However, condition (T2) asserts that these sets
are ε-disjoint, which means one can remove from them portions of measure at most
ε to obtain disjoint sets.

(ii) In fact, these trimmed sets can be proven to maintain certain invariance con-
ditions, cf. [47, part (b) of Theorem 4.4]. More precisely, for a given compact
B ⊆ G and 0 < ζ < ε, we can make sure that mG(∂B(S

ε
i ))/mG(S

ε
i ) ≤ ζ 2 and

mG(∂B(S̃
ε
i (c)))/mG(S̃

ε
i (c)) ≤ 4ζ for all 1 ≤ i ≤ N(ε) and all c ∈ Cm

i . We will
need this latter fact only once in this paper, namely for the proof of Lemma 3.16
which is given in Appendix A.

(iii) Given any strong Følner exhaustion sequence (Am), the theorem implies that for a
given ε, one finds sets Sεi (1 ≤ i ≤ N(ε)) extracted from a strong Følner exhaustion
sequence (which possibly is (Am) itself), along with M ∈ N, such that for all
m ≥ M , one finds finite sets Cm

i ⊆ Am such that conditions (T1)–(T4) hold true
for A = Am and CA

i = Cm
i .

(iv) The assertion (T4) given above is weaker than [47, condition (iv) in Definition 4.1],
which provides precise quantitive information on the portion of A covered by the
sets Sεi C

A
i for a fixed 1 ≤ i ≤ N(ε). As shown in [47, Remark 4.3], these estimates

result in assertion (T4).

The proof of Theorem 3.1 rests on two lemmas whose proofs build on known techniques
used in the context of sub-additive and almost-additive Ornstein–Weiss type lemmas, see
e.g. [16, 27, 29, 41]. For the sake of self-containment, we give their proofs in Appendix A.
The first lemma shows that weight functions are compatible with respect to ε-quasi tilings
of Følner sets.

LEMMA 3.16. Let G be an amenable unimodular lcsc group. Let 0 < ε < 1/10 and a
strong Følner exhaustion sequence (Sn) be given. Suppose further that v : RK(G) → R

is a function for which there are η(v), θ(v) ≥ 0 as well as compact subsets J , B ⊆ G such
that:
(w1) v(∅) = 0;
(w2) |v(L)− v(K)| ≤ η(v) (mG(L \K)+mG(∂J (L))+mG(∂J (K))) for all K , L ∈

RK(G) with K ⊆ L;
(w3) v(�iKi) ≤ ∑

i v(Ki) + θ(v)
∑

i mG(∂B(Ki)) for finitely many pairwise disjoint
sets Ki ∈ RK(G).

Then, for every compact subset I ⊆ G, there is some mI ∈ N such that for every
n ≥ mI , one finds (I , ε)-invariant sets Sεi ∈ {Sl : l ≥ max{n, i}} (1 ≤ i ≤ N(ε) =
�(−ε)/(log(1 − ε))�) as well as δ0 > 0 such that each compact subset A ⊆ G which
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is (SεN(ε)S
ε −1
N(ε), δ0)-invariant and at the same time (L, ε)-invariant for L ∈ {J , B, I } can

be ε-quasi tiled by prototiles Sεi and finite center sets CA
i for 1 ≤ i ≤ N(ε) such that, in

addition, one has

v(A)

mG(A)
≤ 1
mG(A)

N(ε)∑
i=1

∑
c∈CA

i

v(Sεi c) + (8η(v)+ 2θ(v)) · ε.

The second lemma is about convergence of the functions w+ from equation (3).

LEMMA 3.17. Let w : RK(G)×X → R be an almost sub-additive weight function and
(Tm) be a strong Følner exhaustion sequence in G. Then, the limits

I+
w (x) = lim

m→∞ w+(Tm, x)

exist for all x ∈ X. Moreover, the limits do not depend on the sequence (Tm). If, in addition,
w satisfies condition (W5∗) and if the action G � X is minimal, then there is a value
I+
w ∈ R such that

lim
m→∞ sup

x∈X
|w+(Tm, x)− I+

w | = 0.

Remark 3.18. If −w instead of w is a sub-additive weight function (in particular, if w is
actually additive), then the corresponding statements hold for w− instead of w+.

Proof of Theorem 3.1. Let w : RK(G)× H� → R be an admissible weight function and
define w+ and w− by equation (3).

By Proposition 3.7, the dynamical system G � X is minimal. However, the function w
satisfies axiom (W5) and therefore also axiom (W5∗) by Remark 3.12, and hence the strong
form of Lemma 3.17 applies. We conclude that the limit ν+ = limn→∞ w+(Tm, �) exists
uniformly over � and is independent of the choices of � ∈ H� and the strong Følner
exhaustion sequence.

Moreover, we define ν−(�) := lim infn→∞ w−(Tn, �) for � ∈ H�. It follows from
Lemma A.1 in Appendix A that ν− = ν−(�) is independent of the choice of � ∈ H� and
that the limit inferior is realized by one subsequence (nl) of the integers simultaneously
for all �. In light of that, it suffices to prove that

ν+ = lim
n→∞ w+(Tm, �) ≤ lim inf

n→∞ w−(Tm, �) = ν−.

To this end, we fix a subsequence (ml) of the integers such that liml→∞ w−(Tml
, �) =

ν−. For the sake of simpler notation, we set T ′
l := Tml

for all l ∈ N. We assume by
contradiction that ν− < ν+. Let 0 < ς < (ν+ − ν−)/4 and choose Lς ∈ N such that
|ν− − w−(T ′

l , �)| < ς for all l ≥ Lς . Then, for l ≥ Lς , one finds gl ∈ G such that
w(T ′

l gl , �)/mG(T
′
l ) ≤ w−(T ′

l , �)+ ς . Combined with the previous estimate and with
the choice of ς , we conclude from 4ς < ν+ − ν− that

w(T ′
l gl , �)

mG(T
′
l )

≤ ν− + 2ς ≤ ν+ − 2ς (4)

https://doi.org/10.1017/etds.2024.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.120


Linear repetitivity beyond abelian groups 19

for all l ≥ Lς . Writing � = (P , α), we define the S−1
l -patches ql := �

S−1
l

with inverse

support Sl := T ′
l gl = Tml

gl . Using axiom (W5), we find some 0 < δ < 1 and an m0 ∈ N

such that for all l ≥ m0, the condition d
S−1
l
(�, �) ≤ δ implies |w(Sl , �)− w(Sl , �)| <

ςmG(Sl) for �, � ∈ H�. We fix this δ and take an arbitrary h ∈ G. Since � is almost
tempered repetitive with respect to T = (Tm), the pattern arising from the patches ql must
δ-occur in h−1T −1

RT
� (δ,ml)

, where RT
� is the repetitivity index for � with respect to T .

This means that there must be some element g̃l,h ∈ G such that Slg̃l,h ⊆ TRT
� (δ,ml)

h and
d
S−1
l
(�, g̃l,h ·�) ≤ δ. This yields

|w(Sl , �)− w(Sl , g̃l,h�)| ≤ ςmG(Sl)

for l ≥ m0. Furthermore, increasing m0 if necessary and invoking axiom (W4), we find
that

|w(Sl , �)− w(Slg̃l,h, �)| ≤ 11
10
ςmG(Sl) (5)

for l ≥ m0. We point out that m0 only depends on parameters given by the weight
function w and on ς but not on objects constructed in the proof. Given h as above, define
Al,h := TRT

� (δ,ml)
h \ Slg̃l,h. We will distinguish the following two cases.

(A) There is some 0 < κ�(δ) < 1 such that mG(Tml
)/mG(TRT

� (δ,ml)
) ≤ κ�(δ) for all

l ∈ N.
(B) There is some subsequence (Tmlk

)k such that limk→∞(mG(Tmlk
)/

mG(TRT
� (δ,mlk

))) = 1.

We will cover both of these cases separately and, in both cases, we will obtain ν+ ≤ ν+ −
c(ς) for some c(ς) > 0, which is clearly a contradiction. We start with case (A).

Case (A). Invoking the general relations

∂L(C \D) ⊆ ∂L(C) ∪ ∂L(D), ∂L(C)g = ∂L(Cg)

for sets C, D, L ∈ RK(G) and g ∈ G, we find

mG(∂K(Al,h))

mG(Al,h)
≤
mG(∂K(TRT

� (δ,ml)
h))+mG(∂K(Slg̃l,h))

mG(TRT
� (δ,ml)

)

(
1 − mG(Tml )

mG(TRT
�
(δ,ml)

)

)
≤ 1

1 − κ�(δ)

(mG(∂K(TRT
� (δ,ml)

))

mG(TRT
� (δ,ml)

)
+ mG(∂K(T

′
l ))

mG(T
′
l )

)
(6)

for all relatively compact sets K ⊆ G. This shows that the left-hand side of the above
inequality tends to 0 uniformly in h if l tends to infinity. In particular, the sequences
(Al,h)l are strong Følner sequences for all h ∈ G. Now, let 0 < ε < 1/10 and choose some
nε ≥ max{m0, Lς } such that

|ν+ − w+(Tn, �)| < ε

for all n ≥ nε. We also make sure that nε is chosen large enough such that

mG(∂L(Tn))

mG(Tn)
< ε for all n ≥ nε, (7)
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where L ∈ {J , B, I } and J , B, I are the compact subsets of G determined by w as of
axioms (W2), (W3), and (W4). We fix n ≥ nε and we apply Lemma 3.16 to find prototile
sets

{e} ⊆ Tn ⊆ Sε1 ⊆ · · · ⊆ SεN(ε), Sεi ∈ {Tk : k ≥ max{i, n}},

as well as M ∈ N with M ≥ n such that for all l ≥ M , we have ml ≥ n and for all h ∈ G,
we find a finite set Cl,h

i ⊆ Al,h for each 1 ≤ i ≤ N(ε) such that the properties (T1)–(T4)
from Definition 3.13 are satisfied and at the same time, we obtain

w(Al,h, �)
mG(Al,h)

≤
N(ε)∑
i=1

∑
c∈Cl,h

i

w(Sεi c, �)
mG(Al,h)

+ t1 · ε,

where the constant t1 ≥ 0 only depends on the parameters η, θ , ϑ given by the definition
of the weight function w. We emphasize at this point that the fact that the parameters n, M
(and hence also l) can be chosen independently of h is justified by the observation that the
validity of Lemma 3.16 depends on the invariance properties of Al,h with respect to the
prototile sets, combined with the fact that liml mG(∂K(Al,h))/mG(Al,h) = 0 uniformly
over h for all K ∈ RK(G).

Exploiting the sub-additivity property (W3) of w and recalling Al,h := TRT
� (δ,ml)

h \
Slg̃l,h, we find with the estimates in equations (6) and (7), as well as with l ≥ M , that

w(TRT
� (δ,ml)

h, �)

mG(TRT
� (δ,ml)

)
≤ mG(Sl)

mG(TRT
� (δ,ml)

)
· w(Slg̃l,h, �)

mG(Sl)
+ mG(Al,h)

mG(TRT
� (δ,ml)

)
· w(Al,h, �)
mG(Al,h)

+t2 · ε

for some constant t2 ≥ 0 which only depends on the sub-additivity parameter θ of w and on
δ. Recall that l ≥ M ≥ m0. Thus, we can combine the latter inequality with the inequality
(5) and mG(Sl) = mG(T

′
l ) to obtain

w(TRT
� (δ,ml)

h, �)

mG(TRT
� (δ,ml)

)
≤ mG(T

′
l )

mG(TRT
� (δ,ml)

)
·
(
w(Sl , �)
mG(T

′
l )

+ 11
10
ς

)
+ mG(Al,h)

mG(TRT
� (δ,ml)

)
· w(Al,h, �)
mG(Al,h)

+ t2 · ε.

Invoking the sub-additivity induced by the above ε-quasi tilings and using the basic
inequality mG(Al,h) ≤ mG(TRT

� (δ,ml)
), the latter inequality transforms to

w(TRT
� (δ,ml)

h, �)

mG(TRT
� (δ,ml)

)
≤ mG(T

′
l )

mG(TRT
� (δ,ml)

)
·
(
w(Sl , �)
mG(T

′
l )

+ 11
10
ς

)

+ mG(Al,h)

mG(TRT
� (δ,ml)

)
·
N(ε)∑
i=1

∑
c∈Cl,h

i

mG(S
ε
i c)

mG(Al,h)

w(Sεi c, �)
mG(S

ε
i c)

+ (t1 + t2) · ε.
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Note that the tiling properties (T1)–(T4) from Definition 3.13 yield

(1 − 2ε) ≤
N(ε)∑
i=1

∑
c∈Cl,h

i

mG(S
ε
i c)

mG(Al,h)
≤ 1

1 − ε
.

Furthermore, inequality (4) leads to

mG(T
′
l )

mG(TRT
� (δ,ml)

)
·
(
w(Sl , �)
mG(T

′
l )

+ 11
10
ς

)
≤ mG(T

′
l )

mG(TRT
� (δ,ml)

)
·
(
ν+ − 9

10
ς

)
for l ≥ M ≥ Lς . Recall that we have chosen n ≥ nε and Sεi ∈ {Tk : k ≥ max{i, n}}. Thus,

w(Sεi c, �)
mG(S

ε
i c)

≤ w+(Sεi , �) ≤ ν+ + ε

holds for all 1 ≤ i ≤ N(ε), all l ≥ M , each h ∈ G, and each c ∈ C
l,h
i .

Since � is almost tempered repetitive, the repetitivity portion ζ : [0, 1) → [0, 1] of �
with respect to T = (Tm) is positive everywhere and, in particular, we have

inf
m∈N

mG(Tm)

mG(TRT
� (δ,m))

= ζ(δ) > 0.

We set aε := (1 − 2ε) if ν+ ≤ 0, and aε := (1 − ε)−1 if ν+ > 0 and t3 := t1 + t2. Since
aεν

+ − ν+ ≥ 0, we finally derive from the above estimates

w(TRT
� (δ,ml)

h, �)

mG(TRT
� (δ,ml)

)
≤ mG(T

′
l )

mG(TRT
� (δ,ml)

)
(ν+ − 9

10
ς)

+
mG(TRT

� (δ,ml)
)−mG(T

′
l )

mG(TRT
� (δ,ml)

)

(
aεν

+ + ε

1 − ε

)
+ t3ε

≤ aεν
+ − mG(T

′
l )

mG(TRT
� (δ,ml)

)

(
aεν

+ −
(
ν+ − 9

10
ς

))
+ (t3 + 2)ε

≤ aεν
+ − ζ(δ) ·

(
aεν

+ − ν+ + 9
10
ς

)
+ (t3 + 2)ε

for all l ≥ M and all h ∈ G, where the tempered repetitivity was used in the last step.
Thus, taking the supremum over all h ∈ G on the left-hand side of the latter inequality and
sending l → ∞, we find that

ν+ ≤ aεν
+ − ζ(δ) ·

(
aεν

+ − ν+ + 9
10
ς

)
+ (t3 + 2)ε.

By sending ε → 0, we obtain ν+ ≤ ν+ − 9/10ζ(δ)ς and since both ς and ζ(δ) are
positive numbers, we have arrived at a contradiction. Hence, we conclude ν+ = ν− in
case (A).

Case (B) is much easier to handle. We assume with no loss of generality that

lim
l→∞

mG(Tml
)

mG(TRT
� (δ,ml)

)
= 1.
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Then, there is some Mς ∈ N such that suph∈G mG(Al,h)(mG(TRT
� (δ,ml)

))−1 < ς/5η for
all l ≥ Mς , where η > 0 is the boundedness constant of w as of axiom (W2). Increasing
Mς if necessary, we can assume that suph∈G mG(∂L(Al,h))(mG(TRT

� (δ,ml)
))−1 <

(1/10)ς(max{1, η, θ})−1 and mG(∂L(Sl))/mG(Sl) < 1/10ς(max{1, θ})−1 for all
L ∈ {J , B, I } and each l ≥ Mς , where J , B, I ⊆ G are compact and θ ≥ 0 depend on
the weight function w. We now fix l ≥ Mς . By the choice of g̃l,h, inequalities (4) and (5)
together with mG(Sl) = mG(T

′
l ) imply

w(Slg̃l,h, �)
mG(Sl)

≤ w(Sl , �)
mG(Sl)

+ 11
10
ς ≤ ν+ − 9

10
ς

for all l ≥ Mς and each h ∈ G. Then, mG(∂L(C)) = mG(∂L(Cg)), the sub-additivity
property (W3) with constant θ ≥ 0 (given by w), and the imposed invariance conditions
imply

w(TRT
� (δ,ml)

h, �)

mG(TRT
� (δ,ml)

)
≤ w(Slg̃l,h, �)
mG(TRT

� (δ,ml)
)

+ w(Al,h, �)
mG(TRT

� (δ,ml)
)

+ θ · mG(∂B(Sl))

mG(Sl)
+ θ · mG(∂B(Al,h))

mG(TRT
� (δ,ml)

)

≤ w(Slg̃l,h, �)
mG(TRT

� (δ,ml)
)

+ w(Al,h, �)
mG(TRT

� (δ,ml)
)

+ 1
5
ς

≤ w(Al,h, �)
mG(TRT

� (δ,ml)
)

+ ν+ − 9
10
ς + 1

5
ς

for all l ≥ Mς and all h ∈ G. Invoking Remark 3.10 with constant η > 0 applied to
w(Al,h, �), then the invariance condition on Al,h and the implications explained at the
beginning of the proof of Case (B) yield

w(TRT
� (δ,ml)

h, �)

mG(TRT
� (δ,ml)

)
≤ η · mG(Al,h)

mG(TRT
� (δ,ml)

)
+ η · mG(∂J (Al,h))

mG(TRT
� (δ,ml)

)
+ ν+ − 9

10
ς + 1

5
ς

≤ 1
5
ς + 1

10
ς + ν+ − 9

10
ς + 1

5
ς = ν+ − 2

5
ς

for all l ≥ Mς and all h ∈ G. Thus, by taking first the supremum over all h ∈ G and then
sending l → ∞, we arrive at

ν+ ≤ ν+ − 2
5
ς ,

which is a contradiction since ς > 0.

4. Unique ergodicity
4.1. Unique ergodicity from tempered repetitivity. We are now in a position to deduce
Theorem 1.3 from our abstract sub-additive convergence theorem, Theorem 3.1. The idea
to connect ergodicity properties of dynamical systems G � X to the existence of limits
of the form limm→∞ w(Tm, �)/mG(Tm) for some class of almost-additive functions w :
RK(G)×X → R and strong Følner exhaustion sequence (Tm) is well established in the
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abelian case [19, 24, 30, 32]. While the proof of the sub-additive convergence theorem was
more complicated in the non-abelian case than in the abelian case, the application to the
unique ergodicity statement is not much different, and hence we will be brief.

For the remainder of this subsection, we work in the setting of Theorem 1.3. Thus,
T = (Tm) is a strong Følner exhaustion sequence in an amenable unimodular lcsc group
G and � is a weighted Delone set in G, which is almost tempered repetitive with respect
to T . We then denote by H� the hull of �. To apply Theorem 3.1 in this context, we need
to construct suitable weight functions.

Given f ∈ C(H�), we define the mapping

wf : RK(G)× H� → R, w(T , �) :=
∫
T

f (g.�) dmG(g). (8)

PROPOSITION 4.1. For every f ∈ C(H�), the function wf given by equation (8) is an
almost sub-additive weight function over H�.

Proof. We have to check axioms (W1)–(W4): axiom (W1) holds by the convention of
the empty integral being equal to 0. Furthermore, axiom (W2) holds with J = ∅ and
η = ‖f ‖∞. The additivity of the integral yields axiom (W3) (which holds as an equality)
with B = ∅ and θ = 0. As for axiom (W4), a straightforward integral substitution allows
us to choose ϑ = 0 and I = ∅.

The key step is now to show that for f ∈ C(H�), the weight function wf is actually
admissible, that is, that it also satisfies axiom (W5). We will use the fact that, by the same
proof as in the abelian case [24, 39], a metric generating the weak-∗-topology on H� is
defined via

d∗(�, �) := min{c∗, inf{δ > 0 : |δ�(Bδ(y))− δ�(Bδ(y))| < δ

for all y ∈ (B1/δ ∩ P) ∪ (B1/δ ∩Q)}},

where � := (P , α), � := (Q, β) ∈ H� and c∗ > 0 are such that Bc∗ ⊆ U and
c∗ < (2σ)−1. We will use this metric in the proof of the following lemma.

LEMMA 4.2. For every f ∈ C(H�), the weight function wf is admissible with respect to
any strong Følner exhaustion sequence (Tm).

Proof. We fix f ∈ C(H�), a strong Følner exhaustion sequence (Tm), and some ε > 0
throughout. We then have to show the existence of some δ > 0 and an m0 ∈ N such that
for all m ≥ m0, we have the implication

d
T −1
m
(�, �) ≤ δ �⇒ |wf (Tm, �)− wf (Tm, �)| ≤ ε ·mG(Tm) . (9)

Since f is uniformly continuous on the compact space H�, there is a 0 < δ < c∗ such
that the condition d∗(�, �) ≤ δ implies |f (�)− f (�)| ≤ ε/3. Since (Tm) is a strong
Følner exhaustion sequence and B := B1/δ ∈ RK(G), we find some m0 ∈ N such that
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mG(∂B(Tm))/mG(Tm) ≤ ε/3‖f ‖∞ and B ⊆ Tm for all m ≥ m0. It follows that for all
� ∈ H�, ∣∣∣∣∫

Tm

f (g.�) dg −
∫
Tm\∂B(Tm)

f (g.�) dg
∣∣∣∣ ≤

∫
∂B(Tm)

|f (g.�)| dg

≤ ‖f ‖∞mG(∂B(Tm)) ≤ ε

3
mG(Tm).

Note that since e ∈ B and B = B−1, we deduce Bg ⊆ Tm for g ∈ Tm \ ∂B(Tm). Let
�, � ∈ H� such that d

T −1
m
(�, �) ≤ δ. Thus, we conclude dg−1B−1(�, �) ≤ δ, and

hence dB(g.�, g.�) = dB−1(g.�, g.�) ≤ δ for all g ∈ Tm \ ∂B(Tm). Since δ < c∗,
d∗(g.�, g.�) < δ follows by the definition of d∗ for all g ∈ Tm \ ∂B(Tm). Thus,
g ∈ Tm \ ∂B(Tm) yields |f (g.�)− f (g.�)| ≤ ε/3 and we arrive at∣∣∣∣∫

Tm\∂B(Tm)
f (g.�) dg −

∫
Tm\∂B(Tm)

f (g.�) dg
∣∣∣∣ ≤

∫
Tm\∂B(Tm)

|f (g.�)− f (g.�)| dg

≤ ε

3
mG(Tm \ ∂B(Tm)) ≤ ε

3
mG(Tm).

Now, equation (9) follows from the triangle inequality.

We can now prove unique ergodicity for almost tempered repetitive Delone sets � in G.

Proof of Theorem 1.3. Suppose that � is almost tempered repetitive with respect to the
strong Følner exhaustion sequence (Tm). Let f ∈ C(H�). Since wf , as considered above,
is an admissible weight function, we deduce from Theorem 3.1 that there is a number
I (f ) ∈ R such that

I (f ) = lim
n→∞

wf (Tm, �)
mG(Tm)

= lim
m→∞

1
mG(Tm)

∫
Tm

f (g.�) dg

for all � ∈ H�. We claim that for an arbitrary G-invariant Borel probability measure ν
on H�, we get I (f ) = ∫

H�
f dν. Indeed, combining the latter limit relation with the

dominated convergence theorem, Fubini’s theorem, and the G-invariance of ν, we arrive at

I (f ) =
∫
H�

lim
m→∞

1
mG(Tm)

∫
Tm

f (g.�) dg dν(�)

= lim
m→∞

1
mG(Tm)

∫
Tm

∫
H�

f (g.�) dν(�) dg

= lim
m→∞

1
mG(Tm)

∫
Tm

∫
H�

f (�) dν(�) dg =
∫
H�

f (�) dν(�).

This shows that for any two G-invariant Borel probability measures ν1 and ν2, we obtain∫
H�

f (�) dν1(�) = I (f ) =
∫
H�

f (�) dν2(�)

for all f ∈ C(H�). This, in turn, is equivalent to ν1 = ν2. Therefore, the hull of � is
uniquely ergodic. It is also minimal by Proposition 3.7.
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4.2. Metrics of exact polynomial growth and linear repetitivity. In the previous sub-
section, we have established Theorem 1.3 which asserts that every tempered repetitive
weighted Delone set with respect to a strong Følner exhaustion sequence in an lcsc
amenable group is uniquely ergodic and minimal. While the notion of a Delone set was
originally defined using a (continuous) adapted metric on G, it does not depend on any
choice of metric on G, but only on G as a topological group. The same metric independence
thus holds for the statement of the theorem. In the present subsection, we would now like
to relate tempered repetitivity to the more classical notion of linear repetitivity; this notion,
unlike the previous ones, does depend on a choice of metric. To obtain a metric version
of Theorem 1.3, we will have to choose a metric with the additional property of exact
polynomial volume growth. As we will see in Theorem 4.13 below, such metrics exist on
all compactly generated groups of polynomial growth (e.g., word metrics with respect to
compact generating sets), but it seems to be unknown in which generality they can be
chosen to be continuous. For this reason, we insist for the remainder of this section that
d is an adapted metric on G, which is not necessarily continuous. We still use the same
notation as before concerning open and closed balls, but we emphasize that without the
continuity assumption, Bt need not be open and Bt need not be closed in the topology of
G. However, left-invariance of d still implies that

BrBs ⊆ Br+s and BrBs ⊆ Br+s for all r , s > 0. (10)

Since d is locally bounded, we may choose r0 such that Br0 contains an open identity
neighborhood. We claim that then

Br ⊆ B̊s and Br ⊆ Br+r0 for all r > 0 and s ≥ r + r0. (11)

Indeed, the former follows from the fact that every x ∈ Br admits an open neighborhood
which is contained in xBr0 ⊆ BrBr0 ⊆ Br+r0 ⊆ Bs . For the latter, if x ∈ Br , then there
exist xn ∈ Br such that xn → x and hence x−1

n x ∈ Br0 for some sufficiently large n0, that
is, x ∈ x−1

n0
Br0 ⊆ BrBr0 ⊆ Br+r0 .

If d is continuous, then Bt is open and Bt is closed, and we have

Bs ⊆ Bs ⊆ Bs ⊆ B̊t ⊆ Bt for all t > s > 0. (12)

Also, if K ⊆ G is compact and d is continuous, then there exists rK > 0 such that
K ⊆ BrK . This latter property is invariant under coarse equivalence, and hence holds for
all adapted pseudo-metrics on G, even if they are discontinuous by Proposition 2.1. We will
be interested in metrics with the following special property (see [40, §4.4] for background
information).

Definition 4.3. (Groups with exact polynomial growth with respect to a metric) Let G be
an lcsc group and let d be an adapted metric on G. We say that G has exact polynomial
growth with respect to d if there are constants C > 0 and q ≥ 0 such that

lim
t→∞

mG(Bt )

Ctq
= 1.
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Note that exact polynomial growth is a property of the pair (G, d), not just of the
(topological) group G. It is also not invariant under replacing d by a coarsely equivalent
metric, and hence G may have exact polynomial growth with respect to some adapted
metrics, but not for others. Note that exact polynomial growth implies that for all r > 0,
we have

lim
t→∞

mG(Bt+r )
mG(Bt )

= lim
t→∞

mG(Bt+r )
mG(Bt )

Ctq

C(t + r)q
= 1. (13)

The following observation is crucial for our purposes. Though it is well known to experts
(see e.g. [40, Proposition 4.13] or [14, Corollary 1.10] for a slightly different formulation),
we give a proof for the sake of being self-contained.

PROPOSITION 4.4. (Balls as Følner sequences) Let G be an lcsc group that has exact
polynomial growth with respect to some adapted metric d. Assume that either:
(a) d is continuous and Tn := Brn , where (rn)n∈N is any strictly monotone sequence with

limn rn = ∞; or
(b) Tn := Brn , where rn+1 − rn > r0 for all n ∈ N, where r0 > 0 is chosen such that Br0

contains an open identity neighborhood.
Then (Tn)n∈N is a strong Følner exhaustion sequence.

Proof. To deal with both cases simultaneously, we set r0 := 0 in Case (a). Note first that
in either case, the sets Tn are compact by continuity, respectively properness of d (whereas
closed balls need not be topologically closed, let alone compact, in Case (b)). Moreover,
we have Tn ⊆ T̊n+1 by equations (12) and (11), respectively, and hence (Tn) is a strong
exhaustion sequence in either case.

Moreover, by the previous remarks, we can find for every compact subset K ⊆ G some
rK > 0 with K ⊆ BrK . This yields

∂KTn = K−1Tn ∩K−1(G \ Tn) ⊆ BrKTn ∩ BrK (G \ Tn).
We claim that if x ∈ Brn−rK , then x �∈ ∂KTn. Indeed, otherwise, we would find y ∈ BrK
and z ∈ G \ Tn such that x = yz and hence z = y−1x ∈ Brn ⊆ Tn. However, we deduce
that in Case (a), we have ∂KTn ⊆ BrKBrn ⊆ BrK+rn ⊆ Brn+rK+1. In Case (b), we can use
equation (11) to similarly deduce

∂KTn ⊆ BrKBrn ⊆ BrK+rn ⊆ BrK+rn+r0 .

Thus, in either case, we have

∂KTn ⊆ Brn+rK+r0+1 \ Brn−rK .

Using equation (13), we obtain

lim sup
n→∞

mG(∂KTn)

mG(Tn)
≤ lim sup

n→∞
mG(Brn+rK+r0+1 \ Brn−rK )

mG(Brn)

≤ lim
n→∞

mG(Brn+(rK+r0+1))

mG(Brn)
− lim

n→∞
mG(Brn−rK )

mG(B(rn−rK)+rK )
= 1 − 1 = 0.

This finishes the proof.
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We will see that if one restricts attention to strong Følner exhaustion sequences which
arise from metrics of exact polynomial growth as above, then our notion of (almost)
tempered repetitivity reduces to the more classical and purely metric notion of (almost)
linear repetitivity. Let us recall the relevant definitions.

Definition 4.5. Let G be an lcsc group and let d be an adapted metric on G. A weighted
Delone set � in G is called almost linearly repetitive with respect to d if it is almost
repetitive and there exists some function c� : (0, ∞) → (0, ∞) such that

�(δ, R) := c�(δ)R, (δ, R) ∈ (0, ∞)× [1, ∞)

is an almost repetitivity function.

For weighted Delone sets with FLC, it makes sense to work with the following
definition.

Definition 4.6. A weighted Delone set � on G is called linearly repetitive if it is repetitive
and there exists a constant c� such that �(R) := c�R, R ∈ [1, ∞) is a repetitivity
function.

We emphasize that (almost) linear repetitivity is a metric notion, whereas (almost)
tempered repetitivity is a notion relative to a given strong Følner exhaustion sequence.
However, we have the following relation.

PROPOSITION 4.7. (Linear repetitivity versus tempered repetitivity) Assume that G is an
lcsc group that has exact polynomial growth with respect to some adapted metric d and let
r0 > 0 such that Br0 is an identity neighborhood. Then, for a weighted Delone set � in G,
the following statements are equivalent:

(i) � is almost linearly repetitive with respect to d;
(ii) � is almost tempered repetitive with respect to every strong Følner exhaustion

sequence of the form T = (Brn) with the sequence (rn) satisfying

r0 ≤ inf
n
(rn+1 − rn) ≤ sup

n
(rn+1 − rn) < ∞;

(iii) � is almost tempered repetitive with respect to the strong Følner exhaustion
sequence (Bnr0).

If d is continuous, then we can replace closures of balls by closed balls, the condition in
statement (ii), by

0 < inf
n
(rn+1 − rn) ≤ sup

n
(rn+1 − rn) < ∞,

and the strong Følner exhaustion sequence in statement (iii) by (Bn).
If � has FLC, then we can drop the word ‘almost’ from any of the above equivalences.

Remark 4.8. Note that due to part (b) of Proposition 4.4, the sequences appearing in
assertions (ii) and (iii) of Proposition 4.7 are indeed strong Følner exhaustion sequences.
In the case where the metric is additionally continuous, we find that the closed balls give
rise to strong Følner exhaustion sequences by part (a) of Proposition 4.4. Note that the
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condition on the sequence (rn) given in assertion (ii) implies that rn < rn+1 for all n ∈ N,
as well as rn ↗ ∞ as n → ∞. However, even if d is continuous, these two monotonicity
conditions are not sufficient for � being tempered repetitive with respect to T , as can be
inferred by Example 3.8.

Proof. Assume that G has exact polynomial growth with respect to d with parameters say
C > 0 and q ≥ 0, and let (tm) be any strictly increasing sequence such that tm ↗ ∞ as
m → ∞. We recall from equation (13) that for all c > 0, there exists a constant γ > 1
such that for all m ∈ N,

mG(Bctm+r0) = mG(Bctm+r0)
mG(Bctm)

·mG(Bctm) ≤ γmG(Bctm).

Then, for every c′ > 0, we find a constant β ≥ 1 such that for all m ∈ N and c ∈ {1, c′},
β−1C(ctm)

q ≤ mG(Bctm) ≤ mG(Bctm) ≤ mG(Bctm+r0) ≤ γmG(Bctm) ≤ βC(ctm)
q .

The same argument also holds forBctm instead ofBctm (one can set r0 = 1 in this situation).
(i) �⇒ (ii). Assume that � is almost linearly repetitive with almost repetitivity function

�(δ, R) = c�(δ) · R (where c� = c�(0) in the FLC case) and let T = (Tm), where
Tm := Brm . We set a := infm(rm+1 − rm) > 0, as well as A := supm(rm+1 − rm) < ∞.
Then, by the given almost linear repetitivity, we get RT

�(δ, m) ≤ a−1c�(δ)rm for all
m ∈ N. Further, we have that TRT

� (δ,m) ⊆ BART
� (δ,m) for all m ∈ N. In line with the remark

made at the beginning of the proof (applied with tm = rm and with c′ = Aa−1c�(δ)), we
find β = β(δ) ≥ 1 such that

inf
m∈N

mG(Tm)

mG(TRT
� (δ,m))

≥ inf
m∈N

β(δ)−1 · Crqm
mG(BAa−1c�(δ)·rm)

≥ β(δ)−2(Aa−1)−qc�(δ)−q > 0.

Hence, the repetitivity portion of � is bounded from below by ζ(δ) ≥ β(δ)−2 ·
(Aa−1)−qc�(δ)−q , which is positive. This shows that � is almost tempered repetitive
with respect to T . In the continuous case, the same argument works with Tm := Brm

instead of Tm := Brm .
(ii) �⇒ (iii). This is obvious since the sequence (rn) with rn = r0n (or rn = n in the

continuous case) for all n ∈ N satisfies the growth condition given in assertion (ii).
(iii) �⇒ (i). Since the statements are invariant under rescaling the metric, we may

assume that r0 = 1 to simplify notation. Assume that � is almost tempered repetitive with
respect to T = (Bn). Now let R ≥ 1 and m := �R� + 1 such that m ∈ N with m ≥ 2 and
m− 2 < R ≤ m− 1. By assumption, there is a function ζ : [0, 1) → [0, 1] with ζ(δ) > 0
for all δ > 0 (and in the FLC case, ζ(0) > 0) such that

0 < ζ(δ) ≤ inf
m∈N

mG(Tm)

mG(TRT
� (δ,m))

.

Using the considerations made at the beginning of the proof (applied with tm = m and
c′ = 1), we obtain β(δ) ≥ 1 such that for all m ∈ N,

RT
�(δ, m) ≤

(
β(δ)2

ζ(δ)

)1/q

·m.
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Note that m = (m− 2)+ 2 ≤ R + 2R = 3R. By the first inclusion given in equation (11)
and R + 1 ≤ m, we get BR ⊆ ˚

BR+1 ⊆ B̊m. It follows from the definition of the repetitivity
index that every BR-pattern δ-occurs in hT̊ −1

RT
� (δ,m)

= ˚
BRT

� (δ,m)(h) ⊆ BRT
� (δ,m)+1(h) for

all h ∈ G, where the latter inclusion follows from the second inclusion in equation (11).
We can now choose κ(δ) > 0 large enough such that (β(δ)2/ζ(δ))1/q3R + 1 ≤ κ(δ)R for
all R ≥ 1, and then �(δ, R) := κ(δ)R is an almost repetitivity function for �. The special
case where d is a continuous metric follows along similar lines, using the inclusions given
in equation (12).

This now allows us to restate Theorem 1.3 in purely metric terms and thereby establish
Theorem 1.2 from §1.

THEOREM 4.9. Assume that G is an lcsc group that has exact polynomial growth with
respect to an adapted metric d. If a weighted Delone set � in G is almost linearly repetitive
with respect to d, then its hull H� is minimal and uniquely ergodic.

Proof. The unique ergodicity follows from combining Proposition 4.7 with Theorem 1.3.
Furthermore, H� is minimal by Proposition 2.4 since � is almost (linearly) repetitive.

4.3. Examples of groups with metrics of exact polynomial growth. We have seen in the
previous subsection that adapted metrics of exact polynomial growth give rise to strong
Følner exhaustion sequences, and allow us to translate the abstract notion of tempered
repetitivity into the more concrete notion of linear repetitivity. We now provide some
explicit examples of such metrics. Our starting point is the Cygan–Korányi metric on the
Heisenberg group.

Example 4.10. Consider the three-dimensional Heisenberg group G = C × R with group
law given by

(z, t) · (w, s) = (z + w, t + s + 1
2 Im zw)

and note that for z ∈ C and t ∈ R, we have

(z, t)−1 = (−z, −t).
The Cygan–Korányi norm ‖ · ‖ : G → [0, ∞)

‖(z, t)‖ := 4
√

|z|4 + 16t2

defines a group norm on the Heisenberg group, cf. [15, p. 18, inequality (2.12)], which
means that the formula

dG(g, h) = ‖g−1h‖
defines a left-invariant metric dG on G, called the Cygan–Korányi metric. Since the
Cygan–Korányi norm is bounded above and below by suitable powers of the Euclidean
norm on C × R ∼= R3, and the metric dG is proper and defines the group topology.
Thus, dG is continuous and adapted. Using that the Haar measure mG on G is the
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three-dimensional Lebesgue measure, a simple integration via polar coordinates using the
substitution s = r2 yields

mG(BR) =
∫ ∫

x2+y2≤R2

∫ 1
4
√
R4−(x2+y2)2

− 1
4
√
R4−(x2+y2)2

1 ds dx dy

=
∫ R

0
r

( ∫ 2π

0

( ∫ 1
4
√
R4−r4

− 1
4
√
R4−r4

1 ds
)
dθ

)
dr

= 2π ·
∫ R

0
r · 1

2

√
R4 − r4 dr =π ·

∫ R

0
r ·

√
R4 − r4 dr = π

2

∫ R2

0

√
R4 − s2 ds.

Since the above integral is equal to the area of the quarter circle with radius R2, which is
(R2)2π/4, we obtain

mG(BR) = π

2
· (R

2)2 · π
4

= π2

8
R4,

and hence,

lim
t→∞

mG(Bt+r )
mG(Bt )

= lim
t→∞

(t + r)4

t4
= 1 for all r > 0.

Therefore, the Heisenberg group has exact polynomial growth with respect to the
Cygan–Korányi metric dG.

The previous example can be generalized to cover the whole class of homogeneous Lie
groups. As explained in [21, Ch. 3], each homogeneous Lie group G comes equipped
with a class of continuous adapted metrics, called homogeneous metrics, which are
mutually quasi-isometric, and a natural family of dilation automorphisms (Dλ)λ>0 such
that Bt = Dt(B1) for balls with respect to any homogeneous metric d. By [21, p. 100,
equation (3.6)], this implies that

mG(Bt ) = mG(B1)t
κ , (14)

where κ is a constant depending on G (called the homogeneous dimension of the
homogeneous group). We have seen in the case of the Heisenberg group that κ = 4. It
follows immediately from equation (14) that homogeneous groups have exact polynomial
growth with respect to homogeneous metrics, and this property also carries over to lattices
in such a group (see [4]).

PROPOSITION 4.11. Let G be a homogeneous Lie group. If d is a homogeneous metric on
G, then G has exact polynomial growth with respect to d. Similarly, if � is a lattice in G,
then � has exact polynomial growth with respect to d|�×� .

At this point, we can easily deduce Theorem 1.1 from §1.
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Proof of Theorem 1.1. In view of Theorem 4.9 and the fact that linear repetitivity implies
almost linear repetitivity, we only have to show that every homogeneous metric d is adapted
and that G has exact polynomial growth with respect to d. The former follows from [21,
Proposition 3.1.37] and the latter follows from Proposition 4.11.

Note that Proposition 4.11 generalizes Example 4.10 since the Cygan–Korányi metric is
a homogeneous metric on the Heisenberg group. Our next goal is to characterize all groups
which admit an adapted metric of exact polynomial growth.

In geometric group theory, a finitely generated group � is said to have polynomial
growth provided for some (hence any) finite generating set S, there exist constants C ≥ 1
and k ∈ N such that |Sn| ≤ C · nk for all n ∈ N. More generally, if G is a compactly
generated lcsc group, then we say that G has polynomial growth if for some (hence any)
compact symmetric generating set � and Haar measure mG on G, there exist constants
C ≥ 1 and k ∈ N such that

mG(�
n) ≤ C · nk .

We warn the reader that while finitely generated discrete groups of polynomial growth
are virtually nilpotent by a celebrated theorem of Gromov, this need not be the case in
the compactly generated lcsc groups of polynomial growth. However, such groups are still
virtually compact-by-solvable, and hence amenable. A more precise structure theory for
compactly generated lcsc groups of polynomial growth was developed only fairly recently
by Breuillard [14]. One consequence of this structure theory is the following volume
growth formula, which is a special case of [14, Theorem 1.1].

THEOREM 4.12. (Breuillard’s volume growth formula [14, Theorem 1.1]) Let G be an
lcsc group of polynomial growth. Then, there exists d(G) ∈ N0 and for every compact
symmetric generating set �, there exists a constant c(�) > 0 such that

lim
n→∞

mG(�
n)

nd(G)
= c(�). (15)

Note that polynomial growth is a property of a (compactly generated) lcsc group G,
whereas the definition of exact polynomial growth also involves a choice of metric d.
Nevertheless the two notions are closely connected.

THEOREM 4.13. (Polynomial growth versus exact polynomial growth, cf. [14]) For a
compactly generated lcsc group G, the following conditions are equivalent:
(i) G has polynomial growth;

(ii) G admits an adapted metric d of exact polynomial growth.

Proof. (ii) �⇒ (i). Since the balls Bn exhaust G and G is compactly generated, it is
generated by some ball BN ; rescaling the metric by a positive constant if necessary, we
may thus assume that G is generated by B1. Now, let q > 0 be chosen such that d-balls
satisfy the condition limt→∞(mG(Bt )/Ct

q) = 1 and pick an integer k > q. Then, we can
find C′ > 0 such that mG(Bt ) < C′tk for all t ≥ 1 and hence
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mG(B
n
1 ) ≤ mG(Bn) < C′nk ,

which shows that G has polynomial growth.
(i) �⇒ (ii). Let � be a compact generating set of G. It then follows from Theorem 4.12

that the word metric d� with respect to � has exact polynomial growth, and this metric is
obviously adapted.

Note that the above proof of the implication (i) �⇒ (ii) does not produce a continuous
adapted metric of exact polynomial growth, unless G is discrete to begin with. The
remainder of this subsection is devoted to the question for which groups of polynomial
growth can one actually produce a continuous adapted metric of exact polynomial growth
and will not be needed in what follows. We start our discussion with a simple example.

If G is a connected Lie group of polynomial growth, then any choice of inner product
on the Lie algebra of G will induce a left-invariant Riemannian metric on G, and
the corresponding metric d will be continuous and adapted. This metric will have the
additional property of being geodesic in the sense that for all x, x ′ ∈ G, there exists
an isometry γ from an interval I = [a, b] ⊆ R to a path in G such that γ (a) = x and
γ (b) = x′ (by a suitable version of the Hopf–Rinow theorem). For an arbitrary compactly
generated lcsc group G, one only knows that there exists a continuous adapted metric d on
G, which is large-scale geodesic in the sense of [18, pp. 10], but it is unclear under which
conditions this metric can be chosen to be geodesic in the strict sense.

THEOREM 4.14. (Exact polynomial growth with respect to a continuous metric) Assume
that a compactly generated lcsc group G of polynomial growth admits a geodesic
(rather than just a large-scale geodesic) continuous adapted metric d. Then, G has exact
polynomial growth with respect to any such metric. In particular, a connected Lie group
admits a continuous adapted metric of exact polynomial growth if and only if it has
polynomial growth.

For the remainder of this section, we assume that d is a geodesic continuous adapted
metric on a compactly generated lcsc group G of polynomial growth. The fact that d is
geodesic has the following consequence concerning balls in G.

LEMMA 4.15. The equality Bn = B
n

1 holds for all n ∈ N.

Proof. Let x ∈ Bn with α := ‖x‖ and m := �α� − 1 ≤ n− 1. Choose a geodesic γ in G
with γ (0) = e and γ (α) = x, and for k = 1, . . . , n, define yk := γ (k − 1)−1γ (k). Then,
by the left-invariance of the metric d and the fact that d(e, yk) = d(γ (k − 1), γ (k)) = 1,
we get

x = y1 · · · ym(γ (m)−1x) ∈ B
m+1
1 ⊆ B

n

1,

and hence Bn ⊆ B
n

1. The converse inclusion is immediate from left-invariance and the
triangle inequality.

In view of Breuillard’s volume growth formula, we can prove Theorem 4.14.
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Proof of Theorem 4.14. We apply equation (15) to � := B1 and use that mG(Br) =
mG(Br) for all r > 0. For q = d(G) and c = c(�) as in Theorem 4.12, we obtain with
Lemma 4.15 that

lim
n→∞

mG(Bn)

c · nq = lim
n→∞

mG(Bn)

c · nq = lim
n→∞

mG(�
n)

c · nq = 1.

Now, for an arbitrary sequence (tn) with limn→∞ tn = ∞, we have

1 = lim
n→∞

mG(B�tn�)
c · (�tn�)q · lim

n→∞
c · (�tn�)q
c · (�tn�)q ≤ lim inf

n→∞
mG(Btn)

c · tqn
.

The converse inequality follows analogously.

Remark 4.16. (Beyond connected Lie groups) The simple argument used to establish
Theorem 4.14 still carries through if d is merely asymptotically geodesic (see [40, Theorem
14.3]), but it no longer works if d is only assumed to be large-scale geodesic in the sense
of [18]. In this case, we can still find positive integers a, b, c such that for all x, x ′ ∈ G,
there exist k ∈ N with n ≤ ad(x, x′)+ b and x0, . . . , xk ∈ G with x = x0, x′ = xn, and
d(xi−1, xi) ≤ c for all i ∈ {1, . . . , k}, but this yields only the weaker statement

B
n

1 ⊆ Bn ⊆ B
an+b
c ⊆ B

(a+b)n
c for all n ∈ N

instead of Lemma 4.15. In the notation of Theorem 4.12, this leads to the conclusion that

c(B1) ≤ lim inf
n→∞

mG(Bn)

nq
≤ lim sup

n→∞
mG(Bn)

nq
≤ c(B

(a+b)
c ),

which, in the language of [40], means that G has strict polynomial growth with respect
to d. Our argument thus shows that every compactly generated lcsc group G of polynomial
growth admits a continuous adapted metric d such that G has strict polynomial growth
with respect to d. It seems to be an open problem for which classes of compactly generated
lcsc group of polynomial growth can one find a metric, which is both continuous and of
exact polynomial growth, see the discussion in [40, §4.4] and the references therein, in
particular, [14] and [42].

5. Symbolic systems
In this section, we describe how the previous considerations carry over to symbolic systems
over a finite alphabet and we give the proof of Theorem 1.4.

In the following, � will denote an amenable, countable, discrete group. For the Haar
measure on �, we fix the normalized counting measure m� which satisfies m�({e}) = 1
for the identity element e ∈ �. We will additionally assume that � is a uniform lattice in
an amenable lcsc group H, that is, � is a discrete subgroup of H whose quotient H/�

is compact in the quotient topology. This point of view is useful for constructing Delone
sets in the ambient group H via symbolic considerations over �. Moreover, we do not lose
any generality because we can always consider � as a lattice in itself. We will also assume
that H carries adapted metric dH and its restriction to � gives rise to an adapted d� on �
(which is automatically continuous since � is discrete).
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We further fix a finite set A, called alphabet, which carries the discrete topology. Then,
A� becomes a compact metrizable space when endowed with the product topology. We
will call the elements in A�colorings and the elements in A are called colors. For any
coloring C ∈ A� , we can define its translation by γ ∈ � as (γ .C)(x) = C(γ−1x) for all
x ∈ �. This leads to the notion of the hull of C, defined as

�C := {γ .C : γ ∈ �},
where the closure is taken in the product topology. Clearly, the hull is a compact metrizable
space as well, and � acts on it via translations. We say that the hull �C is uniquely
ergodic if it admits a unique �-invariant probability measure. Every C ∈ A� gives rise
to a canonical definition of (colored) patches and patterns. Writing F(�) for the collection
of all finite subsets of �, for each S ∈ F(�), we denote the S-patch of C as the restriction
C|S of the map C to the set S. We say that for S, T ∈ F(�), the corresponding patches of
C are equivalent if there is some γ ∈ � such that γ S = T and C(γ s) = C(s) for all s ∈ S.
Given an S-patch of C, we denote its equivalence class as the pattern of that S-patch. We
write [S]C for the collection of all patterns arising from all γ S-patches in C. For p ∈ [S]C
and T ∈ F(�), we say that p occurs in T if there are some representative C|xS of p and
γ ∈ � such that γ xS ⊆ T and C(γ xs) = C(xs) for all s ∈ S. We point out that [S]C is
finite for some C ∈ A� since A is finite, that is, C is of finite local complexity with respect
to the above equivalence relation of patterns.

We will now relate symbolic colorings with weighted Delone sets in the ambient
group H. To this end, we fix σ ≥ 1 along with an injective map ι : A → [σ−1, σ ] and
define the map

I : A� → Del(U , K , σ), C �→
∑
γ∈�

ι(C(γ )) · δγ ,

where U open and K are chosen such that � is (U , K)-Delone in H.

LEMMA 5.1. The map I is a continuous, �-equivariant embedding.

Proof. The injectivity of I is clear from the injectivity of ι and uniform discreteness of �
in H. As for the �-equivariance, take γ0 ∈ �, C ∈ A� , and B ⊆ H Borel. Then,

γ0.I(C)(B) = I(C)(γ−1
0 B) =

∑
γ∈�

ι(C(γ ))δγ (γ−1
0 B) =

∑
γ∈�

ι(C(γ ))δγ0γ (B)

=
∑
γ∈�

ι(C(γ−1
0 γ ))δγ (B) =

∑
γ∈�

ι((γ0.C)(γ ))δγ (B) = I(γ0.C)(B).

It remains to show that I is continuous. To this end, suppose that (Cn) ⊆ A� is a sequence
and C is an element in A� such that limn→∞ Cn = C. Fix a compact neighborhood W of
{e} in H with W ∩ � = {e}. Since all values of I are measures supported on �, it suffices
to show that limn→∞ I(Cn)(ϕ) = I(C)(ϕ) for all ϕ ∈ Cc(H) with the support of ϕ being
contained in KW , where K ⊆ � is finite. Indeed, given a finite set K and fixing such ϕ, we
find nK ∈ N such that we have Cn|K = C|K holds. Therefore, I(Cn)(ϕ) = I(C)(ϕ) follows
for all n ≥ nK . This finishes the proof.
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PROPOSITION 5.2. For any C ∈ A� , the dynamical systems � � �C and � � HI(C) are
topologically isomorphic.

Proof. It suffices to show that the restriction τ of I to �C gives rise to a �-equivariant
homeomorphism onto HI(C). It follows from Lemma 5.1 (with H = �) that τ is an
injective �-map. Moreover, τ is continuous as a restriction of the map I from Lemma 5.1.
The restriction of τ to the orbit {γ .C : γ ∈ �} ⊆ �C is bijective onto its image {γ .I(C) :
γ ∈ �} ⊆ HI(C). Since τ(�C) must be compact and hence closed as an image of a
compact set under a continuous map with values in a Hausdorff space, we must have
τ(�C) = HI(C). So τ is surjective as well. Since τ is a bijective continuous mapping
between two compact Hausdorff spaces, τ is indeed a homeomorphism.

We transfer the repetitivity concepts from Definitions 2.5 and 3.5 to symbolic systems.
Since colorings C ∈ A� are of finite local complexity with respect to the pattern
equivalence relation described above, we can find symbolic analogs of (linear) repetitivity
and tempered repetitivity. Recall that H carries an adapted metric dH that restricts to an
adapted metric d� on �.

For r > 0, we denote by BH
r (h) the collection of points in H with dH -distance from

the identity h ∈ H being less or equal than r. We analogously define B�
r (γ ) for γ ∈ �. If

h = e or γ = e, we just write BH
r and B�

r , respectively.

Definition 5.3. ((Linear) Repetitivity for symbolic systems) In the situation above, we say
that C ∈ A� is symbolically repetitive with respect to d� if for every r ≥ 1, there is some
R = R(r) > 0 such that every pattern p ∈ [B�

r ]C occurs in BR(γ ) for all γ ∈ �. We say
that C is symbolically linearly repetitive if it is symbolically repetitive and there is a C ≥ 1
such that one can choose R(r) = Cr for all r ≥ 1.

We now fix a Følner exhaustion sequence, that is, a Følner sequence T = (Tm) in �

with e ∈ Tm � Tm+1 for all m ∈ N. Then, T is also a strong Følner sequence by [47,
Lemma 2.7(d)], and hence a strong Følner exhaustion sequence in �.

Definition 5.4. (Tempered repetitivity of symbolic systems) In the situation described
above, we define the repetitivity index RT

C : N → N ∪ {+∞} for C with respect to T as

RT
C (m) := inf{n ∈ N : every pattern p ∈ [T −1

m ]C occurs in γ T −1
n for all γ ∈ �}.

We say that C is symbolically tempered repetitive with respect to T if

inf
m∈N

m�(Tm)

m�(TRT
C (m))

> 0.

PROPOSITION 5.5. For C ∈ A� , we have the following assertions.
(a) If C is symbolically (linearly) repetitive with respect to d� , then I(C) is (linearly)

repetitive with respect to dH .
(b) Let H = � and let T be a Følner exhaustion sequence. Then, C is symbolically

tempered repetitive with respect to T if and only if I(C) is tempered repetitive with
respect to T .
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Remark 5.6. It is not difficult to come up with a more general statement for assertion (b)
covering also cases where H �= �. This is however a technical point that we do not need
for the purposes of this work.

Proof. We first prove statement (a). To this end, we fix some r ≥ 1 along with some
r-patch PC := (μ, BH

r (g)) of I(C), where g ∈ H and μ = ∑
γ∈�∩BH

r (g) ι(C(γ ))δγ ,
where ι : A → (0, ∞) is as defined in Lemma 5.1. Let h ∈ H . Since � ≤ H is cocompact
and dH is locally bounded, there is an r0 > 0 such that �BH

r0
= H . Hence, there

are γg , γh ∈ � such that g ∈ BH
r0
(γg) and h ∈ BH

r0
(γh). We write qC := C|BH

r (g)∩� ∈
ABH

r (g)∩� for the corresponding patch in C. Then, qC occurs in

q̃C := C|BH
r+r0 (γg)∩�

∈ ABH
r+r0 (γg)∩� .

Note that we also used here the fact that BH
r B

H
s ⊆ BH

r+s for r , s ≥ 0 by the left-invariance
of the metric dH . Since d� is the restriction of dH and since C is symbolically (linearly)
repetitive, there is some R = R(r + r0) > 0 (which in the case of linear repetitivity can
be chosen as R(r) = Cr for some universal C ≥ 1) such that the pattern of q̃C occurs
in B�

R(r+r0)(γh). Thus, we find by virtue of Lemma 5.1 that the pattern of PC must
occur in BH

R(r+r0)+r0(h). We now set R′(r) = r0 + R(r + r0) (and in the linearly repetitive
situation, we have C′ := r0 + C(1 + r0) ≥ C such that r0 + C(r + r0) ≤ C′r for all r ≥ 1
and define R′(r) = C′r). In any case, we see that the pattern of PC occurs in BH

R′(r)(h).
This finishes the proof.

The validity of assertion (b) is clear from the definitions and from Lemma 5.1.

We are now in position to prove the following which contains all assertions claimed in
Theorem 1.4 as subcases.

THEOREM 5.7. Let � be a countable amenable group that is co-compactly embedded as a
lattice in an lcsc group H carrying an adapted metric dH . Let A be a finite set and assume
that C ∈ A� . Then the following assertions hold.
(a) If C is symbolically tempered repetitive with respect to some Følner exhaustion

sequence, then the hull �C is minimal and uniquely ergodic.
(b) If C is symbolically linearly repetitive with respect to the metric d� induced by dH

and if H has exact polynomial growth with respect to dH , then the hull

HI(C) = {h.I(C) : h ∈ H }w∗

is minimal and uniquely ergodic, where I(C) is defined according to the map of
Lemma 5.1.

(c) If C is symbolically linearly repetitive with respect to some adapted metric d� on �,
and if � has exact polynomial growth with respect to d� , then the hull �C is minimal
and uniquely ergodic.

Proof. We first prove the assertion (a). By Proposition 5.5(b), we find that I(C) is
tempered repetitive as a weighted Delone set over � with respect to some Følner exhaustion
sequence. It follows from Theorem 1.3 that the dynamical system � � HI(C) is minimal

https://doi.org/10.1017/etds.2024.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.120


Linear repetitivity beyond abelian groups 37

and uniquely ergodic. By Proposition 5.2, these features also carry over to the system
� � �C .

To prove the assertion (b), we note first that I(C) is linearly repetitive with respect to dH
as a weighted Delone set in H by Proposition 5.5(a). Since H has exact polynomial growth
with respect to dH , we infer from Theorem 4.9 that the system H � HI(C) is minimal and
uniquely ergodic.

Assertion (c) follows from assertion (b) in the case H = �, while observing with
Proposition 5.2 that the dynamical systems � � �C and � � HI(C) are topologically
isomorphic.

Proof of Theorem 1.4. The first statement is just assertion (a) of the above theorem. The
‘in particular’ statement of Theorem 1.4 is exactly part (c) of the above theorem.

6. Two applications
This section is devoted to the proofs of Corollaries 1.5 and 1.6.

If (Tm) is a (left) Følner sequence, then limm(mG(∂K(Tm))/mG(Tm)) = 0 for every
compact K ⊆ G. To prove Corollary 1.5 and Corollary 1.6, we need that for a suitable
boundary notion, a similar fraction goes to zero for (T −1

m ) which will be a (right) Følner
sequence. In light of this, define the (right)-K-boundary of S by

∂̃K(T ) := TK−1 ∩ (G \ T )K−1.

The following is a simple modification of [44, Lemma 2.3] for ∂K replaced by ∂̃K .

LEMMA 6.1. Let K , L, S, T ⊆ G. Then, the following assertions hold true:
(a) ∂̃K(S ∪ T ) ⊆ ∂̃K(T ) ∪ ∂̃K(S);
(b) ∂̃K(S \ T ) ⊆ ∂̃K(T ) ∪ ∂̃K(S);
(c) ∂̃K(T ) ⊆ ∂̃L(T ) if K ⊆ L;
(d) ∂̃K(∂̃L(T )) ⊆ ∂̃KL(T );
(e) if e ∈ K , then xK ⊆ ∂̃K−1(T ) ∪ T holds for each x ∈ T .
Furthermore, if (Tm) is a strong Følner exhaustion sequence, then (T −1

m ) is an exhaustion
sequence and for every compact K ⊆ G,

lim
m→∞

mG(∂̃K(T
−1
m ))

mG(T
−1
m )

= 0.

Proof. Assertions (a)–(c) are immediate from the definition of ∂̃K(T ). As for assertion
(d), we note that

∂̃K(∂̃L(T )) ⊆ {g ∈ G : there is an x ∈ K such that gx ∈ ∂̃L(T )} = ∂̃L(T )K
−1.

The claim now follows from

∂̃L(T )K
−1 = (T L−1 ∩ (G \ T )L−1)K−1 ⊆ T L−1K−1 ∩ (G \ T )L−1K−1

= T (KL)−1 ∩ (G \ T )(KL)−1.
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Assertion (e) is proven as follows. Let x ∈ T and g ∈ xK . If g ∈ T , there is nothing to
prove. Otherwise, g ∈ G \ T and so g ∈ (G \ T )K as e ∈ K . Since g ∈ TK , we derive
g ∈ ∂K−1(T ).

Suppose (Tm) is a strong Følner exhaustion sequence. Then, clearly, (T −1
m ) is an exhaus-

tion sequence. Since G is unimodular,mG(S) = mG(S
−1) holds for all S ∈ RK(G). Thus,

mG(∂̃K(T
−1
m )) = mG(T

−1
m K−1 ∩ (G \ T −1

m )K−1) = mG(KTm ∩K(G \ Tm)) = mG(∂K−1(Tm))

holds for each compact K ⊆ G and m ∈ N. Hence, limm→∞(mG(∂̃K(T
−1
m ))/

mG(T
−1
m )) = 0 follows as (Tm) is a strong Følner sequence and mG(Tm) = mG(T

−1
m ).

6.1. Equality of upper and lower Banach density. The upper and lower Banach densities
for a weighted Delone set � along a Følner sequence (Tm) are defined by

d(�) := lim sup
m→∞

sup
g∈G

δ�(gT
−1
m )

mG(Tm)
and d(�) := lim inf

m→∞ inf
g∈G

δ�(gT
−1
m )

mG(Tm)
.

The above limit inferior and limit superior are actually limits by Lemma 3.17 and
Remark 3.18 as the almost sub-additive weight function w(S, �) := δ�(S

−1) is actually
additive, see below. Invoking Theorem 3.1, we show in Corollary 1.5 that the upper Banach
density and the lower Banach density coincide if � is an almost tempered repetitive
weighted Delone set.

Proof of Corollary 1.5. Let � be a weighted Delone set in G that is almost tempered
repetitive with respect to a strong Følner exhaustion sequence (Tm). We seek to prove that

b� := lim
m→∞

δ�(T
−1
m )

mG(Tm)

exists uniformly in � ∈ H�. Due to Theorem 3.1, it suffices to show that w : RK(G)×
H� → R, w(K , �) := δ�(K

−1) is an admissible (almost sub-)additive weight function.
Recall that � is a Radon measure on G. Thus, w satisfies conditions (W1) and (W3) with
B = ∅ and θ = 0. Recall that h∗δ�(S) := δ�(h

−1S) holds for any h ∈ G and S ∈ RK(G).
Let K ∈ RK(G), h ∈ G, and � ∈ H�, then

w(Kh−1, h.�) = h∗δ�((Kh−1)−1) = h∗δ�(hK−1) = δ�(K
−1) = w(K , �)

holds implying condition (W4) with I = ∅ and ϑ = 0.
Recall that for each � = (Q, β) ∈ H�, Q is a (U , K)-Delone set where e ∈ U holds

without loss of generality. Let Q be an arbitrary left-U-uniformly discrete subset of G. It is
straightforward to show that there exists a V ⊆ G open (only depending on U) satisfying
e ∈ V , V

−1 = V , and xV ∩ yV = ∅ for all x, y ∈ Q and every left-U-uniformly discrete
set Q. By assertion (e) of Lemma 6.1, one obtains that for each S ∈ RK(G) and x ∈ S, we
have xV ⊆ ∂̃V (S) ∪ S. Thus,
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�(S ∩Q) =
∑

x∈S∩Q

mG(xV )

mG(V )
= 1

mG(V )
mG

( ⊔
x∈S∩Q xV

)

≤ 1

mG(V )
(mG(∂̃V (S))+mG(S))

follows.
Let L, K ∈ RK(G) with K ⊆ L and � = (Q, β) ∈ H�. Since δ�(S) = ∑

x∈Q β(x)

δx(S), we obtain

|w(L, �)− w(K , �)| = δ�((L \K)−1) ≤ σ · �((L \K)−1 ∩Q)

≤ σ

mG(V )
(mG(∂̃V (L

−1))+mG(∂̃V (K
−1))+mG(L \K)),

where we used β(x) ≤ σ and ∂̃V (L
−1 \K−1) ⊆ ∂̃V (L

−1) ∪ ∂̃V (K
−1). By the symmetry

of V and the unimodularity of G, we observe that

mG(∂̃V (L
−1)) = mG(L

−1V ∩ (G \ L−1)V ) = mG(VL ∩ V (G \ L)) = mG(∂V (L))

and likewise for K. Hence, w satisfies axiom (W2) with η := σ/mG(V ) and J := V . It
remains to prove condition (W5).

Let ε > 0 and suppose that V is chosen as before. Fix 0 < δ < 1 such that B2δ ⊆ V and
δ < min{(σ−1/2), (mG(V )/2 + 4σ)ε}. Due to Lemma 6.1, there is an m0 ∈ N such that
mG(∂̃

V
3(T −1

m )) ≤ δmG(T
−1
m ) holds for m ≥ m0. We use properties (a)–(d) subsequently.

Let m ≥ m0 and � = (Q, β), � = (P , α) ∈ H� be such that d
T −1
m
(�, �) < δ where as

defined in the equalities (1) and (2), we have

d
T −1
m
(�, �) = inf{δ > 0 : |δ�(Bδ(x))− δ�(Bδ(x))| < δ

for all x ∈ (T −1
m ∩ P) ∪ (T −1

m ∩Q)}.

Set S1 := T −1
m \ ∂̃V (T −1

m ). Thus, for each x ∈ S1 ∩ P , xV ⊆ T −1
m follows. Let

x ∈ S1 ∩ P . Since Q is U-uniformly discrete, Bδ ⊆ V and∣∣∣∣ ∑
y∈Q∩B2δ(x)

β(y)− α(x)

∣∣∣∣ = |δ�(Bδ(x))− δ�(Bδ(x))| < δ < σ−1,

we conclude that there is a unique yx ∈ T −1
m ∩Q such that yx ∈ Bδ(x) and |α(x)−

β(yx)| < δ. Let S2 := T −1
m \ ∂̃

V
2(T −1

m ). Then, y ∈ S2 ∩Q implies yV ⊆ S1. Thus,
|δ�(Bδ(y))− δ�(Bδ(y))| < δ < σ−1 implies as before that there is a unique xy ∈ P ∩ S1

satisfying xy ∈ Bδ(y) and |α(xy)− β(y)| < δ. Consequently, S2 ∩Q⊆ {yx : x ∈ S1 ∩P }.
Hence,

(T −1
m ∩Q) ⊆ {yx : x ∈ S1 ∩ P } ∪ (∂̃

V
2(T

−1
m ) ∩Q)
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follows. With this at hand, we derive

|w(Tm, �)− w(Tm, �)| =
∣∣∣∣ ∑
x∈T −1

m ∩P
α(x)−

∑
y∈T −1

m ∩Q
β(x)

∣∣∣∣
≤

∑
x∈S1∩P

|α(x)− β(yx)| + σ(�(∂̃V (T
−1
m ) ∩ P)+ �(∂̃

V
2(T

−1
m ) ∩Q)).

By Lemma 6.1(c) and the choice m0, we have mG(∂̃V (T
−1
m )) ≤ δmG(T

−1
m ). Since �(S ∩

D) ≤ 1/mG(V )(mG(∂̃V (S))+mG(S)) for any U-uniformly set D and any S ∈ RK(G),
the previous considerations lead to

|w(Tm, �)− w(Tm, �)| ≤ δ

mG(V )
(mG(∂̃V (T

−1
m ))+mG(T

−1
m ))

+ σ

mG(V )
(mG(∂̃V (∂̃V (T

−1
m )))

+mG(∂̃V (T
−1
m ))+mG(∂̃V (∂̃V

2(T
−1
m )))+mG(∂̃

V
2(T

−1
m ))).

Since ∂̃I (∂̃J (S)) ⊆ ∂̃IJ (S) holds by Lemma 6.1(d), the estimate

|w(Tm, �)− w(Tm, �)| ≤ 2 + 4σ

mG(V )
δmG(T

−1
m ) ≤ εmG(Tm)

is derived using mG(T
−1
m ) = mG(Tm) which holds as G is unimodular. Thus, w satisfies

condition (W5).

6.2. Uniform convergence of the IDS. We briefly sketch the model outlined in [35] and
in [47]. To be consistent with the previous sections, we will consider Cayley graphs with
a left-invariant metric as well as pattern equivalence defined by left translations. (In the
mentioned papers, the authors consider translations from the right but also deal with left
Følner sequences.)

We suppose that � is an amenable countable group generated by a finite symmetric set
S ⊆ �. For the Haar measure on �, we fix the normalized counting measure m� which
satisfies m�({e}) = 1 for the identity element e ∈ �.

Recall for finitely generated groups, Følner sequences (Fn) consist of non-empty finite
sets such that for all s ∈ S, one has

lim
n→∞

m�(Fn � sFn)

m�(Fn)
= 0.

This definition is equivalent to the notion of strong Følner sequences in the above sense by
[47, Lemma 2.7(d)]. The generating set S comes with a natural left-invariant word metric.
Precisely, for g, h ∈ �, one defines

dS(g, h) = min{L ∈ N : there are s1, s2, . . . , sL ∈ S such that s1s2 · · · sL = g−1h}.
In the following, we write

BS
n (g) := {h ∈ � : dS(g, h) < n}

for g ∈ � and n ∈ N.
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Each group � generated by a symmetric set S comes with a Cayley graph with vertices
given by � and two elements g, h ∈ � are connected by an edge if there exists some s ∈ S

such that gs = h. We write Cay(�, S) for this graph.
We consider a coloring C ∈ A� of the group � which is nothing but a map C : � → A,

where A is a finite set whose elements are called colors. As demonstrated in §5, by
assigning to each color in a ∈ A a different positive number ι(a) > 0, we can identify
C with the weighted Delone set I (C) := (�, δC), where δC := ∑

x∈� ι(C(x))δ{x} on �.
Invoking Lemma 5.1 and Proposition 5.2, we consider a coloring C both as mappings
� → A and as weighted Delone sets in the above form. Given C, we define its hull by

�C := {g.C : g ∈ �},
where the closure is taken with respect to the product topology in A� induced from the
discrete topology on A. We now consider a coloring C that is symbolically tempered
repetitive with respect to a strong Følner exhaustion sequence as of Definition 5.4.
It follows from Theorem 5.7(a) that � � �C is uniquely ergodic. Given a finite set
E ∈ F(�), we define the E-patch for C as in §5 above.

Since characteristic functions over the cylinder sets associated with patches are
continuous, we derive from Theorem 3.1 (in combination with Proposition 5.2) that for
every colored patch E := C|E with E ⊆ � finite, the limits

ν(E) := lim
m→∞

1
m�(Tm)

∑
x∈Tm

1E (x.D)

exist for all D ∈ �C , where for D′ ∈ �C , one has 1E (D′) = 1 if and only if D′|E = E and
1E (D′) = 0 otherwise. This yields

ν(E) := lim
m→∞

1
m�(Tm)

∑
x∈Tm

1E (x.C) = lim
m→∞

m�({x ∈ Tm : (x.C)|E = E})
m�(Tm)

= lim
m→∞

m�({x ∈ Tm : C|x−1E
∼= E})

m�(Tm)
,

where we write C|x−1E
∼= E if the patches C|x−1E and E are equivalent. With no loss

of generality, we will assume that the identity e is contained in E since, otherwise, we
can pick a ∈ E and repeat the above argument with the coloring D := a.C and the patch
C|a−1E instead of C and E . Furthermore, the sequence (T −1

m ) is a right-Følner sequence,
see Lemma 6.1. Thus,

lim
m→∞

m�({y ∈ � : y−1E ⊆ T −1
m })

m�(Tm)
= lim

m→∞
m�({y ∈ Tm : y−1E ⊆ T −1

m })
m�(Tm)

= 1.

Consequently, we arrive at

ν(E) = lim
m→∞

m�({z ∈ � : z−1E ⊆ T −1
m ∧ C|z−1E

∼= E})
m�(Tm)

for every colored patch E := C|E with E ⊆ � finite. In the setting of [47, §5] with right
translations of patches replaced by left translations of patches, the latter condition is
equivalent to
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ν(E) = lim
m→∞

#lE (T
−1
m )

m�(T
−1
m )

(16)

for all patches E := C|E with E ⊆ � finite, where #lE (T
−1
m ) counts the number of

occurrences of the pattern of E in T −1
m . Recall that (T −1

m ) is a right Følner sequence.
The setting in [47] is reversed: there, one deals with right occurrences of colored patterns,
with a right-invariant word metric and with left Følner sequences.

We turn to operators on the given left Cayley graph.
For a subset W ⊆ �, we write �2(W , S) for the space of functions u : W → S

satisfying
∑

W∈� ‖u(g)‖2
S < ∞, where S is a finite dimensional Hilbert space with norm

‖ · ‖S . For a finite set L ⊆ � and an operator H : �2(�, S) → �2(�, S), we set

H [L] : �2(L, S) → �2(L, S), u �→ pLHiL u,

where iL : �2(L, S) → �2(�, S) and pL : �2(�, S) → �2(L, S) are the canonical inclu-
sion and projection operators defined as

iL(u)(g) =
{
u(g) if g ∈ L,

0 otherwise,
and pL(v)(g) = v(g) for all g ∈ L.

For g, h ∈ �, we write H(g, h) := p{g}Hi{h}.
On �2(�, S), we now define the class of operators which is of interest to us.

Definition 6.2. Let H : �2(�, S) → �2(�, S) be a self-adjoint operator with �, S and S
as above. Further, suppose that C : � → A is a coloring. We say that H has finite hopping
range if there is some M ∈ N such that H(g, h) = 0 whenever dS(g, h) ≥ M . We say that
H is C-invariant if there is some N ∈ N such that H(xg, xh) = H(g, h) for x, g, h ∈ �

that satisfy

x(C|BN(g)∪BN(h)) = C|BN(xg)∪BN(xh).

If H has finite hopping range and is C-invariant, then we call R := max{M; N} the overall
range of H.

We now define the eigenvalue counting function for a self-adjoint operator A : S → S
defined on finite dimensional Hilbert space S. Specifically, the cumulative eigenvalue
counting function of A is defined by

ev(A)(E) :=
∑
λ≤E

mult(λ),

where the sum is taken over the set of all eigenvalues of A less or equal than E and mult(λ)
is the multiplicity of the eigenvalue λ.

In the following, we fix once and for all a self-adjoint operator H : �2(�, S) →
�2(�, S) that has finite hopping range and is C-invariant with respect to a coloring
C : � → A with overall range R ∈ N.

Given a finite non-empty set F ⊆ � and E ∈ R, we define

HF := H [FR] and N(F) : R → N, N(F)(E) := ev(HF )(E),
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where FR := {x ∈ F : BS
R+1(x) ⊆ F }. Then, the functions

NH(F) : R → [0, 1], E �→ N(F)(E)

m�(F ) dim(S) (17)

are elements in the Banach space of bounded right continuous functions on R with
supremum norm, denoted by (BRC(R), ‖ · ‖∞). They denote the empirical eigenvalue
distribution of the operators HF for non-empty finite sets F ⊆ �. Note that dividing by
dim(S) gives the correct normalization to obtain numbers in [0, 1] since

dim(�2(F , S)) = m�(F) · dim(S)

for finite F ⊆ �.

Proof of Corollary 1.6. For the proof of Corollary 1.6, suppose that the coloring
C : � → A is symbolically tempered repetitive with respect to (Tm). Let H : �2(�, S) →
�2(�, S) be a self-adjoint, C-invariant finite hopping range operator with overall range
R ∈ N. Due to the existence of the frequencies as displayed in equation (16) and taking
into account the reversed model as in [47, §§5 and 7], we obtain from in [47, Theorem 7.4]
that there is some NH ∈ BRC(R) such that

lim
m→∞ ‖NHm −NH‖∞ = 0,

where Hm = H [(T −1
m )R] and the NHm are the empirical eigenvalue distributions as of

equation (17).

Remark 6.3. Also shown in [47, Theorem~7.4] is that NH is the distribution function of a
probability measure μH on R.
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A. Appendix. Weight functions and convergence
In this appendix, we give the proofs of Lemmas 3.16 and 3.17.

Proof of Lemma 3.16. Fix 0 < ε < 1/10, a compact I ⊆ G, as well as ζ = ε/16. Fix a
strong Følner exhaustion sequence (Sl). We first choose mI ∈ N large enough such that
mG(∂I (Sk)) ≤ εmG(Sk) for all k ≥ mI . Fix n ∈ N with n ≥ mI . Using Theorem 3.14,
we find prototiles Sεi ∈ {Sl : l ≥ max{i, n}} for 1 ≤ i ≤ N(ε) and δ0 > 0 such that every
(SεN(ε)S

ε −1
N(ε), δ0)-invariant compact subset A ⊆ G can be ε-quasi tiled while satisfying

the properties (T1)–(T4) given in the statement of Theorem 3.14. So, in the following, we
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assume that A is (SεN(ε)S
ε −1
N(ε), δ0)-invariant and also (L, ε)-invariant, where L ∈ {J , B, I }

and we fix finite center sets CA
i ⊆ A giving rise to an ε-quasi tiling. By Remark 3.15(ii),

we can also make sure that

mG(∂L(S
ε
i ))

mG(S
ε
i )

< ζ 2,
mG(∂L(S̃

ε
i (c)))

mG(S
ε
i )

< 4ζ (A.1)

for L ∈ {J , B} and for all 1 ≤ i ≤ N(ε) and c ∈ CA
i .

We define

� = 1
mG(A)

(
v(A)−

N(ε)∑
i=1

∑
c∈CA

i

v(Sεi c)

)
,

as well as Aε := A \ ⋃N(ε)
i=1

⋃
c∈CA

i
S̃εi (c). We obtain

mG(A) ·� =
(
v(A)−

∑
i,c

v(S̃εi (c))− v(Aε)

)
−

∑
i,c

(v(Sεi c)− v(S̃εi (c)))+ v(Aε).

Furthermore, we use the sub-additivity property (w3) of v, combined with the general
inclusions

∂E(C ∪D) ⊆ ∂E(C) ∪ ∂E(D), ∂E(C \D) ⊆ ∂E(C) ∪ ∂E(D)

for general sets C, D, E ∈ RK(G) and the triangle inequality to obtain

mG(A) ·� ≤ θ(v)

(
2 ·

∑
i,c

mG(∂B(S̃
ε
i (c)))+mG(∂B(A))

)
+

∑
i,c

|v(Sεi c)− v(S̃εi (c))| + v(Aε).

Next, we use the almost monotonicity condition (w2) to find that

mG(A) ·� ≤ θ(v)

(
2 ·

∑
i,c

mG(∂B(S̃
ε
i (c)))+mG(∂B(A))

)
+ v(Aε)

+ η(v)

( ∑
i,c

mG(S
ε
i c \ S̃εi (c))

)
+ η(v)

∑
i,c

mG(∂J (S̃
ε
i (c)))

+ η(v)
∑
i,c

mG(∂J (S
ε
i c)).

In view of conditions (w1) and (w2) (and the above set inclusions for boundaries), we
also have

v(Aε) ≤ |v(Aε)| ≤ η(v)

(
mG(Aε)+mG(∂J (A))+

∑
i,c

mG(∂J (S̃
ε
i (c))

)
.
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Plugging this into the above inequality and using mG(S
ε
i c \ S̃εi (c)) < ε along with the

invariance conditions on the prototiles, cf. equality (A.1) and ζ 2 ≤ 4ζ , we arrive at

mG(A) ·� ≤θ(v)8ζ
∑
i,c

mG(S
ε
i c)+ θ(v)mG(∂B(A))+ η(v)mG(Aε)+ η(v)mG(∂J (A))

+ η(v)4ζ
∑
i,c

mG(S
ε
i c)+ η(v)ε

∑
i,c

mG(S
ε
i c)+ η(v)4ζ

∑
i,c

mG(S
ε
i c)

+ η(v)4ζ
∑
i,c

mG(S
ε
i c).

By the tiling property (T4) of Theorem 3.14 and using the fact that
∑

i

∑
c mG(S

ε
i c) ≤

2mG(A), we get

� ≤ 16θ(v)ζ + θ(v)
mG(∂B(A))

mG(A)
+ 2η(v)ε + η(v)

mG(∂J (A))

mG(A)
+ 8η(v)ζ

+ 2η(v)ε + 8η(v)ζ + 8η(v)ζ .

We finally use the additional invariance assumptions on A, that is, mG(∂J (A)) ≤ εmG(A)

and mG(∂B(A)) ≤ εmG(A). Hence, the choice ζ = ε/16 finally leads to

� ≤ 2θ(v) · ε + 8η(v) · ε.

For the proof of Lemma 3.17, we need another lemma first.

LEMMA A.1. Let w : RK(G)×X → R be an almost sub-additive weight function
satisfying (W5∗) and assume that G � X is minimal. Then, for every strong Følner
exhaustion sequence (Tm) and for each ε > 0, there is some m0 ∈ N such that

|w+(Tm, x)− w+(Tm, y)| < ε, |w−(Tm, x)− w−(Tm, y)| < ε

for all x, y ∈ X and for all m ≥ m0.

Proof. Let ε > 0. We now choose m0 ∈ N such that property (W5∗) of Remark 3.12
holds applied with ε/3 instead of ε. If necessary, we increase m0 such that
mG(∂I (Tm))/mG(Tm) ≤ ε/(6ϑ) holds for allm ≥ m0, where I ⊆ G is the compact subset
of property (W4) that only depends on w. Let m ≥ m0 and fix x, y ∈ X. By definition of
w+ and property (W4) of Definition 3.9, we find and element hmx ∈ G such that∣∣∣∣w(Tm, hmx x)

mG(Tm)
− w+(Tm, x)

∣∣∣∣ < ε

3
+ ϑ · mG(∂I (Tm))

mG(Tm)
.

Moreover, since the action G � X is minimal, we find jm ∈ G such that dX(hmx x, jmy) <
δm (with δm > 0 chosen as in property (W5∗)), and by property (W5∗), we arrive at

|w(Tm, hmx x)− w(Tm, jmy)| < ε/3mG(Tm).

Putting everything together and using again property (W4), we observe

w+(Tm, x) ≤ w(Tm, hmx x)
mG(Tm)

+ ε

3
+ ϑ · mG(∂I (Tm))

mG(Tm)

≤ w(Tmj
−1
m , y)

mG(Tm)
+ 2ε

3
+ 2ϑ · mG(∂I (Tm))

mG(Tm)
.
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By definition of w+ and mG(∂I (Tm))/mG(Tm) < ε(6ϑ)−1, we conclude w+(Tm, x) ≤
w+(Tm, y)+ ε for all m ≥ m0. Interchanging the roles of x and y yields the statement for
w+. The assertion for w− can be proven in the very same manner and we leave the details
to the reader.

We are ready to give the proof of Lemma 3.17.

Proof of Lemma 3.17. It suffices to show

lim sup
m→∞

w+(Tm, x) ≤ lim inf
m→∞ w+(Tm, x)

for all x ∈ X. Invoking Remark 3.10, we see that both the above limsup and the liminf are
contained in the interval [−η, η] for all x ∈ X, where η ≥ 0 is the constant as of axiom
(W2) in Definition 3.9. So fix x ∈ X. We find a subsequence (Sl) of (Tm) such that

lim inf
m→∞ w+(Tm, x) = lim

l→∞ w+(Sl , x) .

By property (W4), there is a compact I ⊆ G and ϑ ≥ 0 such that the almost-equivariance
property for w is satisfied. Let 0 < ε < 1/10 and N(ε) := �− log(ε/1 − ε)�. We apply
Lemma 3.16 with B = B, I = I , J = J , η(v) = η, and θ(v) = θ , where J and η describe
the almost monotonicity property (W2), and B and θ describe the almost sub-additivity
property (W3) of w. We choose � ∈ N large enough such that mG(∂I (Sl)) ≤ εmG(Sl) for
all l ≥ �. Hence, we find a collection of prototiles

{e} ⊆ Sn ⊆ Sε1 ⊆ · · · ⊆ SεN(ε) , Sεi ∈ {Sk : k ≥ max{i, �}}
taken from the sequence (Sl) and there is some M ∈ N such that for each m ≥ M , the set
Tm can be ε-quasi tiled by the prototiles Sεi with center sets Cm

i for 1 ≤ i ≤ N(ε) and

w(Tm, y)
mG(Tm)

≤ 1
mG(Tm)

N(ε)∑
i=1

∑
c∈Cm

i

w(Sεi c, y)+ (8η + 2θ) ε

for all y ∈ X. Further, combining the previous estimate and property (W4) of a weight
function gives

w(Tmh, x)
mG(Tm)

≤
N(ε)∑
i=1

∑
c∈Cm

i

mG(S
ε
i c)

mG(Tm)

w(Sεi ch, x)
mG(S

ε
i c)

+ ϑ

N(ε)∑
i=1

∑
c∈Cm

i

mG(∂I (S
ε
i ))

mG(Tm)

+ ϑ
mG(∂I (Tm))

mG(Tm)
+ (8η + 2θ) ε

for all h ∈ G and m ≥ M . Increasing M if necessary and using mG(∂I (Sl)) ≤ εmG(Sl) for
l ≥ � together with

∑
i

∑
c mG(S

ε
i c) ≤ 2mG(Tm), we arrive at

w(Tmh, x)
mG(Tm)

≤
N(ε)∑
i=1

∑
c∈Cm

i

mG(S
ε
i c)

mG(Tm)

w(Sεi ch, x)
mG(S

ε
i c)

+ (8η + 2θ + 3ϑ)ε

for all h ∈ G and m ≥ M .
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Let Sε := Sεi0
be chosen such that w+(Sε, x) = max1≤i≤N(ε) w+(Sεi , x). Then,

w(Sεi ch, x)
mG(S

ε
i c)

≤ w+(Sε, x)

for all 1 ≤ i ≤ N(ε). In addition, the tiling properties (T1)–(T4) listed in Theorem 3.14
lead to

(1 − 2ε)mG(Tm) ≤
N(ε)∑
i=1

∑
c∈Cm

i

mG(S̃
ε
i (c)) ≤

N(ε)∑
i=1

∑
c∈Cm

i

mG(S
ε
i c)

≤
N(ε)∑
i=1

∑
c∈Cm

i

mG(S̃
ε
i (c))

1 − ε
≤ mG(Tm)

1 − ε
.

Combined with the previous estimate, this yields

w(Tmh, x)
mG(Tm)

≤ max
{

1
1 − ε

w+(Sε, x), (1 − 2ε)w+(Sε, x)
}

+ (8η + 2θ + 3ϑ)ε

for all m ≥ M and h ∈ G. (Note that the sign of w+(Sε, x) determines the factor in front
of it.) Taking the supremum over h ∈ G and the limsup in m, we derive

lim sup
m→∞

w+(Tm, x) ≤ max
{

1
1 − ε

w+(Sε, x), (1 − 2ε)w+(Sε, x)
}

+ (8η + 2θ + 3ϑ)ε.

We recall that by definition, we have that Sε = Sl for some l ≥ �. Since � was chosen
arbitrarily but large enough and since (Sl) is a subsequence of (Tm), where (w+(Tm, x))m
attains its limit inferior, we can send � to infinity to see

lim sup
m→∞

w+(Tm, x) ≤ max
{

1
1 − ε

lim
l→∞ w+(Sl , x), (1 − 2ε) lim

l→∞ w+(Sl , x)
}

+ (8η + 2θ + 3ϑ)ε

= max
{

1
1 − ε

lim inf
m→∞ w+(Tm, x), (1 − 2ε) lim inf

m→∞ w+(Tm, x)
}

+ (8η + 2θ + 3ϑ)ε. (A.2)

Sending ε → 0 gives what was claimed above.
We show next that the limits do not depend on the choice of the Følner sequence. To this

end, fix two nested Følner sequences (Tm) and (T ′
l ). Then, for each ε < 1/10, each � ∈ N,

and large m, the set Tm can be ε-quasi tiled by the same means as above by prototiles taken
from (T ′

l )l≥�. Repeating exactly the same arguments as before leads to inequality (A.2)
with (Sl) replaced by T ′

l . Sending ε → 0 shows that the limit with respect to one sequence
is less than or equal to the limit with respect to the other sequence. By symmetry, the
independence follows.

If w is even a topological weight function, (Tm) is a strong Følner exhaustion sequence,
and if the action G � X is additionally minimal, then the limits limm→∞ w+(Tm, x) must
coincide for all x ∈ X and the convergence must be uniform by Lemma A.1.
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B. Appendix. Topology of weighted Delone sets
This section is devoted to a particular useful neighborhood basis for the weak-∗-topology
on spaces of weighted Delone sets.

We fix an lcsc group G, an open subset U ⊆ G, compact subset K ⊆ G, and σ ≥ 1.
We then consider weighted Delone sets in Del(U , K , σ), that is, subsets of G which are
left-U-uniformly discrete and left-K-syndetic with weights in the interval [σ−1, σ ].

Let S ∈ RK(G). Recall the notion

dS(�, �) := inf{δ > 0 : |δ�(Bδ(y))− δ�(Bδ(y))| < δ for all y ∈ (P ∩ S) ∪ (Q ∩ S)}
for two weighted Delone sets � = (P , α) and � = (Q, β).

PROPOSITION B.1. Let � be a weighted Delone set in G. Then for all S ∈ RK(G) and
δ > 0, the set

US,δ(�) := {� ∈ Del(U , K , σ) : dS(�, �) < δ}
is a weak-∗-neighborhood of �. Moreover, {US,δ(�) : S ∈ RK(G), δ > 0} defines a
weak-∗-neighborhood basis of �.

Proof. Let 0 < δ < σ−1/2, S ∈ RK(G), and � = (P , α) ∈ Del(U , K , σ). Define S ′ :=
S.B1 ∈ RK(G). Since σ ≥ 1, B2δ(x) ⊆ S′ holds for all x ∈ S. There is no loss in
generality in assuming that e ∈ U and δ > 0 is small enough such that B2δ(x) ∩ B2δ(y) =
∅ for any x, y ∈ D, where D is some U-uniformly discrete set.

Set K := S′ \ ⋃
x∈P∩S′ Bδ(x). By Urysohn’s lemma, there is a φ ∈ Cc(G) such that

0 ≤ φ ≤ 1, φ(x) = 0 for all x ∈ P and φ|K = 1. Furthermore, for each x ∈ P ∩ S′, there
are φx ∈ Cc(G) such that 0 ≤ φx ≤ 1, φx is supported in B2δ(x) and φx |Bδ(x) ≡ 1. Then,
the set

V := {� ∈ Del(U , K , σ) : |δ�(ψ)− δ�(ψ)| < δ for all ψ ∈ {φ} ∪ {φx : x ∈ P ∩ S′}}
is a weak-∗-neighborhood of � in Del(U , K , σ). We will show first that V ⊆ US,δ(�)

showing that US,δ(�) is indeed a weak-∗-neighborhood of �.
Let � = (Q, β) ∈ V . By definition of φ, we have δ�(φ) = 0. Thus, |δ�(φ)| =

|δ�(φ)− δ�(φ)| < δ implies Q ∩ S′ ⊆ ⋃
x∈P∩S′ Bδ(x) as δ < σ−1 and φ|K = 1.

By the choice of φx , we have δ�(φx) = α(x) for all x ∈ P ∩ S′. In particular, for each
x ∈ P ∩ S, |δ�(φx)− δ�(φx)| < δ and the condition B2δ(x) ∩ B2δ(y) = ∅ for x, y ∈ Q

with x �= y implies that there is a unique zx ∈ Q ∩ B2δ(x) ⊆ Q ∩ S′. Since Q ∩ S′ ⊆⋃
x∈P∩S′ Bδ(x), we conclude zx ∈ Q ∩ Bδ(x). Furthermore, φx |Bδ(x) ≡ 1 yields φx(x) =

1 = φx(zx). Thus,

|δ�(Bδ(x))− δ�(Bδ(x))| = |φx(x)α(x)− φx(zx)β(zx)| = |δ�(φx)− δ�(φx)| < δ

holds for each x ∈ P ∩ S. If y ∈ Q ∩ S, there is a unique x ∈ P ∩ S′ such that y ∈ Bδ(x).
Thus, δ�(Bδ(x)) = δ�(Bδ(y)) and δ�(Bδ(x)) = δ�(Bδ(y)) for these choices of x and y.
Hence,

|δ�(Bδ(y))− δ�(Bδ(y))| = |δ�(Bδ(x))− δ�(Bδ(x))| = |δ�(φx)− δ�(φx)| < δ
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for all y ∈ Q ∩ S and the unique x ∈ P ∩ S′ with y ∈ Bδ(x). Consequently, we have
proven that � ∈ V implies dS(�, �) < δ. Thus, US,δ(�) is a weak-∗-neighborhood of �.

Let � = (P , α) ∈ Del(U , K , σ), φ ∈ Cc(G) and ε > 0. To show that {US,δ(�) : S ∈
RK(G), δ > 0} defines a neighborhood basis, it suffices to show that there is an
S ∈ RK(G) and a δ > 0 such that

US,δ(�) ⊆ {� ∈ Del(U , K , σ) : |δ�(φ)− δ�(φ)| < ε}.
Without loss of generality, suppose that e ∈ U and B2ε(x) ∩ B2ε(y) = ∅ for all x, y ∈
D with x �= y and for all U-uniformly discrete set D. Let S ∈ RK(G) be chosen such
that it contains the compact support of φ and S ∩ P = S.B2ε ∩ P . Set N := �(S.Bε ∩ P).
Since φ ∈ Cc(G), there is a δ > 0 such that δ < min{ε, σ−1, (ε/2N‖φ‖∞)} and |φ(x)−
φ(y)| < ε/2Nσ holds for all x, y ∈ G with dG(x, y) < δ.

Let � = (Q, β) ∈ US.Bε ,δ(�). By the choice of S, each point x ∈ P ∩ S.Bε is nec-
essarily contained in P ∩ S. Hence, for each x ∈ P ∩ S.Bε = P ∩ S, the condition
|δ�(Bδ(x))− δ�(Bδ(x))| < δ ≤ ε implies that there is a unique yx ∈ Q ∩ S.Bε ∩ Bδ(x)

such that |α(x)− β(yx)| < δ ≤ ε/2N‖φ‖∞. In particular, we have shown that {yx : x ∈
P ∩ S.Bε} ⊆ Q ∩ S.Bε. We claim the latter two sets are actually equal.

For indeed, if there was a y ∈ Q ∩ S.Bε that is not equal to some yx , then Bδ(y) ∩ P ⊆
S.B2ε ∩ P and this would lead to Bε(y) ∩ P = ∅. Thus,

|β(y)| = |δ�(Bδ(y))− δ�(Bδ(y))| < δ < σ−1

as � ∈ US.Bε ,δ(�), which is a contradiction to � ∈ Del(U , K , σ). Furthermore,
� ∈ US.Bε ,δ(�) yields

|β(yx)− α(x)| = |δ�(Bδ(yx))− δ�(Bδ(yx))| < δ

for all x ∈ P ∩ S.Bε. Thus,

|δ�(φ)− δ�(φ)| ≤
∑

x∈P∩S.Bε

|α(x)φ(x)− β(yx)φ(yx)|

≤
∑

x∈P∩S.Bε

(|α(x)− β(yx)| |φ(x)| + |β(yx)| |φ(x)− φ(yx)|) < ε,

using dG(x, yx) < δ.
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