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Settling of two rigidly connected spheres

Z. Maches1, M. Houssais2, A. Sauret1 and E. Meiburg1,†
1Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara,
CA 93106, USA
2Department of Physics, Clark University, Worcester, MA 01610, USA

(Received 20 December 2023; revised 12 June 2024; accepted 13 June 2024)

Laboratory experiments and particle-resolved simulations are employed to investigate
the settling dynamics of a pair of rigidly connected spherical particles of unequal size.
They yield a detailed picture of the transient evolution and the terminal values of the
aggregate’s orientation angle and its settling and drift velocities as functions of the
aspect ratio and the Galileo number Ga, which denotes the ratio of buoyancy and
viscous forces acting on the aggregate. At low to moderate values of Ga, the aggregate’s
orientation and velocity converge to their terminal values monotonically, whereas for
higher Ga-values the aggregate tends to undergo a more complex motion. If the aggregate
assumes an asymmetric terminal orientation, it displays a non-zero terminal drift velocity.
For diameter ratios much larger than one and small Ga, the terminal orientation of the
aggregate becomes approximately vertical, whereas when Ga is sufficiently large for flow
separation to occur, the aggregate orients itself such that the smaller sphere is located at
the separation line. Empirical scaling laws are obtained for the terminal settling velocity
and orientation angle as functions of the aspect ratio and Ga for diameter ratios from 1
to 4 and particle-to-fluid density ratios from 1.3 to 5. An analysis of the accompanying
flow field shows the formation of vortical structures exhibiting complex topologies in the
aggregate’s wake, and indicates the formation of a horizontal pressure gradient across the
larger sphere, which represents the main reason for the emergence of the drift velocity.

Key words: suspensions, sediment transport, particle/fluid flow

1. Introduction

The settling dynamics of irregularly shaped particles and particle aggregates is
of considerable interest for a variety of environmental transport processes and
engineering applications. Examples include the settling of mud, clay and silt (Winterwerp
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2002; Strom & Keyvani 2011; Te Slaa et al. 2015), as well as marine snow (Alldredge
& Gotschalk 1988; Diercks & Asper 1997) and microplastics (Khatmullina & Isachenko
2017; Wang et al. 2021; Yan et al. 2021). Similar issues arise with regard to the dynamics
of ice particles in clouds (Gustavsson et al. 2017) and in the context of industrial processes
involving particle flocculation (Licskó 1997; Kurniawan et al. 2006). Environmental
systems and engineering applications such as deep-sea mining (Meiburg & Kneller 2010;
Peacock, Alford & Stevens 2018; Gillard et al. 2019; Ouillon et al. 2021; Wells & Dorrell
2021) may also be strongly affected by where particles are transported and deposited,
so that it is desirable to have accurate predictions of their settling and drift velocities as
functions of their geometry.

While the settling of individual spheres across different flow regimes is a well-studied
topic that has received much attention (Leal 1980; Dietrich 1982; Brown & Lawler 2003;
Yang et al. 2015), more recent studies have addressed the settling dynamics of irregularly
shaped objects in inertial flows, such as oblate spheroids (Moriche, Uhlmann & Dušek
2021), cubes and tetrahedra (Rahmani & Wachs 2014), slender bodies (Khayat & Cox
1989) and disks (Heisinger, Newton & Kanso 2014). These studies show that the spatial
orientation and settling velocity of a body are highly dependent on its geometry. Changes
in the size and shape of an aggregate can greatly affect its drag (Loth 2008; Li et al. 2020),
leading to large changes in the settling rate.

An additional key feature of aggregate shape concerns the effective porosity and
permeability. The formation of particle aggregates can be triggered by a variety of forces,
such as van der Waals forces (Visser 1989) or biocohesive forces caused by the bonds
between organic molecules (Malarkey et al. 2015). Recent numerical works have taken
first steps towards simulating such cohesive forces, as analysed in the investigation of
aggregates with brittle tensile bonds by Langlois, Quiquerez & Allemand (2015), or in
the study of the settling dynamics of cohesive sediment held together by van der Waals
forces (Vowinckel et al. 2019). These aggregates, in turn, due to their porosity, allow for
fluid to pass through the pore spaces, which influences the settling behaviour (Prairie et al.
2015). The size and distribution of these pore spaces are controlled by the geometry of the
aggregate, such that the arrangement of particles leads to aggregates with highly variable
settling velocities.

In contrast to bodies with fore–aft asymmetry, for non-symmetric bodies the settling
motion can become significantly more complex, causing them to settle along complicated
trajectories (Johnson, Li & Logan 1996; Tang, Greenwood & Raper 2002). In the present
work, we consider the sedimentation of rigid bodies consisting of two connected spheres
of unequal diameters. Except for a simplified model variant (Candelier & Mehlig 2016),
the dynamics of this case has not yet received much attention, while the similar situation of
particle pairs with equal diameters but unequal densities has been examined in some depth
by Nissanka, Ma & Burton (2023). The existing literature on the topic primarily focuses
of the case of highly viscous flows at or just above the Stokes limit. As we will see, the
asymmetric particle pair represents a relatively simple case that can exhibit a complicated
settling dynamics depending on the ratio of the diameters.

The present study focuses on the dynamics of elementary aggregates consisting of two
spherical particles of different sizes. We employ both particle-resolved simulations as well
as laboratory experiments, in order to investigate the dynamics of such aggregates settling
in a fluid at rest. The problem configuration is described in detail in § 2, including the
experimental and numerical approaches, as well as validation results. Section 3 presents
comparisons of experimental and simulation results, and it explores the influence of
the ratios of the diameters and also of the gravitational and viscous forces in depth.
Scaling laws are obtained for the dynamics of the aggregate as a function of these
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Figure 1. Schematics (a) of the pair of particles considered at t = 0 (top) and at a later time (bottom), (b) of the
experimental set-up and (c) of example aggregates prepared in the laboratory for various values of α. Straight
orange dashed lines in (a) indicate the lines forming the orientation angle θ , and the curved orange dashed lines
indicate the elliptical shape employed to extract the orientation angle from the experimental data during image
processing.

dimensionless parameters, and the accompanying fluid flow field is analysed. Section 4
summarizes the main findings of the study, and discusses potential further extensions.

2. Methods

2.1. Problem definition
We aim to characterize the dynamics of a pair of rigidly connected spherical particles with
density ρp that settles in a fluid of density ρf < ρp and kinematic viscosity ν, in a large
tank of square cross-section with width W and height H, as illustrated in figure 1. The large
and small particles have diameters of DL and DS, respectively, with DL � DS, so that the
geometry of the aggregate is characterized by the diameter size ratio

α = DL/DS. (2.1)

At the initial time, t = 0, the particle centres of gravity are aligned horizontally in
the z-direction, and both the fluid and the particles are at rest, as shown in figure 1(a).
Gravity points in the y-direction. Due to the symmetry of the particle pair and the moderate
influence of fluid inertia considered in the present study, the motion of the aggregate in
the x-direction is negligible compared with that in the ( y, z)-plane. We hence describe the
motion of the particle pair in terms of the vertical settling and the lateral drift velocities of
its centre of mass, uy and uz, respectively, as well as its orientation angle θ , defined as the
angle between the upward vertical axis and the line connecting the spheres’ centres.

2.2. Experimental methods
The experiments were conducted in a tall tank of height H = 59.4 cm and square
cross-section of dimensions W × W = 14.1 × 14.1 cm2. The tank was filled with one of
two types of mineral oils: STE Food Grade 200 (dynamic viscosity μf ,1 = 96 mPa s
and density ρf ,2 = 864 kg m−3 at 20 ◦C), or STE Food Grade 70 (dynamic viscosity
μf ,2 = 23 mPa s and density ρf ,1 = 850 kgm−3 at 20 ◦C).
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ρ′ Ga α H W θ(t = 0)

Exp. 1.34, 1.31 8–22 1–7 59.4 cm 14.1 cm π/2
Num. (Exp.) 1.31 8–22 1–2.4 50DL 10DL θ1
Num. (Ga � 13) 1.31 4–13 1–2 50DL 10DL π/2
Num. (18 � Ga � 42) 1.31 18–42 1–4 80DL 10DL π/2
Num. (Ga = 75) 1.31 75 1–4 120DL 10DL π/2

Table 1. Key parameter ranges considered in the experiments and numerical simulations performed in the
present study, for the diameter aspect ratio α, density ratio ρ ′, Galileo number Ga, dimensional domain
height H and width W, and initial orientation angle θ(t = 0). For the numerical simulations corresponding
to the experimental cases, we define θ1 to be the first recorded value of the orientation angle obtained via
measurement.

Aggregates made of two spheres were released in a horizontally aligned configuration
(see figure 1(a), top). The aggregates were manufactured by gluing together two nylon
spheres of density ρp = 1135 kg m−3 (figure 1c). The larger particle diameters were DL =
4.76, 6.35, 9.53 and 11.11 mm, while the smaller particle size ranged from DS = 1.59 mm
to 11.11 mm. This leads to values of α = DL/DS in the range 1 � α � 7, with the majority
of the aggregates having α � 4, which is the range in which the change in dynamics is
most pronounced. For the sake of experimental simplicity, some of the experiments at
lower viscosity were performed in a smaller tank, without changing quantitatively the
results. The parameter ranges for both the experiments and the numerical simulations are
indicated in table 1.

The aggregate was first immersed in a beaker to be coated with the same oil as in the bath
to prevent bubble entrainment during its later immersion into the tank. Then, the aggregate
was gently submerged in the tank approximately 1 cm below the fluid surface with an
adjustable metallic wrench. The wrench rested on a flat horizontal support placed on the
top of the tank, and was opened manually to release the aggregate. The experimental set-up
was backlit with a LED panel and a Nikon camera recorded the settling of the aggregate
in the fluid at 60 frames per second (see video examples in supplementary materials
available at https://doi.org/10.1017/jfm.2024.711), so that the instantaneous velocity and
angle could be extracted. Three copies of each aggregate geometry (DL, α) were built
from three distinct pairs of spheres, and each aggregate’s settling motion was recorded to
later average the results over the effective variability in sizes and densities of the nylon
spheres.

In most cases, the aggregates reached a quasi-steady state at the end of an experiment,
i.e. the aggregate velocity and orientation angle no longer varied with time. Only a few
cases did not reach a steady state, due to the limited size of the experimental domain. The
value of θ was determined by aligning an elliptical shape onto the images of the settling
pair, and calculating the angle formed by its major axis with the vertical direction (see the
curved dashed lines in figure 1a).

A few experimental cases, where the aggregate rotated significantly out of the
( y, z)-plane, were detected via tracking the apparent aggregate shape, and subsequently
discarded. The influence of fluid inertia in the present work is not large enough to expect
out-of-plane rotation, so that we attribute any rotation in this direction in the experiments
to inadvertent angular velocity generated during aggregate release. The numerical
simulations support this approach by showing negligible out-of-plane rotation for all cases.

For detailed comparisons with the numerical simulations, a series of settling
experiments of single spheres (the same constituting the aggregates) were performed in
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Settling of two rigidly connected spheres

the same fluids and tanks as the aggregate experiments. The viscosity values at the average
room temperature (20 ◦C) for the two fluids, μf ,1(T = 20 ◦C) and μf ,2(T = 20 ◦C), were
obtained by comparing the experimental terminal settling velocities, uterm, with a classical
drag coefficient law (Schiller 1933)

CD = 8Fdrag

ρf u2
termπD2

L
= 8

(
mp − mf

)
g

ρf u2
termπD2

L
= 24

Re

(
1 + 0.15Re0.687

)
, (2.2)

where the Reynolds number is defined as

Re = DL uterm

ν
, (2.3)

with the single (or large) particle diameter DL. Here, Fdrag denotes the drag force on the
spherical particle, g the gravitational acceleration, mp its mass, mf the mass of fluid in a
volume the size of the particle and ν = μf /ρf is the kinematic viscosity.

In order to build a sufficiently large tank without being able to determine the time
required to reach a terminal (steady-state) velocity, we took the following approach. To
decide on the tank dimensions, oil viscosities and particle sizes, we chose a target range of
Reynolds numbers Re ∈ [1, 100], and tank dimensions such that the time to settle over the
distance of the tank height H is greater than 20 × Dmax/uterm(Dmax) and the tank width is
such that W > 10 × Dmax, with Dmax = 11.1 mm. We determined the corresponding range
of uterm(Dmax) using (2.2) and (2.3). The experimental data presented here are those for
which H was large enough so that the settling velocity reached its steady state.

To account for slight temperature variations in the room (between 17 ◦C and 23 ◦C), we
measured the temperature dependence of the oil viscosities with a plate–plate geometry on
an Anton Paar MCR 302 rheometer. These measurements provided μf ,i,rheom(T) for each
of the two oils. We then fitted the measured data (provided in supplementary materials) by
the curves μf ,i(T) = ciμf ,i,rheom(T), with c1 = 1.15 and c2 = 1.1, so that the rheometer
measurements agree with our best determination of absolute viscosity values from the
settling sphere experiments, obeying (2.2) at 20 ◦C. To summarize, we base the absolute
viscosity value on the comparison with (2.2), and the relative variation of the viscosity
with temperature on the rheometer measurements.

2.3. Governing equations
The fluid flow is governed by the incompressible continuity equation

∇ · u = 0, (2.4)

and the unsteady Navier–Stokes equation

∂u
∂t

+ (u · ∇) u = − 1
ρf

∇p + ν∇2u + 1
ρf

f IBM, (2.5)

where u represents the fluid velocity, t the time, p the pressure with the hydrostatic
component subtracted out and f IBM the distributed force exerted on the fluid by the
particles, which is calculated based on an immersed boundary method (IBM) approach, as
will be discussed below.
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The motion of the finite-size solid particles is governed by

mi
dui

dt
=

∮
Γi

τ · n dA + Vi
(
ρp,i − ρf

)
g + F b,i, (2.6)

Ii
dωi

dt
=

∮
Γi

r × (τ · n) dA + Mb,i, (2.7)

where mi indicates the mass of the ith particle, ui and ωi its translational and angular
velocities, respectively, Vi its volume, Γi its surface, ρp,i its density and Ii its moment of
inertia. Here, F b,i and Mb,i represent the sum of all forces and moments acting on particle
i via rigid bonds with other particles, g denotes the gravity vector and τ indicates the
hydrodynamic stress tensor.

We also define n to be the outward normal vector on Γi, and r = x − xi to be the position
vector from the particle centre xi to the surface point x. Unless otherwise stated, we restrict
our study to the case of two particles with varying diameters and identical densities, so that
ρp,i = ρp.

2.4. Non-dimensionalization
We define characteristic length, velocity, time and pressure scales as

xref = DL, uref =
√

g′ DL, tref =
√

DL/g′, pref = ρf u2
ref , (2.8a–d)

where g′ = g(ρ′ − 1) is the reduced gravity, with ρ′ = ρp/ρf denoting the ratio of
particle-to-fluid density. We remark that we choose the diameter of the larger sphere as
our characteristic length scale, in order to focus on how the behaviour of the aggregate
deviates from that of a single spherical particle when an additional, smaller sphere is
attached to it.

In this way, the governing dimensionless equations take the form

∇ · û = 0, (2.9)

∂û
∂t

+ (
û · ∇)

û = −∇p̂ + 1
Ga

∇2û + f̂ IBM, (2.10)

dûi

dt̂
= 1

ρ′

∮
Γ̂i

τ̂ · n dÂ + F̂ b,i − 1
ρ′ , (2.11)

dω̂i

dt̂
= 1

ρ′

∮
Γ̂i

r̂ × (
τ̂ · n

)
dÂ + M̂b,i, (2.12)

where ûi = ui/uref and ω̂i = ωi tref are the dimensionless particle translational and
angular velocities, respectively. Also, F̂ b,i = F b,i/(mig′) and M̂b,i = DLMb,i/(Iig′)
denote the dimensionless bond force and moment. The Galileo number,

Ga = DL uref

ν
= DL

√
DLg (ρ′ − 1)

ν
, (2.13)

indicates the ratio of gravitational to viscous forces. In the rest of the manuscript, we will
discuss dimensionless quantities only, so that we omit the ˆ symbol.
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2.5. Numerical approach
We solve the governing equations based on the IBM implementation in the code PARTIES,
as described in Biegert, Vowinckel & Meiburg (2017) and Biegert (2018). In summary, it
employs an Eulerian mesh with uniform spacing h = �x = �y = �z for calculating the
fluid motion. The viscous and convective terms are discretized by second-order central
differences, and a direct solver based on Fast Fourier Transforms is used to obtain the
pressure. Time integration is generally performed by a third-order Runge–Kutta scheme,
although viscous terms are integrated implicitly with second-order accuracy. To compute
f IBM , we implement the method of Kempe & Fröhlich (2012), which employs a mesh
of Lagrangian marker points on the surface of each particle. At these marker points, we
interpolate between the Eulerian and Lagrangian grids in order to determine the value of
f IBM so as to ensure the no-slip and no-normal flow conditions at the particle surface.
In the bond region we found that, for the range of Ga considered, any overlap between
marker points did not have a noticeable effect on the settling dynamics, and as such did
not deactivate those close to the contact point as done in Biegert (2018). Additional details
regarding the implementation for individual spherical particles, along with validation
results, can be found in the references by Vowinckel et al. (2019) and Zhu et al. (2022).

Those earlier investigations did not consider rigid bonds between the individual
particles, which are implemented here for the first time. Hence, we provide in the following
a detailed description of the method. First, let us consider the particles P1 and P2, bonded
at a shared contact point xc. We define the contact plane between these particles as the
plane that crosses through xc and is orthogonal to the line between the particle centres.
The bond is implemented via a corrective force and moment designed to hold the particles
together at the contact point. This will ensure that, at all times, ẋc,1 = ẋc,2, i.e. the
velocities of the contact point evaluated on the surface of each particle are the same,
and ω1 = ω2, i.e. the two particles have the same angular velocity so that they rotate as a
solid object. The first condition prevents the particles from moving apart or from sliding in
opposite directions, while the second prevents the particles from rolling along each other’s
surface, and from having different angular velocities around the axis connecting them. We
note that, in principle, the IBM for complex aggregates could be implemented without
the use of bonds, by treating the aggregate as a single rigid object and distributing the
Lagrangian marker points over its more complex surface. However, we found the present
approach to be more straightforward to parallelize for aggregates of complex shapes, and
also to be easily applicable to aggregates that may undergo breakup, which are scenarios
that we plan to address in the future. We approximate the rigid bond through the use of
spring forces and moments, as illustrated in figure 2, in order to satisfy an approximate
form of the above conditions.

To compute the force and moment due to the bond, we define the bond force and
moment acting on particle i by particle j by splitting each into their normal and tangential
components

F b,ij = F n
b,ij + F t

b,ij, (2.14)

Mb,ij = rc,i × F t
b,ij + Mn

b,ij + M t
b,ij, (2.15)

with F n
b,ij and F t

b,ij being the components of the bond force normal and tangential to
the contact plane between the two particles (with the normal and tangential components
marked in superscript as n and t, respectively), Mn

b,ij and M t
b,ij being the corresponding

components of the moment and rc,i = xc − xi being the distance between the contact point
and the centre of the particle i.
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P1

P2

Fnb,12

Ftb,12

Ttb,12

Tnb,12

Figure 2. Sketch of the forces and torques acting on the two spherical particles P1 and P2 that form the
aggregate, due to the rigid bond connecting them.

We compute the normal and tangential forces and moments using a variation of the
model described by Potyondy & Cundall (2004), which considers the particle–particle
bond as an area of infinitely small springs along the contact plane. We initialize the force
and moment for each bond to be zero at t = 0. Then, at each time step, we compute the
dimensionless forces and moments as

F n
b,ij (t + �t) = RF n

b,ij (t) − k1�ẋn
c,ij�t, (2.16)

F t
b,ij (t + �t) = RF t

b,ij (t) − k1�ẋt
c,ij�t, (2.17)

Mn
b,ij (t + �t) = RMn

b,ij (t) − k2�ωn
ij�t, (2.18)

M t
b,ij (t + �t) = RM t

b,ij (t) − k2�ωt
ij�t, (2.19)

with R a rotation operator that aligns the previous bond force and moment with the
contact plane at the current time, �ẋc,ij the translational velocity difference between
the particles at the contact point and �ωij the angular velocity difference between the
particles (with the normal component being the rotation aligned with the contact plane,
and the tangential component indicating the rotation perpendicular to the plane). Here,
k1 denotes the non-dimensional spring constant for the bond force, and k2 indicates the
corresponding constant for the bond moment. For computational efficiency, we choose a
first-order-in-time method in accordance with the original method outlined in Potyondy
& Cundall (2004), and employ a sufficiently small time step to ensure convergence. The
advantage of the current bond model lies in the fact that, for sufficiently stiff springs, we
approximate a rigid aggregate that is ‘glued together’ and settles as a single body. Further,
by modelling a complex body as many elementary spherical shapes, the Lagrangian
marker distribution is simplified compared with performing an IBM implementation on
a single, irregularly shaped body. In the current implementation we do not consider the
breakage of bonds. This allows us to collapse the spring coefficients of the original model,
which are based on the material properties and strength of the bonding material, to a single
coefficient k = k1 = k2, under the assumption that for rigidity to be ensured, we only need
to make the springs sufficiently stiff, as will be discussed in further detail below.
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Settling of two rigidly connected spheres

2.6. Initial and boundary conditions
The simulations are initiated with the fluid at rest, and employ triply periodic boundary
conditions. The aggregate is released from rest, with a horizontal orientation θ(t = 0) =
θ0 = π/2. When other initial orientations are used, this will be mentioned explicitly. The
computational domain has size Wc × Hc × Wc = 10DL × 50DL × 10DL, which ensures
that the influence of the boundaries remains minimal throughout the simulations. For some
cases with large Galileo numbers, we increased the domain height up to 120DL, in order
to allow the aggregate to reach a steady state without interacting with its own wake via
the periodic boundaries in the vertical direction. Additionally, we chose a tall domain
to be able to capture the entire wake generated by the aggregate. Due to the periodic
boundary conditions in the vertical direction, the downward force of the particle acting
on the fluid is not balanced and would lead to a constant downward acceleration of the
fluid. To counteract this acceleration, we apply a corrective, distributed, upward force per
volume f adj to the fluid that is uniformly distributed and equal and opposite to the negative
buoyancy of the particles (Höfler & Schwarzer 2000), which in its dimensionless form is

f adj = − D3
L

W2
c Hc

π

6

(
1 + α−1/3

)
. (2.20)

2.7. Resolution and validation
Validation and convergence information for the case of individual settling spheres can be
found in the supplementary material, as well as in Biegert (2018). For the current scenario
of settling aggregates, we obtained some general guidance for the appropriate time step
size �t by keeping the Courant–Friedrichs–Lewy (CFL) number

CFL = u �t
h

(2.21)

below 0.5, where u indicates the maximum vertical velocity value within the domain at any
given time. A sufficiently low CFL number ensures the time step is small enough to prevent
instability in the numerical solution, and to ensure the discretization converges towards an
accurate solution of the case being studied. Beyond that, we further decreased the time
step based on convergence studies, in order to ensure that any restrictions imposed by the
bond model would not affect the numerical results, such that CFL = 0.1. This resulted in
typical time steps of order �t ∼ 10−3.

When simulating a pair of bonded particles, the spatial and temporal resolutions require
additional consideration. The spatial step size h needs to be small enough to resolve the
fluid–particle interactions, and the temporal step size �t has to be sufficiently small to
capture the spring-like motion of the bond, whose dimensional period

T = 2π

√
mS

k
(2.22)

is estimated based on the dimensional spring coefficient k and the mass mS of the smaller
particle.

We follow the approach of Vowinckel et al. (2019) by taking the grid spacing h to be at
most one twentieth of the average particle diameter, (DL + DS)/2 � 20 h. To fully resolve
the spring-like behaviour, we limit the time step to be at most 1/32 of the spring period.
Tests showed the values to be sufficient to ensure both stability and convergence.

To determine a suitable computational bond strength coefficient k, we assess the
deformation of the aggregate by tracking δerr = ||xL − xS| − (DL + DS)/2|, for particle
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Figure 3. Convergence of simulation results for increasing bond strength: measure of the error (a) δerr
associated with the gap size between the particles, and (b) θerr associated with the bending of the aggregate.
These error measures are shown as functions of time for Ga = 13 and α = 1.25, and for several values k.
(c) Corresponding orientation angles θ .

centres xL and xS, and θerr = |θL − θS|, for particle orientations θL and θS, as functions of
time. Figures 3(a) and 3(b) show that a value k = 1000 suffices to keep these deformation
measures below 10−4, which we determined to be sufficiently small compared with the
characteristic length scale that it could be safely neglected. Figure 3(c) shows that the
evolution of the aggregate’s orientation is fully converged for this value of k, so that we
select it for our simulations.

To validate the implementation of the bond between two spheres, we compare with the
recent results of Nissanka et al. (2023), who considered the settling behaviour of two
connected spheres in a fluid of density ρf = 971 kg m−3 and viscosity ν = 0.01 m2 s−1.
The spheres have equal diameters D = 0.002 m, but different densities ρ1 = 1420 kg m−3

and ρ2 = 2790 kg m−3. In the following, we use the average particle density (ρ1 +
ρ2)/2 = 2105 kg m−3 for determining a representative Galileo number Ga = 0.03 based
on (2.13), to be consistent with the notation of Nissanka et al. (2023). In the experiments,
the two spheres were glued together and released from rest in a tank of dimensions
0.004 m × 0.19 m × 0.15 m. Initially, the denser particle was located approximately above
the less dense one, so that the pair will rotate upon release until the denser particle is below
the less dense one. In the experiment, the location of the contact point between the spheres,
as well as the orientation of the pair, were recorded as functions of time.
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Figure 4. Comparison with the experimental results of Nissanka et al. (2023) (figure 3 in their article), for the
settling of an aggregate consisting of two spheres of equal size and different densities: (a) orientation angle θ

and (b) vertical position y/D. All results are non-dimensionalized by using the particle diameter D as the length
scale and tSt = D/uSt as the time scale, where the Stokes settling velocity uSt is calculated using the density of
the lighter particle.

For the simulation, we take a computational domain of 2D × 40D × 10D, which
matches the experiment in the x-direction and is sufficiently large in the y- and z-directions
so that the boundaries do not influence the settling behaviour. The boundaries themselves
are modelled as no-slip walls. The experiments in Nissanka et al. (2023) were performed
with Ga ∼ O(10−2), which is too small for our code to simulate, as it would require too
small a time step. We instead perform several simulations for somewhat larger values of
Ga, to show that we converge to the experimental results of Nissanka et al. (2023) as Ga
approaches that of their experiments. We initialize the aggregate at an orientation angle
of 17π/18, so that the lighter particle is slightly displaced from being directly under the
denser one.

Figure 4 shows the orientation angle θ of the aggregate, along with the vertical position
y/D of the geometrical centre of the pair (t = 0 is chosen to be where θ = π/2) for the
simulations, as well as the corresponding experimental data of Nissanka et al. (2023).
Here, time is scaled by the reference time tSt = D/uSt, where uSt denotes the Stokes settling
velocity of the lighter sphere. We find that, even when Ga is slightly higher than the
value of the experiments, when the system is scaled in reference to the Stokes settling
velocity the results collapse onto the experimental results, which further validates the
computational bond model used in the following.

3. Results and discussion

We begin by exploring the parameter range Ga ∈ [8, 28] and α ∈ [1, 2], for which the
experiments most clearly demonstrate the existence of a steady-state terminal settling
velocity and orientation. Following comparisons between experiments and simulation
results in this regime, we will expand the discussion to the broader range of Ga =
O(1) − O(102) and α � 4.

3.1. Temporal evolution
Figure 5 compares the temporal evolution of the experimental and numerical settling
behaviour. In the simulations, the aggregates are released from rest, with an orientation
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Figure 5. Comparison of numerical and experimental data for α = 8/7, Ga = 15. (a) Reports the orientation
angle θ (blue) and the vertical velocity uy/uref (red). (b) Shows the horizontal velocity uz/uref (black). Dashed
lines indicate the numerical results, while the shaded region indicates the experimental uncertainties of one
standard deviation around the average experimental result.

angle θ0 equal to the initial value observed in the corresponding experiments (note that, for
experiments, there is likely always a small initial rotation and velocity generated during the
release of the aggregate). The vertical settling velocity uy,term/uref and the horizontal drift
velocity uz,term/uref of the centre of mass of the pair of particles are recorded as functions
of time, along with the orientation angle θ . The figure demonstrates good agreement
between simulation results and experimental observations, both during the initial transient
stage and for the subsequent steady state. Figure 5(b) shows that the horizontal drift
velocity generally points in the direction of the lower, larger sphere. We remark that, for a
given pair of α and Ga values, the initial orientation of the aggregate in the simulation has
no influence on the final, steady-state settling velocity or orientation.

Figures 6(a) and 6(b) show comparisons between experimental and simulation results
for the instantaneous drift velocity as a function of the orientation angle for different sets
of parameters Ga, α and θ0. The figures demonstrate good agreement between numerical
and experimental data, and highlight the fact that the largest horizontal drift velocities are
observed for orientation angles near θ = π/4.

Figure 7(a,b) compares simulation results for two different values of Ga but identical
α = 1.5. For the lower Ga-value, the orientation angle θ decreases monotonically with
time until the aggregate becomes aligned in the vertical direction (figure 7a). For the
larger value of Ga, reported in figure 7(b), the orientation angle no longer evolves
monotonically and the terminal orientation is non-vertical. Here, the aggregate behaves
like an underdamped oscillator, in that it overshoots its equilibrium orientation and settles
into a steady state through damped oscillations due to inertia. Again, we observe that the
steady state is reached more quickly for the larger Galileo number. These results suggest
that, for larger values of Ga, the aggregate tends to approach its terminal state in an
oscillatory fashion, and the terminal state is less likely to be vertically oriented. We will
return to these points in more detail in the following.

Figures 8(a) and 8(b) show the temporal evolution of the orientation θ of the aggregate
as α is varied, for two different values of the Galileo number. Generally, larger values of
α result in terminal orientations closer to the vertical direction, although at smaller Ga a
vertical orientation is achieved for much smaller values of α than at larger Ga. At lower
Galileo numbers, the aggregates again take significantly longer to rotate into their terminal
configuration than at higher Galileo numbers. Indeed, in the example case at Ga = 13
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Figure 6. Instantaneous rescaled drift velocity uz/uref as a function of the orientation angle θ , showing both
experimental data (symbols) and simulation results (line). Each plot depicts many time steps of a single
experiment and simulation, for (a) Ga = 21, α = 1.4, θ0 = 2π/3 and (b) Ga = 23, α = 2, θ0 = 5π/9. The
largest drift velocities are generally observed for orientations θ near π/4, while zero horizontal velocity
corresponds to the symmetric orientation θ = π/2.
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Figure 7. Numerical simulation results for the time evolution of the orientation angles θ and the velocity
component uy/uref as functions of time for α = 1.5 and (a) Ga = 4, and (b) Ga = 42. For the larger Ga-value
the aggregate behaves as an underdamped oscillator.

shown in figure 8(a), the length of the transient phase increases with α, especially when
the final orientation is close to vertical (θ = 0).

The evolution of θ with time as Ga is varied is shown in figures 9(a) and 9(b), for
two different values of the diameter ratio α. The time to reach the terminal state usually
decreases for larger Ga, in agreement with the previous paragraph. We note that this
observation does not hold for certain cases where the terminal orientation approaches the
vertical, such as α = 2 with Ga = 13. For the same α, a smaller Ga generally leads to a
more vertically aligned terminal state.

Figures 10(a) and 10(b) show the time-dependent horizontal drift velocity uz/uref as a
function of the orientation angle θ , for different values of Ga and α. For a constant α, we
find that the maximum drift velocity increases with Ga, while for constant Ga, it increases
with decreasing α. The emerging spiral shapes seen for the largest values of Ga and the
smallest values of α reflect the underdamped oscillations described above.

We also vary the density ratio ρ′, to elucidate its effect on the settling behaviour. In
figure 11 we show simulations for aggregates with different ρ′, while keeping Ga fixed.
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Figure 8. Orientation angle of the aggregate over time, for varying values of α and fixed Galileo numbers:
(a) Ga = 13, and (b) Ga = 42. The time required to converge to a steady state depends on both α and Ga.
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Figure 9. Orientation angle of the aggregate as a function of time, for various Galileo numbers and
(a) α = 1.5 and (b) α = 2. For a constant value of Ga, a larger α leads to a more vertical terminal orientation.
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Figure 10. Horizontal drift velocity as a function of θ , for (a) different values of Ga and α = 1.5, and
(b) Ga = 22 and various values of α. Varying Ga and α lead to significant variation in the magnitude of
the maximum drift velocity, as well as the value of θ corresponding to that maximum.
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Figure 11. Orientation angle (a) and horizontal settling velocity (b) for aggregates with different density ratios
ρ′, for Ga = 18 and α = 1.5. While ρ′ modifies the transient dynamics, it does not affect the terminal settling
properties.

We find that altering ρ′ only influences the transient behaviour, while the terminal settling
properties do not depend on ρ′.

In summary, all of the above combinations of α and Ga demonstrate the emergence
of a terminal state characterized by steady values of the settling and drift velocities, and
of the orientation angle. Lower Galileo numbers Ga and larger aspect ratios α favour a
monotonic evolution of these quantities towards their terminal values, whereas larger Ga
and smaller values of α are seen to promote the emergence of underdamped oscillations.
Having considered the transient evolution of the aforementioned values, we consider in
the following section the terminal behaviour.

3.2. Terminal behaviour
To compare some aspects of our experimental and simulation results with the existing
literature, it is useful to discuss our data in terms of both the Galileo number Ga, which
is formed with the buoyancy velocity (cf. (2.13)), and the Reynolds number Re, which is
based on the terminal settling velocity (cf. (2.3)). Based on a series of experiments for a
single spherical particle, Nguyen et al. (1997) proposed an empirical relationship between
Re and Ga

Re =
[

18
Ga2 + 3

16

(
1 + 0.079Ga1.498

)−0.755
]−1

. (3.1)

Figure 12 demonstrates that, across the parameter range that we investigated, this
empirical relationship captures qualitatively well our experimental and numerical results,
including for different values of α. We further notice that there seems to be a nearly
single-valued relationship between Ga and Re, despite Ga not being affected by changes
in DS (and by extension the overall aggregate mass) while Re does vary with DS, since the
presence of the smaller sphere modifies the settling velocity. This reflects the fact that in
the present range Ga ∈ [4, 75], the settling velocity is a weak function of α. Hence, for this
range of Ga we can use (3.1) to compare the results as functions of Re and Ga, respectively.

We now focus on the terminal values of the orientation angle, θterm, as well as the
corresponding settling and drift velocity components, uy,term and uz,term. In figure 13,
we compare the terminal orientation angle and the settling and drift velocities measured
experimentally with their numerical counterparts, for varying values of Ga and α.
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Figure 12. Relationship between Ga and Re. The solid line represents equation (3.1) derived by Nguyen et al.
(1997). Filled circles show simulation results. The colour bar indicates the value of α, and + symbols represent
experimental data.
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Figure 13. Comparison between experimental (� symbols with error bars) and numerical (filled circles)
results for (a) the terminal orientation angle, (b) the settling velocity and (c) the drift velocity, for various values
of Ga and α. Colours indicate average Ga values for experiments with similar Ga, as the Galileo number could
not be fixed to an exact value between experiments for different α values. Details regarding the best-fit curves
are provided in the text.
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Within the parameter range explored here, we observe that all three terminal variables
vary strongly with Ga and α. In figure 13(a), both simulations and experiments
demonstrate a pronounced decrease of θterm from θterm = π/2 when increasing α at
approximately (taking into account variations in the experimental viscosity as discussed
in § 2.2) constant Ga, indicating that more unequal sizes of sphere tend to align the
aggregates increasingly in the vertical direction (i.e. θterm = 0). We also note that the
horizontal settling orientation seen for α = 1 corresponds to the results of Khayat & Cox
(1989), which show that objects with fore–aft symmetry will align themselves horizontally
with the flow. Figure 13(b) suggests that, for Ga ≈ 22, the terminal settling velocity of the
aggregates decreases with α for small values of α, reaches a minimum for an intermediate
value α ≈ 1.4 and subsequently grows again. For Ga ≈ 8 and 16, the variation of the
settling velocity with α evolves similarly but is less pronounced than for higher Ga.
Interestingly, figure 13(c) demonstrates that the terminal horizontal drift velocity increases
with α for small α, then reaches a maximum and subsequently decreases as α grows
further. This is consistent with the assumption that as α → ∞ the effect of the smaller
particle on the settling velocity of the aggregate becomes negligible so that the aggregate
behaves similarly to a single settling sphere, which has no horizontal terminal velocity
component.

The solid lines in figure 13 represent least squares fits of the simulation results for
the terminal variables as functions of α for a fixed value of Ga, which were obtained
as follows. In the experiments, Ga cannot be fixed to an exact value as ν varies due to
room temperature variations. Hence, no two simulations plotted in figure 13 have the exact
same Ga: the fittings were instead performed for an average Ga calculated from nearby
values of Ga. For the terminal orientation angle, we assume that the relationship between
θterm, α and Ga can be fitted by the form

θterm (α, Ga) = [
π/2 − θ∞ (Ga)

]
exp(−A(Ga)(α − 1)) + θ∞(Ga), (3.2)

where θ∞(Ga) indicates the orientation angle as α → ∞ as a function of Ga, and A(Ga)

is a fitting parameter different for each value of Ga. For the terminal settling velocity,
uy,term/uref , we expect that it will converge to the settling velocity of a single sphere of
diameter DL, uL,term, as α → ∞, so that we fit a polynomial of the form

uy,term (α, Ga)

uref
= uL,term

uref
+ C1 (Ga) α−3 + C2 (Ga) α−2 + C3 (Ga) α−1 (3.3)

to the data. Here, Ci(Ga) denote fitting parameters.
As mentioned above, we expect the terminal drift velocity uz,term to vanish for α = 1

and in the limit α → ∞. Hence, we assume a relationship of the form

uz,term (α, Ga)

uref
= J1(Ga) (α − 1) exp(−J2(Ga)(α − 1)), (3.4)

where Ji(Ga) are fitting parameters. While other correlations may be possible, we chose
this relation based on our observations of the settling aggregate for the values of Ga and α

considered.
The above comparisons show that the results of the numerical simulation agree

well with the experimental data for the parameter regime covered by the experiments.
This provides the necessary validation to explore a wider parameter range through the
numerical simulations alone, as shown in figures 14(a)–14(d). The results of the numerical
simulations shown in figure 14(a) indicate that, for Ga � 25, the terminal orientation
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Figure 14. Numerical simulation results for the (a) terminal orientation angle, (b) vertical velocity normalized
by the velocity of a sphere of the same volume as the aggregate, (c) vertical velocity normalized by the velocity
of the larger sphere alone and (d) horizontal drift velocity normalized by the settling velocity of a sphere with
the same volume as the aggregate, for various values of Ga and α. The solid lines represent empirical fits, as
explained in the main text.

angle asymptotically approaches the vertical direction as α → ∞. As Ga increases within
this range, this asymptotic convergence with α slows down, and outside of this range,
the terminal orientation displays the emergence of a finite-valued plateau for α ≈ 4. The
dynamics within this range of relatively small Ga is qualitatively similar to that derived
theoretically by Candelier & Mehlig (2016) for two spheres connected by a massless,
infinitely thin rod settling at small, but finite Re. If the rod length is much larger than
the particle diameters, the authors find

θterm (α, Re) =
⎧⎨
⎩

π

2
− π arcsin

(
16α (α − 1)

3Re

)
+ O

((
α2

DL
− α

DL

)
δx

)
α < α0

0 α � α0

,

(3.5)
where

α0 =
1 +

√
1 + 3

4
Re

2
, (3.6)

where δx is the dimensionless distance between particle centres. The equation is valid
when δxRe/α � 1. While we are able to qualitatively capture the decrease in the
orientation angle using (3.5), the prediction overshoots the numerical results for the
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Figure 15. (a,b) Steady-state vorticity fields and streamline patterns in the reference frame moving with the
aggregate, shown in the symmetry plane. (c,d) Contours of Q, with the value of Q chosen to best demonstrate
the characteristic vortical structures around the aggregate. The centre of mass of the aggregate is initially
positioned at ( y0, z0). Panels (a,c) are intermediate orientations for Ga = 9, α = 1.25, Q = 0.08, and (b,d) for
Ga = 75, α = 4, Q = 0.1. The colour bar indicates the vorticity.

present Galileo numbers. This overshoot can be attributed to the difference in Re values
from the region where (3.5) holds, and the absence in our simulations and experiments of
the long connecting rod assumed in deriving this equation.

We now return to the observation that, for Ga � 25, figure 14(a) indicated that the
orientation angle of the aggregate no longer approaches the vertical direction θterm = 0
for α � 1. Instead, the aggregate takes an inclined orientation that is tilted further away
from the vertical as Ga increases. We propose the following explanation for these non-zero
terminal orientation angles: as Ga (or Re) increases, the flow begins to separate near
Ga ≈ 28 (Re ≈ 20) for our geometry. Clift, Grace & Weber (1978) observe that, for a
smooth sphere, the separation angle varies with Re as

θsep (Re) = 0.236π ln
(

Re
20

)0.438

, 20 < Re < 400. (3.7)

The dashed horizontal lines in figure 14(a) represent the values of θsep for Ga = 42 and
75, given by (3.1) and (3.7). For sufficiently large Ga, when the flow separates, and the
aggregate no longer takes a vertical orientation for large α, the aggregate instead aligns
itself such that the smaller sphere is located near the separation line.

This is demonstrated in figures 15(a)–15(b), which show the streamline pattern in the
reference frame moving with the aggregate, along with the vorticity field, in the symmetry
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plane for various combinations of Ga and α. In addition, the geometry of the dominant
vortical structures is visualized by means of the Q-criterion (Chakraborty, Balachandar &
Adrian 2005), where the quantity

Q = 1
2

(
||Ω||2 − ||S||2

)
, (3.8)

is evaluated from the vorticity vector Ω and the strain rate tensor S. Regions with Q > 0
are those where the magnitude of the vorticity is greater than that of the rate of strain in
the flow.

The streamlines and vorticity fields reflect the symmetry of the aggregate, as shown in
figure 15. As Ga increases, the vortical region emanating from the larger sphere extends
further into the wake, and for α � 1 it completely engulfs the smaller sphere, as shown in
figure 15(b). Interestingly, this figure also shows that, for Ga = 75, the flow separates from
the rear of the larger sphere, with the smaller sphere positioning itself at the separation
point, as discussed earlier.

Figures 14(b)–14(c) also compare the terminal settling velocity of the aggregate with
those of a sphere with the same volume as the aggregate (uEq,term, figure b) and of
the larger sphere alone (uL,term, figure c), with the single sphere values obtained via
corresponding simulations. For small-to-moderate α, the aggregate settles more slowly
than a single sphere of equal volume, but faster than the larger sphere alone. When α

becomes large, both ratios of the velocity asymptotically approach unity, as expected.
However, the rate at which the respective ratios converge to unity depends strongly on
Ga. The numerical data for the settling velocity ratios shown in figures 14(b) and 14(c) are
captured well by functions of the form

uy,term (α, Ga)

uEq,term (Ga)
= 1 − C1 exp(−C2(α − 1)) (3.9)

and
uy,term (α, Ga)

uL,term (Ga)
= 1 + C3 exp(−C4(α − 1)), (3.10)

respectively, where the Ci(Ga) represent fitting parameters.
Figure 14(d) shows the terminal drift velocity, normalized by uEq,term. We note that for

Ga � 25 the aggregate retains a significant terminal drift velocity even for values of α

as large as α = 4. This is consistent with our earlier observation that in this parameter
range, the aggregate orients itself such that the smaller particle is located at the separation
line, and therefore the terminal orientation remains asymmetric. As α → ∞, however, we
expect the terminal drift velocity to decay to zero (given an infinitesimally small sphere
will have little effect on the overall aggregate), in spite of the asymmetric orientation, so
that it can be captured by a function of the form

uz,term (α, Ga)

uEq,term (Ga)
= J1(α − 1) exp(−J2(α − 1)), (3.11)

where J1(Ga) and J2(Ga) are fitting parameters. We also note that (3.11) gives a
maximal terminal drift velocity for αdrift,max = 1/J2(Ga) + 1 where it is equal to
udrift,max/uy,Eq,term = J1/(J2e).

We furthermore note that, for aggregates with intermediate orientation angles 0 < θ <

π/2, a region of larger pressure exists on the side of the larger particle directly below the
smaller one. This generates a horizontal pressure gradient across the large sphere, which
is the primary reason for the horizontal drift velocity.
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Figure 16. Summary of the dependence of the (a) terminal orientation angle of the aggregate, (b) terminal
settling velocity and (c) terminal drift velocity on a (α, Ga) phase diagram, based on the fits described in the
text. The dashed line indicates the location of the maximum drift velocity.

Figures 16(a)–16(c) summarize the dependence of θterm, uy,term/uEq,term and
uz,term/uEq,term on α and Ga. To plot these figures, we fit θ∞(Ga) in (3.2) by means of
a hyperbolic tangent, and A(Ga) via a power law

θ∞ (Ga) = 0.412 (1 + tanh (0.067 (Ga − 35.6))), (3.12)

A (Ga) = 196

(Ga + 1.46)2 + 1. (3.13)

These empirical fits match well with the experiments and the numerical simulations,
deviating on average by approximately 0.11 radians (7 % of a full π/2 rotation). Similarly,
we obtain for the fitting parameters in (3.9)

C1 (Ga) = 0.001Ga + 0.155, (3.14)

C2 (Ga) = 1.71 exp(−0.189Ga + 1.79) + 1.52. (3.15)

We find that the average deviation for the fitted model is 2 % of a single settling
sphere’s velocity uEq,term. For the horizontal velocity uz,term/uEq,term, we obtain fits for
the parameters in (3.11) of the form

J1 (Ga) = 0.233e−0.189Ga+3.31 + 0.371, (3.16)

J2 (Ga) = J1 (Ga)

0.001Ga + 0.074
e−1, (3.17)
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with the average deviation being 1 % of a single settling sphere’s velocity uEq,term. As
such, these fits capture the behaviour of the settling aggregates in the parameter space of
Ga and α considered, allowing us to predict the settling of small, two-particle aggregates
settling in a fluid.

4. Conclusion

We have investigated the settling dynamics of a model aggregate made of a pair of
rigidly connected spherical particles of unequal size. By means of experiments and
particle-resolved simulations, we have obtained a detailed picture of both the transient
evolution and the terminal values of the orientation angle, settling and drift velocity
of the aggregate, as functions of the aspect ratio α = DL/DS and the Galileo number
Ga = DLuref /ν. For small values of the Galileo number, the orientation of the aggregate
and its velocity are seen to converge to their terminal values in a monotonic fashion,
whereas, for larger Galileo numbers, the aggregate tends to behave as an underdamped
oscillator. The largest drift velocities are generally observed when the aggregate is tilted
at approximately π/4 radians with respect to the vertical direction for lower Ga, while for
higher Ga the largest drift velocities tend to be for orientations closer to horizontal. For
large aspect ratios and small Galileo numbers, the terminal orientation of the aggregate
tends to be vertical, whereas for smaller aspect ratios and larger Galileo numbers, the
terminal orientation is inclined with respect to the vertical, which also results in a non-zero
terminal drift velocity. When the Galileo number is sufficiently large for flow separation to
occur, aggregates with large aspect ratios orient themselves such that the smaller sphere is
located at the separation line. Empirical scaling laws are obtained for the terminal settling
velocity and orientation angle as functions of the aspect ratio and Galileo number. An
analysis of the accompanying fluid velocity field indicates the formation of a horizontal
pressure gradient across the larger sphere, which represents the main reason for the
emergence of the drift velocity, and it shows the formation of vortical structures exhibiting
complex topologies in the aggregate’s wake. We also note that, due to these asymmetries
in the aggregate, during sedimentation, the particles will likely disperse greatly from their
initial locations over long settling times, indicating the importance of characterizing the
relationship that the asymmetry, represented by α, has with the velocity.

Further work should extend the results of the present study to higher ranges of Ga
than those considered here. However, based on the present results we can make some
predictions as to the expected behaviour under those conditions. First, for higher Ga one
can expect θterm to eventually cease to converge to a steady value, as a result of vortex
shedding and turbulent wake dynamics, so that we would expect periodic or chaotic
behaviour. Similarly, one can expect the purely planar behaviour, where the aggregate
remains in the ( y, z)-plane, to also end, with the aggregate rotating or tumbling out of
plane as a result of the asymmetries caused by turbulent flow past the larger particle.
Additional work is required to quantify the dynamics under such conditions.

The present computational framework for establishing rigid bonds between spherical
particles will enable us to explore more complex aggregates consisting of many primary
particles of potentially different sizes (and potentially in different flow geometries).
Simulations of this type, in turn, will allow us to investigate the influence of the porosity
and permeability of the aggregate on its transient and terminal settling dynamics, and to
assess how its effective settling and drift velocities are related to its geometrical properties,
such as the fractal dimension. Efforts in this direction are currently underway.

995 A15-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.711


Settling of two rigidly connected spheres

Supplementary material and movies. Supplementary material and movies are available at
https://doi.org/10.1017/jfm.2024.711.
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