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Abstract: Image segmentation is a key process in analyzing biological images. However, it is difficult to detect the
differences between foreground and background when the image is unevenly illuminated. The unambiguous
segmenting of multi-well plate microscopy images with various uneven illuminations is a challenging problem.
Currently, no publicly available method adequately solves these various problems in bright-field multi-well plate
images. Here, we propose a new method based on contrast values which removes the need for illumination
correction. The presented method is effective enough to distinguish foreground and therefore a model organism
(Caenorhabditis elegans) from an unevenly illuminated microscope image. In addition, the method also can solve
a variety of problems caused by different uneven illumination scenarios. By applying this methodology across a
wide range of multi-well plate microscopy images, we show that our approach can consistently analyze images
with uneven illuminations with unparalleled accuracy and successfully solve various problems associated with
uneven illumination. It can be used to process the microscopy images captured from multi-well plates and detect
experimental subjects from an unevenly illuminated background.
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INTRODUCTION segmentation performance. The component tree method

was a later development which could be applied to segment

Bio-image 1nformat1cs.1s bec_omn_lg an 1n.creasmgly 1mpor- time-lapse microscopy images and track moving cells (Xiao
tant component of various biological studies (de Chaumont .. 1 51 1)

et al,, 2012; Myers, 2012; Xian et al., 2013; Chen et al., 2015;
Weissleder & Nahrendorf, 2015). Bio-image processing

Multi-well plates are commonly used to perform
i i : high-throughput screening utilizing organisms such as
techniques are widely used to automatically detect and ..o habditis elegans (Wahlby et al,, 2012; O'Reilly et al.,
quantify - biological phe.notypes (Shamir et al, 2009 2014), larval zebrafish (Rihel et al., 2010), or cell culture
Neumann et al., 2010; the.l .et al., 2010; Swierczek et al, (Balcarcel & Clark, 2003). Image capturing and processing
2011; Wang et al, 2013; Yemini etal,, 2013; Zhou etal,, 2014; required for these experiments to collect meaningful

Chen & Han, 2015; Kirsanova et al,, 2015; Chen etal,, 2016). 4.0 ¢ the necessary speed and accuracy needed for high-
A wide variety of processing techniques are now available to throughput screening. One major limitation of previous
researcher.s 1 or der to achieve th(?se d?SIrEd Fesults. Amo'ng multi-well plate experiments has been the inherent variation
these ) options, mage segm.entat}on s a vital processing of illumination observed by bright-field microscopy (Fig. 1).
technique .well. suited for blf)l.oglcal image analysis. Ir'nage The variation is introduced by the surface of the individual
s.egmentan'on is the prerequisite for phe.not.ype quantifica- wells and their relation to the microscope light source. These
tlf)n_ and 18 central' to almost all ap pllcatlons' relat.ed to uneven illuminations introduce a factor that increases the
plo—lmage 1nf(,)r matics (Peng, 2008?‘ For evenly illuminated difficulty associated with image segmentation. This presents
images, Otsws (1979) method is the commonly used major obstruction to the applications of multi-well plates in
approach to first determine a gray intensity threshold and high-throughput experiments which rely on the cultured
subsequently segl.nept ﬂ.le image. Held et. al. (2011) pr qvided model organisms or cells to be automatically distinguished
a parameter optimization method to improve the image g1, e background in experimental images. For example,

Figure 1 shows the typical bright-field microscopy image of a
Received January 23, 2017; accepted June 21, 2017 multi-well plate. The regions outside of the well have a lower
*Corresponding authors. chenweiyang@picb.ac.cn; d-xj@163.com gray intensity, and the gray intensity increases from well
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Figure 1. The bright-field microscopy image example of 384-well
plate and the sum of gray intensity in each column.

edge region to middle region. Due to this variation it is
difficult to determine a gray intensity threshold on this image
and distinguish worms from the background automatically.

More recently, Wahlby et al. introduced the Worm-
Toolbox for the image analysis software CellProfiler. This
toolbox revolutionized image analysis in C. elegans in many
ways and included a capability for illumination correction to
be carried out before the segmentation of microscopy images
captured from 384-well plates (Wahlby et al., 2012). Their
method involves both well region detection and illumination
correction. However, in our experiments, we encountered
some problems overcoming uneven illumination while using
the WormToolbox. We encountered problems including
incomplete well edges and the effect of differing light inter-
ference from outside the well, which could not be overcome
by WormToolbox. Therefore, we have developed a new
image segmentation method to solve the uneven illumina-
tion problems faced by previous methodology.

Our method utilized information relating to image
contrast values to reduce the influence of uneven illumina-
tion. We therefore did not need to rely on illumination
correction before initiating image segmentation. Results
demonstrated improved performance when applying our
method to unevenly illuminated microscopy images derived
from both the public data set and our own experiments. To
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our knowledge, the proposed method is the only segmenta-
tion method capable of segmenting multi-well plate micro-
scopy images with various levels of uneven illumination
simultaneously and with this degree of efficiency.

MATERIALS AND METHODS

A general overview of our method for segmenting multi-well
plate microscopy images with nonhomogeneous illumina-
tion problems is presented in the “Overview” section. The
sliding window and contrast computation methods are
described in the “Contrast Computation” section. The
“Comparing to other available methods” section describes
the uneven illumination solving results of other available
methods.

Overview

The image contrast is a measure of local variations of pixels’
gray intensities (Haralick et al., 1973). The detailed pipeline
of our segmentation method is: first, we used the sliding
window to scan the original image, and computed the con-
trast value in each window; second, we created a contrast
image by the contrast values computed in last step; and third,
after the contrast image is generated, we can segment the
contrast image based on the differences of contrast values to
determine each pixel belong to foreground regions or back-
ground regions.

Contrast Computation

We used a small sliding window (for the results presented in
this paper, we have defined the size of the sliding window as
5x 5 pixels) to scan the microscopy image. The Gray Level
Co-Occurrence Matrix (GLCM) (Haralick et al., 1973) was
computed for each window. Then the local contrast of each
window was computed based on the GLCM.
L1
Contrast= (i—j)’p(i,j), (1)

i=1 j=

—_

where, L is the is the number of gray levels in the image, p(i,f)
the joint probability occurrence of a pixel with value i is
adjacent to a pixel with value j. Image contrast refers to the
gray intensity difference among neighboring pixels. The
sliding window and local contrast allows us to highlight the
difference between foreground and background. Results
showed that background regions are more homogeneous and
smaller contrasting than foreground regions. From the con-
trast values we found that there are big differences between
foreground regions and background regions.

Figure 2 shows the differences of contrast values
between background regions and foreground regions.
Compared with the lower contrast values (<5 in these
labeled pixels) of background regions, the foreground
regions have higher contrast values (>1,000 in these labeled
pixels). Then we used the rule that the foreground pixels
have a higher contrast values (larger than the defined
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Figure 2. The contrast values of background and foreground pixels, respectively. The contrast values of the labeled
background pixels are 1.75, 2.153, 0.5, and 2.819 in the first, second, third, and fourth images, respectively. The
contrast values of the labeled worm body pixels are 1,972 and 1,159 in the fifth and sixth images, respectively.

threshold 100), and the background pixels have lower con-
trast values (<100), to segment foreground and background
(segmented image showed in Fig. 3a). We also computed the
average contrast values for background pixels and fore-
ground pixels (Fig. 4). The average contrast values of back-
ground and foreground are 5.71 and 653.52, respectively.
The large differences in contrast values make it simple to
distinguish foreground from background.

Comparing to Other Available Methods

To compare the performance of our method in solving the
uneven illuminations with previously published method, we
also processed the 384-well plate images using the estab-
lished WormToolbox method for use with CellProfiler
(Wahlby et al., 2012).

Most of the tested problems related to uneven illumi-
nations and noise, such as the problem of a bright region on
the right of the image (Supplementary Fig. 1), the problem
of an image which does not cover complete well edges
(Supplementary Fig. 1), the problem of an image with a dark
ripple segment and the problem of an image comprised of
multiple wells, cannot be solved by the WormToolbox of
CellProfiler (Supplementary Fig. 1). This is primarily due to
its inability to reconcile noise present outside well region or
when the well edge is incomplete. From the middle results
(Supplementary Fig. 1), we can see that the WormToolbox of
CellProfiler needs to first find the well region and then cor-
rect the illumination. However, most of uneven illumination
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problems and noise can prevent it from finding the well
region correctly. Therefore, the WormToolbox of CellPro-
filer cannot correct the uneven illuminations in these
situations.

Supplementary Figure 1

Supplementary Figure 1 can be found online. Please visit
journals.cambridge.org/jid_MAM.

Supplementary Figure 1 shows the middle results and
illumination corrected results by the WormToolbox, Cell-
Profiler (Wahlby et al., 2012). The software and its illumi-
nation correction pipeline were downloaded from website
(http://cellprofiler.org/).

Availability of Data and Materials

The results supporting the conclusions of this article are
included in the Supplementary Material. Public multi-well
plate images were downloaded from the website of CellPro-
filer (http://cellprofiler.org/).

RESULTS

We tested commonly encountered issues associated with
uneven illumination from multi-well plate bright-field
microscopy images from both the public data set and our
own experiments. Public multi-well plate images were
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Segmented image

Figure 3. The contrast values and segmentation results. Each panel (a—c) is one independent image and test.

downloaded from the website of CellProfiler (http://
cellprofiler.org/). The other multi-well plate images analyzed
were generated by our own experiments. These microscopy
images were used to test the segmentation performance of
our novel method. We also compared our method with the
WormToolbox available on CellProfiler (Wahlby et al., 2012)
performance on the same images. WormToolbox is an open-
source platform which is the industry standard for a host of
C. elegans image analysis functionalities, including metho-
dology that attempts to overcome uneven illumination
within a multi-well plate image. The results showed that our
new method overcame all the uneven illumination problems
that could not be addressed by the WormToolbox. As a
result the presented method was able to demonstrate reliable
segmentation performance for all tested images.

Figure 3 shows the contrast values computed from the
multi-well plate images with different uneven illumination
problems. Other tested uneven illumination images and
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results are listed in Supplementary Figure 2. The original
uneven illumination images are listed in the first column of
each panel in Figure 3 and Supplementary Figure 2. The
contrast value computed for each pixel is displayed in the
second column. From the contrast values, we can see that
only worms and well outlines produce higher values. The
background regions, regardless of whether they are brighter
or darker in the original uneven illumination images, all have
lower contrast values. So, we can segment the images based
on the difference of contrast values easily. The simple rule is
that the foreground pixels have higher contrast values
(bigger than the defined threshold 100), and the background
pixels have lower contrast values. The segmentation results
showed that our method can solve various uneven illumi-
nation scenarios, such as the problem of dark regions outside
of the well and a bright well center (Fig. 3a), bright noise
region on the right of the image (Fig. 3b shows the image
which captures a whole well and one more bright region of
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Figure 4. The average contrast values computed for background
pixels and foreground pixels. The average values of background
and foreground are 5.71 and 653.52, respectively. Error bars
denote the standard deviation.

neighboring well), and the image which does not cover
complete well edges (Fig. 3¢ shows the image which cuts out
one edge from the original image of Fig 3a). Moreover, our
method can also process images exhibiting a dark ripple in
one section of the well (Supplementary Fig. 2b) or an image
with multi-wells (Supplementary Fig. 2d shows the simu-
lated image which is composed of four wells spliced
together).

Supplementary Figure 2

Supplementary Figure 2 can be found online. Please visit
journals.cambridge.org/jid_ MAM.

We also tested the performance of WormToolbox of
CellProfiler using these same images. Results showed that it
was only capable of solving the problems associated with
dark regions outside of the well and bright well centers
(Supplementary Fig. 1a). However, other uneven illumina-
tion problems, such as the problem of a bright noise region
on the right of the image (Supplementary Fig. 1b), the pro-
blem of an image which does not cover complete well edges
(Supplementary Fig. 1c), the problem of an image with a
dark ripple and the problem of an image that is composed of
multiple wells, cannot be solved by the WormToolbox for
CellProfiler (Supplementary Fig. 1). The WormToolbox of
CellProfiler needs to first find the well region and then cor-
rect the illumination. However, most of uneven illumination
problems and noise can prevent it from finding the well
region correctly. Furthermore, the illumination correction
method based on convex hull cannot solve the problem of a
bright noise region on the outside of the well. Therefore, the
WormToolbox of CellProfiler cannot correct the uneven
illuminations in these situations. The WormToolbox and its
illumination correction pipeline were downloaded from the
CellProfiler website (http://cellprofiler.org/).

Therefore, the proposed method is the only segmenta-
tion method for segmenting multi-well plate microscopy
images with all these uneven illumination problems.
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DiscussioN

The unambiguous segmentation of multi-well plate micro-
scopy images with various uneven illuminations is a chal-
lenging problem. Due to the widespread usage of multi-well
plates in a variety of biological experiments and the image
analysis issues associated with illumination variation it is a
problem that must be addressed.

Here, we have developed a method for bright-field
microscopy image segmentation based on image contrast
information. This is a new approach that allows for a simple
solution to various uneven illumination problems and results
in efficient and accurate segmentation of microscopy images.
We have tested our methodology on both our own experi-
mental images and a publically available database containing
uneven illumination problems in a bright field, multi-well
plate context. The images analyzed in this study included
features with the potential to confound high-throughput
image analysis including; regions of bright noise, incomplete
images of entire wells, and dark ripples. Our method over-
comes these challenges in a novel way that rivals the per-
formance of other methods, such as those available in
WormToolbox (Wahlby et al., 2012).

Despite the improvement to the reliability of image
analysis, our methodology still detects artifacts rather than
real data in some isolated instances. This demonstrates that
human intervention is still required in high-throughput
image analysis. However, due to the robust nature of our
methodology this human intervention serves more of a
quality control function, as the segmentation protocol
performs the vast majority of detection and analysis.

It would be interesting to apply our methodology
to addressing problems such as the quantification of
C. elegans developmental stages. Past attempts to achieve
high-throughput determination of developmental stages
such as the DevStaR machine learning system have cited
issues dealing with the variation of intensity in multi-
well plates (White et al.,, 2013). It would be beneficial to
compare the performance of our contrast-based methodo-
logy with the background removal approach developed
by White et al.

High-throughput image analysis is an integral techno-
logy for biomedical research. Although we have used
C. elegans to demonstrate the power of our methodology,
uneven illumination is a widespread issue. This problem
has been encountered in a diverse range of disciplines
including; cancer research (Malm et al., 2015), biomarker
discovery (Ivanov & Grabowska, 2017), and toxicology
(Hsu et al., 2017) among many others. It would be interesting
to assess the efficiency of our contrast value-based metho-
dology to applications such as these, rather than limiting the
use to multi-well, bright-field images of C. elegans. Although
there are unknown and exciting applications possible in
the future, we primarily hope that the presented image
segmentation method will allow other researchers to
segment and process their own biological images easier than
ever before.
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CONCLUSIONS

We propose a new method which is based primarily on
image contrast data to solve various issues associated with
uneven illumination. This method does not require illumi-
nation correction and results demonstrated that a greater
precision can ultimately be achieved by utilizing this
approach. We applied this method to various unevenly illu-
minated multi-well plate microscopy images and the method
produced unparalleled segmenting performance. It can be
used to process the experimental images of multi-well plate
microscopy and segment experimental subjects, in this case
C. elegans, cultured on multi-well plates from an unevenly
illuminated background. Currently, this is the only method
for segmenting multi-well plate microscopy images that is
able to collectively overcome all of the uneven illumination
problems addressed in this article.
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