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Abstract

We treat centralizer near-rings over ring modules in general, with particular emphasis on the case
of free modules. Questions like the following are answered. When is the near-ring a nonring?
When is the near-ring simple? What are its maximal and minimal left ideals? What is its
subgroup structure? What is the radical? The cases where the ring concerned is a PID or a field
are treated in some detail.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 76.

1. Introduction

Let {G, +) be any group, and A a set of endomorphisms of G. The near-
ring

MA{G) :={f:G^ G\f(ga) = f(g)a, for all * e G, a e A}
has been the subject of investigation in numerous papers, as is evident from a
near-ring bibliography as given, for example, in [4] or [5]. One particular case
has received less attention than one might have expected, viz. the case where
G is a right i?-module, R a ring, and A c R. Apart from Maxson and
Smith [2], where the case of a simple artinian ring is treated and [3] where
finite semisimple rings are treated, there does not seem to exist a systematic
study of the interplay between the properties of a ring R, a right it-module
G and the near-ring MR(G). It is the object of this paper to lay some of the
groundwork for such an investigation. In [2] it is shown that if R is simple
artinian, not a field, then MR{G) is, in fact, the left endomorphism ring of
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GR. We therefore start by considering some general conditions for MR(G)
to be a nonring (that is, not a ring). The rest of Section 2 is devoted to some
general results for the case where G is a free module of finite rank, and,
in fact, since it is easy to see that rank 2 shows all the salient features, we
present our results only for the case G = R2. In a number of our proofs we
use the fact that M2(R), the ring of 2 x 2 matrices over R, is a subring of
MR(R2). Indeed, this fact accounts for much of the flavour of the results.

Section 3 treats the case MD(D2), D a principal ideal domain, in some
detail. In particular, we investigate the left ideal structure with regard to
both minimal and maximal left ideals. In some of this work we use ultra-
filters in much the same way that they were used by Fuchs [1]. Also, the
invariant subgroups of MD(D ) are determined. The section closes with a
brief discussion of the case MF(F2), where F is a field.

2. General results

Let R be a ring with identity. All modules will be unitary. For any subset
S of a ring or a module, we let S* := S \ {0}. In this section we collect
several results concerning the structure of the near-ring MR(R2). We start
by presenting conditions which imply, in many very general situations, that
MR(R2) is a near-rir
right .R-module G.
MR(R2) is a near-ring, but not a ring. In fact we give our conditions for any

LEMMA 2.1. Let G be a right R-module and suppose G = H e K, H
and K R-submodules of G. Let f € MR(G). If, for some non-zero a e H,
b e K, f(a+b) ^ f(a)+f{b) then f is not a distributive element of MR(G).

PROOF. If eH and eK are the idempotents associated with the decompo-
sition G = H®K, then eH, eK e MR{G) and eH+eK = id, the identity map
in MR{G). Thus f(eH+eK) = f whereas (feH+feK)(a+b) = f(a)+f(b) #
/ (a + b) so f(eH + eK) / feH + feK.

THEOREM 2.2. Let G be a right R-module with a non-trivial direct de-
composition G = H @K. If there exists a non-empty subset X of G such
that

(i) 0 i X, X^G*.
(ii) x eX implies xr € X U {0}, for all r e R,
(iii) xr e X, r eR imply x e X,

then MR(G) is not a ring.
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PROOF. Define / : G -> G by

:, x eX,
I, otherwise.

It is straightforward, from the defining properties of X, to show that / e
MR(G). We next show that there exist a&H, b eK such that f(a + b) #
f{a) + f(b). From the above lemma, / is not a distributive element of
MR{G) so MR(G) is not a ring.

CASE (i). HnX = 0, KnX = 0. Then for x £ X, x = a + b, with
a G H, 6 G K. From this we find f(x) = x^0 = f(a) + fib).

CASE (ii). HnX ^ 0 , ATnX = 0 . Let a G HnX and choose O^ ieA^ .
Then

+ b, a + beX,
, otherwise,

whi le f{a) + f(b) = a. T h e r e f o r e f(a + b ) ^ / ( a ) + fib).
CASE (iii). HnX ^0, KnX ±0. If # U # C ,Y u {0} , then since

X^G* there exists y = a + beG*\X, aeH, beK. Hence /(a + b) =
O^a + b = fia) + fib). However, if (say) H £ Xu{0} , we take a£H*\X
and ie^nJf . Then

r, is \ a + b, a + b ex,fia + b) = i n
[ 0, otherwise,

while f(a) + fib) = b, which shows /(a + b) ? f(a) + fib).
We next discuss a construction which will identify possible candidates for

the role of X in the above theorem.
Define a relation ~ on G by 0 ~ 0 and for x, y e G*, x ~ y if there

exist cl; G G*, i= \,2, ... , n, with x = c{, y = cn and c(Rnci+lR ^ {0} ,
/ = 1 , 2 , . . . , « - 1 . Then ~ is an equivalence relation and the equivalence
classes are called connected components or components of G. If G* is a
component, we say G is i?-connected. We note that when G is not R-
connected the non-zero components X satisfy the conditions (i), (ii), (iii) of
Theorem 2.2. This gives the following result.

COROLLARY 2.3. Let G be a right R-module with a non-trivial direct de-
composition. If MRiG) is a ring then G is R-connected.

The converse of this corollary is not true, as is shown by R := Z6 and
G := (Z6)2 . One verifies that G is /{-connected but as we see from the next
result, MRiG) is not a ring. Recall that a proper ideal P in a ring R is
called completely prime if R \ P is a multiplicatively closed set.
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THEOREM 2.4. Let R be a ring with a non-zero proper completely prime
ideal P such that A.nnR(P) # {0}. Then MR{R2) is not a ring.

PROOF. Let d e AxmR{P), d ^ 0 and let C := R \ P, a multiplicatively
closed set. Define / : R2 -> R2 by

[ 0

K:
To see that / e MR(R2) observe that

'[:]• otherwise.

r e C if and only if

dap] TO
0

(i)

(ii) [l\eC*> P e Pimply

(iii) , i C2 implies

Now / G MR(R2), and moreover,

o

0

or

da
p, and

for all r e R.

while

Hence from Lemma 2.1, / is not distributive so MR(R2) is not a ring.
On the other hand, if D is an integral domain, not necessarily commuta-

2tive, then MD(D2) is never a ring. For in this situation, [£] if and
D [£] [£]

only if a ^ 0 and & = 0. Thus X = {[Q]|a ^ 0} is a non-zero component
and X ± D2.

COROLLARY 2.5. For every n> 1, Mz (Z2
n) is not a ring.

PROOF. If n is a prime, Zn is a field and so the result follows from the
above remarks. If n = pt, p a prime and t > 1, choose P = (p), the ideal
generated by p and let d = t e Annz ((p)). Now apply Theorem 2.4.

It should be pointed out, however, that rings do arise naturally as MR(G).
In fact, as mentioned in the introduction, if R is any Artinian simple ring,
not a field, and V any right i?-module then MR(V) = End^ V is a ring.
Further, if G is a cyclic i?-module then MR(G) is a ring. As a specific
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instance of this case let G be a finitely generated abelian group and let R
denote the endomorphism ring of G. Then MR(G) is a ring. As a final
example here, we let D be a commutative integral domain with field of
quotients Q(D). Then MD(Q(D)) is a ring.

We next turn to a consideration of the structure of the near-ring MR(R ) .
We first establish a very useful connection between this near-ring and the
subring M2(R).

LEMMA 2.6. Let f e MR(R2) and let A be a matrix with at most one
non-zero column in M2(R), say

b2

Then

PROOF, let [£] be arbitrary in R2 . We have

and hence we have the result.

COROLLARY 2.7. If Ck denotes the left ideal of M2(R) consisting of ma-
trices which are zero except possibly in the kth column, then Ct is a (left)

2 K

MR(R )-subgroup.

THEOREM 2.8. If R is a simple ring then MR(R2) is a simple near-ring.

PROOF. Let H be a non-zero ideal of MR(R2) and let f e H, / # 0.
Thus there exists [*] ^ [g] in R2 such that f[*] ^ [ ° ] . Therefore by
Lemma 2.6,

,\x oi , ro oi , ,\
f[y 0 j ^ [ 0 Oj and f[

x
y

But this means that H n M2(i?) is a non-zero ideal in M2(R). Since R
is simple, because of the correspondence between ideals in R and those
in M2(i?), we know M2(R) is simple. Hence H n M2(i?) = M2(R), and
consequently id 6 H which means H = MR(R2).

Actually, we have established a somewhat stronger result.
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COROLLARY 2.9. If R is a simple ring then MR(R2) contains no non-trivial
two-sided MR{R2)-subgroups.

We can also make use of Lemma 2.6 to show that the distributive elements
in MR(R2) are precisely the matrices in MR(R).

THEOREM 2.10. The subnear-ring of MR(R2) generated by the distributive
elements of MR{R2) is M2(R).

PROOF. Let D denote the semigroup of distributive elements in MR(R2).
Then dgZ) is the subnear-ring of MR(R2) distributive^ generated by D.
Clearly M2(R) C dgZ). For the reverse inclusion let / € D. Then

- / [J S M S ?]«"»<*>•
Thus D C M2{R) so dgZ) = M2(R).

We showed above that MR(R2) is simple when R is simple. We investi-
gate further when MR{R2) is simple. Recall that a ring R is a prime ring if
for each pair A, B of non-zero ideals of R, AB ^ {0} .

THEOREM 2.11. If MR(R2) is a simple near-ring then R is a prime ring.

PROOF. We assume R is not prime and let A, B be non-zero ideals such
that AB = {0} . Let O^beB and set C := Rb c B. We let C2 = {[•] e
R2\a, c e C} and note that C2 is an A//?(/?

2)-subgroup. In fact, if

r2b

then for each / e MR(R2),

Therefore ^ = (0 : C2) is a proper ideal in MR(R2). However K ^ {0}
because if a G A, a ^ 0 then [g °] eA^. This contradiction implies that R
must be a prime ring.

As a partial converse we have the following.
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THEOREM 2.12. Let R be an integral domain, not necessarily commutative.
Then MR(R2) is a simple near-ring.

PROOF. Suppose MR(R2) has a non-trivial ideal / . Let I:=JnM2(R).
Since J # {0}, as in Lemma 2.6, if 0 ^ / e / , say f[x

y] = [a
b] ± [ ° ] , then

/ [ * o] = ilo] e ^ > s o ^ ^ {0} • Thus, as is well known, there exists an ideal
T of R such that I = M2(T). Let 0 # t € T. Then t - 1 £ 7 \ where 1 is
the identity of R, otherwise id e I C J, but J ^ MR(R2). We shall show
['o1 g] € 7 and hence ['-1 °] 6 / which is a contradiction to I = M2(T)
and so MR(R2) must be simple. To this end, since [J§] e / , w e must have
S : = / ( [ o o ] + [ ? o ] ) - / [ ? o ] e / , f o r all feMR(R2). We construct an
/ such that g= [ 'o 'ol- ^ m c e R is an integral domain, [°] and [{] are
in different connected components. (See the remark after Theorem 2.4.) Let
/ : R2 -• R2 be defined by

ifa#0.

It is straightforward to verify that / 6 MJR ) . Using this / , for any
G R , we have

• ('([Sg +
0 D-4?

o x =

0
x

t-\
0

X -

Thus g = f'"1 g ] , as required.
Recall that a commutative ring R is prime if and only if R is an integral

domain. Thus from the above two theorems we have a nice characterization
for MR(R ) to be simple when R is commutative.

COROLLARY 2.13. Let R be a commutative ring. Then MR(R2) is a simple
near-ring if and only if R is an integral domain.

We next turn to the question of when MR(R2) is 2-semisimple, that is,
when J2(MR(R2)) = {0}. For left artinian rings R we find a very tight
connection between the structures of R and MR{R2).
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THEOREM 2.14. Let R be a left artinian ring and let N :=MR(R2). Then
J2(N) = {0} if and only if J(R) = {0} .

PROOF. Suppose J{R) # {0} . Choose 0 / « e J(R), let U := Ru and

let A := {[* Q] \X , y e U} . Clearly A is a subgroup of N. We show A is
an iV-subgroup. Let / e N, [* g] e A. Then there exist r{, r2 € R such
that x = rxu, y = r2u. If

then for any [g] € R2 ,

u 0

Hence / [ J o ] = [5"o] 6 y 4 ' s i n c e R is left artinian, J{R) is nilpotent, say
(/(/?))" = {0}. But then for [x

y°0] € A , x,y€J(R) so [ J § ] " = [gg ] .
Therefore yi is a nil A^-subgroup of iV and so ^ C J2{N). Hence /2(iV) ^
{0}.

Conversely let /(/?) = {0} and let L be any minimal left ideal of R.
Thus, for all c € L, c ̂  0, we have Re = L. Consider L2 C R2 . As above,
if [x

y] eL2 then for each feN, f[x
y] e L 2 so L2 is an iV-group. Further,

since Re = L, L2 is monogenic by [Q] (in fact using only elements from
M2(R)) and if {0} ̂  H is any iV-subgroup of L2 and [g] e H, [a

b] # [g] ,
then iV[g] = L 2 . Thus L2 is a type 2 Af-group. We have shown that for
any minimal left ideal L of R, L2 is a type 2 iV-group.

Assume /2(A0 ^ {0}. From Lemma 2.6 we get J2(N) n M2(i?) ^ {0} .
Thus /jCA7') n M2(R) = M2(T), for some non-zero ideal T of R. Since i?
is left artinian, T contains a minimal left ideal of E, say Lo. Thus, for
each a e Lo, [-{>] e M2(r) c /2(JV). Let ft 6 Lo . Then [«0][»] = [g]
since M2(T) annihilates every type 2 iV-group, in particular L2

0. But this
implies LQ • Lo = {0} which means that LQ is a nilpotent left ideal of R
and as such, Lo C J(R), contradicting the fact that J{R) = {0}. Thus we
must have J2(N) = {0} .

COROLLARY 2.15. Let n be a positive integer, n > 1 and let N :=
Mz (Z2). The following are equivalent:

(a) iV is 2-semisimple,
(b) J(Zn) = {0};
(c) n is square-free.

PROOF. AS is well known, J(Zn) = {0} if and only if n is square-free.
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We have found several connections among the structures R, MR(R) and
MR(R2). In the next section we take R to be a principal ideal domain (PID)
and determine various substructures of MJR2).

3. MD(D2), D a PID

In this section we investigate the internal structure of the near-ring
MD(D2). We focus primarily on the case where D is a principal ideal domain
(PID); however some of our results hold for more general integral domains.

To begin, we let D be an integral domain, not necessarily commutative.
As above we consider only the case D2 since the general situation, Dn,
n > 2, is essentially the same. We say an element a e D2 is a generator in
D2 if, for any j J e D 2 , ar = 0s ^ 0 implies 0 = at where r,s,t e D.
This is equivalent to aDn/ID^ {0} implies 0D C aD.

EXAMPLE 3.1. The following are generators in D2 :

[d] '
For , i f d = 0 t h e resul t is clear . Le t d ^ 0 a n d s u p p o s e [ f ] = [*]s ? [ g ] .
T h e n dr = xs, r = ys so dys = xs. B u t t h e n dy = x so [*] = [ f ] y .
T h e s i t u a t i o n f o r ( 2 ) i s s i m i l a r . F o r ( 3 ) s u p p o s e [ d ^ l ] r — [ y ] s . T h e n
dr+r = xs, dr = ys and so ys+r = xs, that is, r = (x-y)s. Consequently,
(d + l)(x - t)s = xs and d(x-y)s = ys. Hence, [d$1](x-y)= [*].

Let S c D2. We say S is a set of generators in D2 if each a e 5 is
a generator and for a, 0 e S , aD C flD implies a = /?. Using sets of

22)generators, one can construct functions in MD(D2). In fact, suppose S is
a set of ge 2 2

f u n c t i o n . T
d e n n e d b y

a set of generators in D2, T is any subset of D2 and p : S -> T is any
function. Then it is straightforward to verify that the function f:D2-*D2

i{a)r, if y = ar for some a e S, r e D,

I, otherwise,

is an element of MD{D2). Thus functions in MD(D2) can be defined by
specifying their action on a set of generators. We shall use this frequently in
the sequel.

Now let D be a unique factorization domain (UFD), let ~ be the equiv-
alence relation defined after Theorem 2.2 and let E denote an equivalence
class of ~ , E ^ {0}. We show that E contains a generator.
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Let [Q] ̂  it] e E and let d = gcd(a, b) where gcd(x, 0) = x. Let
da' = a, db' = b. Since [$]d = [a

b] # [ ° ] , [-1] e £ . Suppose [* ]r =
[* ]s ^ [ol w^ere without loss of generality we take gcd(r, s) to be a unit.
We have a'r = xs and b'r = ys. If gcd(a', s) = d! is not a unit then from
b'r = ys we get d'\b'. But this is a contradiction since gcd(a', b') is a unit.
Thus gcd(a', s) is a unit which means a'\x and in the same manner, b'\y
say x = a'f j , y = b't2 . But then a'r = xs implies a'r = a'txs so r = t{s.
In a like m a n n e r we get r = t2s, and hence tx = t2 . But then [x

y] = [°,]ti,
and hence \a', ] is a generator for E.

THEOREM 3. Let D be a UFD and let ~ be the equivalence relation defined
previously. Then every non-zero equivalence class E has a generator, unique
up to units. Further for each O^aeD2, there exists a generator fi, unique
up to units such that a = fir for some r e D.

PROOF. The existence of a generator has been established above. For
uniqueness, suppose a , fi e D2 are generators contained in E. Since D
is a UFD and a ~ fi , there exist r,s£D such that ar = fis ^ 0. Hence,
since a, fi are generators, a = fitx, fi = at2, txt2 e D. From this we
find tx and t2 are units in D. The final remark is immediate since for each
0 / a e D 2 , a is in some equivalence class and so there exists a generator
fi such that a = fir, r eD.

We next determine the minimal left ideals of MD{D2), D a UFD. For
each equivalence class E there is a generator a , unique up to units, such
that the function ea : D2 —• D2 defined by

x, x G E,

0, otherwise,

is an idempotent function in MD(D ) .

LEMMA 3.3. Every non-zero left ideal L of N := MD(D2) contains an
idempotent of the form ea for some equivalence class E with generator a.

PROOF. Let 0 ^ / e L with (say) / / 0 on £ . Then /(a) ^ 0 so
/(a) = fir for some generator fi and r e D. The function l' : D2 -> D2

determined by l'(fir) = ar for fir in the equivalence class with generator
fi and l'(x) = 0, otherwise, is in N, thus I'l e N. Moreover /'/ has the
property l'l(D2) C aD. Thus we assume without loss of generality that / has
this property. Define g e N by g(a) := 0 and g(x) := x, x $ E. Then
h := ea(l + g) - eag is in L with h{a) = l(a) and h(x) = ea(l(x) + x),
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x i E. Since l(x) + x i E, h{x) = 0, x <£ E. Define g e N by
g(a) := y for some generator y ^ a and g(x) := 0, x $ E. Further,
define f e N by f(y) := a and f{x) := 0, x not in the equivalence class
determined by y. Now consider k := f(h + g) - fg which is in L since
h e L. We have k(a) = / ( / (a) + y) - f{y) = - a since /(a) + y $ E and
k(x) = / ( 0 + 0) - /(0) = 0, 0, x i E. But then -k = ea e L as was to be
shown.

COROLLARY 3.4. If L is a minimal left ideal for N := MD(D2), D a
UFD, then L = Nea for some generator a.

PROOF. If ea e L and k := f(gea + h) - fh for / , g, h e N, then
kea = k. So Nea is a non-zero left ideal contained in L.

THEOREM 3.5. Let D be a UFD and let N := MD(D2). Then N contains
minimal left ideals and all minimal left ideals are of the form Nea, a a
generator.

PROOF. We only need to show that N contains minimal left ideals since
the rest of the statement follows from the above corollary. We know Nea

is a non-zero left ideal for each generator a . Suppose K is a non-zero left
ideal contained in Nea . Then K = Ne^ for some generator fl, and hence
ep = fea for some f £ N. But this is possible if and only if a = fl.

For maximal left ideals we do not have a complete characterization. How-
ever, in several situations we can identify maximal left ideals.

THEOREM 3.6. Let M be a maximal left ideal of N := MD(D2), D a
UFD. If there exists a generator a such that ea £ M then M = Ann(£)
where E is the equivalence class containing a.

PROOF. Since ea $ M, M + Nea = N which implies there exist m e
M, n € N, with m + nea = id. Thus, for y $ E, m(y) = y while for
yeE, m(y) + n(y)=y. Let k := ea(m + ea) - eaea e M. Thus k(y) = 0
for y ^ E and k(y) = ea(m(y) + y) - y for y e E. Suppose m(y) / 0
for some yeE. If m{y) e E, then m(y) +y e E, and hence in this case,
k(y) = m{y) which in turn gives k(a) = m{a) = ar for some r e D. If
m(y) $ E, m(y) + y £ E so k(a) = —a. Thus k is a non-zero element
in M with the property k(D2) C aD, and as in Lemma 3.3, we obtain
ea € M, a contradiction. Consequently, m(y) = 0 for all yeE. Now
let h be an arbitrary in Ann(is) and let / := h(m + ea)k - hea e M. For
yeE, l(y) = 0; for y $ E, l(y) = h(m(y)) = h(y), that is, / = h. This
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shows Ann(J?) CM. But from N/Ann(E) s Nea and the fact that Nea

is a minimal left ideal we get Ann(is) is a maximal left ideal, and hence
M = Ann(£).

From the above proof we obtain the following.

COROLLARY 3.7. Let D be a UFD, N := MD(D2) and let M be a max-
imal left ideal of N. Then M = Ann(.E') for some equivalence class E, or
for each generator a, ea e M.

When D is finite and thus a field, the equivalence classes are the orbits of
the action of D* on D2. In this case we obtain the known result [5, 9.214]
that the maximal left ideals are precisely the annihilators of single orbits.
On the other hand, when D is infinite and M is a maximal ideal which
is not an annihilator of an equivalence class then M D J2 0 Nea where a
ranges over a set of generators, one from each equivalence class. As the next
example points out, J2 © Ne

a is in general not a maximal left ideal.
EXAMPLE 3.8. Let D := Z, N := MD(D2), H a set of generators, one

chosen from each equivalence class. Further let L := 2 a € W © ^ Q and
consider the subset {[^,]|m6Z+} of H. Define

T := <feN\ for some positive integer k, f (\ \\ = \ \ , m> k> .

One verifies that T is a left ideal of iV, and L c T since ea e T for all
a € H. But L^T, for if / is the function such that / [ ^ ] = [{J] for all
m 6 Z+ but f[%] = [a

b] for all generators [g] e H\ {[^]\m e Z+} then
fiL.

We now turn to another method for obtaining maximal left ideals. For
this method we only require that D be an integral domain, not necessarily
commutative and not a field. Again we let N := MD{D2) and let H denote
a collection of distinct generators in D where two generators a, ft are
distinct if aD n fiD = {0}. Let & be an ultrafilter on H. That is, &
is a non-empty collection of subsets of H with the properties (i) 0 £ &,
(ii) if A, B e & then A n B £ / , (iii) if A e & and A c B then
5 e y , and (iv) for each A C H, either ^ 6 7 or H\A ef. Define
L(i*") ._ {/ € N\f(A) = {0} for some A e f}. It is straightforward to
verify that L{9~) is a left ideal of N. If &" is the principal filter generated
by a single generator, say a, then we note that L(&~) = Ann{a} . Of course
when D is a UFD this agrees with Ann(£') where D is the equivalence class
with generator a . We now show that if H is countable, or more generally
if every A e&~ contains a countable subset which is also in 9~, then
is a maximal left ideal of N.
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To this end, let / i L{9~) and let Zf = {x e D\f(x) = 0} . Since
/ i L{^), Zf <£ y so we have T := H \ Zf e 9~ and / is non-zero

on T. Let S be a countable subset of T with 5 e / . Let g : Z>2 -• Z>2

be defined by #(a) = 0, a £ S, g(a) = f(a), a <£ S. Then g e N and
in fact g e L{&). Consequently f-g i L{9~) and ( / - g)(a) = f(a),
a e S, while ( / - g){a) = 0, a £ S. So, without loss of generality we
take / to be non-zero on S and zero off S, S = {at}, a countable set of
generators.

Let f be the function in N defined by

' [ : ] * -
a: i f ^ 0 '
b
b

where [ab] £D2 . Then / / is a function which is zero off S, non-zero on S
with the /'f{a) = [x] for some x = x(a), all a £ S. We wish to construct
a function / e N in the left ideal generated by / which will be the identity
on S. We will then show that the ideal generated by L(9~) U {/} is all of
N which means that L{^) is a maximal left ideal. Now f f is in the left
ideal generated by / so again without loss of generality we call this function
/ . We have therefore

° ] , ateS, and
/(a) = 0, a^atr, a. £ S, r £D.

Let k := h(f + g) - hg where h is defined by h[l
Q] = [ ° ] , h[x

y] = [*} if
y 7* 0 and g is defined recursively as follows.

Since D is not a field, Z> does not satisfy the descending chain condition
for right ideals so we let Ay, A2, ... , be a strictly descending chain with the
property f]At = {0} . (For example one might take any non-unit a£D and
let At = a'D.) Note that for every x £ A{ there is a unique integer <p(x)
such that x e A^x) \ Af(x)+l. Choose axa2, ... , such that at £ At \ Ai+l.
We define

and set j0 = 0, jx = ^ (a ,^ , ) . Now suppose g{at) and ; , , / = 1, 2, . . . , n ,
have been defined. Then
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From this we obtain

l l

x
J+l "

Thus we have constructed a function k in the left ideal generated by / such
that for a, T e S, if a ^ T then k{a) ^ k(r) and

«••>-[;;]•
Define

[\+1l .= 1,2,....
zi

From Example 3.1, the St are generators. We define gl,hi in N by
Si(<*,-)= [o ] ' S{(x) = 0 for x^dtr, reD, i = 1, 2 , . . . , and A,(^.) = er,.,
/J,(A;) = 0, x ^ dts, s e D, i = 1, 2 , . . . . Now let / := /i,(fc 4- £,) - hxgx

which is in the left ideal generated by / . For each a( e S,

This is our desired function.
Now let /0 be defined by /0(<7,) = 0, <7, € S , lo{x) = x- l(x), x / atr,

r e D, ai e S. Then /0 + / is in the left ideal generated by L{9~) U {/}.
But /0 + / = id. This establishes the next result. We note also that a similar
result has been established by Fuchs in [1].

THEOREM 3.9. Let N := MD(D2) where D is an integral domain, not
necessarily commutative, and D is not afield. Let H denote the set of distinct
generators in D2 and let & be an ultrafilter on H with the property that
for each A e 9", there exists a countable set B, B c A, such that B e &~.
Then L{9~) = {/ e N\f(A) = {0} for some Ae&~} is a maximal left ideal
of N.

The case in which D is a field will be discussed later. We now turn to a
characterization of the two-sided (or invariant) subgroups of MD{D2).

We take D to be a PID and as usual we let JV := MD{D2). Let A be any

ideal of D and define A+ = {/ e N\f(a) € A2, for all a 6 D2}. We note
that A+ is a subgroup of N and for any h, k € N, hfk € A+ , since A is
principal. Thus A+ is an (N, Ar)-subgroup, that is, an invariant subgroup
of N. As above, we let H denote a set of generators, one chosen from each
equivalence class.
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L E M M A 3 . 1 0 . Let D be a PID, A , B ideals of D . If A ^ B then A+ ^
B + .

PROOF. Suppose a e A\B. Let a G H and define / ( a ) = [°] and

f(0) = [<j] f o r e a c n P e H> P ^ a- T h e n / is a function in N and

/ G A+ \ B+ .

LEMMA 3.11. Every invariant subgroup T of N is of the form T = A+

for some ideal A of D.

PROOF. If T = {0} the result is clear so we take T ^ {0} and let

T+ := la e D\ for some y e D2 and / e T, f{y) = [jj] } •
Clearly if a e T+ then ar e T+ for each reD. Suppose a,b eT+. Then

there exist f{,f2eT, yx,y2£D2 with / , ( ? , ) = [ g ] , f2(y2) = [ » ] . If

a is any generator then there exist h, k e N with h(a) = yx, k(a) = y2.

Hence {fxh+f2k)a = [a+b]. Therefore T+ is an ideal of D, say T+ = (m).

We next show T = (T+)+. We have T C (T+)+ so we turn to the reverse

inclusion.

From Lemma 2.6, T n M2(Z>) ^ {0} . But then from the definition of

T+ we must have T n M2(Z>) = M 2 ( r + ) . Let / e {T+)+ . For each a e

\ asH, /(a) 6 {T+)\ say f(a) = [ ^ ] , r(a),s(a) G D. Define /
the function obtained from / , / ( a ) := [ j ° j ] , a e H. Clearly f e N.
From the definition of T+ we know there exist g e T, [c

d] e D2, with
*[5] = [ o ] - As in Lemma 2.6, *[°$] = [ g ^ ] , s o [g-f] G T . But then
[o m) e T> a n d consequenUy / = [* ° ] / G T . Therefore ( r + ) + C T and
we have the result.

From the above proof we obtain the next result.

COROLLARY 3.12. Let T{ and T2 be invariant subgroups of MD(D2), D
a PID. If Tx jt T2 then (T{)+ * (T2)+ .

COROLLARY 3.13. Let D be a PID. If A is an ideal of D then (A+)+ = A.

PROOF. We know (A+)+ is an ideal of D, say B := (A+)+. As in the
above proof, B+ = {{A+)+)+ = A+ . But then from Lemma 3.10, A = B .

From the above results it is straightforward to verify that the map A —>
A+, A an ideal of D, is an order preserving bijection between the lattice
of ideals of D and the lattice of invariant subgroups of A .̂ We summarize
these results in the following theorem.
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THEOREM 3.14. Let D be a PID and N := MD(D2). There is a lattice
isomorphism between the lattice of ideals of D and the lattice of invariant
subgroups of N.

We conclude this section and the paper with a discussion of the case in
which N := MF{F2), F a field. Thus F* is a group of fixed point free
automorphisms acting on a group F2 and some of our results follow from
the general theory of such actions.

From Theorem 2.8, MF(F2) is a simple near-ring. We now show that for
left ideals one obtains a nice relationship with filters. Thus we let F denote
a field and let H := {aa := [\]\ae F}\J {a^ := [£]} , a set of generators,
one from each equivalence class.

LEMMA 3.15. Let S C H be a non-empty set of generators. If fe MF(F2)
is non-zero on S and zero off S, then there exists a function k in the left ideal
generated by f such that k{a) = a, a e S, and k{a) = [ ° ] , a eH\S.

PROOF. Let S = {at}, i e I. Without loss of generality we take

Let T := {S(} , i e I, be a subset of H such that a^ <£ T. We take

Define h,geMF(F2) by h(aJ=[°Q), h{6t) = 6&1, i e l , h(a) = [ ° ]
otherwise and

8(°i) = [iai ~o
l)Xi] > S(<*) = [o ] otherwise.

Then k := h(f+ g) - hg is in the left ideal generated by / and

and k is zero off S, and hence we have the result.
For any / e MF(F2) we define the zero set Zj of / by Zf := {a e

COROLLARY 3.16. / / / is a proper left ideal of MF{F2) and f e I then Zf

0
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LEMMA 3.17. Let I be a proper left ideal of MF{F2), 0 ^ / e 7 and let
a e F2. There exists a function k e / such that

U, aezf,
k{<f) I a, o£H\Zf.

PROOF. From Lemma 3.15, we may assume without loss of generality that
/ is the identity on Z^. Let h be defined by h(a) = a for each a e H.
Then k := hf is the desired function.

LEMMA 3.18. Let I be a proper left ideal of MF(F2) and set y(7) :=
{ Z y | / e / } . Then 9"(I) is a filter on 77.

PROOF. Clearly 0 £ 9(1). Suppose Zf,Zg e 9(1). Let a, fi e F2

be such that a ^ [g] ^ /? and a + /? ^ [°] . From Lemma 3.17, there exist
functions / , g € MF(F2) such that /(cr) = a off Zy, g'(<7) = £ off Z?

and Zf, = Zf, Zg, = Zg. Then ZfnZg = Zy-+?,. But / + #' G / so
ZfnZge 9(1). Finally, let ZfcS. Then / e / is zero on Zy, non-zero
off Z^. From Lemma 3.15, there exists k e / such that fc is the identity
off Zf and zero on Zf. Define h 6 MF(F2) by A(a) = <7, a e H\S,
h(a) = r°l, a € 5 . Then Afc e 7 and

LEMMA 3.19. L# / be a proper left ideal of MF(F2). Then I* := {/ e
MF{F2)\Zfef (/)} = / .

PROOF. We have I c I*. For the reverse inclusion, let f e I*. Since
Zy € 9~(I), there exists a function # e / with Z = Z-... As in the proof of
Lemma 3.17 we may take g(a) = a, a &H\Zf.. But then f = f*g 6 / .

Let y be a filter on H and define / ( ^ ) := {/ € MF(F2)\Zf 6 ̂ } .
Using the properties of & it is straightforward to verify that I{&) is a left

2ideal of MF{F2). Our final theorem follows from this remark and the above
sequence of lemmas. Recall that a filter y on H is said to be a minimal
filter if y consists only of H and just one other set 5 such that H \ S is
a singleton.

THEOREM 3.20. 77i£re is an order preserving bijection between the proper
left ideals of MF(F ) , F afield, and filters on H. An ultrafilter corresponds
to a maximal left ideal and a minimal filter corresponds to a minimal left
ideal.
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