J. Austral. Math. Soc. (Series A) 33 (1982), 11§

TWILLS ON A GIVEN NUMBER OF HARNESSES

W. D. HOSKINS and ANNE PENFOLD STREET

(Received 22 December 1980)

Communicated by W. D. Wallis

Abstract

The simple twills on # harnesses can be classified according to the number of breaks that they possess.
An algorithm is detailed for determining these twills and some sample listings given. A formula is
derived which evaluates the total number of n-harness twills with a specified number of breaks, and
hence also the total possible number of twills on n harnesses. Also the balanced twills on n harnesses
are enumerated.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 30, 05 B 45, 62 K 99.

Introduction

It has been established that the weaving of twill fabrics dates back to at least
1500-1000 BC [2] and the number of different simple twills on n harnesses is well
known for at least n = 2, 3, 4, 5, 6, 7, 8 (Oelsner [8], Laughlin [7], Griinbaum and
Shephard [5]). However for n > 8 no enumeration of the possible structures
appears to have been given although a classification has been described in [5]
which is closely related to the work of Gilbert and Riordan [4] on symmetry types
of periodic sequences; the former is an explicit formula (Theorem 2) for the
number of simple twills of period n, and the latter gives a recursion relation which
may be used to calculate this number. The values were listed in [5] for » < 8 and
in [4] for n < 20 (Table 1; D, X &,). Before proceeding further it is necessary to
introduce the following definitions and describe the environment in which the
problem arises.

The second author thanks the Department of Computer Science, University of Manitoba, for
hospitality while this work was in progress.
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The warp on a loom passes through a set of n harnesses (n an integer = 2);
when a given harness is raised, some subset of these threads (warp ends) is also
raised. It is usual for every warp end to be threaded so that it is associated with a
specific harness, although there are historic techniques for ends to be associated
with more than one harness (double threading, see [6]). In weaving a particular
structure, several harnesses may be lifted simultaneously; so the set of possible
lifts constitutes a precise analogue of the positive sets of set theory. Attention will
subsequently be restricted to structures in which the shuttle carrying the weft
makes a complete uninterrupted motion from one side of the warp to the other.
Thus no finger-manipulated weaves are considered; also since the presence of
regularity in the woven structure is considered desirable, it is necessary to require
periodicity of some type in the interlacements of the warp ends with a single wefr
pick. It is not necessary to require that the interlacements of successive weft picks
with a specified warp end generate the same crossing sequence as the warp ends
with the corresponding weft pick; however it does give the simplest possible
structure periodic with equal periods along both warp and weft axes, and is
generally taken to mean that the pattern has been “tromp as writ” or “woven as
drawn in”. The following terms can now be conveniently introduced. A binary
sequence

S = {s;}
of period n is a sequence of zeros and ones such that
s, =s; (k=i(modn)).
It may be noted that, if # | m, then § also has period m.

Two binary sequences S and T of period n will be considered equivalent if and
only if one can be transformed into the other by a shift, a reversal, complementa-
tion, or any finite sequence of these operations. In other words, S and T are
equivalent if and only if:

;i =T, Si = tyvi—i» §; =~

or S can be obtained from T by some finite combination of the above operations.
This means that, if S and T are considered as cyclic sequences of length », then
they are equivalent precisely when one can be transformed into the other under
the action of the group D,, X &, that is, the direct product of the dihedral group
of order 2n with the symmetric group of degree 2. This is the necklace equivalence
discussed by Fine [3] and Gilbert and Riordan [4).
Given a sequence S = {s,,...,5,_,} and two operators / and P such that

SI=S and SP= {5,_,5,-2,---,5}
together with a word

(*) A:IflP/zIfﬁPfd...Ijzr—lpjzr,
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the sequence T = {t,) of period m = nZ?", j, — 2ris given by
t,=s, forh=0,1,....m—1,
where A is defined as follows:
forn(j,+---+j)—i<h<n(j + - +j,,)— (+1),wehave
A:{n+l—(h+i), i odd,
h+i, ieven.

Thus the sequence T consists of j, copies of S followed by j, copies of SP, and so
on, except that where the symbol s, or s, | is immediately repeated one copy of
the symbol is deleted.

ExaMmrLE. If
S = 00101 (length 5) and A4 = IP3,
then
T = 001010100101001010 (period 18).

An interlacement sequence Q of period n is a sequence of over and under
crossings of orthogonal strands, and each interlacement sequence can be associ-
ated with an equivalence class of binary sequences of the same period.

DEFINITION. A simple twill on n harnesses is a planar interlacement array in
which each row (column) of the array is an interlacement sequence of period n
and is obtained from the previous row (column) by displacement through one

position.

Thus the interlacements of a simple twill can be regarded as a binary array
generated as a square tiling by a circulant binary array of period .

ExaMPLE 1. Simple twill on 6 harnesses.
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DEFINITION. A point twill on n harnesses is a planar interlacement array in
which each row of the array is an interlacement sequence of period z. In addition,
the array has the property that a row R can be selected such that all subsequent
rows can be obtained as follows.

(i) Each of the n» — 1 rows immediately below R is obtained by shifting the
previous row to the right, through one position; this set of shifts will be denoted
by RI.

(i) Each of the n — 1 rows immediately below these is obtained by shifting the
previous row to the left one position. This set of shifts will be denoted by (RI)P.
This sequence of sets of shifts then repeats, that is, we have ((R{)P)I)P)....
The array above R is a reflection in R of that below.

Notice that in this case, since the operators / and P alternate, at each step the
operator acts on the previous row of the array.

ExAMPLE 2. Point twill on 5 harnesses

-

"

DEFINITION. An extended point twill on n harnesses is a planar interlacement
array in which each row of the array is an interlacement sequence of period n. In
addition, the array has the property that a row R can be selected such that all
subsequent rows can be obtained by applying the operators I and P, but now
arbitrary sequences of I and P are allowed instead of strict alternation.

Thus the interlacement structure F can be precisely described by

F=RAA...
where R is the first row and the word
A=Jhpirafispic...[la- 1P
lists the operators sequentially applied to R. Where two successive operators in
the word are different, then the last row obtained from the first of these operators

https://doi.org/10.1017/51446788700017547 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700017547

[s1 Twills on a given number of harnesses 5

becomes the argument to the second of them (just as for the point twill). When
two successive operators are the same, then the argument of the first of these
operators becomes the argument of the second. This precisely corresponds to the
action of the operators / and P on a binary sequence.

Note that, because of the necklace equivalence of periodic sequences, the word
A can be considered to represent an equivalence of words which determine
equivalent extended point twills. For convenience the representative word A,
chosen from the equivalence class of words, is that which comes first in the
alphabetic ordering.

With the above definition, it becomes apparent that an extended point twill
tromp as writ has the same word describing both warp and weft sequences. In
particular, the simple twill (see example 1) is an extended point twill where the
word

A=1

defines both warp and weft sequences, whereas the point twill (illustrated by
example 2) is an extended point twill not tromp as writ where the word

A, =1IP
describes the weft (warp) sequences and the word

A, =1
describes the warp (weft) sequences.

ExaMpLE 3. Extended point twill on 5 harnesses not tromp as writ

“
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ExaMPLE 4. Extended point twill on 5 harnesses tromp as writ

The extended point twill of example 3 has
A =IPPP and A,=1
whilst example 4 has
A, = A, = IPPP.

This means that, to be consistent with the definition of equivalence of sequences,
two woven fabrics are regarded as equivalent if one can be transformed into the
other by: turning the fabric over; shifting some warp (weft) threads from one side
to the other (preserving their cyclic order and interlacements); taking a mirror
image of the fabric parallel to either warp or weft directions; interchanging warp
and weft; any finite combination of these operations.

Along any strand of a simple twill there are a certain number of breaks per
period, that is, a certain number of positions where the strand changes from
passing over to passing under the strands at right angles to it, or vice versa.

ALGORITHM. The simplest method of determining the simple twills on n
harnesses is by means of a sieve performed as follows.

(1) A vector X of bits with 2" — 2 components is initialised to ones.

(ii) The index of the first non-zero entry in the vector gives a new twill.

(iii) If S is the n-place binary integer form for the integer index in (ii), then all
addresses in X corresponding to the decimal integer equivalents of S or of any
sequence derivable from S under the action of the direct product D,, X &, are
set to zero.

(iv) Steps (ii) and (iii) are repeated until done.

In practice, it is obvious that the last twill that can be found for even n is tabby,
represented by the sequence (0101...01); this is the twill with the maximal
number of breaks. For n odd, the last sequence found will be (001010...101),
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(7} Twills on a given number of harnesses 7

again with a maximal number of breaks. These two sequences correspond to the
integer (4["/2! — 1) /3, and this can be used to decrease the dimension of the
vector X used in the sieve.

There are considerable economies which may be obtained when this algorithm
is implemented in machine code.

ExaMPLE. To determine the twills on four harnesses, the vector X is

1 2 3 4 5 6 7 8 9 10 11 12 13 14
X=(@a 1 1 1 1 1 1 1 1 1 1 1 1 1).

The index of the first non-zero value is 1; as a 4-place binary integer, it can be
written as 0001.

The cyclic rotations of this give the decimal indices 2, 4, 8; the cyclic rotations
of the complement give 14, 13, 11, 7; the other possible operations give no new
indices. Therefore, the vector X becomes

1 2 3 4 5 6 7 8 9 100 11 12 13 14
X=@q 0 1 0 1 1 0 0 1 1 0 1 0 0),

and the next non-zero bit has a decimal index of 3 or, as a binary 4-place, 0011.
The cyclic rotations of this give the decimal indices 6, 12, 9, and the cyclic
rotations of the complement and other operations yield no new values. So the
vector X becomes

s 6 7 8 9 10 1 12 13 14
X=( o0 1 0 1 0 0 0 O 1 0 0 0 0)

The next non-zero bit has decimal index of 5 (0101 in binary), and this has as a
cyclic rotation the value 10.
Therefore the final vector X is

X=(10101000000000)

and indicates there are 3 twills on 4 harnesses corresponding to the decimal
integers 1, 3, 5, written as 4-place binary integers. This is a convenient abbrevia-
ted method of listing twills that is used for Table 1 to give all possible twills on 12
harnesses. Conversion to standard form is simply accomplished by taking any
entry in the table, for example, 5, writing it as a 12-place binary integer 101000
000000, and then counting successive runs of ones and zeros, that is,

1L

, =T

in the traditional break notation of weaving.
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TABLE 1
Twills on 12 harnesses in decimal form

1 3 7 15 31 63 5 9 11 17 19
23 27 33 35 39 47 S1 55 65 67 71
79 95 99 103 111 119 135 143 195 199 207
231 455 21 37 43 45 69 73 15 77 83
87 91 93 107 133 137 139 141 147 151 153
155 157 163 167 175 179 183 187 189 203 215
219 273 275 279 283 291 295 307 311 313 315
327 355 359 371 403 411 423 819 85 149 165
171 173 277 293 297 299 301 309 325 331 333
339 343 347 349 363 365 427 585 587 595 603
619 691 715 717 341 597 661 683 685 693 1365

It follows from the definition of necklace equivalence of periodic binary
sequences and from the definition of a simple twill that the number of inequiva-
lent simple twills that can be woven on n harnesses is just one less than the
number of inequivalent binary sequences of period n, for each distinct sequence
leads to a distinct twill except for the sequence 000... (or 111...). It is also of
interest to determine the number of simple twills with a given number of breaks
per period or, in other words, the number of inequivalent necklaces with a given
number of colour changes between successive beads. The number of breaks or
colour changes must always be even and will be denoted by 2.

For example, the sequence {a,} of period five

aga,a,asa, = 11000
has two breaks, one after a; and one after a,, and the sequence {a,} of period
five

aga a0, = 10101
has four breaks, after a,, «,, a, and a, respectively.

Each binary sequence {a;} of period » has a unique associated binary sequence

{b,}, also of period n, defined by

=a,+a,,, (mod?2),
where addition of subscripts is taken modulo n. Thus any binary sequence {a,} of
period n with 2k breaks has a unique associated binary sequence {b,;} containing
exactly 2k ones, and any binary sequence {b,} containing exactly 2k ones is the
associated sequence of precisely two binary sequences, each with 2k breaks,
defined by
a,, ;,=a,;+b, (mod2), forj=0,1

where a;, = 0 and a,; = 1. Hence {a,,} = {a_,.,}.
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Thus, in the example above, {a,} = 11000 has the associated sequence {b;} =
01001, and {b,} is the associated sequence of {a,,} = 00111 and its complement
{a,} = {a;}. Similarly, {a,} has the associated sequence {B;} = 11110, which is
the associated sequence of {«;;} = 00001 and {a,} = {e;}.

Since both a sequence and its complement have the same associated sequence,
the number of equivalence classes of binary sequences of period n with 2k breaks
under the action of D,, X &, is precisely the number of equivalence classes of
binary sequences of period n with 2k ones under the action of D,,. This number
is most conveniently calculated using Burnside’s Lemma.

LEMMA (Burnside [1, page 191)). Let G be a finite group, of order g, of
transformations acting on a finite set S, and let two elements of S be equivalent if

and only if one can be transformed into the other by a transformation in G. Then the
number T of inequivalent elements is

r=2 3 10),

teG

where I(t) is the number of elements of S left invariant by transformation t € G,
and the sum is over all g transformations in G.

THEOREM 1. The number T(n,2k) of equivalence classes of binary sequences of
period n containing precisely 2k ones is given by

T(n,2k) :;—n{dgb(b(n/d)(zkz/n) + "( lnizj )}

where ® denotes Euler’s totient function and D is the set of positive integers
D={d:d|n,n|2kd}.

PRrROOF. The proof is an application of Burnside’s Lemma to the set S of binary
sequences of period n containing 2k ones, where the group G is D,,, the dihedral
group of order g = 2n.

(1) All () of the sequences are left invariant by the identity of D, ,.

(i) Next consider rotation of the cyclic sequence

aga,...a,_,
through s places, where d = ged(n, s). A sequence left invariant by such a
rotation must be of the form

ya,...Q, a44a,... A _1...05a,...d4 4,

that is, it must consist of n/d repetitions of a subsequence of length d. Since the
whole sequence contains 2k ones, the subsequence ag,a,...a,_, contains
2k/(n/d) = 2kd/n ones. Thus we need only consider values of s for which dis a
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proper divisor of n such that n|2kd. The number of subsequences of length d
containing the required number of ones is (,,2 sn)» and any such subsequence
determines the whole sequence. Altogether, there are ®(n/d) choices of 4 such
that s = hd and d = ged(n, s).

Hence, for each d such that d|n, 1 <d <n, and n|2kd, there are ®(n/d)
rotations each leaving (5,4 ,,) sequences in S invariant.

(ii1) Finally, consider the n possible reflections of the cyclic sequence

aya,...a,_,.

If n is odd, then each axis of reflection passes through one element of the
sequence, say a;, and between two others, namely, a,,, 1y, and a;, ., -
Since the reflection leaves the sequence invariant and since the sequence has 2k
ones, we must have a; = 0; also each of the (n — 1)/2 terms on either side of the
axis of reflection must include k ones. The number of subsequences of this form is
("~1/%) = (1"/*)), and each of them determines the whole sequence.

If n is even, we have two types of axes of reflection: n/2 axes passing between
terms a; and a;,, and again between Qs (n/2) and a; |, . 2; N/2 axes passing
through symbols a; and a,,, /2 In the first case, the.n /2 symbols a; b
;49,184 (n /7 May be chosen in (*/?) ways, so as to include k ones; 'tl?ls
determines the sequence. In the second case, a; = a;,, ,,, and two possibilities
arise: either a; = 1 and the (n/2) - 1 symbols a,,, a,,,,...,a;,(, 5, may be
chosen in (¢"/?"") ways to contain (k — 1) ones; or @, = 0 and the (n/2) — 1

. 2 71 I3
symbols a,, , a,.,,.. +>8j4(ny2-1 MAY be chosen in (**/?71) ways to cont.aln'k
ones. In either case this choice determines the whole sequence, so it can arise in
(/27D + (2T = (%) ways.

(iv) The total number of invariant sequences is thus

( 2nk) from case (i);
Efb(n/d)( 2kZ )
7 /n
ford|n, 1 <d<n,n|2kd, from case (ii);
n( ["sz ) from case (iii).
Adding terms from cases (i) and (ii) gives

%1 q)(n/d)(2kj/n);

n|2kd

since g = 2n, the Theorem follows.
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COROLLARY 1. The number of n-harness twills with 2k breaks is T(n,2k).

COROLLARY 2. Let n = 2"m, where h =0 and m is odd. Then the number of
n-harness twills is T(n), where

h
1+ T(n) 22" 'm L4 2h+12m 3 X ®(m/8)2¥ A,

A=0 8|m

PROOF. Any twill has at least two breaks, or in other words we disregard the
trivial case, corresponding to the constant sequence 000... (or equivalently

111...). Hence
Ln/2]
1+ T(n)= Y T(n 2k)

k=0
1 Ln/ZJ Ln/ZJ L"/ZJ

=3 2 )3 2, 200 awya)
(2 moty 4 L 8 > ®(n/d) )

=2 tom 2, 2 0/ (de/n

By grouping the divisors of n into & + 1 sets of the form 2*8, where § | m and
A =0,1,...,h, and then rearranging summands, we obtain the Corollary.

EXaMPLE. (i) If n=16=2%1, then h=4, m=1, and 1+ T(16) =727
+ 51;(2'6 + 2%+ 26+ 25+ 2% = 1162.

(i) If n=15=2%15 then h =0, m =15 and 1+ T(15) = 2° +
(1/22.15)(@(15).2 + ©(5).2° + ®(3).2° + ®(1).2"°) = 612.

Table 2 gives the values of T(n,2k) and T(n), for n < 30, computed both from
the Theorem and Corollary 2, and by the sieving algorithm of Section 2.

A twill is said to be balanced if each strand passes over and under those
perpendicular to it equally often. Such fabrics are of interest because they do not
curl. Each such twill corresponds to a necklace-equivalence class of sequences of
(necessarily) even length consisting of equal numbers of zeros and ones. Such
sequences will also be called balanced.

THEOREM 2. The number of distinct balanced twills on n = 2k harnesses is

21k /2]
Lk/2]

B(2k) = ?31? > (IJ(k/e)(zee) + S 0(2k/d)24 + Zk(
d2k dlk

d=2e

) + k.2KL,

PrOOF. Burnside’s Lemma is applied to the set S of balanced binary sequences
of period 2k, where the group G is D,,, X &,, the direct product of the dihedral
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[13] Twills on a given number of harnesses 13

group of order 4k with the symmetric group of degree two. Thus G has order
g = 8k.

(i) All (3%) of the sequences are left invariant by the identity of G; no sequence
is invariant under complementation.

(ii) As in the proof of Theorem 1, it follows that a cyclic sequence aya,...a,,
left invariant by rotation through s places must consist of 2k /d repetitions of a
subsequence of length d, where d = ged(2k, s). But, for balance, d must be even,;
if d = 2e, then there are (%) possible sequences.

Hence for each d such that |2k, 1 <d <2k, and d = 2e, there are ®(2k/d) =
®(k /e) rotations, each leaving (%¢) sequences in S invariant.

(1i1) Similarly, a balanced cyclic sequence of period 2k left invariant by rotation
through s places and complementation consists of 2k /2d repetitions of a se-
quence of length 2d of the form

agd,...ay Qg a,...a; ,,

and there are 2¢ such possible sequences.
Hence, for each d such that d |k, there are ®(2k/d) rotations each leaving 2¢
sequences in S invariant.

(1v) Since the balanced cyclic sequences have even period, two types of axes of

reflection are possible: k axes passing between symbols a; and a;., and again
between a, ., and a,,,,,; k axes passing through symbols a; and a, ;.
If k is even, then ( k’;z) balanced sequences are left invariant by each reflection. If
k is odd, no balanced sequences are left invariant by reflections of the first type
but 2(, ,(":l)' ,2) balanced sequences are left invariant by the k reflections of the
second type.

(v) Each of the k reflections of the first type, together with complementation,
leaves 2* subsequences invariant. No reflection of the second type, together with
complementation, leaves any sequence invariant.

(vi) The total number of invariant sequences is thus

( Zkk ) from case (i);
Ek @(k/e)(2¢)  trom case (ii);
d=2e

d#+2k

> ®(2k/d) from case (iii);
dk

2k( 2[k/2] ) from case (iv);

Lk/2]
k.2k from case (v).
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Adding terms from (i) and (ii) gives

2e).
d%k <I>(k/e)( e )’
d=2e

since g = 8k, the Theorem follows.
Table 3 gives the value of B(2k) for k < 9, computed both from Theorem 2
and by the sieving algorithm of Section 2.

TABLE 3

k B(2k)
1 1

2 2

3 3

4 7

5 13

6 35

7 85

8 257
9 765

Table 4 gives in decimal form all of the balanced twills on 12 harnesses.

TABLE 4
Twills on 12 harnesses (balanced) in decimal form

63 95 1 119 207 231 455
175 183 187 189 215 219 311
315 359 37N 411 423 819 343
347 349 363 365 427 603 619
691 715 717 683 685 693 1365

OBSERVATIONS. The listing and enumeration of the extended point twills
actually describes far more than the basic twills since the word given by equation
(*) can be used to describe (with appropriate changes in definitions) threading
(treadling) sequences when the run is not 1...n or n...1 but some set of disjoint
sets of consecutive integers covering either of these sequences. As such, the
formula of Corollary 2 enumerates all possible periodic helical paths followed by
a particle on the surface of a torus subject to the constraint that it circulate either
clockwise or anticlockwise and that, in its spiral around the torus, it may change
direction through 90° a finite number of times after traversing some not neces-
sarily constant distance.
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[15] Twills on a given number of harnesses 15
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