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Abstract
Traditional active flutter suppression controllers are designed based on model. However, as the aircraft becomes
more and more powerful, the modeling of aeroelastic system becomes difficult and the model-free requirement of
controller design becomes more and more urgent. The complexity of industrial processes has brought about massive
operational data generated online. Aviation industry development has entered the era of big data. Breaking through
the traditional theoretical framework, mining the correlation, evolution and dynamic characteristics of the system
from the data is the inevitable choice to meet this demand. In this paper, a data-driven model-free controller is
designed, which relies on ridge regression of the input and output variation at each operating point of the closed-
loop controlled system to recursively derive the iterative format of the control signals and ensure the numerical
stability of the signals. The controller can only use the real-time measurement of the system’s online input and
output data for continuous correction, to achieve the purpose of flutter suppression. Then flutter suppression of a
three-degree-of-freedom binary wing with a control surface is studied, and the superiority of model-free controller
is demonstrated by comparing it with the optimal controller.

Nomenclature

AFS active flutter suppression
AFW active flexible wing
AAW active aeroelastic wing
ADRC active disturbance rejection control
BACT benchmark active control technology
MIMO multiple input multiple output
m total mass of the wing
Iα rotational inertia of the wing to the elastic axis
shα mass static moment of the wing to the elastic axis
shβ mass static moment of the control surface to its rotation axis
Iβ moment of inertia of the control surface to its rotation axis
h sinking and floating displacement
α pitching angle
β control surface deflection angle
dh sinking and floating damping coefficient
dα pitching damping coefficient
kh sinking and floating stiffness coefficient
kα pitching stiffness coefficient
sp wing span
L aerodynamic lift
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Tα aerodynamic moment to the elastic axis
δ control surface deflection instruction
k proportional coefficient
ω natural frequency
ς damping ratio
Φ pseudo partial derivative
η, ε step length
λ, μ regularisation coefficient
Ts sampling period
R weighting coefficient
Q weighting matrix

1.0 Introduction
Active flutter suppression (AFS) is one of the main active control technologies applied in aircraft design
at present. It belongs to the comprehensive category of aeroservoelasticity and is one of the research
hotspots in the field of aeroservoelasticity. It focuses on increasing the critical flutter velocity without
significantly increasing the structural weight of the aircraft [1, 2]. Active flexible wing (AFW) was pro-
posed in the United States in the 1980s, and since then, active flutter suppression has been continuously
invested in research and development. In this century, this concept has been developed into active aeroe-
lastic wing (AAW) technology, which has promoted the aeroservoelasticity comprehensive technology
to a higher theoretical and technical level. It is a new concept of modern aircraft design.

In recent years, important progress has been made in the research of AFS technology. Zeng et al.
[3] developed a feedback control framework based on a wind tunnel experimental model to suppress
flutter using robust control laws. Schmidt [4] aimed at Lockheed Martin’s BFF06 whole aircraft model,
using the method named “identically located force and acceleration” to construct a double loop system,
and increase the model damping, and achieved good results in flutter suppression. Huang et al. [5]
conducted a wind tunnel experimental study on closed-loop flutter modal identification and AFS of a
3D small aspect ratio wing model. The linear feedback controller designed through pole assignment
optimisation effectively suppressed flutter, and explored the on-line closed-loop flutter identification of
the wing model. Theis et al. [6] proposed a systematic robust control design method for active flutter
suppression. It extends the standard four-block mixed sensitivity formulation by a means that targets
specific dynamic modes and adds damping. This enables a control design to augment the damping of
critical flutter modes with minimal impact on the rigid-body autopilots. Vepa et al. [7] used the linearised
aeroelastic model based on the doublet lattice method to initially design the control law family for the
active flutter suppression system. Using these preliminary control laws and the nonlinear transonic small
disturbance theory, the approximate optimal control law was selected in the transonic domain, and the
flutter of a typical wing was successfully suppressed. Yang et al. applied active disturbance rejection
control (ADRC) theory to the design of aeroelastic control law and studied the transonic AFS problem
of benchmark active control technology (BACT) wing [8] and 3D elastic wing [9] considering parameter
uncertainty and measurement noise interference. Although AFS technology has been widely used in
aircraft design, it still faces the following difficulties.

First, the existing flutter suppression controller structure is complex: The complex structure of the
mathematical model determines the complex structure of the controller, and the complex high-order
nonlinear system model inevitably leads to the complex high-order nonlinear controller, and the prob-
lems of simplification and reduction of the controller and robustness become insurmountable design
problems.

Second, there is no systematic design method for multiple input multiple output (MIMO) systems:
For flutter suppression, it is impossible to find a general mode to design the controller in the existing
control theories and methods. For different aeroservoelastic systems, it can only be analysed on a case-
by-case basis, which undoubtedly requires designers to have strong expert experience and knowledge,
and cannot be quickly designed in a process, increasing the design cycle.
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Figure 1. Three-degree-of-freedom binary wing dynamic model.

Third, it is still necessary to rely on the model design control law: Many problems in aviation engi-
neering, such as high-fidelity unsteady aerodynamic model, nonlinear time-variant aircraft model and
various uncertain disturbances, need a lot of expert experience to establish the system mechanism model
and global mathematical model to solve, and the cost is huge. In addition, for complex systems, due
to the complexity of the system itself and various interferences, it is impossible to establish a global
mathematical model of the system, even if the local model is not very accurate. Therefore, although
the model-based control theory has rich results, it is weak in solving practical complex aeronautical
engineering problems.

To solve the above problems, a model-free adaptive control method based on ridge regression is
proposed in this paper. The active flutter suppression controller designed by using this method can
achieve the purpose of flutter suppression only by using real-time measurement of the online input and
output data of the closed-loop controlled system for continuous correction.

2.0 Modeling of aeroelastic system
Figure 1 shows a three-degree-of-freedom binary wing dynamic model with control surface. The
equation of motion of the binary wing can be written as[

m shα

shα Iα

] {
ḧ
α̈

}
+
[

dh 0
0 dα

] {
ḣ
α̇

}
+
[

kh 0
0 kα

]
= −

{
shβ

sαβ

}
β̈ +

{−L
Tα

}
(1)

where m is the total mass of the wing; Iα is the rotational inertia to the elastic axis; shα is the mass static
moment of the wing to the elastic axis; shβ is the mass static moment of the control surface to its rota-
tion axis; sαβ = (c̄ − ā) bshβ + Iβ , among them, Iβ is the moment of inertia of the control surface to its
rotation axis; h is sinking and floating displacement; α is pitching displacement; β is the control surface
deflection angle; dh is sinking and floating damping coefficient; dα is pitching damping coefficient; kh is
sinking and floating stiffness coefficient; kα is pitching stiffness coefficient; the aerodynamic forces act-
ing on the wing with span of sp are calculated using Theodorson theory, among them, L is aerodynamic
lift, Tα is the aerodynamic moment to the elastic axis, the specific algorithm is shown in Appendix.

The actuating system reflects the relationship between the control surface deflection instruction and
the actual deflection angle of the control surface, which is described by the following second-order
system

β̈ + 2ςωβ̇ + ω2β = kω2δ (2)
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where δ represents control surface deflection instruction; k is the proportional coefficient; ω represents
the natural frequency of the system; ς represents the damping ratio. According to Equations (1) and (2),
the motion equation of the wing including the actuating system can be written as

Msq̈s + Dsq̇s + Ksqs = Fae + Gsδ (3)

where Ms =
⎡
⎣ m shα shβ

shα Iα sαβ

0 0 1

⎤
⎦, Ds =

⎡
⎣dh 0 0

0 dα 0
0 0 dβ

⎤
⎦, Ks =

⎡
⎣ kh 0 0

0 kα 0
0 0 kβ

⎤
⎦, Fae =

⎡
⎣−L

Tα

0

⎤
⎦,

Gs =
⎡
⎣ 0

0
g0

⎤
⎦, qs = [h α β

]T, dβ = 2ςω, kβ = ω2, g0 = kω2.

In order to design the optimal controller for flutter suppression, it is necessary to express the open-
loop aeroelastic model in time-domain state space. At this time, in addition to the state variables related
to the structure, there are also the constructed aerodynamic state variables. The state space realisation
of the aeroelastic equation can be written as

Ẋ = AX + Bδ (4)

where A =
⎡
⎣ 03×3 I3×3 03×2

−M−1K −M−1D −V2M−1Ec

VKa Da VAa

⎤
⎦, B =

⎡
⎣ 03×1

M−1Gs

02×1

⎤
⎦, X = [h α β ḣ α̇ β̇ xa1 xa2

]T,

please refer to Appendix for the meaning of specific parameters and the calculation process. For the
model-based optimal controller design, measurable output of the controlled object should be used to
provide feedback information, while the aerodynamic state variable is unmeasurable, so the outputs
selected are sinking and floating displacement of the wing, pitching angle of the wing and deflection
angle of the control surface. The state equation and output equation of the controlled system can be
written as {

Ẋ = AX + Bδ

Y = CX (5)

where C = [ I3×3 03×5

]
.

3.0 Design of adaptive filter for structural characteristics of discrete system
For MIMO discrete time system, it can be written in the form of Equation (6){

x (k + 1) = g (x(k) , u(k))
y (k + 1) = h (x(k) , u(k))

(6)

where g, h represent the unknown state equation and output equation, respectively, y (k + 1) =[
y1 (k + 1) · · · yq (k + 1)

]T is the system output, u(k) = [u1(k) · · · up(k)
]T is the system input, p

and q are the input and output dimensions of the system, respectively. We do not know the internal struc-
ture of the system, and can only obtain the online input data u and output data y of the system through
sensor measurement. Equation (6) indicates that the output of the system at the next moment is not only
related to the input of the current moment, but also related to the state of the current moment. However,
we cannot measure the system state variable. Our idea is to carry out linear regression at each working
point of the system according to the existing input and output data and then estimate some structural
characteristics of the system. Therefore, we set up a linear regression model of input and output variation
at each working point, as shown in Equation (7). Some works have shown that Equations (6) and (7) are
equivalent under very broad conditions [10, 11, 12].


yn (k + 1) = ΦT
n (k) 
u(k) (7)

where 
yn (k + 1) = yn (k + 1) − yn(k), 
u(k) = u(k) − u (k − 1), 1 ≤ n ≤ q, Φn(k) =[
φn1 · · · φnp

]T represents the structural characteristics of the system corresponding to the
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nth output yn (k + 1). Since it is obtained by linear regression using online input and output data at each
operating point, we can call it pseudo partial derivative of the system. Observing Equation (7), we can
see that the pseudo partial derivative Φn(k) depends on the system input variation 
u(k) at the current
time k and the nth system output variation 
yn (k + 1) at the next time k + 1, both of which can be
measured online, and u(k) needs to be designed by us. Next we need to construct a recursive format for
the pseudo partial derivative of the system.

The estimation error is defined as en(k) = 
yn (k + 1) − ΦT
n (k) 
u(k), and the estimation loss is

measured by Equation (8).

f (Φn(k)) = ‖en(k)‖2 + μ‖Φn(k)‖2 (8)

We need to use Newton method to minimise Equation (8), that is

min
Φ

‖en(k)‖2 + μ‖Φn(k)‖2 (9)

And then, we can obtain Equation (10).

f
(
Φ̂n (k + 1)

)
= f

(
Φ̂n(k) + 


)
= f

(
Φ̂n(k)

)
+ JT

f (Φ)

(
Φ̂n(k)

)
× 
 + 1

2

THf (Φ)

(
Φ̂n(k)

)

 (10)

where 
 = εH−1
f (Φ)

(
Φ̂n(k)

)
Jf (Φ)

(
Φ̂n(k)

)
, Jf (Φ) is the Jacobi matrix about Φ, Hf (Φ) is the Hessian matrix

about Φ. We can further obtain Equation (11).

Φ̂n (k + 1) = Φ̂n(k) + εH−1
f (Φ)

(
Φ̂n(k)

)
Jf (Φ)

(
Φ̂n(k)

)
(11)

where Jf (Φ)

(
Φ̂n(k)

)
= −2
u(k) en(k), Hf (Φ)

(
Φ̂n(k)

)
= 2
u(k) 
uT(k) + 2μI, ε is the search step

length of Newton method.
Observing Equation (8), the form is not the traditional mean square error function as shown in

Equation (12). Instead, the term μ‖Φn(k)‖2 is added to Equation (12).

f (Φn(k)) = ‖en(k)‖2 (12)

This is because if Equation (12) is used as the loss function, the Hessian matrix in Equation (10) will
change into Hf (Φ)

(
Φ̂n(k)

)
= 2
u(k) 
uT(k). At this point, every row and column of the Hessian matrix

are linearly correlated, and its rank is 1. The inverse operation of the matrix will result in singularity. The
loss function in the form of Equation (8) is actually a ridge regression technique, by adding regularisation
term μ‖Φn(k)‖2 to the objective function, so that the inverse of Hessian matrix can be established.

By comparing the Hessian matrix forms obtained by the two loss functions, it can be seen that through
ridge regression, the diagonal of the Hessian matrix obtained by Equation (12) is numerically loaded
with a disturbance, which not only makes the Hessian matrix become full rank and be inversely solved,
but also makes the numerical stability of the inverse operation good due to the existence of penalty
of regularisation term. By substituting Hessian matrix obtained by Equation (8) into Equation (11), an
adaptive filter can be obtained, as shown in Equation (13).

Φ̂n (k + 1) = Φ̂n(k) + η
(

u(k) 
uT(k) + μI

)−1
en(k) 
uT(k) (13)

where η = −4ε is the filter iteration step length. And then, we need to use the formula

(A + BCD)
−1 = A−1 − A−1B

(
DA−1B + C−1

)−1DA−1 (14)

to deal with the inverse operation. Making A = μI, B = 
u(k), C = 1, D = 
uT(k), we can export more
concise filtering device, as shown Equation (15).

Φ̂n (k + 1) = Φ̂n(k) + η

uT(k)

μ + ‖
u(k)‖2 en(k) (15)
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4.0 Design of data driven control law
Continuing the ridge regression thought in the previous section, the recursion of the control law is also
the solution of one optimisation problem. We design the loss function of the optimisation problem to be
the function of controlling signal variation, as shown in Equation (16). In order to achieve the purpose
of tracking target signals, the loss function must be minimised.

l (
u(k)) = ∥∥y∗
n (k + 1) − yn (k + 1)

∥∥2 + λ‖
u(k)‖2 (16)

where y∗
n is the tracking value of the nth output, y∗ (k + 1) = [ y∗

1 (k + 1) · · · y∗
q (k + 1)

]T. Defining
control error corresponding to the nth output as e∗

n (k + 1) = y∗
n (k + 1) − yn (k + 1), we can obtain

Equation (17) by substituting Equation (7) into it.

e∗
n (k + 1) = y∗

n (k + 1) − yn(k) − Φ̂
T
n (k) 
u(k) (17)

The loss function can be further written as

l (
u(k)) = ∥∥y∗
n (k + 1) − yn(k)

∥∥2 − 2
(
y∗

n (k + 1) − yn(k)
)
Φ̂

T
n (k) 
u(k)

+ 
uT(k) Φ̂n(k) Φ̂
T
n (k) 
u(k) + λ‖
u(k)‖2 (18)

where λ‖
u(k)‖2 is still a regularisation term, to avoid the happening of singular and numerical
instability. The gradient of the loss function to the control signal is the Jacobi matrix

Jl(
u) (
u(k)) = −2
(
y∗

n (k + 1) − yn(k)
)
Φ̂n(k) + 2Φ̂n(k) Φ̂

T
n (k) + 2λ
u(k) (19)

The optimal control signal gradient should be 0, and then we can obtain Equation (20).


u(k) = (
y∗

n (k + 1) − yn(k)
) (

Φ̂n(k) Φ̂
T
n (k) + λI

)−1

Φ̂n(k) (20)

Otherwise, u(k) = u (k − 1) + 
u(k). Using Formula (14) to deal with the inversion operation and
making A = λI, B = Φ̂n(k), C = 1, D = Φ̂

T
n (k), we can export more simple control signal recursive

format as Equation (21).

Figure 2. Data-driven control system.
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Table 1. Binary wing model and actuator parameters

Parameters Value
m 1.85 kg
ā −0.5
b 0.1 m
c̄ 0.5
sp 0.3 m
dh 27.43 Ns

/
m

dα 0.02 Ns
kh 2542 N

/
m

kα 2.512 Nm
/

rad
Iα 3.142 × 10−3 kgm2

shα 0.0309 kgm
shβ 8.608 × 10−4 kgm
sαβ 1.215 × 10−4 kgm
ρa 1.225 kg

/
m3

ω 357.07 rad
/

s
ς 0.598
k 0.9715

Table 2. Optimal controller parameters

Project Weighting coefficient Weighting matrix
Parameters R = 100 Q = diag (100, 100, 100, 50, 50, 50, 50, 50)

Figure 3. Root locus analysis of the uncontrolled system.

u(k) = u (k − 1) + Φ̂n(k)

λ + Φ̂
T
n (k) Φ̂n(k)

(
y∗

n (k + 1) − yn(k)
)

(21)

Observing Equation (21), we can see that the control signal u(k) at the current time k depends on the
system pseudo partial derivative estimation Φ̂n(k) and system output yn(k) at the current time k, the
target tracking value y∗

n (k + 1) at the next time k + 1, and the control signal u (k − 1) at the previous
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Table 3. Data-driven controller parameters

Project Step length Regularisation
coefficient

Filter initial value Tracking signal

Parameters η = 1 μ = 1 λ = 0.5 Φ̂(k) = [1 2 2.5
]T y∗ = [0 0 0

]T

Figure 4. System response (V = 20 m/s).

time k − 1. Among them, yn(k) can be measured online, y∗
n (k + 1) is known, and Φ̂n(k) can be esti-

mated by the filter, which is a known quantity. It is necessary to point out that Equations (13) and (20)
are the more essential forms, while Equations (15) and (21) are just more suitable for programming
computation.

For convenience, the filter iteration step length corresponding to every output is equal, and the same
to regularisation coefficient. Theoretically, q calculation results of recursive scheme should be exactly
the same, but there will always be some disturbance in the measurement process. Therefore, the control
signal can be averaged once, as shown in Equation (22).

u(k) = u (k − 1) + 1

q

q∑
n=1

Φ̂n(k)

λ + Φ̂
T
n (k) Φ̂n(k)

(
y∗

n (k + 1) − yn(k)
)

(22)
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Figure 5. System state phase locus (V = 20 m/s).

The model-free control scheme of MIMO discrete time system can be obtained by combining filter
algorithm and control algorithm, as shown in Equation (23).⎧⎨

⎩
Φ̂n(k) = Φ̂n (k − 1) + η en(k−1)
uT(k−1)

μ+‖
u(k−1)‖2

u(k) = u (k − 1) + 1
q

q∑
n=1

Φ̂n(k)

λ+Φ̂
T
n(k)Φ̂n(k)

(
y∗

n (k + 1) − yn(k)
) (23)

where 
u (−1) = 0. Figure 2 shows the operation principle of the whole control system, in which
Φ̂(k) = [ Φ̂1(k) · · · Φ̂q(k)

]T
.

5.0 Numerical simulation and discussion
For an aeroelastic system, when the flow velocity exceeds the critical flutter velocity, the system will have
divergent motion, which leads to the failure of the structure. Therefore, in order to prevent divergent
motion, stiffness of flutter system is often designed as hard characteristic in wind tunnel test. In this
simulation example the limit spring on the pitching direction is used to limit the size of the pitch angle
(−28◦ ≤ α ≤ 28◦), and the control surface is saturated with deflection (−30◦ ≤ β ≤ 30◦). The micro-
vibration of the wing near the equilibrium position is linear vibration, and large vibration is generated
after the flutter. When the pitch angle exceeds the given threshold, the limiting spring will limit the
pitching angle to increase further. Therefore, the wing exhibits limit cycle motion with finite amplitude
when flutter occurs. The numerical simulation parameters are shown in Table 1.
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Figure 6. Evaluation curve of system pseudo partial derivative (V = 20 m/s).

The critical flutter velocity of the wing model can be determined by investigating the change of the
eigenvalue of system matrix A of the open-loop system in Equation (4) with the flow velocity, as shown
in Fig. 3. Flutter critical velocity is Vf = 17.5 m/s. The motion of the aeroelastic system under this wind
speed is constant amplitude oscillation. At the critical flutter velocity, the motion of the system does not
diverge due to the existence of the limiting spring, but behaves as a limit cycle.

The optimal controller is designed using LQR method in the research work of Darabseh et al. [13].
The optimal control law is to seek a constant gain output feedback control law

δ = −KconY = −KconCX (24)

to minimise the following performance index.

J = 1

2

∫ ∞

0

(
XTQX + Rδ2

)
dt (25)

where Q is the positive definite weighting matrix of the state variable, and R > 0 is the weighting coeffi-
cient of the control variable. This objective function takes into account the requirements of both system
response and control. According to the linear quadratic optimal control theory, if the performance index
J is to be minimised, the control signal should be

δ = −R−1BPX (26)

where KconC = R−1BP, P is a symmetric matrix. The matrix satisfies the Riccati equation

PA + ATP − PBR−1BTP + Q = 0 (27)

where Q is the given weighted matrix, R is the given weighting coefficient.
For discrete system signal sampling, according to Nyquist-Shannon sampling theorem, sampling

period is set as Ts = 0.001 s. The related parameter settings of optimal controller and data-driven
controller are shown in Tables 2 and 3, respectively.
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Figure 7. System response (V = 24 m/s).

Take different velocities to explore the ability of two controllers. Under the speed of V = 20 m/s,
control was implemented at 3.5 s respectively. The time history of the system motion before and after
the control of the two controllers is shown in Fig. 4.

It can be seen from Fig. 4 that both controllers have good flutter suppression effect when the flow
velocity just exceeds the critical velocity, and the response can be attenuated to 0 by only a few deflections
of the control surface, but the deflection number of the optimal controller is more than that of the data-
driven controller. The saturation of the control surface has a certain influence on the effect of the optimal
controller, and the control surface reaches the upper limit of saturation in the initial stage. This is because
the optimal controller has no adaptive ability, and the control strategy tends to be ‘drastic’ in the initial
stage, resulting in the control surface easily reaching the upper limit of saturation. In contrast, data-
driven controllers are much more ‘restrained’. The phase locus of the system before and after control is
shown in Fig. 5. The phase locus shows that although both controllers can make the system state return
to the equilibrium point quickly, the regression path of the optimal controller is too sharp, while that of
the data-driven controller is relatively smooth. Figure 6 shows the evaluation curve of the filter on the
system pseudo partial derivative. It can be seen that the estimation value can quickly converge to the
real value after the controller starts to work.

Under the speed of V = 24 m/s, control was also implemented at 3.5 s respectively. The time history
of the system motion before and after the control of the two controllers is shown in Fig. 7.

As shown in Fig. 7, the flutter of the wing becomes more intense with the increase of flow veloc-
ity. The flutter suppression effect of the optimal controller decreases significantly, and it takes a long
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Figure 8. System state phase locus (V = 24 m/s).

time to attenuate the response, while the data-driven controller is obviously better. Due to its pow-
erful adaptive ability, the data-driven controller can adjust the parameters in time according to the
size of the system output, the amplitude of the control signal can change rapidly, the filter can mas-
ter the system characteristics throughout the process, and the control cost can be accurately adjusted
to avoid excessive control inertia. On the contrary, the optimal controller has no adaptive ability, the
control signal has large inertia and the amplitude adjustment is slow, resulting in that the additional
aerodynamic force generated by every deflection of the control surface is either too large or too small
and the optimal controller needs to repeatedly adjust for a long time, which is the defect of traditional
model-based optimal control. We can regard the reciprocal of the deflection number of the control sur-
face as the capability margin of the controller in a certain sense. With the increase of the deflection
number, the capability margin of the controller keeps approaching 0, which means that the controller
is getting closer and closer to failure. Obviously, the data-driven controller still has a large margin
space.

The design of optimal controller depends on the modeling of aeroelastic system, which is compli-
cated for designers, while the design of data-driven controller avoids the modeling process. So from
the practical point of view, the data-driven controller is much cheaper, which has a systematic design
process, and it only needs to set a few initial parameters. In addition, for flutter, designers always want
the response to decay quickly, otherwise prolonged oscillations increase the risk of fatigue in the wing
structure. So the data-driven controller is also better in terms of the time it takes for the response to
decay.
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Figure 9. Evaluation curve of system pseudo partial derivative (V = 24 m/s).

The phase locus of the system before and after control is shown in Fig. 8. At this time, the phase
locus shows that when the wind speed increases, the equilibrium point regression paths of the two con-
trollers become longer, while the optimal controller obviously increases more, and the sharp problem of
its regression path still exists. Under the action of data-driven controller, the system state will find a rel-
atively short path for equilibrium point regression. However, under the action of the optimal controller,
the system state will be attracted by the limit cycle and can only return to the equilibrium point after
continuous circling around the periphery. Figure 9 shows the evaluation curve of the filter on the system
pseudo partial derivative under the speed of V = 24 m/s. It can be seen that the estimation value can still
quickly converge to the real value after the controller starts to work, and the structural characteristics
of the system at this time have changed due to the change of the flow velocity, so the pseudo partial
derivative estimated by the filter is also different from that under the speed of V = 20 m/s.

6.0 Conclusion
In this paper, an adaptive control method based on ridge regression is proposed and applied to active
flutter suppression, and the following conclusions are obtained:

(1) The controller designed by this method only uses the real-time measured online input and out-
put data of the closed-loop controlled system, which can realise the system correction without
identifying the system structure. Compared with the traditional feedback control, which requires
model-based design, the design based on ridge regression is model-free.

(2) The controller structure designed by this method is relatively simple, easy to modify and pro-
gram. The calculation amount is acceptable. It is very suitable for the digital control system
widely used in the aviation industry.
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(3) The focus of this method is to establish a regression model at each working point of the system.
In essence, this is a kind of dynamic linearisation. Different from the traditional linearisation in
a small range near the equilibrium point, this kind of dynamic linearisation is accurate.

(4) The cores of this method are inner product operation and regularisation. Inner product opera-
tion establishes projective information between data, and regularisation eliminates singularity
through diagonal loading. It is worth pointing out that the method proposed in this paper is the
foundation, and appropriate operations for these two cores can be used to extend the method.
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Appendix
For subsonic incompressible flows, according to Theodorson theory, the aerodynamic lift force acting
on a binary wing with span of spand the aerodynamic torque against the elastic axis can be written as

L = πρab2sp

[
ḧ + Vα̇ − bāα̈ − (V/π

)
T4β̇ − (b/π

)
T1β̈

]
+ 2πρaVbspC(k)

[
Vα + ḣ + b (0.5 − ā) α̇ + (V/π

)
T10β + (b/2π

)
T11β̇

]
(A.1)

Tα = πρab2sp

{
bāḧ − Vb (0.5 − ā) α̇ − b2

(
1
/

8 + ā2
)
α̈ − (V2

/
π
)
(T4 + T10) β

+ (Vb
/
π
)

[−T1 + T8 + (c̄ − ā) T4 − 0.5T11] β̇ + (b2
/
π
)

[T7 + (c̄ − ā) T1] β̈

}
+ 2πρaVb2sp (ā + 0.5) C(k)

{
Vα + ḣ + b (0.5 − ā) α̇ + (V/π

)
T10β + (b/2π

)
T11β̇

}
(A.2)
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where Ti (i = 1, 4, 7, 8, 10, 11)is the Theodorson constant dependent on the position of the elastic axis
and the position of the hinge line of the control surface, the specific algorithm is as follows; Theodorson
function C(k) is a complex function.

T1 = −2 + c̄2

3

√
1 − c̄2 + c̄ arccos c̄ (A.3)

T4 = c̄
√

1 − c̄2 − arccos c̄ (A.4)

T7 = c̄
7 + 2c̄2

8

√
1 − c̄2 −

(
1

8
+ c̄2

)
arccos c̄ (A.5)

T8 = −1

3

(
1 + 2c̄2

)√
1 − c̄2 + c̄ arccos c̄ (A.6)

T10 = √
1 − c̄2 + arccos c̄ (A.7)

T11 = (2 − c̄)
√

1 − c̄2 + (1 − 2c̄) arccos c̄ (A.8)

Jones form of Theodorson function is conducive to the time-domain state-space modeling of aeroelastic
systems, which can be written as

C (s) = 1 − 0.165s

s + 0.0455 V
b

− 0.335s

s + 0.3 V
b

= 1

2
+ 0.0075 V

b

s + 0.0455 V
b

+ 0.10055 V
b

s + 0.3 V
b

= 1

2
+ z1

V
b

s + p1
V
b

+ z2
V
b

s + p2
V
b

(A.9)
where z1 = 0.0075, z2 = 0.10055, p1 = 0.0455, p2 = 0.3, and s is Laplace variable. If C (s) is regarded
as the transfer function of a certain system, the corresponding state-space equation of the system can be
written as ⎧⎪⎪⎨

⎪⎪⎩

[
ẋa1

ẋa2

]
= V

b

[−p1 0
0 −p2

] [
xa1

xa2

]
+
[

1
1

]
r = VAaxa + VKaqs + Daq̇s

ya = V
b

[
z1 z2

] [ xa1

xa2

]
+ 1

2
r

(A.10)

r = Vα + ḣ + b (0.5 − ā) α̇ + (V/π
)

T10β + (b/2π
)

T11β̇ = S1q̇s + VS2qs (A.11)

where r is the system input, S1 = [1 b (0.5 − ā)
(
b
/

2π
)

T11

]
, S2 = [0 1 T10

/
π
]
;xa1and xa2 are

the aerodynamic state variables, xa = [ xa1 xa2

]T; Aa = 1
b

[−p1 0
0 −p2

]
, Ka =

[
1
1

]
S2, Da =

[
1
1

]
S1. The

calculation formula of aerodynamic force can be rewritten as

−L = −πρab2sp

[
Vα̇ − (V/π

)
T4β̇ − (b/π

)
T1β̈

]− πρab2sp

[
ḧ − bāα̈

]− 2πρaVbspya (A.12)

Tα = πρab
2sp

{−Vb (0.5 − ā) α̇ − (V2
/
π
)
(T4 + T10) β

+ (Vb
/
π
)

[−T1 + T8 + (c̄ − ā) T4 − 0.5T11] β̇ + (b2
/
π
)

[T7 + (c̄ − ā) T1] β̈

}

+ πρaVb3sp

[
āḧ − b

(
1
/

8 + ā2
)
α̈
]+ 2πρaVb2sp (ā + 0.5) ya (A.13)

The aerodynamic force vector Fae is written as the sum of the non-cyclic part and the cyclic part, i.e

Fae = Fnc + Fc (A.14)
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The non-cyclic part Fnc can be written as

Fnc = −Mncq̈s − VDncq̇s − V2Kncqs (A.15)

where

Mnc = ρab2sp

⎡
⎢⎣

π −πbā −bT1

−πbā πb2
(
1
/

8 + ā2
) −b2 (T7 + (c̄ − ā) T1)

0 0 0

⎤
⎥⎦

Dnc = ρab
2sp

⎡
⎢⎣

0 π −T4

0 πb (0.5 − ā) −b (−T1 + T8 + (c̄ − ā) T4 − 0.5T11)

0 0 0

⎤
⎥⎦

Knc = ρab2sp

⎡
⎣0 0 0

0 0 T4 + T10

0 0 0

⎤
⎦

The cyclic part Fc can be written as

Fc = −ρaVbspRc

(
V

b

[
z1 z2

] [ xa1

xa2

]
+ 1

2

(
S1q̇s + VS2qs

))
(A.16)

where Rc = [2π −2πb (0.5 + ā) 0
]T. The cyclic part Fc can be further written as

Fc = −VDcq̇s − V2Kcqs − V2Ecxa (A.17)

where Dc = 1
2
ρabspRcS1, Kc = 1

2
ρabspRcS2, Ec = ρaspRc

[
z1 z2

]
. In summary, the original wing motion

equation can be written as

(Ms + Mnc) q̈s + (Ds + VDnc + VDc) q̇s + (Ks + V2Knc + V2Kc

)
qs = −V2Ecxa + Gsδ (A.18)

The state space expression of the aeroelastic equation of a binary wing can be obtained by combining
the wing motion equation with the aerodynamic state equation.

Ẋ = AX + Bδ (A.19)

where A =
⎡
⎢⎣

03×3 I3×3 03×2

−M−1K −M−1D −V2M−1Ec

VKa Da VAa

⎤
⎥⎦, B =

⎡
⎣ 03×1

M−1Gs

02×1

⎤
⎦, X = [ h α β ḣ α̇ β̇ xa1 xa2

]T, M =

Ms + Mnc, D = Ds + VDnc + VDc, K = Ks + V2Knc + V2Kc.
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