DETERMINATION OF BRAUER CHARACTERS

B. M. PUTTASWAMAIAH

The purpose of this note is to show that the values of an irreducible (Brauer) character are the characteristic values of a matrix with non-negative rational integers. The construction of these integral matrices is done by a description of a representation of the Grothendieck ring of the category of modules over the group algebra. In particular a result of Solomon on characters and a result of Burnside on vanishing of a non-linear character on some conjugate class are generalized.

Let G be a finite group of order g, A a splitting field of characteristic p (which may be 0) for $G, R=A G$ the group algebra of G over A, n the number of distinct p-regular classes of G and \mathscr{C} the category of all finite dimensional (right) R-modules. Then the isomorphism of R-modules is an equivalence relation in \mathscr{C}. The equivalence class determined by an R-module M in \mathscr{C} will be denoted by \bar{M}. If $T=\{\bar{M} \mid M \in \mathscr{C}\}$, then the Grothendieck group $K(R)$ is defined to be the additive abelian group generated by T subject to the defining relations $\bar{M}=\bar{N}+\bar{P}$ whenever

$$
0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0
$$

is an exact sequence of R-modules. The Grothendieck group $K(R)$ is a free abelian group of rank $n[\mathbf{6}]$. In fact if $\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ is a full set of pairwise non-isomorphic irreducible R-modules, then $\left\{\bar{M}_{1}, \bar{M}_{2}, \ldots, \bar{M}_{n}\right\}$ is a basis of $K(R)$ over the ring Z of integers.

If M and N are any modules in \mathscr{C}, then we denote their inner tensor product over A by $M \otimes N$. Obviously $M \otimes N$ is a member of \mathscr{C}. If we define $\bar{M} \bar{N}=$ $\overline{M \otimes N}$, then $K(R)$ becomes a commutative associative ring with unity \bar{I}, where I is the R-module which affords the principal irreducible representation; that is the one-dimensional representation of G in which every element of G is mapped on the identity. The ring $K(R)$ is called the Grothendieck ring of the category \mathscr{C} of R-modules. The integer n will be called the rank of the ring $K(R)$.

Theorem 1. Let $K(R)$ be the Grothendieck ring of the category of R-modules, n the rank of $K(R)$ and Z_{n} the ring of n by n matrices over the ring Z of integers. Then there is a monomorphism of $K(R)$ into Z_{n}.

Proof. Let $\left\{\bar{M}_{1}, \bar{M}_{2}, \ldots, \bar{M}_{n}\right\}$ be a fixed basis of $K(R)$ over Z. Then every element of $K(R)$ can be written uniquely in the form $\sum_{i=1}^{n} a_{i} \bar{M}_{i}$ where a_{i}

[^0]belongs to Z. Each element \bar{M} of $K(R)$ determines a unique matrix ($a_{i j}{ }^{M}$) of Z_{n} by
$$
\bar{M}_{i} \bar{M}=\sum_{j=1}^{n} a_{i j}{ }^{M} \bar{M}_{j}
$$
for $i=1,2, \ldots, n$. Then we show that the mapping f from $K(R)$ to Z_{n} defined by $\bar{M} f=\left(a_{i j}{ }^{M}\right)$ is a ring monomorphism.

Suppose that \bar{M} and \bar{N} are arbitrary elements of $K(R)$. Then $\bar{M}_{i} \bar{M}=$ $\sum_{j=1}^{n} a_{i j}{ }^{M} \bar{M}_{j}$ and $\bar{M}_{i} \bar{N}=\sum_{j=1}^{n} a_{i j}{ }^{N} \bar{M}_{j}$ for all i. Therefore we have

$$
\begin{aligned}
& \bar{M}_{i}(\bar{M}+\bar{N})=\bar{M}_{i} \overline{M \oplus N}=\overline{M_{i} \otimes(M \oplus N)}=\overline{M_{i} \otimes M \oplus M_{i} \otimes N} \\
& \quad=\overline{M_{i} \otimes M}+\overline{M_{i} \otimes N}=\sum_{j=1}^{n} a_{i j}{ }^{M} M_{j}+\sum_{j=1}^{n} a_{i j}{ }^{N} \bar{M}_{j} \\
& \quad=\sum_{j=1}^{n}\left(a_{i j}{ }^{M}+a_{i j}{ }^{N}\right) \bar{M}_{j}
\end{aligned}
$$

so that $(\bar{M}+\bar{N}) f=\left(a_{i j}{ }^{M}+a_{i j}{ }^{N}\right)=\left(a_{i j}{ }^{M}\right)+\left(a_{i j}{ }^{N}\right)=\bar{M} f+\bar{N} f$. Hence f is a group homomorphism. Also we have

$$
\begin{aligned}
& \bar{M}_{i}(\bar{M} \bar{N})=\bar{M}_{i}(\overline{M \otimes N})=\overline{M_{i} \otimes(\overline{M \otimes N})}=\left(\overline{\left.M_{i} \otimes M\right) \otimes N}\right. \\
& \quad=\overline{M_{i} \otimes M} \bar{N}=\sum_{k=1}^{n} a_{i k}{ }^{M} \bar{M}_{k} \bar{N}=\sum_{j=1}^{n}\left(\sum_{k=1}^{n} a_{i k}{ }^{M} a_{k j}{ }^{N}\right) \bar{M}_{j}
\end{aligned}
$$

from which it follows that $(\bar{M} \bar{N}) f=\bar{M} f \bar{N} f$. Thus we have proved that f is a ring homomorphism.

It remains to show that the homomorphism f is injective. If \bar{M} is any element in the kernel of f, then $\bar{M} f=0$. There are unique integers a_{i} in Z such that

$$
\bar{M}=\sum_{j=1}^{n} a_{i} \bar{M}_{i} .
$$

Let \bar{I} be the identity of $K(R)$. Since $\bar{M}_{i} \bar{M}=0$ for all i, it follows that $\bar{I} \bar{M}=0$; that is

$$
\sum_{i=1}^{n} a_{i} \bar{I} \bar{M}=\sum_{i=1}^{n} a_{i} \bar{M}_{i}=0 .
$$

Since $\left\{\bar{M}_{1}, \bar{M}_{2}, \ldots, \bar{M}_{n}\right\}$ is a basis of $K(R)$, it follows that $\bar{M}=\overline{0}$. Hence f is injective. This completes the proof.

This proposition is a generalization for representations over an arbitrary field of a similar result proved earlier by Robinson $[4 ; 5]$ for ordinary representations.

With each element \bar{M} of $K(R)$, we associate an n-tuple

$$
\chi^{M}=\left(\chi_{1}{ }^{M}, \chi_{2}{ }^{M}, \ldots, \chi_{n}{ }^{M}\right)
$$

of complex numbers, where $\chi_{1}{ }^{M}, \chi_{2}{ }^{M}, \ldots, \chi_{n}{ }^{M}$ are the characteristic values of the matrix $\left(a_{i j}{ }^{M}\right)$. Clearly χ^{M} is independent of a basis of $K(R)$ over Z and it is uniquely determined by \bar{M}.

The irreducible Brauer characters of G will be denoted by $\varphi^{1}, \varphi^{2}, \ldots, \varphi^{n}$ (in some fixed order) and the p-regular classes of G will be denoted by $C_{1}=\{1\}$, C_{2}, \ldots, C_{n} (in some fixed order). If $p=0$ or prime to the order g of G, then every class of G is p-regular. The Brauer character φ^{i} can also be considered as an n-tuple $\varphi^{i}=\left(\varphi_{1}{ }^{i}, \varphi_{2}{ }^{i}, \ldots, \varphi_{n}{ }^{i}\right)$ where $\varphi_{j}{ }^{i}=\varphi^{i}(x)$ with x in C_{j}. The $n \times n$ matrix $\Phi=\left(\varphi_{j}{ }^{i}\right)$ whose rows are $\varphi^{i}, i=1,2, \ldots, n$ is called the Brauer character table. Since the rows of Φ are linearly independent [2], the matrix is a non-singular (complex) matrix. Without loss of generality, we may assume that φ^{1} is the principal character of G.

Theorem 2. Let M be an R-module, n the rank of $K(R)$ and χ^{M} the n-tuple associated with \bar{M}. Then there is a permutation σ of $\{1,2, \ldots, n\}$ such that $\left(\chi_{1 \sigma^{M}}, \chi_{2 \sigma^{M}}, \ldots, \chi_{n \sigma}{ }^{M}\right)$ is a Brauer character of G.

Proof. Let $\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ be a set of pairwise non-isomorphic irreducible R-modules such that $\left\{\bar{M}_{1}, \bar{M}_{2}, \ldots, \bar{M}_{n}\right\}$ is a basis of $K(R)$. Then

$$
\bar{M}=\sum_{j=1}^{n} d_{j} \bar{M}_{j}
$$

for some non-negative integers d_{j}. Let

$$
\varphi^{M}=\sum_{j=1}^{n} d_{j} \varphi^{j}
$$

Then we shall show that the components of φ^{M} will coincide with those of χ^{M} (except possibly for a permutation).

Let $M=N_{1} \supset \ldots \supset N_{t} \supset N_{t+1}=0$ be a composition series of M. Then

$$
\bar{M}=\overline{\bar{t}} \underset{1}{\oplus} N_{i} / N_{i+1}=\sum_{i=1}^{t} \overline{N_{i} / N_{i+1}}=\sum_{j=1}^{n} d_{j} \bar{M}_{j} .
$$

Therefore φ^{M} depends only on \bar{M} and φ^{M} is the Brauer character associated with the R-module M. By [1, p. 577], it follows that $\varphi^{i} \varphi^{M}$ depends only on $\overline{M_{i} \otimes M}=\bar{M}_{i} \bar{M}$ and $\varphi^{i} \varphi^{M}$ is the Brauer character associated with $M_{i} \otimes M$. Therefore the equations

$$
\bar{M}_{i} \bar{M}=\sum_{j=1}^{n} a_{i j}{ }^{M} \bar{M}_{j}, \quad i=1,2, \ldots, n
$$

are equivalent to the equations

$$
\varphi_{l}{ }^{i} \varphi_{t}^{M}=\sum_{j=1}^{n} a_{i j}{ }^{M} \varphi_{t}^{j}
$$

for $i, t=1,2, \ldots, n$. If D^{M} is the diagonal matrix whose diagonal entries are $\varphi_{1}{ }^{M}, \varphi_{2}{ }^{M}, \ldots, \varphi_{n}{ }^{M}$, then the above equations can be written in the matrix
form $\Phi D^{M}=\left(a_{i j}{ }^{M}\right) \Phi$ where Φ is the Brauer character table. Hence $\Phi^{-1}\left(a_{i j}{ }^{M}\right) \Phi=D^{M}$, so that there is a permutation σ of $\{1,2, \ldots, n\}$ such that

$$
\varphi^{M}=\left(\chi_{1 \sigma}{ }^{M} \chi_{2 \sigma}{ }^{M}, \ldots, \chi_{n \sigma}{ }^{M}\right)
$$

where $i \sigma$ is the image of i under σ. This completes the proof.
Corollary. For any Brauer character φ^{i}, the quantity $\sum_{j=1}^{n}\left|\varphi_{j}{ }^{i}\right|^{2}$ is a positive integer.

Proposition 3. The t-th column c_{t} of the Brauer character table Φ is a characteristic vector of ($a_{i j}{ }^{k}$) corresponding to the characteristic value $\varphi_{t}{ }^{k}$ for $k=1,2, \ldots, n$ where $\left(a_{i j}{ }^{k}\right)$ is the matrix corresponding to the element \bar{M}_{k} of $K(R)$ determined by an irreducible R-module M_{k}.

Proof. This follows by rewriting the equations

$$
\varphi_{t}{ }^{i} \varphi_{t}{ }^{k}=\sum_{k=1}^{n} a_{i j}{ }^{k} \varphi_{t}{ }^{j}
$$

for $i, k=1,2, \ldots, n$ in the matrix form $\left(a_{i j}{ }^{k}\right) c_{t}=\varphi_{t}{ }^{k} c_{t}$ for $t=1,2, \ldots, n$. (Cf. [5].)
Lemma 4. Let M_{k} be an irreducible R-module of dimension $f,\left(a_{i j}{ }^{k}\right)$ the matrix corresponding to \bar{M}_{k} of $K(R)$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{r}$ the non-zero characteristic values of $\left(a_{i j}{ }^{k}\right)$. Then $\omega_{1}+\omega_{2}+\ldots+\omega_{r}$ is a non-negative rational integer and $\omega_{1} \omega_{2} \ldots \omega_{r} / f$ is a rational integer.

Proof. Let $\operatorname{det}\left(a_{i j}{ }^{k}-\lambda \delta_{i j}\right)$ be the characteristic polynomial of the matrix $\left(a_{i j}{ }^{k}\right)$. Since $a_{i j}{ }^{k}$ are integers, the coefficients of $\operatorname{det}\left(a_{i j}{ }^{k}-\lambda \delta_{i j}\right)$ are rational integers. Then $-\left(\omega_{1}+\omega_{2}+\ldots+\omega_{r}\right)$ is the coefficient of λ^{n-1} and $\pm \omega_{1} \omega_{2}, \ldots, \omega_{r}$ is the coefficient of λ^{r-1}. Hence they are rational integers. But $\omega_{1}+\omega_{2}+\ldots+\omega_{r}$ is the sum of the diagonal entries of the matrix $\left(a_{i j}{ }^{k}\right)$ and hence it is a non-negative integer.

Corollary 1. Let φ^{M} be any Brauer character of G and $\varphi_{1}{ }^{M}, \varphi_{2}{ }^{M}, \ldots, \varphi_{r}{ }^{M}$ the non-zero values of φ^{M}. Then $\sum_{i=1}^{r} \varphi_{i}{ }^{M}$ is a non-negative integer and $\varphi_{2}{ }^{M} \ldots \varphi_{r}{ }^{M}$ is a non-zero integer.

Corollary (Solomon [7]) 2. If A is the complex field, then $\sum_{i=1}^{n} \varphi_{i}{ }^{M}$ is a rational integer.

Theorem 5. Let the characteristic p of A be either 0 or prime to $g=|G|, M_{k}$ an irreducible R-module and $\left(a_{i j}{ }^{k}\right)$ the corresponding matrix of \bar{M}_{k} of $K(R)$. Then $\left(a_{i j}{ }^{k}\right)$ is non-singular if and only if the dimension of M_{k} is 1 .

Proof. If the dimension of M_{k} is 1 , then $\operatorname{det}\left(a_{i j}{ }^{k}\right)=\omega_{1} \omega_{2} \ldots \omega_{n}=1 \neq 0$, where $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ are the characteristic values of $\left(a_{i j}{ }^{k}\right)$. Hence $\left(a_{i j}{ }^{k}\right)$ is non-singular.

Conversely assume that ($a_{i j}{ }^{k}$) is non-singular. Let ζ^{k} be the Brauer character of G corresponding to M_{k}. Then by Theorem 2, we may assume that
$\zeta^{k}=\left(\zeta_{1}{ }^{k}, \zeta_{2}{ }^{k}, \ldots, \zeta_{n}{ }^{k}\right)$ where $\zeta_{1}{ }^{k}=\operatorname{dim} M_{k}, \zeta_{2}{ }^{k}, \ldots, \zeta_{n}{ }^{k}$ are the characteristic values of the matrix $\left(a_{i j}{ }^{k}\right)$. Since the arithmetic mean of n positive real numbers is greater than or equal to the geometric mean, we obtain from the orthoganality relations [2] for characters, that

$$
\begin{aligned}
g & =\sum_{i=1}^{n} g_{i}\left|\zeta_{i}^{k}\right|^{2}=\left(\zeta_{1}^{k}\right)^{2}+\sum_{i=2}^{n} g_{i}\left|\zeta_{i}^{k}\right|^{2} \\
& \geqslant\left(\zeta_{1}^{k}\right)^{2}+(g-1)\left(\left|\zeta_{2}^{k}\right|^{2 g_{2}}\left|\zeta_{3}^{k}\right|^{2 g_{3}} \ldots\left|\zeta_{n}^{k}\right|^{2 g_{n}}\right)^{1 / g-1}
\end{aligned}
$$

where g_{i} is the number of elements in the i th conjugate class of G. By Lemma 4, the above inequality implies $g \geqq\left(\zeta_{1}{ }^{k}\right)^{2}+g-1$ so that $\zeta_{1}{ }^{k}=1$. Hence the dimension of M_{k} is 1 .

Corollary (Burnside) 1. If $p=0$ and ζ^{k} is an irreducible character of degree >1, then $\zeta_{i}{ }^{k}=0$ for some conjugate class C_{i}.

Corollary 2. Let $p=0$ or $(p, g)=1$. If $M_{1}, M_{2}, \ldots, M_{n}$ are pairwise non-isomorphic irreducible R-modules, then the number of units in the basis $\left\{\bar{M}_{1}, \bar{M}_{2}, \ldots, \bar{M}_{n}\right\}$ of $K(R)$ is equal to the order of G / G^{\prime} where G^{\prime} is the commutator subgroup of G.

Corollary 3. Let $p=0$ or $(p, g)=1, M_{k}$ an irreducible R-module and $\left(a_{i j}{ }^{k}\right)$ the corresponding matrix of \bar{M}_{k} of $K(R)$. Then $\left(a_{i j}{ }^{k}\right)$ is invertible if and only if ($a_{i j}{ }^{k}$) is a permutation matrix.

The Corollary (Burnside) 1 is not true if p is a factor of $g=|G|$. By this we mean that the value of an irreducible Brauer character φ^{k} may not be 0 on any p-regular conjugate class. As an illustration, we consider an example.

Example. Let $G=L_{2}(5)$ and $p=5$. The group G has three 5 -regular conjugate classes and hence $K(R)$ has rank 3 . If I, J and K are irreducible R-modules of dimensions 1,3 and 5 over A, then $\{\bar{I}, \bar{J}, \bar{K}\}$ is a basis of $K(R)$ over Z. Then we have

$$
\begin{aligned}
& \begin{array}{lll}
\bar{I} \bar{I}=\bar{I} & \bar{I} \bar{J}=\bar{J} & \bar{I} \bar{K}=\bar{K}
\end{array} \\
& \bar{J} \bar{I}=\bar{J} \quad \bar{J} \bar{J}=\bar{I}+\bar{J}+\bar{K} \quad \text { and } \quad \bar{J} \bar{K}=\bar{I}+3 \bar{J}+\bar{K} \\
& \bar{K} \bar{I}=\bar{K} \quad \bar{K} \bar{J}=\bar{I}+3 \bar{J}+\bar{K} \quad \bar{K} \bar{K}=3 \bar{I}+4 \bar{J}+2 \bar{K} .
\end{aligned}
$$

Therefore the corresponding matrices $\left(a_{i j}{ }^{k}\right)$ are

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 3 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 3 & 1 \\
3 & 4 & 2
\end{array}\right] .
$$

These matrices determine the irreducible Brauer characters $\varphi^{1}=(1,1,1)$ $\varphi^{2}=(3,-1,0)$ and $\varphi^{3}=(5,1,-1)$ respectively. Contrary to the situation in Corollary 1, the irreducible Brauer character φ^{3} does not vanish on any 5 -regular conjugate class of G.

If the field A is a splitting algebraic number field for G, then the irreducible Brauer characters of G are called the irreducible ordinary characters of G. Let $\operatorname{Int}(A)$ be the ring of all algebraic integers of A, p a fixed prime ideal of $\operatorname{Int}(A)$ containing a given prime p and $D=\{\alpha / \beta \mid \alpha, \beta \in \operatorname{Int}(A)$ and $\beta \notin \mathfrak{p}\}$. Then D is an integral domain with a unique maximal ideal P such that $\mathfrak{p} \subseteq P$ and A is the quotient field of D. The field $\bar{A}=D / P$ has a finite number of elements and it is a splitting field for G [2]. Let $R=A G$ and $\bar{R}=\bar{A} G$ be the group rings over A and \bar{A} respectively. The Brauer characters depend on the prime p. The Brauer characters determined by $K(\bar{R})$ will be denoted by $\varphi^{1}, \varphi^{2}, \ldots, \varphi^{n}$ and the ordinary irreducible characters of G will be denoted by $\zeta^{1}, \zeta^{2}, \ldots, \zeta^{m}$. Again assume that $C_{1}, C_{2}, \ldots, C_{n}$ are the p-regular classes and $C_{n+1}, C_{n+2}, \ldots, C_{m}$ are the remaining conjugate classes of G. The value of ζ^{i} at x of C_{j} will be denoted by $\zeta_{j}{ }^{i}$ and the number of elements in C_{j} will be denoted by g_{j}.

Theorem 6. Let ξ^{k} be an irreducible ordinary character of G and ∂^{k} the $n \times n$ diagonal matrix whose diagonal entries are $\zeta_{1}{ }^{k}, \zeta_{2}{ }^{k}, \ldots, \zeta_{n}{ }^{k}$. If Φ is the Brauer character table of G corresponding to the prime p, then the coefficients of $\Phi \partial^{k} \Phi^{-1}$ are non-negative rational integers.

Proof. There are non-negative rational integers $d_{k j}$ such that

$$
\zeta_{t}^{k}=\sum_{j=1}^{n} d_{k j} \varphi_{t}{ }^{j} \text { for } t=1,2, \ldots, n[\mathbf{2}]
$$

Hence we have $\partial^{k}=\sum_{j=1}^{n} d_{k j} D^{j}$ where D^{j} is the diagonal matrix whose entries are $\varphi_{1}{ }^{j}, \varphi_{2}{ }^{j}, \ldots, \varphi_{n}{ }^{j}$. If ($a_{u v}{ }^{j}$) are the n matrices determined by a basis of $K(\bar{R})$, then by Theorem 2 , we have $\Phi^{-1}\left(a^{j}{ }_{u v}\right) \Phi=D^{j}$. Therefore

$$
\partial^{k}=\sum_{j=1}^{n} d_{k j} \Phi^{-1}\left(a_{u v}^{j}\right) \Phi
$$

so that

$$
\Phi \partial^{k} \Phi^{-1}=\sum_{j=1}^{n} d_{k j}\left(a_{u v}{ }^{j}\right)
$$

Since the coefficients of the matrix on the right hand side of this equation are non-negative integers, it follows that the coefficients of $\Phi \partial^{k} \Phi^{-1}$ are nonnegative rational integers.

Corollary. Let ζ^{k} be any irreducible ordinary character of G, φ^{i} an irreducible Brauer character of G and η^{l} a projective indecomposable Brauer character of G. Then

$$
\frac{1}{g} \sum_{j=1}^{n} g_{j} \varphi_{j}{ }_{j} \zeta_{j}{ }_{j}^{\overline{\eta_{j}}} \overline{{ }^{l}}
$$

is a non-negative integer.

Proof. For the definition of a projective indecomposable Brauer character, see [2]. According to [2], the irreducible Brauer character φ^{i} and the indecomposable Brauer character η^{l} of G are connected by the relations
where $\delta_{i l}=0$ if $i \neq l$ and 1 if $i=l$. Therefore it follows that

$$
\Phi^{-1}=\left(\frac{g_{\eta_{t}{ }_{l}^{l}}}{g}\right)
$$

where t ranges over the rows and l ranges over the columns. The (i, l) th coefficient of the matrix $\Phi \partial^{k} \Phi^{-1}$ is

$$
\frac{1}{g} \sum_{t=1}^{n} g_{t} \varphi_{t}{ }^{i} \zeta_{t} \overline{k_{t}} \overline{\eta_{t}^{l}}
$$

which is a non-negative rational integer.
There are groups for which the matrices $\left(a_{i j}{ }^{k}\right)$ can be calculated without an elaborate use of representation theory. For example, there is a method for computing the matrices $\left(a_{i j}{ }^{k}\right)$ in the case of a symmetric group [3]. It appears that the result of this paper relating to ordinary representation theory may have some appeal to physicists $[\mathbf{4 ; 5} \mathbf{5}$, although the same may not be true of those relating to modular representation theory.

Finally, I would like to thank the referee for his comments which improved the presentation of this paper.

References

1. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience Publishers, New York, 1962.)
3. G. de B. Robinson, Representation theory of the symmetric group (University of Toronto Press, Toronto, 1961.)
4. -_The algebras of representations and classes of finite groups, J. Mathematical Phys. 12 (1971), 2212-2215.
5. ———Tensor product representations, J. Algebra 20 (1972), 118-123.
6. J. P. Serre, Representations linearre des groupes finis (Hermann Collections, Paris, 1967).
7. L. Soloman, On the sum of the elements in the character table of a finite group, Proc. Amer. Math. Soc. 12 (1961), 962-963.

Carleton University, Ottawa, Ontario

[^0]: Received January 10, 1973 and in revised form, April 19, 1973.

