DETERMINATION OF BRAUER CHARACTERS

B. M. PUTTASWAMAIAH

The purpose of this note is to show that the values of an irreducible (Brauer) character are the characteristic values of a matrix with non-negative rational integers. The construction of these integral matrices is done by a description of a representation of the Grothendieck ring of the category of modules over the group algebra. In particular a result of Solomon on characters and a result of Burnside on vanishing of a non-linear character on some conjugate class are generalized.

Let G be a finite group of order g, A a splitting field of characteristic p(which may be 0) for G, R = AG the group algebra of G over A, n the number of distinct p-regular classes of G and \mathscr{C} the category of all finite dimensional (right) R-modules. Then the isomorphism of R-modules is an equivalence relation in \mathscr{C} . The equivalence class determined by an R-module M in \mathscr{C} will be denoted by \overline{M} . If $T = {\overline{M} | M \in \mathscr{C}}$, then the Grothendieck group K(R) is defined to be the additive abelian group generated by T subject to the defining relations $\overline{M} = \overline{N} + \overline{P}$ whenever

 $0 \to N \to M \to P \to 0$

is an exact sequence of *R*-modules. The Grothendieck group K(R) is a free abelian group of rank n [6]. In fact if $\{M_1, M_2, \ldots, M_n\}$ is a full set of pairwise non-isomorphic irreducible *R*-modules, then $\{\overline{M}_1, \overline{M}_2, \ldots, \overline{M}_n\}$ is a basis of K(R) over the ring Z of integers.

If M and N are any modules in \mathscr{C} , then we denote their inner tensor product over A by $M \otimes N$. Obviously $M \otimes N$ is a member of \mathscr{C} . If we define $\overline{MN} = \overline{M \otimes N}$, then K(R) becomes a commutative associative ring with unity \overline{I} , where I is the R-module which affords the principal irreducible representation; that is the one-dimensional representation of G in which every element of Gis mapped on the identity. The ring K(R) is called the Grothendieck ring of the category \mathscr{C} of R-modules. The integer n will be called the rank of the ring K(R).

THEOREM 1. Let K(R) be the Grothendieck ring of the category of R-modules, n the rank of K(R) and Z_n the ring of n by n matrices over the ring Z of integers. Then there is a monomorphism of K(R) into Z_n .

Proof. Let $\{\overline{M}_1, \overline{M}_2, \ldots, \overline{M}_n\}$ be a fixed basis of K(R) over Z. Then every element of K(R) can be written uniquely in the form $\sum_{i=1}^n a_i \overline{M}_i$ where a_i

Received January 10, 1973 and in revised form, April 19, 1973.

belongs to Z. Each element \overline{M} of K(R) determines a unique matrix (a_{ij}^{M}) of Z_n by

$$\bar{M}_i \bar{M} = \sum_{j=1}^n a_{ij} M \bar{M}_j$$

for i = 1, 2, ..., n. Then we show that the mapping f from K(R) to Z_n defined by $\overline{M}f = (a_{ij}^M)$ is a ring monomorphism.

Suppose that \overline{M} and \overline{N} are arbitrary elements of K(R). Then $\overline{M}_i\overline{M} = \sum_{j=1}^n a_{ij}{}^M\overline{M}_j$ and $\overline{M}_i\overline{N} = \sum_{j=1}^n a_{ij}{}^N\overline{M}_j$ for all *i*. Therefore we have

$$\begin{split} \bar{M}_i(\bar{M}+\bar{N}) &= \bar{M}_i\overline{M \oplus N} = \overline{M_i \otimes (M \oplus N)} = \overline{M_i \otimes M \oplus M_i \otimes N} \\ &= \overline{M_i \otimes M} + \overline{M_i \otimes N} = \sum_{j=1}^n a_{ij}{}^M M_j + \sum_{j=1}^n a_{ij}{}^N \bar{M}_j \\ &= \sum_{j=1}^n (a_{ij}{}^M + a_{ij}{}^N) \bar{M}_j \end{split}$$

so that $(\overline{M} + \overline{N})f = (a_{ij}^M + a_{ij}^N) = (a_{ij}^M) + (a_{ij}^N) = \overline{M}f + \overline{N}f$. Hence f is a group homomorphism. Also we have

$$\bar{M}_{i}(\bar{M}\bar{N}) = \bar{M}_{i}(\overline{M \otimes N}) = \overline{M_{i} \otimes (M \otimes N)} = (\overline{M_{i} \otimes M}) \otimes N$$
$$= \overline{M_{i} \otimes M}\bar{N} = \sum_{k=1}^{n} a_{ik}{}^{M}\bar{M}_{k}\bar{N} = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} a_{ik}{}^{M}a_{kj}{}^{N}\right)\bar{M}_{j}$$

from which it follows that $(\overline{M}\overline{N})f = \overline{M}f\overline{N}f$. Thus we have proved that f is a ring homomorphism.

It remains to show that the homomorphism f is injective. If \overline{M} is any element in the kernel of f, then $\overline{M}f = 0$. There are unique integers a_i in Z such that

$$\bar{M} = \sum_{j=1}^{n} a_{i} \bar{M}_{i}.$$

Let \bar{I} be the identity of K(R). Since $\bar{M}_i \bar{M} = 0$ for all i, it follows that $\bar{I}\bar{M} = 0$; that is

$$\sum_{i=1}^{n} a_{i} \bar{I} \bar{M} = \sum_{i=1}^{n} a_{i} \bar{M}_{i} = 0.$$

Since $\{\overline{M}_1, \overline{M}_2, \ldots, \overline{M}_n\}$ is a basis of K(R), it follows that $\overline{M} = \overline{0}$. Hence f is injective. This completes the proof.

This proposition is a generalization for representations over an arbitrary field of a similar result proved earlier by Robinson [4; 5] for ordinary representations.

With each element \overline{M} of K(R), we associate an *n*-tuple

$$\chi^{M} = (\chi_{1}^{M}, \chi_{2}^{M}, \ldots, \chi_{n}^{M})$$

of complex numbers, where $\chi_1^M, \chi_2^M, \ldots, \chi_n^M$ are the characteristic values of the matrix (a_{ij}^M) . Clearly χ^M is independent of a basis of K(R) over Z and it is uniquely determined by \overline{M} .

The irreducible Brauer characters of G will be denoted by $\varphi^1, \varphi^2, \ldots, \varphi^n$ (in some fixed order) and the *p*-regular classes of G will be denoted by $C_1 = \{1\}$, C_2, \ldots, C_n (in some fixed order). If p = 0 or prime to the order g of G, then every class of G is *p*-regular. The Brauer character φ^i can also be considered as an *n*-tuple $\varphi^i = (\varphi_1^{i}, \varphi_2^{i}, \ldots, \varphi_n^{i})$ where $\varphi_j^{i} = \varphi^i(x)$ with x in C_j . The $n \times n$ matrix $\Phi = (\varphi_j^{i})$ whose rows are $\varphi^i, i = 1, 2, \ldots, n$ is called the Brauer character table. Since the rows of Φ are linearly independent [2], the matrix is a non-singular (complex) matrix. Without loss of generality, we may assume that φ^1 is the principal character of G.

THEOREM 2. Let M be an R-module, n the rank of K(R) and χ^M the n-tuple associated with \overline{M} . Then there is a permutation σ of $\{1, 2, \ldots, n\}$ such that $(\chi_{1\sigma}{}^M, \chi_{2\sigma}{}^M, \ldots, \chi_{n\sigma}{}^M)$ is a Brauer character of G.

Proof. Let $\{M_1, M_2, \ldots, M_n\}$ be a set of pairwise non-isomorphic irreducible R-modules such that $\{\overline{M}_1, \overline{M}_2, \ldots, \overline{M}_n\}$ is a basis of K(R). Then

$$\bar{M} = \sum_{j=1}^{n} d_j \bar{M}_j$$

for some non-negative integers d_j . Let

$$\varphi^M = \sum_{j=1}^n d_j \varphi^j$$

Then we shall show that the components of φ^M will coincide with those of χ^M (except possibly for a permutation).

Let $M = N_1 \supset \ldots \supset N_t \supset N_{t+1} = 0$ be a composition series of M. Then

$$\bar{M} = \bigoplus_{1}^{t} N_{i} / N_{i+1} = \sum_{i=1}^{t} \overline{N_{i} / N_{i+1}} = \sum_{j=1}^{n} d_{j} \bar{M}_{j}$$

Therefore φ^M depends only on \overline{M} and φ^M is the Brauer character associated with the *R*-module *M*. By [1, p. 577], it follows that $\varphi^i \varphi^M$ depends only on $\overline{M_i \otimes M} = \overline{M}_i \overline{M}$ and $\varphi^i \varphi^M$ is the Brauer character associated with $M_i \otimes M$. Therefore the equations

$$\bar{M}_i \bar{M} = \sum_{j=1}^n a_{ij}{}^M \bar{M}_j, \qquad i = 1, 2, \dots, n$$

are equivalent to the equations

$$\varphi_{\iota}^{i}\varphi_{\iota}^{M} = \sum_{j=1}^{n} a_{ij}^{M}\varphi_{\iota}^{j}$$

for i, t = 1, 2, ..., n. If D^M is the diagonal matrix whose diagonal entries are $\varphi_1^M, \varphi_2^M, \ldots, \varphi_n^M$, then the above equations can be written in the matrix

$$\varphi^{M} = (\chi_{1\sigma}{}^{M}\chi_{2\sigma}{}^{M}, \ldots, \chi_{n\sigma}{}^{M})$$

where $i\sigma$ is the image of *i* under σ . This completes the proof.

COROLLARY. For any Brauer character φ^i , the quantity $\sum_{j=1}^{n} |\varphi_j|^2$ is a positive integer.

PROPOSITION 3. The t-th column c_i of the Brauer character table Φ is a characteristic vector of (a_{ij}^k) corresponding to the characteristic value φ_i^k for $k = 1, 2, \ldots, n$ where (a_{ij}^k) is the matrix corresponding to the element \overline{M}_k of K(R) determined by an irreducible R-module M_k .

Proof. This follows by rewriting the equations

$$\varphi_{l}^{i}\varphi_{l}^{k} = \sum_{k=1}^{n} a_{ij}^{k}\varphi_{l}^{j}$$

for i, k = 1, 2, ..., n in the matrix form $(a_{ij}^{k})c_{i} = \varphi_{i}^{k}c_{i}$ for t = 1, 2, ..., n. (Cf. [5].)

LEMMA 4. Let M_k be an irreducible R-module of dimension f, (a_{ij}^k) the matrix corresponding to \overline{M}_k of K(R) and $\omega_1, \omega_2, \ldots, \omega_r$ the non-zero characteristic values of (a_{ij}^k) . Then $\omega_1 + \omega_2 + \ldots + \omega_r$ is a non-negative rational integer and $\omega_1 \omega_2 \ldots \omega_r/f$ is a rational integer.

Proof. Let det $(a_{ij}^{\ k} - \lambda \delta_{ij})$ be the characteristic polynomial of the matrix $(a_{ij}^{\ k})$. Since $a_{ij}^{\ k}$ are integers, the coefficients of det $(a_{ij}^{\ k} - \lambda \delta_{ij})$ are rational integers. Then $-(\omega_1 + \omega_2 + \ldots + \omega_r)$ is the coefficient of λ^{n-1} and $\pm \omega_1 \omega_2, \ldots, \omega_r$ is the coefficient of λ^{r-1} . Hence they are rational integers. But $\omega_1 + \omega_2 + \ldots + \omega_r$ is the sum of the diagonal entries of the matrix $(a_{ij}^{\ k})$ and hence it is a non-negative integer.

COROLLARY 1. Let φ^M be any Brauer character of G and $\varphi_1^M, \varphi_2^M, \ldots, \varphi_r^M$ the non-zero values of φ^M . Then $\sum_{i=1}^r \varphi_i^M$ is a non-negative integer and $\varphi_2^M \ldots \varphi_r^M$ is a non-zero integer.

COROLLARY (Solomon [7]) 2. If A is the complex field, then $\sum_{i=1}^{n} \varphi_i^M$ is a rational integer.

THEOREM 5. Let the characteristic p of A be either 0 or prime to g = |G|, M_k an irreducible R-module and (a_{ij}^k) the corresponding matrix of \overline{M}_k of K(R). Then (a_{ij}^k) is non-singular if and only if the dimension of M_k is 1.

Proof. If the dimension of M_k is 1, then $\det(a_{ij}^k) = \omega_1 \omega_2 \dots \omega_n = 1 \neq 0$, where $\omega_1, \omega_2, \dots, \omega_n$ are the characteristic values of (a_{ij}^k) . Hence (a_{ij}^k) is non-singular.

Conversely assume that (a_{ij}^{k}) is non-singular. Let ζ^{k} be the Brauer character of G corresponding to M_{k} . Then by Theorem 2, we may assume that

 $\zeta^k = (\zeta_1^k, \zeta_2^k, \ldots, \zeta_n^k)$ where $\zeta_1^k = \dim M_k, \zeta_2^k, \ldots, \zeta_n^k$ are the characteristic values of the matrix (a_{ij}^k) . Since the arithmetic mean of *n* positive real numbers is greater than or equal to the geometric mean, we obtain from the orthoganality relations **[2]** for characters, that

$$g = \sum_{i=1}^{n} g_{i} |\zeta_{i}^{k}|^{2} = (\zeta_{1}^{k})^{2} + \sum_{i=2}^{n} g_{i} |\zeta_{i}^{k}|^{2}$$

$$\geq (\zeta_{1}^{k})^{2} + (g - 1) (|\zeta_{2}^{k}|^{2g_{2}} |\zeta_{3}^{k}|^{2g_{3}} \dots |\zeta_{n}^{k}|^{2g_{n}})^{1/g - 1}$$

where g_i is the number of elements in the *i*th conjugate class of *G*. By Lemma 4, the above inequality implies $g \ge (\zeta_1^k)^2 + g - 1$ so that $\zeta_1^k = 1$. Hence the dimension of M_k is 1.

COROLLARY (Burnside) 1. If p = 0 and ζ^k is an irreducible character of degree > 1, then $\zeta_i^k = 0$ for some conjugate class C_i .

COROLLARY 2. Let p = 0 or (p, g) = 1. If M_1, M_2, \ldots, M_n are pairwise non-isomorphic irreducible R-modules, then the number of units in the basis $\{\overline{M}_1, \overline{M}_2, \ldots, \overline{M}_n\}$ of K(R) is equal to the order of G/G' where G' is the commutator subgroup of G.

COROLLARY 3. Let p = 0 or (p, g) = 1, M_k an irreducible R-module and (a_{ij}^k) the corresponding matrix of \overline{M}_k of K(R). Then (a_{ij}^k) is invertible if and only if (a_{ij}^k) is a permutation matrix.

The Corollary (Burnside) 1 is not true if p is a factor of g = |G|. By this we mean that the value of an irreducible Brauer character φ^k may not be 0 on any p-regular conjugate class. As an illustration, we consider an example.

Example. Let $G = L_2(5)$ and p = 5. The group G has three 5-regular conjugate classes and hence K(R) has rank 3. If I, J and K are irreducible R-modules of dimensions 1, 3 and 5 over A, then $\{\overline{I}, \overline{J}, \overline{K}\}$ is a basis of K(R) over Z. Then we have

$\bar{I}\bar{I}=\bar{I}$	$\bar{I}\bar{J}=\bar{J}$		$\bar{I}\bar{K}=\bar{K}$
$\bar{J}\bar{I}=\bar{J}$	$\bar{J}\bar{J}=\bar{I}+\bar{J}+\bar{K}$	and	$\bar{J}\bar{K}=\bar{I}+3\bar{J}+\bar{K}$
$\bar{K}\bar{I}=\bar{K}$	$\bar{K}\bar{J}=\bar{I}+3\bar{J}+\bar{K}$		$\bar{K}\bar{K} = 3\bar{I} + 4\bar{J} + 2\bar{K}.$

Therefore the corresponding matrices (a_{ij}^{k}) are

$\lceil 1 \rceil$	0	0		Γ0	1	0		Γ0	0	1]	
0	1	0	,	1	1	1	and	1	3	1	
Lo	0	1_		$\lfloor 1$	3	1_		_3	4	2	

These matrices determine the irreducible Brauer characters $\varphi^1 = (1, 1, 1)$ $\varphi^2 = (3, -1, 0)$ and $\varphi^3 = (5, 1, -1)$ respectively. Contrary to the situation in Corollary 1, the irreducible Brauer character φ^3 does not vanish on any 5-regular conjugate class of G. If the field A is a splitting algebraic number field for G, then the irreducible Brauer characters of G are called the irreducible ordinary characters of G. Let Int(A) be the ring of all algebraic integers of A, \mathfrak{p} a fixed prime ideal of Int(A) containing a given prime p and $D = \{\alpha/\beta | \alpha, \beta \in \text{Int}(A) \text{ and } \beta \notin \mathfrak{p}\}$. Then D is an integral domain with a unique maximal ideal P such that $\mathfrak{p} \subseteq P$ and A is the quotient field of D. The field $\overline{A} = D/P$ has a finite number of elements and it is a splitting field for G [2]. Let R = AG and $\overline{R} = \overline{A}G$ be the group rings over A and \overline{A} respectively. The Brauer characters depend on the prime p. The Brauer characters determined by $K(\overline{R})$ will be denoted by $\varphi^1, \varphi^2, \ldots, \varphi^n$ and the ordinary irreducible characters of G will be denoted by $\zeta^1, \zeta^2, \ldots, \zeta_m$ are the remaining conjugate classes of G. The value of ζ^i at x of C_j will be denoted by ζ_j^i and the number of elements in C_j will be denoted by g_j .

THEOREM 6. Let ζ^k be an irreducible ordinary character of G and ∂^k the $n \times n$ diagonal matrix whose diagonal entries are $\zeta_1^k, \zeta_2^k, \ldots, \zeta_n^k$. If Φ is the Brauer character table of G corresponding to the prime p, then the coefficients of $\Phi\partial^k \Phi^{-1}$ are non-negative rational integers.

Proof. There are non-negative rational integers d_{kj} such that

$$\zeta_t^k = \sum_{j=1}^n d_{kj} \varphi_t^j$$
 for $t = 1, 2, ..., n$ [2].

Hence we have $\partial^k = \sum_{j=1}^n d_{kj} D^j$ where D^j is the diagonal matrix whose entries are $\varphi_1^j, \varphi_2^j, \ldots, \varphi_n^j$. If (a_{uv}^j) are the *n* matrices determined by a basis of $K(\bar{R})$, then by Theorem 2, we have $\Phi^{-1}(a^j_{uv})\Phi = D^j$. Therefore

$$\partial^k = \sum_{j=1}^n d_{kj} \Phi^{-1}(a_{uv}{}^j) \Phi$$

so that

$$\Phi \partial^k \Phi^{-1} = \sum_{j=1}^n d_{kj}(a_{uv}^{j}).$$

Since the coefficients of the matrix on the right hand side of this equation are non-negative integers, it follows that the coefficients of $\Phi \partial^k \Phi^{-1}$ are non-negative rational integers.

COROLLARY. Let ζ^k be any irreducible ordinary character of G, φ^i an irreducible Brauer character of G and η^i a projective indecomposable Brauer character of G. Then

$$\frac{1}{g} \sum_{j=1}^{n} g_{j} \varphi_{j} \zeta_{j} \overline{\chi_{j}}^{l}$$

is a non-negative integer.

Proof. For the definition of a projective indecomposable Brauer character, see [2]. According to [2], the irreducible Brauer character φ^i and the indecomposable Brauer character η^i of G are connected by the relations

$$\sum_{t=1}^{n} \varphi_{t}^{i} \frac{g_{t} \overline{\eta_{t}}}{g} = \delta_{it}$$

where $\delta_{il} = 0$ if $i \neq l$ and 1 if i = l. Therefore it follows that

$$\Phi^{-1} = \left(\frac{g_{l}\overline{\eta_{l}}}{g}\right)$$

where t ranges over the rows and l ranges over the columns. The (i, l)th coefficient of the matrix $\Phi \partial^k \Phi^{-1}$ is

$$\frac{1}{g} \sum_{i=1}^{n} g_{i} \varphi_{i} \zeta_{i} \overline{\gamma_{i}}^{i}$$

which is a non-negative rational integer.

There are groups for which the matrices (a_{ij}^{k}) can be calculated without an elaborate use of representation theory. For example, there is a method for computing the matrices (a_{ij}^{k}) in the case of a symmetric group [3]. It appears that the result of this paper relating to ordinary representation theory may have some appeal to physicists [4; 5], although the same may not be true of those relating to modular representation theory.

Finally, I would like to thank the referee for his comments which improved the presentation of this paper.

References

- 1. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), 556-590.
- 2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Interscience Publishers, New York, 1962.)
- G. de B. Robinson, Representation theory of the symmetric group (University of Toronto Press, Toronto, 1961.)
- 4. The algebras of representations and classes of finite groups, J. Mathematical Phys. 12 (1971), 2212–2215.
- 5. Tensor product representations, J. Algebra 20 (1972), 118-123.
- 6. J. P. Serre, Representations linearre des groupes finis (Hermann Collections, Paris, 1967).
- L. Soloman, On the sum of the elements in the character table of a finite group, Proc. Amer. Math. Soc. 12 (1961), 962–963.

Carleton University, Ottawa, Ontario