
1 Introduction

Optimization is a staple of mathematical modeling. In this rich framework, we con-
sider a set S called the search space—it contains all possible answers to our problem,
good and bad—and a cost function f : S → R which associates a cost f (x) to each
element x of S. The goal is to find x ∈ S such that f (x) is as small as possible, that is,
a best answer. We write

min
x∈S f (x)

to represent both the optimization problem and the minimal cost (if it exists). Occa-
sionally, we wish to denote specifically the subset of S for which the minimal cost is
attained; the standard notation is

arg min
x∈S

f (x),

bearing in mind that this set might be empty. We will discuss a few simple applications
which can be modeled in this form.

Rarely, optimization problems admit an analytical solution. Typically, we need
numerical algorithms to (try to) solve them. Often, the best algorithms exploit
mathematical structure in S and f .

An important special case arises when S is a linear space such as Rn . Minimizing
a function f in R

n is called unconstrained optimization because the variable x is free
to move around R

n , unrestricted.
If f is sufficiently differentiable and R

n is endowed with an inner product (i.e., if
we make it into a Euclidean space), then we have a notion of gradient and perhaps
even a notion of Hessian for f . These objects give us a firm understanding of how f
behaves locally around any given point. Famous algorithms such as gradient descent
and Newton’s method exploit these objects to move around R

n efficiently in search of
a solution.

Notice, however, that the Euclidean structure of Rn and the smoothness of f are
irrelevant to the definition of the optimization problem itself: they are merely struc-
tures that we may (and as experience shows, we should) use algorithmically to our
advantage.

Subsuming linearity, we focus on smoothness as the key structure to exploit: we
assume the set S is a smooth manifold and the function f is smooth on S. This calls
for precise definitions, constructed first in Chapter 3. For a first intuition, one can think
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of smooth manifolds as surfaces in R
n that do not have kinks or boundaries, such as a

plane, a sphere, a torus, or a hyperboloid.
We could think of optimization over such surfaces as constrained, in the sense that

x is not allowed to move freely in R
n : it is constrained to remain on the surface. Alter-

natively, and this is the viewpoint favored here, we can think of this as unconstrained
optimization, in a world where the smooth surface is the only thing that exists: like
an ant walking on a large ball might feel unrestricted in its movements, aware only
of the sphere it lives on; or like the two-dimensional inhabitants of Flatland [Abb84]
who find it hard to imagine that there exists such a thing as a third dimension, feeling
thoroughly free in their own subspace.

A natural question then is: can we generalize the Euclidean algorithms from
unconstrained optimization to handle the broader class of optimization over smooth
manifolds? The answer is essentially yes, going back to the 1970s [Lue72, Lic79], the
1980s [Gab82] and the 1990s [Udr94, Smi94, HM96, Rap97, EAS98], and sparking a
significant amount of research in the past two decades.

To generalize algorithms such as gradient descent and Newton’s method, we need
a proper notion of gradient and Hessian on smooth manifolds. In the linear case,
this required the introduction of an inner product: a Euclidean structure. In our more
general setting, we leverage the fact that smooth manifolds can be linearized locally
around every point. The linearization at x is called the tangent space at x. By endowing
each tangent space with its own inner product (varying smoothly with x, in a sense to
be made precise), we construct what is called a Riemannian structure on the manifold:
it becomes a Riemannian manifold.

A Riemannian structure is sufficient to define gradients and Hessians on the man-
ifold, paving the way for optimization. There exist several Riemannian structures on
each manifold: our choice may impact algorithmic performance. In that sense, identi-
fying a useful structure is part of the algorithm design—as opposed to being part of the
problem formulation, which ended with the definition of the search space (as a crude
set) and the cost function.

Chapter 2 covers a few simple applications, mostly to give a sense of how mani-
folds come up. We then go on to define smooth manifolds in a restricted1 setting in
Chapter 3, where manifolds are embedded in a linear space, much like the unit sphere
in three-dimensional space. In this context, we define notions of smooth functions,
smooth vector fields, gradients and retractions (a means to move around on a mani-
fold). These tools are sufficient to design and analyze a first optimization algorithm in
Chapter 4: Riemannian gradient descent. As readers progress through these chapters,
it is the intention that they also read bits of Chapter 7 from time to time: useful embed-
ded manifolds are studied there in detail. Chapter 5 provides more advanced geometric
tools for embedded manifolds, including the notions of Riemannian connections and

1 Some readers may know Whitney’s celebrated embedding theorems, which state that any smooth mani-
fold can be embedded in a linear space [BC70, p. 82]. The mere existence of an embedding, however, is
of little use for computation.

https://doi.org/10.1017/9781009166164.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009166164.002


Introduction 3

Hessians. These are put to good use in Chapter 6 to design and analyze Riemannian
versions of Newton’s method and the trust-region method.

The linear embedding space is useful for intuition, to simplify definitions, and to
design tools. Notwithstanding, all the tools and concepts we define in the restricted set-
ting are intrinsic, in the sense that they are well defined regardless of the embedding
space. We make this precise much later, in Chapter 8, where all the tools from Chap-
ters 3 and 5 are redefined in the full generality of standard treatments of differential
geometry. This is also the time to discuss topological issues to some extent. Generality
notably makes it possible to discuss a more abstract class of manifolds called quotient
manifolds in Chapter 9. They offer a beautiful way to harness symmetry, so common
in applications.

In closing, Chapter 10 offers a limited treatment of more advanced geometric tools
such as the Riemannian distance, geodesics, the exponential map and its inverse, par-
allel transports and transporters, notions of Lipschitz continuity, finite differences, and
covariant differentiation of tensor fields. Then, Chapter 11 covers elementary notions
of convexity on Riemannian manifolds with simple implications for optimization. This
topic has been around since the 1990s, and has been gaining traction in research lately.

More than 150 years ago, Riemann invented a new kind of geometry for the abstract
purpose of understanding curvature in high-dimensional spaces. Today, this geometry
plays a central role in the development of efficient algorithms to tackle technological
applications Riemann himself—arguably—could have never envisioned. Through this
book, I invite you to enjoy this singularly satisfying success of mathematics, with an
eye to turning geometry into algorithms.
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