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Abstract. The standard Bayesian model formalism comparison cannot be applied to most
cosmological models as they lack well-motivated parameter priors. However, if the data-set
being used is separable, then it is possible to use some of the data to obtain the necessary
parameter distributions, the rest of the data being retained for model comparison. While such
methods are not fully prescriptive, they provide a route to applying Bayesian model comparison
in cosmological situations where it could not otherwise be used.
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1. Introduction
Much of observational cosmology can be thought of as an attempt to use astronomi-

cal data to discriminate between the different cosmological models under consideration.
Given both the inevitably imperfect data and the intrinsically stochastic nature of many
cosmological measurements (i.e., cosmic variance), it is generally impossible to come to
absolute conclusions about the various candidate models; the best that can be hoped for
is to evaluate the probabilities, conditional on the the available data, that each of the
candidate models is the correct description of the Universe. The fact that there is, as
far as is known, just a single observable Universe (i.e., there is no ensemble from which
it has been drawn), means that such probabilities cannot be frequency-based, and must
instead must represent a degree of implication. Self-consistency arguments then require
(Cox 1946) that these probabilities be manipulated and inverted using Bayes’s theorem.

Taken together, the above facts imply that Bayesian model comparison (Section 2)
should be used to assess how well different cosmological models explain the available
data, although the fact that most such models have unspecified parameters is a significant
difficulty for this approach (Section 3). This problem can be solved for separable data-sets
as it is possible to use a two-step method of model comparison (Section 4), illustrated
here with high-redshift supernova (SN) data (Section 5).

2. Bayesian model comparison
Given that one of a set of N models, {M1 ,M2 , . . . ,MN }, is assumed to be true, the

state of knowledge conditional on all the available (and relevant) information, I, is fully
summarised by the probabilities Pr(M1 |I),Pr(M2 |I), . . . ,Pr(MN |I), where Pr(Mi |I) is
the probability that the i’th model is correct (and i ∈ {1, 2, . . . , N}). In the light of
some new data, d, that has not already been included in the above probabilities, Bayes’s
theorem gives the updated probability that model i is correct as

Pr(Mi |d, I) =
Pr(Mi |I) Pr(d|Mi, I)∑N

j=1 Pr(Mj |I) Pr(d|Mj, I)
, (2.1)

where Pr(d|Mi, I) is the marginal likelihood under model Mi .
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If model Mi has Ni unspecified parameters {θi} = {θi,1 , θi,2 , . . . , θi,Ni
} then the model-

averaged likelihood is obtained by marginalising over these parameters to give

Pr(d|Mi, I) =
∫

Pr({θi}|Mi, I) Pr(d|{θi},Mi, I) dθi,1 dθi,2 . . . dθi,Ni
, (2.2)

where Pr({θi}|Mi, I) is the prior distribution of the parameter values in this model. This
expression demonstrates that the full specification of a model requires not just an explicit
parameterisation, but a distribution for those parameters as well; two mathematically
identical descriptions with different parameter priors are, in fact, different models.

3. Comparison of models without parameter priors
Equations 2.1 and 2.2 together summarise a self-consistent method for assessing which

of a set of models is better supported by the available information, provided that the
parameter priors for all the models are explicitly defined and unit-normalised. In par-
ticular, while it is often possible to obtain sensible parameter constraints based on an
improper prior, such as Pr({θi}|Mi, I) constant for all {θi}, the resultant marginal likeli-
hood is meaningless (Dickey 1961). Unfortunately, it is commonly the case in astronomy
and cosmology that there is no compelling form for the models’ parameter priors and,
further, that the natural uninformative prior distributions are improper and cannot be
normalised. The apparent implication is that Bayesian model comparison, at least in the
form described in Section 2, cannot be used in cosmology, an idea that has been explored
previously by, e.g., Efstathiou (2008) and Jenkins & Peacock (2011). The disturbing
corollary would be that there is no self-consistent method to choose between the avail-
able cosmological models, even if they are completely quantitative and mathematically
well-defined.

4. Model comparison with separable data
The idea that the relative degree of support for models with unspecified parameters is

undefined is at odds with the marked – and data-driven – progress that has been made
in cosmology over the last century. Clearly it is possible to use data to choose sensibly
between models even if they do not have well-motivated parameter priors; but can this be
formalised in a way that satisfies Bayes’s theorem and is hence logically self-consistent?

One possibility is, for separable data-sets (such as those which consist of measurements
of many astronomical sources), to use some of the available data to obtain the necessary
parameter priors and to then use the remaining data for model comparison. This is an
old concept, dating back at least to Lempers (1971) and explored subsequently by, e.g.,
Spiegelhalter & Smith (1982) and O’Hagan (1995). The central idea is to partition the
data as d = (d1 , d2), with the first partition of training data used to obtain the (partial)
posterior distribution for the parameters of i’th model as

Pr({θi}|d1 ,Mi, I) =
Pr({θi}|Mi, I) Pr(d1 |{θi},Mi, I)∫

Pr({θ′i}|Mi, I) Pr(d1 |{θ′i},Mi, I) dθ′i,1 dθ′i,2 . . . dθ′i,Ni
,
, (4.1)

where Pr({θi}|Mi, I), which need not be normaliseable, should be a highly uninforma-
tive prior. This posterior distribution can then be used as the prior needed to obtain a
meaningful marginal likelihood, which can then be evaluated for the testing data as

Pr(d2 |d1 ,Mi, I) =
∫

Pr({θi}|d1 ,Mi, I) Pr(d2 |{θi},Mi, I) dθi,1 dθi,2 . . . dθi,Ni
. (4.2)
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Figure 1. (left) The posterior distribution of Ωm and ΩΛ implied by from the Perlmutter et al.
(1999) SCP SN data and a uniform prior with Ωm � 0. Highest posterior density contours
enclosing 68.3%, 95.4% and 99.7% of the posterior probability are shown. Also shown are the
prior distributions of the accelerating model and matter only model for Ωm ax = 3. (right) The
dependendence of Pr(accel.|d, I) on Ωm ax , shown for different prior probabilities, Pr(accel.|I).

This marginal likelihood is coherent, in the sense that it provides self-consistent up-
dated posterior probabilities when inserted into Equation 2.1, but there is also ambiguity:
there is no compelling scheme for partitioning the data. It is tempting to average over the
possible partitions, but this approach does not have a rigorous motivation. Despite these
ambiguities, this two-step method of Bayesian model comparison for separable data does
satisfy the Cox (1946) self-consistency requirements and so provide a means of calculating
posterior probabilities for cosmological models with unspecified parameter priors.

5. Example: late-time acceleration and supernovae
One of the most significant recent cosmological discoveries was that the Universe’s ex-

pansion rate is increasing, a result which is often linked most strongly to the observations
of distant SNe made by Riess et al. (1998) and Perlmutter et al. (1999). The comparative
faintness of the SNe, given their redshifts and light-curve decay timescales, indicated that
the (normalised) cosmological constant, ΩΛ, is sufficiently large to override the deceler-
ation caused by the (normalised) matter density, Ωm. Riess et al. (1998) and Perlmutter
et al. (1999) used their SNe measurements, d, to obtain posterior distributions of the
form Pr(ΩΛ ,Ωm |d, I), under the assumption of unimformative (and improper) uniform
priors of the form Pr(Ωm ,ΩΛ) ∝ Θ(Ωm), where Θ(x) is the Heaviside step function. The
posterior distribution for the 42 SCP SNe from Perlmutter et al. (1999), reproduced in
Fig. 1, reveals that most of the models that are consistent with the data correspond to
an accelerating universe (i.e., ΩΛ > Ωm/2).

But do these data provide quantitive evidence of cosmological acceleration? Riess et al.
(1998) approached this question by calculating the fraction of the posterior with ΩΛ >
Ωm/2, which is an apparently compelling 0.997 for the case shown in Fig. 1. The relevant
Bayesian calculation (c.f. Drell et al. 2000) should, however, be based on the marginal
likelihoods of an accelerating model (for which the prior is non-zero only for ΩΛ > Ωm/2)
and a decelerating model (for which the obvious option is a matter-only model with
ΩΛ = 0). Such models can be fully specified (in the sense defined in Section 2) by adding
the restrictions that 0 � Ωm � Ωmax and 0 � ΩΛ � min[Ωmax ,ΩΛ ,BB(Ωm)] (defined to
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Figure 2. The distribution of Pr(accel.|d2 , I) obtained from different partitions of the Perlmut-
ter et al. (1999) SN data set with training sets of 10 (left) and 21 (right) SNe. The open symbols
indicate the prior values (of, from left to right, 0.01, 0.05, 0.1 and 0.5) and the solid symbols
show the posterior values given by training and testing samples that alternate in redshift.

reject models that did not begin with a Big Bang), where Ωmax � 0 is an unspecified
“hyper-parameter”. Figure 1 shows the dependence of the posterior probability of the
accelerating model, Pr(accel.|d, I), on Ωmax. Even the peak values of Pr(accel.|d, I) are
considerably lower than the posterior fraction quoted above, and the dependence on the
unknown value of Ωmax is significant as well.

Rather than introducing an arbitrary new parameter, another option is to adopt the
two-step method described in Section 4, using some of the SN data to obtain a partial
posterior in Ωm and ΩΛ for both the accelerating and matter-only models and then
using the remainder to perform model comparison. The results of doing so are shown in
Fig. 2 for several different partitioning options. These results again illustrate the standard
Bayesian result that the better-fitting accelerating model is not favoured so decisively
over the more predictive (i.e., “simpler”) matter-only model, a result that robust to prior
choice.

This two-step approach to model comparison could be applied to a variety of problems
in astrophysics and cosmology (e.g., Bailer-Jones 2012, Khanin & Mortlock 2014).
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