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Abstract. The various modes of spallative LiBeB production are sum-
marized, and classified according to their dependence or independence on
the abundance of medium heavy elements (CNO) illustrated by that of
oxygen in the interstellar medium. The predictions of the models are con-
fronted to the available observational correlations (Be, B vs 0). Clearly,
a primary mechanism should lead to a slope one in the Ig(Be/H) vs [O/H]
plot and a secondary mechanism to a slope two. Due to the ambiguity of
the a data, another criterion, based on energetics, can help us to select
an adequate model. A purely secondary origin in the very early Galaxy
is much more energy demanding than a primary one. Indeed, magnesium
seems to be a possible surrogate of oxygen and iron since i) it is spec-
troscopically more easy to cope with and ii) its nucleosynthetic yield is
independent of the mass cut and does not depend on metallicity.

1. Introduction

A turning point in the theory of the origin and evolution of light elements has
been the observation of a linear relationship between both Be and B and Fe in
metal poor halo stars (Rebolo, Molaro & Beckman 1988; Duncan et al 1992,
1997; Gilmore et al 1992, Boesgaard & King 1993; Ryan, Norris, Bessel &
Deliyannis 1994, Primas et aI1999). But recently, the debate has taken a com-
plex turn, due to a modification of the a-Fe correlation indicated by the data
of Israelian et al (1998) and Boesgaard et al (1999). This revision is however
not universally admitted, and the debate is still open (e.g. Fulbright & Kraft
1999; Gustafsson 1999; Reetz 2000). Since the last International Cosmic Ray
Conference (Barring 2000) and the most recent LiBeB meeting (Ramaty et al
1999), the situation has not ceased to evolve.

Prior to the proposal of change of the O-Fe relation, the situation was the
following: in order to explain the observed proportionality of the Be/H ratio
to Fe/H (itself taken proportional to O/H in halo stars as implied at that time
by the data and by the SNII calculated yields), it was necessary to invoke a
primary production mechanism (i.e. a production rate of LiBeB independent of
the interstellar metallicity), driven by the break up in flight of C and a colliding
with H and He in the ISM (for reviews see Vangioni-Flam et a11999b, 2000a,b).
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Now the reality of this primary component is questioned on the basis of
the "new" O-Fe correlation. Concerning oxygen, however, the situation is not
settled. The abundances derived from the forbidden (01) line, which is certainly
the most accurate source when it is not too weak, suggest a plateau but measure-
ments of near IR OH band in dwarfs and subgiants lead to a rising trend with
decreasing Fe/H. In contrast, Fulbright & Kraft (1999) have analysed in great
details the (01) spectral region in the two metal poorest stars of the Israelian
et al sample and have found a lower O/Fe ratio. As stressed for instance by
Pagel (1999), both methods, indeed, have their drawbacks and technical diffi-
culties: the OH bands are subject to uncertainties in UV continuum absorption
(Balachandran & Bell 1998) and effective temperature, while the forbidden lines
are so weak at low metallicity that the determination of the continuum becomes
problematic.

So the situation is wide open and one is inclined to propose a different metal-
licity index, less ambiguous than O. The closer element to 0 whose abundance
is widely measured is Mg. It has been chosen, due to its various advantages,
both observational and theoretical, as the reference element to follow galactic
evolution by Thomas et al (1998), Fuhrmann (1998) and Shigeyama & Tsuji-
moto (1998). Indeed i) Mg seems easier to measure than 0 and ii ) Mg and 0
are coproduced in SNII explosions, which are the main sources of these elements
(Woosley & Weaver 1995, Thielemann, Nomoto & Hashimoto, 1996). Moreover
the Mg yield is independent of the mass cut, and does not significantly depend
on metallicity (Umeda et al 2000). In the light of existing data, the Mg/Fe vs
Fe/H correlation is rather flat up to Fe/H = -1, like that of other alpha elements
(Me Williams 1997, Pagel & Tautvaisiene, 1995). Taken at face value, (assum-
ing Mg proportional to 0, on nucleosynthetic grounds, neglecting the peculiar
behaviour of the most massive stars which are marginal in the chemical evolu-
tion budget), these data indicate the need of a primary component, then we are
back to the previous situation (Casse et a11995; Vangioni-Flam et a11996, 1998;
Ramatyet aI1996). Thus, on this sole basis, a purely secondary origin of Be in
the halo (Fields & Olive 1999a) driven by the standard GCR seems inadequate.
However, the situation is not completely settled.

The outline of this paper is the following: in section 2 we recall the basic
production mechanisms of LiBeB, in section 3 we decline the astrophysical agents
and sites, in section 4, we compare the various models designed, in section 5 we
propose key observations to remove the present ambiguities.

2. Nucleosynthesis of LiBeB

2.1. Thermal production and destruction

Thermal nucleosynthesis in the Big Bang produces negligible amounts of Be and
B. Only 7Li is synthesized in significant amounts. Moreover, LiBeB do not sur-
vive stellar temperatures except in a thin surface layer where they are observed,
reflecting the interstellar composition inherited by the star at birth. 7Li is how-
ever thought to be produced by AGB stars (Abia et a11993) and novae (Hernanz
et al 1996) and also by SNII through neutrino spallation of carbon. This neu-
trino spallation in carbon shells of type II supernovae is .expected to produce
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also lIB, but the yields are sensitive to the assumed temperature (energy) of the
neutrinos, which is uncertain (see Hartmann et al1999 for a review).

2.2. Non Thermal production

Nuclear spallation, i.e. the break up of medium heavy elements by collisions with
protons and alphas remains the leading production process of light elements in
the cosmos (Meneguzzi, Audouze & Reeves 1971). In principle, all isotopes of
interest are generated either by the interaction of fast p and alphas on CNO at
rest in the ISM, or conversely by the interaction of fast C and 0 (principally)
with ambient H and He, supplemented by the alpha +alpha reaction giving rise
exclusively to Li isotopes. (e.g. Reeves 1994).

The cross sections are well measured (Read & Viola 1985; Webber et al1990
a, b), and have been updated recently by Ramaty et al (1997). The hierarchy of
the cross sections reflects that of the abundances of the light nuclei in nature. In
a collision between a proton and an oxygen nucleus, the probability of production
of 11B is higher than that of lOB which is itself higher than that of 9Be. Thus,
it is not surprising that the abundances of these three isotopes go in declining
order. This is a stricking example of a direct application of nuclear physics
in the understanting of natural abundances. Note that the peaks of the cross
sections lie at low energy especially that of alpha + alpha (Read & Viola 1985).
Thus low energy particles (about 10 MeVIn) have to be inserted carefully in the
treatment of the problem. Note also that at low energy, where the alpha + alpha
reaction is operating at full strength, 7Li and 6Li are produced in comparable
amounts (1.5), which is at variance with the 7Lij6Li ratio observed in meteorites
(12.5). A stellar source of pure 7Li has to be invoked to explain this high value
(see above).

The production rate, in the most general case, is function i) of the number
density of the target nuclei (NT) and their composition, ii) of the flux of the
projectiles (~) and iii) of the cross section averaged over the energy spectrum
in the interaction region :

dN(L)/dt = NT< a >~.

If p and alpha are the projectiles and CNO the targets, one deals with a
"secondary" production, thus:

dN(L)/dt = NCNO< a >~p,a.
It is assumed (quite reasonably) that the flux of energetic particles is pro-

portional to the supernova rate since they are thought to be the main agents of
acceleration through the shock waves they produce. Due to the fact that SNII
are also the main 0 producers, one expects that:

<Jl(t) prop. d(SN(t))/dt prop. d(O/H)/dt.
On the other hand, the CNO abundance cumulated in the ISM up to time

t, is proportional to the total number of SN having exploded from 0 to t. Sum-
marizing:

d(Be/H)/dt prop. (O/H)d(O/H)/dt or after integration Be/H prop. (0/H)2
In contrast, if C, 0 are the projectiles and H, He the targets, a primary

production arises governed by the equation:
dN(L)/dt = NHHe< a >~co

Now with the same hypothesis than above, and considering that the target
abundances (H, He) do not evolve significantly:
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d(Be/H)/dt prop. d(O/H)/dt and Be/H prop. O/H

3. Astrophysical agents and sites

3.1. Galactic Cosmic Rays (GCR)

The energy spectrum of GCR is directly observed above, say, 1GeVIn. Below,
it is deduced from various indirect observations (Strong & Moskalenko 1999). It
is reasonably well explained by the diffuse shock wave acceleration mechanism
(Blandford & Ostriker 1978; Jones & Ellison 1991; Ellison et al 1997). The
observed composition is extrapolated back to the sources thanks to a classical
propagation model.

It is edifying to compare the elemental and isotopic source composition to
that of other materials of known abundances (the solar system for instance, or
that of the supernova ejecta computed with stellar models). Indeed SNIa alone
do not fit O/Fe, Ne/Fe, Mg/Fe neither the s process elements, whereas, SNII
alone do not fit Fe/Co/Ni, neither the s process elements. (see e.g. Meyer 1996,
2000). Indeed, the nucleosynthetic origin of the groups (Mg, Si, Ca, Fe, Ni),
(Sr, Zr, Ba, Ce), (Pt peak, actinides) are all different (explosive burning, s-
process and r process, respectively) and their production sites are also different,
thus the solar mix is a complex mixture of all that, historitically built up, and
individual sources are unlikely to lead to the GCR source abundances (since
they are similar to that of the solar system). Note that in this example we have
chosen only refractory elements that are not supposed to be affected by selective
effects (see below).

A stricking fact, of great importance for our purpose, is the similarity be-
tween the isotopic composition of the GCRs and of the solar system (Connell &
Simpson 1997; Stone et al 1998; Wiedenbeck et al 1999), which is a mixture of
the products of generations and generations of stars of different masses indicat-
ing at face value that GCR are nuclei accelerated out of a normal reservoir and
not strange, exotic, stars or objects.

In recent years, grains have been considered to playa central role in explain-
ing the pecularities of the GCR source composition (Meyer et a11997; Ramaty
et aI1997). It is assumed that grain debris are more efficiently accelerated than
elements in the gas phase and grain models have progressively replaced the tradi-
tional two step acceleration mechanism (injection by flare stars and acceleration
by supernova shocks) in which grains were undesirable (Casse & Goret 1978,
Meyer 1985; Silberberg & Tsao 1990).

However the situation is not absolutely settled (Shapiro 1999, Silberberg
et al 2000; Casse & Vangioni-Flam 2000, in preparation). Anyway, among the
grain supporters themselves, there are divergent views concerning the origin
and nature of the grains of interest. In one camp, they are supposed interstellar
(Meyer and coworkers) and on the other they are supposed to contain fresh
products of nucleosynthesis (Ramaty and colleagues). This has a strong bearing
on the primary or secondary character of the LiBeB production mechanism.
If the grains that are impacted by the accelerating shock waves have the ISM
composition, then, the resulting CR composition should reflect that of the ISM
which is the true reservoir of CR particles and, as it is H, He dominated, the
process is secondary.
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Ramaty and coworkers (see Ramaty et al 2000 and references therein) as-
sume that GCR originate from grains loaded with freshly synthesized nuclei,
C and' 0 that are released by SNII and accelerated by shock waves in galactic
superbubbles (SB). Subsequently, they interact with the surrounding interstellar
medium to give LiBeB in a primary way. However, this proposal has to face the
following objections: in the superbubble (SB), high temperature context, ac-
cording to the observed trend (Cardelli 1996; Savage & Sembach, 1996; Jenkins
et al 1998; Howk, Savage & Fabian 1999), grains have little chances to remain
intact. Only their refractory cores would survive in the hot phase. Silicon, for
instance would be significantly evaporated (see fig 5 in Savage & Sambach 1996)
with respect to Fe, and the Si/Fe ratio in the accelerated particles should be
different than solar contrary to what is deduced from the GCR observations.
Thus grains in SB are unlikely to account, in a detailed manner, for the present
GCRS composition. Moreover, the 348/ 328 ratio, derived at the cosmic ray
sources poses also a problem (Casse & Vangioni-Flam 2000 in preparation). Fi-
nally, the grain mechanism does not go without gas (H, He) acceleration and
thus particle accelerated in superbubbles cannot induce a purely primary pro-
cess all time long and as the Galaxy evolves, the secondary process becomes
more and more important. In this case, the transition primary-secondary will
take place at about [Fe/H] about -1 (taking an average superbubble metallicity
of about 5 times solar, Higdon et al 1998). Thus a purely primary component
seems unlikely.

On this basis we are tempted to conclude that standard GCR, as tradition-
ally thought, act as a secondary source of LiBeB, and if a primary component is
made necessary by the data, it should be different from the standard GCR one.
It could come from SB's under the condition that this SB component is confined
to low energy not to spoil the observed CaR composition.

3.2. Superbubble Accelerated Particles (SAP)

Superbubbles gather a great number of massive stars which explode as type II
supernovae, enriching the surrounding medium in fresh products of nucleosyn-
thesis, and among them, oxygen. The shock wave and turbulence sutained by a
given supernova, accelerate the material enriched by the previous ones (Bykov
& Fleisshman 1992; Bykov 1995; Bykov et al 2000). The energy spectrum ob-
tained could depart significantly from the GCR one, depending on the detail
of the mechamism and more precisely on the escape time of the fast particles,
which is poorly known (Klepach et al1999). As said previously, an energy cut off
should be imposed to avoid contamination of the (observed) GCR abundances.
This energy cut off is still a free parameter and we can choose it in order to avoid
energetic problems (Ramaty et aI1996), i.e, in the range 30-300 MeV In. Then,
all in all, superbubbles appear to be the best agents of a primary production
process of LiBeB (Parizot & Drury 1999; Bykov et al 2000). Admittedly, this
theoretical proposal remains to be firmly (experimentally) substantiated by X
ray and gamma-ray line observations (see the proceedings edited by Ramaty et
al1999 for a general discussion). The search for a non thermal low energy com-
ponent as the one once claimed to be discovered by the COMPTEL experiment
but discarded afterwards (Bloemen et a11999) is, in our minds, one of the major
objectives of the European INTEGRAL satellite to be lauched in 2001. For the
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time being, we can only speculate on the composition and the spectrum of this
hypothetical (but somewhat necessary) component. In the halo phase, the com-
position is taken as representative of the ejecta of massive low metallicity stars.
It is highly enriched in 0 w.r.t present CRs. (Woosley & Weaver 1995). This
composition however is expected to vary in time due to metallicity dependent
mass loss rate (Vangioni-Flam et al 1997).

4. Production and evolution of LiBeB

4.1. Observed correlations

Turning to observations, we are confronted to a certain ambiguity (as men-
tionned in the introduction). According to the choice of the conversion between
Fe and 0 abundances we get different conclusions. Relying on the Israelian et
al (1998) and Boesgaard et al (1999) relation we get Be proportional to 01.7,
i.e. nearly secondary, but taking the conventional O-Fe relation, strengthened
by the Mg data, we get Be proportional to 0, i.e, purely primary, at least in the
halo phase. Thus the O/Fe behaviour at low metallicity is a central issue, once
again. Furthermore non LTE effects on B (Kiselman 1999) make the situation
even more complex (see also Primas 2000). Thus we must rely on a independent
argument to answer the question: is a primary component really necessary?
This argument of energetic nature has been essentially developed by Ramaty et
al (1996, 1997, 2000). To briefly summarize: it seems that a primary component
is required by both the Mg-Fe relation (more secure than O-Fe) and by energetic
arguments.

4.2. The three evolutionary models

Concerning the galactic evolutionary models, there exists three types of them
i) a pure secondary standard GCR based on the variable O/Fe ratio (Fields &
Olive 1999a) ii) a pure primary GCR from SB, which, suprisingly is still valid
with flat or variable O/Fe (Ramaty et al 2000) iii) an hybrid model (Standard
GCR + SAP based on a flat O/Fe ratio (Vangioni-Flam et a11998) or based on
a variable O/Fe ratio (Fields et al 2000).

4.3. Energetic requirements

The number of atoms of Be produced per erg injected per supernova is promoted
to the role of a selection criterion for the theoretical models (both primary and
secondary) . Stated differently, are there enough SNII and are they sufficiently
efficient to produce all the Be observed in halo stars in the primary and/or
secondary cases? According to Ramaty et al (2000) the pure secondary standard
GCR produce BeB at high energy cost in the early Galaxy. SAP or primary
GCR are much more economical. Thus a very plausible solution is that a primary
component appears first, and a secondary component takes over afterwards, at a
metallicity (0/H ratio) which remains to be determined precisely. The position
of the break depends on the Fe-O correlation used. Relying on the new one,
and using the analysis based on the IRFM data, (Fields et al 2000) one finds a
break point at about [O/H] = -1.6. On the other hand, if the ancient correlation
is chosen, motivated by the magnesium data, the break point (if any) is at
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higher [O/H] (about -1). Anyway, the existence of a primary component in the
early stages of the evolution of the Galaxy seems mandatory, irrespective of the
abundance data used, and this is a strong conclusion. Definitively, a primary
component is required to fulfill the energetic constraint. What is the nature of
this primary component? In our opinion, once again, it is distinct from GCR
(assumed by Ramaty et al 2000 to originate from SBs), since, as said previously,
we do not think that it is possible to identify SAP and GCR, as Higdon et al
(1998) did, due to their different inferred composition.

Thus, we support the view that a low energy component is at work, com-
plementing GCR to produce its lot of LiBeB, specifically in the halo phase. Is
this component still active? Nuclear gamma ray line astronomy will say. Thus
our hopes are related to the INTEGRAL satellite. Our conclusion is that an
hybrid model combining both a primary and a secondary components reconcile
the abundance observations and energy requirement. The two components dom-
inate sequentially. Of course the primary component, related to SAP would be
overwhelming in the halo phase and is afterwards dominated by the secondary
one, which constitutes the standard GCR. The SAP component plays a major
role in the LiBeB production when the galactic gas is almost devoid of medium
elements i.e, in the early Galaxy. Now, what is the ultimate reservoir of GCR?
Grains in the ISM or stellar surfaces? This point is left to a future discusssion.

5. Conclusion

Ambiguities on abundance data preclude definitive conclusion: is O/Fe flat or
not at low Z? For the time being, the answer to this question depends on the
observer to whom it is posed. Hopefully the debate will clarify in the next years.
In the mean time we propose to rely on magnesium which is used as a secure
metallicity index by a growing number of people. Special care should be taken
to make NLTE corrections on Fe and B at low Z. A primary process probably
is made necessary by energetic requirements. We endorse the view that two
different components are responsible for the synthesis and evolution of LiBeB in
the Galaxy. This hybrid model invoking the operation of both GCR (extracted
by flares from stellar surfaces and/or grain debris in the ISM) subsequently
accelerated by shock waves and a primary component of lower energy coming
probably from superbubbles fulfil (or at least do not violate) all the composition
constraints on i) the present cosmic radiation ii) the light element abundances
in stars of all met allicities, including 6Li (Vangioni-Flam et al 1999a; Fields &
Olive 1999b).

What to do next? Obviously measure. One would like idealy to get simul-
taneously the abundances of 6,7Li, Be, B, 0, Mg and Fe in the same star, this for
many halo members of various metallicities, which does not seems out of reach
of a dedicated VLT program (Cayrel, private communication). The solution of
the LiBeB riddle is.definitly in the hands of observers. The best way to reveal
the presence of a low energy flux of C and 0 in the Galaxy related supperbub-
bles is the observation of broad gamma ray lines arising from their excitation
and deexcitation in flight. The best hope to detect them in Vela, Orion and
other star forming regions is offered by the european INTEGRAL satellite to be
launched around 2001.
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