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Foreword

This book is a collection of notes and unpublished results which I have
accumulated on the subject of classical field theory. In 1996, it occurred to me
that it would be useful to collect these under a common umbrella of conventions,
as a reference work for myself and perhaps other researchers and graduate
students. I realize now that this project can never be finished to my satisfaction:
the material here only diverges. I prefer to think of this not as a finished book,
so much as some notes from a personal perspective.

In writing the book, I have not held history as an authority, nor based the
approach on any particular authors; rather, I have tried to approach the subject
rationally and systematically. I aimed for the kind of book which I would have
appreciated myself as a graduate student: a book of general theory accompanied
by specific examples, which separates logically independent ideas and uses
a consistent notation; a book which does not skip details of derivation, and
which answers practical questions. I like books with an attitude, which have
a special angle on their material, and so I make no apologies for this book’s
idiosyncrasies.

Several physicists have influenced me over the years. I am especially grateful
to David Toms, my graduate supervisor, for inspiring, impressing, even depress-
ing but never repressing me, with his unstoppable ‘Nike’ philosophy: (shrug)
‘just do it’. I am indebted to the late Peter Wood for kind encouragement, as a
student, and for entrusting me with his copy of Schweber’s now ex-masterpiece
Relativistic Quantum Field Theory, one of my most prized possessions. My
brief acquaintance with Julian Schwinger encouraged me to pay more attention
to my instincts and less to conforming (though more to the conformal). I have
appreciated the friendship of Gabor Kunstatter and Meg Carrington, my frequent
collaborators, and have welcomed occasional encouraging communications
from Roman Jackiw, one of the champions of classical and quantum field theory.
I am, of course, indebted to my friends in Oslo. I blame Alan McLachlan
for teaching me more than I wanted to know about group congruence classes.
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xx Foreword

Thanks finally to Tai Phan, of the Space Science Lab at Berkeley for providing
some sources of information for the gallery data.

Like all software, this book will contain bugs; it is never really finished and
trivial, even obvious errors creep in inexplicably. I hope that these do not distract
from my perspective on one of the most beautiful ideas in modern physics:
covariant field theory.

I called the original set of these notes: The Xµ Files: Covert Field Theory,
as a joke to myself. The world of research has become a merciless battleground
of competitive self-interest, a noise in which it is all but impossible to be heard.
Without friendly encouragement, and a pinch of humour, the battle to publish
would not be worth the effort.

Mark Burgess
Oslo University College
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“The Dutch astronomer De Sitter was able to show that
the velocity of propagation of light cannot depend on
the velocity of motion of the body emitting the light...

theoretical investigations of H.A. Lorentz...lead[s] conclusively
to a theory of electromagnetic phenomena, of which the

law of the constancy of the velocity of light in vacuo
is a necessary consequence.”

– Albert Einstein

“Energy of a type never before encountered.”

– Spock, Star Trek: The motion picture.
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Part 1

Fields
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1
Introduction

In contemporary field theory, the word classical is reserved for an analytical
framework in which the local equations of motion provide a complete de-
scription of the evolution of the fields. Classical field theory is a differential
expression of change in functions of space and time, which summarizes the
state of a physical system entirely in terms of smooth fields. The differential
(holonomic) structure of field theory, derived from the action principle, implies
that field theories are microscopically reversible by design: differential changes
experience no significant obstacles in a system and may be trivially undone.
Yet, when summed macroscopically, in the context of an environment, such
individually reversible changes lead to the well known irreversible behaviours
of thermodynamics: the reversal of paths through an environmental landscape
would require the full history of the route taken. Classical field theory thus
forms a basis for both the microscopic and the macroscopic.

When applied to quantum mechanics, the classical framework is sometimes
called the first quantization. The first quantization may be considered the
first stage of a more complete theory, which goes on to deal with the issues
of many-particle symmetries and interacting fields. Quantum mechanics is
classical field theory with additional assumptions about measurement. The
term quantum mechanics is used as a name for the specific theory of the
Schrödinger equation, which one learns about in undergraduate studies, but it is
also sometimes used for any fundamental description of physics, which employs
the measurement axioms of Schrödinger quantum mechanics, i.e. where change
is expressed in terms of fields and groups. In that sense, this book is also about
quantum mechanics, though it does not consider the problem of measurement,
and all of its subtlety.

In the so-called quantum field theory, or second quantization, fields are
promoted from c-number functions to operators, acting upon an additional
set of states, called Fock space. Fock space supplants Slater determinant
combinatorics in the classical theory, and adds a discrete aspect to smooth field

3
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4 1 Introduction

theory. It quantizes the allowed amplitudes of the normal modes of the field
and gives excitations the same denumerable property that ensembles of particles
have; i.e. it adds quanta to the fields, or indistinguishable, countable excitations,
with varying numbers. Some authors refer to these quanta simply as ‘particles’;
however, they are not particles in the classical sense of localizable, pointlike
objects. Moreover, whereas particles are separate entities, quanta are excita-
tions, spawned from a single entity: the quantum field. The second-quantized
theory naturally incorporates the concept of a lowest possible energy state
(the vacuum), which rescues the relativistic theory from negative energies and
probabilities. Such an assumption must be added by hand in the classical theory.
When one speaks about quantum field theory, one is therefore referring to this
‘second quantization’ in which the fields are dynamical operators, spawning
indistinguishable quanta.

This book is not about quantum field theory, though one might occasionally
imagine it is. It will mention the quantum theory of fields, only insofar as to hint
at how it generalizes the classical theory of fields. It discusses statistical aspects
of the classical field to the extent that classical Boltzmann statistical mechanics
suffices to describe them, but does not delve into interactions or combinatorics.
One should not be misled; books on quantum field theory generally begin with
a dose of classical field theory, and many purely classical ideas have come to be
confused with second-quantized ones. Only in the final chapter is the second-
quantized framework outlined for comparison. This book is a summary of the
core methodology, which underpins covariant field theory at the classical level.
Rather than being a limitation, this avoidance of quantum field theory allows one
to place a sharper focus on key issues of symmetry and causality which lie at the
heart of all subsequent developments, and to dwell on the physical interpretation
of formalism in a way which other treatments take for granted.

1.1 Fundamental and effective field theories

The main pursuit of theoretical physics, since quantum mechanics was first
envisaged, has been to explore the maxim that the more microscopic a theory
is, the more fundamental it is. In the 1960s and 1970s it became clear that this
view was too simplistic. Physics is as much about scale as it is about constituent
components. What is fundamental at one scale might be irrelevant to physics at
another scale. For example, quark dynamics is not generally required to describe
the motion of the planets. All one needs, in fact, is an effective theory of planets
as point mass objects. their detailed structure is irrelevant to so many decimal
places that it would be nonsense to attempt to include it in calculations. Planets
are less elementary than quarks, but they are not less fundamental to the problem
at hand.

The quantum theory of fields takes account of dynamical correlations be-
tween the field at different points in space and time. These correlations,
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1.2 The continuum hypothesis 5

called fluctuations or virtual processes, give rise to quantum corrections to the
equations of motion for the fields. At first order, these can also be included
in the classical theory. The corrections modify the form of the equations of
motion and lead to effective field equations for the quantized system. At low
energies, these look like classical field theories with renormalized coefficients.
Indeed, this sometimes results in the confusion of statistical mechanics with the
second quantization. Put another way, at a superficial level all field theories are
approximately classical field theories, if one starts with the right coefficients.
The reason for this is that all one needs to describe physical phenomena is a
blend of two things: symmetry and causal time evolution. What troubles the
second quantization is demonstrating the consistency of this point of view, given
sometimes uncertain assumptions about space, time and the nature of fields.

This point has been made, for instance, by Wilson in the context of the
renormalization group [139]; it was also made by Schwinger, in the early 1970s,
who, disillusioned with the direction that field theory was taking, redefined his
own interpretation of field theory called source theory [119], inspired by ideas
from Shannon’s mathematical theory of communication [123]. The thrust of
source theory is the abstraction of irrelevant detail from calculations, and a
reinforcement of the importance of causality and boundary conditions.

1.2 The continuum hypothesis

Even in classical field theory, there is a difference between particle and field
descriptions of matter. This has nothing a priori to do with wave–particle duality
in quantum mechanics. Rather, it is to do with scale.

In classical mechanics, individual pointlike particle trajectories are character-
ized in terms of ‘canonical variables’ x(t) and p(t), the position and momentum
at time t . Underpinning this description is the assumption that matter can be
described by particles whose important properties are localized at a special place
at a special time. It is not even necessarily assumed that matter is made of
particles, since the particle position might represent the centre of mass of an
entire planet, for instance. The key point is that, in this case, the centre of mass
is a localizable quantity, relevant to the dynamics.

In complex systems composed of many particles, it is impractical to take
into account the behaviour of every single particle separately. Instead, one
invokes the continuum hypothesis, which supposes that matter can be treated
as a continuous substance with bulk properties at large enough scales. A system
with a practically infinite number of point variables is thus reduced to the study
of continuous functions or effective fields. Classically, continuum theory is a
high-level or long-wavelength approximation to the particle theory, which blurs
out the individual particles. Such a theory is called an effective theory.

In quantum mechanics, a continuous wavefunction determines the probability
of measuring a discrete particle event. However, free elementary quantum
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6 1 Introduction

particles cannot be localized to precise trajectories because of the uncertainty
principle. This wavefunction-field is different from the continuum hypothesis
of classical matter: it is a function which represents the state of the particle’s
quantum numbers, and the probability of its position. It is not just a smeared
out approximation to a more detailed theory. The continuous, field nature is
observed as the interference of matter waves in electron diffraction experiments,
and single-particle events are measured by detectors. If the wavefunction is
sharply localized in one place, the probability of measuring an event is very
large, and one can argue that the particle has been identified as a bump in the
field.

To summarize, a sufficient number of localizable particles can be viewed as an
effective field, and conversely a particle can be viewed as a localized disturbance
in an elementary field.

To envisage an elementary field as representing particles (not to be confused
with quanta), one ends up with a picture of the particles as localized disturbances
in the field. This picture is only completely tenable in the non-relativistic limit of
the classical theory, however. At relativistic energies, the existence of particles,
and their numbers, are fuzzy concepts which need to be given meaning by the
quantum theory of fields.

1.3 Forces

In classical mechanics, forces act on particles to change their momentum. The
mechanical force is defined by

F = dp
dt
, (1.1)

where p is the momentum. In field theory, the notion of a dynamical influence
is more subtle and has much in common with the interference of waves. The
idea of a force is of something which acts at a point of contact and creates an
impulse. This is supplanted by the notion of fields, which act at a distance and
interfere with one another, and currents, which can modify the field in more
subtle ways. Effective mechanical force is associated with a quantity called the
energy–momentum tensor θµν or Tµν .

1.4 Structural elements of a dynamical system

The shift of focus, in modern physics, from particle theories to field theories
means that many intuitive ideas need to be re-formulated. The aim of this book is
to give a substantive meaning to the physical attributes of fields, at the classical
level, so that the fully quantized theory makes physical sense. This requires
example.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


1.4 Structural elements of a dynamical system 7

A detailed description of dynamical systems touches on a wide variety of
themes, drawing on ideas from both historical and mathematical sources. The
simplicity of field theory, as a description of nature, is easily overwhelmed by
these details. It is thus fitting to introduce the key players, and mention their
significance, before the clear lines of physics become obscured by the topog-
raphy of a mathematical landscape. There are two kinds of dynamical system,
which may be called continuous and discrete, or holonomic and non-holonomic.
In this book, only systems which are parametrized by continuous, spacetime
parameters are dealt with. There are three major ingredients required in the
formulation of such a dynamical system.

• Assumptions
A model of nature embodies a body of assumptions and approximations.
The assumptions define the ultimate extent to which the theory may be
considered valid. The best that physics can do is to find an idealized
description of isolated phenomena under special conditions. These
conditions need to be borne clearly in mind to prevent the mathematical
machinery from straying from the intended path.

• Dynamical freedom
The capacity for a system to change is expressed by introducing dynam-
ical variables. In this case, the dynamical variables are normally fields.
The number of ways in which a physical system can change is called its
number of degrees of freedom. Such freedom describes nothing unless
one sculpts out a limited form from the amorphous realm of possibility.
The structure of a dynamical system is a balance between freedom and
constraint.

The variables in a dynamical system are fields, potentials and sources.
There is no substantive distinction between field, potential and source,
these are all simply functions of space and time; however, the words
potential or source are often reserved for functions which are either static
or rigidly defined by boundary conditions, whereas field is reserved for
functions which change dynamically according to an equation of motion.

• Constraints
Constraints are restrictions which determine what makes one system
with n variables different from another system with n variables. The
constraints of a system are both dynamical and kinematical.

– Equations of motion
These are usually the most important constraints on a system. They
tell us that the dynamical variables cannot take arbitrary values; they
are dynamical constraints which express limitations on the way in
which dynamical variables can change.
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8 1 Introduction

– Sources: external influences
Physical models almost always describe systems which are isolated
from external influences. Outside influences are modelled by intro-
ducing sources and sinks. These are perturbations to a closed system
of dynamical variables whose value is specified by some external
boundary conditions. Sources are sometimes called generalized
forces. Normally, one assumes that a source is a kind of ‘immovable
object’ or infinite bath of energy whose value cannot be changed
by the system under consideration. Sources are used to examine
what happens under controlled boundary conditions. Once sources
are introduced, conservation laws may be disturbed, since a source
effectively opens a system to an external agent.

– Interactions
Interactions are couplings which relate changes in one dynamical
variable to changes in another. This usually occurs through a
coupling of the equations of motion. Interaction means simply that
one dynamical variable changes another. Interactions can also be
thought of as internal sources, internal influences.

– Symmetries and conservation laws
If a physical system possesses a symmetry, it indicates that even
though one might try to affect it in a specific way, nothing significant
will happen. Symmetries exert passive restrictions on the behaviour
of a system, i.e. kinematical constraints. The conservation of book-
keeping parameters, such as energy and momentum, is related to
symmetries, so geometry and conservation are, at some level, related
topics.

The Lagrangian of a dynamical theory must contain time derivatives if it is to be
considered a dynamical theory. Clearly, if the rate of change of the dynamical
variables with time is zero, nothing ever happens in the system, and the most
one can do is to discuss steady state properties.
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2
The electromagnetic field

Classical electrodynamics serves both as a point of reference and as the point
of departure for the development of covariant field theories of matter and
radiation. It was the observation that Maxwell’s equations predict a universal
speed of light in vacuo which led to the special theory of relativity, and
this, in turn, led to the importance of perspective in identifying generally
applicable physical laws. It was realized that the symmetries of special relativity
meant that electromagnetism could be reformulated in a compact form, using
a vector notation for spacetime unified into a single parameter space. The
story of covariant fields therefore begins with Maxwell’s four equations for the
electromagnetic field in 3+ 1 dimensions.

2.1 Maxwell’s equations

In their familiar form, Maxwell’s equations are written (in SI units)


∇ · E = ρe

ε0
(2.1a)


∇ × E = −∂B
∂t

(2.1b)


∇ · B = 0 (2.1c)

c2( 
∇ × B) = J
ε0
+ ∂E
∂t
. (2.1d)

ρe is the charge density, J is the electric current density and c2 = (ε0µ0)
−1 is

the speed of light in a vacuum squared. These are valid, as they stand, in inertial
frames in flat (3+1) dimensional spacetimes. The study of covariant field theory
begins by assuming that these equations are true, in the sense that any physical
laws are ‘true’ – i.e. that they provide a suitably idealized description of the
physics of electromagnetism. We shall not attempt to follow the path which

9
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10 2 The electromagnetic field

led to their discovery, nor explore their limitations. Rather, we are interested
in summarizing their form and substance, and in identifying symmetries which
allow them to be expressed in an optimally simple form. In this way, we hope
to learn something deeper about their meaning, and facilitate their application.

2.1.1 Potentials

This chapter may be viewed as a demonstration of how applied covariance leads
to a maximally simple formulation of Maxwell’s equations. A more complete
understanding of electromagnetic covariance is only possible after dealing with
the intricacies of chapter 9, which discusses the symmetry of spacetime. Here,
the aim is to build an algorithmic understanding, in order to gain a familiarity
with key concepts for later clarification.

In texts on electromagnetism, Maxwell’s equations are solved for a number
of problems by introducing the idea of the vector and scalar potentials. The po-
tentials play an important role in modern electrodynamics, and are a convenient
starting point for introducing covariance.

The electromagnetic potentials are introduced by making use of two theo-
rems, which allow Maxwell’s equations to be re-written in a simplified form. In
a covariant formulation, one starts with these and adds the idea of a unified
spacetime. Spacetime is the description of space and time which treats the
apparently different parameters x and t in a symmetrical way. It does not claim
that they are equivalent, but only that they may be treated together, since both
describe different aspects of the extent of a system. The procedure allows us to
discover a simplicity in electromagnetism which is not obvious in eqns. (2.1).

The first theorem states that the vanishing divergence of a vector implies that
it may be written as the curl of some other vector quantity A:


∇ · v = 0 ⇒ v = 
∇ × A. (2.2)

The second theorem asserts that the vanishing of the curl of a vector implies that
it may be written as the gradient of some scalar φ:


∇ × v = 0 ⇒ v = 
∇φ. (2.3)

The deeper reason for both these theorems, which will manifest itself later, is
that the curl has an anti-symmetric property. The theorems, as stated, are true
in a homogeneous, isotropic, flat space, i.e. in a system which does not have
irregularities, but they can be generalized to any kind of space. From these, one
defines two potentials: a vector potential Ai and a scalar φ, which are auxiliary
functions (fields) of space and time.

The physical electromagnetic field is the derivative of the potentials. From
eqn. (2.1c), one defines

B = 
∇ × A. (2.4)
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2.1 Maxwell’s equations 11

This form completely solves that equation. One equation has now been
automatically and completely solved by re-parametrizing the problem in terms
of a new variable. Eqn. (2.1c) tells us now that


∇ × E = − ∂
∂t
( 
∇ × A)


∇ ×
(

E+ ∂A
∂t

)
= 0. (2.5)

Consequently, according to the second theorem, one can write

E+ ∂A
∂t
= −
∇φ, (2.6)

giving

E = −
∇φ − ∂A
∂t
. (2.7)

The minus sign on the right hand side of eqn. (2.6) is the convention which is
used to make attractive forces positive and repulsive forces negative.

Introducing potentials in this way is not a necessity: many problems in
electromagnetism can be treated by solving eqns. (2.1) directly, but the intro-
duction often leads to significant simplifications when it is easier to solve for
the potentials than it is to solve for the fields.

The potentials themselves are a mixed blessing: on the one hand, the
re-parametrization leads to a number of helpful insights about Maxwell’s equa-
tions. In particular, it reveals symmetries, such as the gauge symmetry, which
we shall explore in detail later. It also allows us to write the matter–radiation
interaction in a local form which would otherwise be impossible. The price one
pays for these benefits is the extra conceptual layers associated with the potential
and its gauge invariance. This confuses several issues and forces us to deal with
constraints, or conditions, which uniquely define the potentials.

2.1.2 Gauge invariance

Gauge invariance is a symmetry which expresses the freedom to re-define the
potentials arbitrarily without changing their physical significance. In view of
the theorems above, the fields E and B are invariant under the re-definitions

A → A′ = A+ 
∇s

φ→ φ′ = φ − ∂s

∂t
. (2.8)

These re-definitions are called gauge transformations, and s(x) is an arbitrary
scalar function. The transformation means that, when the potentials are used
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12 2 The electromagnetic field

as variables to solve Maxwell’s equations, the parametrization of physics is not
unique. Another way of saying this is that there is a freedom to choose between
one of many different values of the potentials, each of which leads to the same
values for the physical fields E and B. One may therefore choose whichever
potential makes the solution easiest. This is a curious development. Why make a
definite problem arbitrary? Indeed, this freedom can cause problems if one is not
cautious. However, the arbitrariness is unavoidable: it is deeply connected with
the symmetries of spacetime (the Lorentz group). Occasionally gauge invariance
leads to helpful, if abstract, insights into the structure of the field theory. At other
times, it is desirable to eliminate the fictitious freedom it confers by introducing
an auxiliary condition which pins down a single φ,A pair for each value of
E,B. As long as one uses a potential as a tool to solve Maxwell’s equations,
it is necessary to deal with gauge invariance and the multiplicity of equivalent
solutions which it implies.

2.1.3 4-vectors and (n + 1)-vectors

Putting the conceptual baggage of gauge invariance aside for a moment, one
proceeds to make Maxwell’s equations covariant by combining space and time
in a unified vector formulation. This is easily done by looking at the equations
of motion for the potentials. The equations of motion for the vector potentials
are found as follows: first, substituting for the electric field in eqn. (2.1a) using
eqn. (2.7), one has

−∇2φ − ∂

∂t
(∇ · A) = ρe

ε0
. (2.9)

Similarly, using eqn. (2.4) in (2.1d), one obtains

c2 
∇ × ( 
∇ × A) = J
ε0
+ ∂

∂t

(
−
∇φ − ∂A

∂t

)
. (2.10)

Using the vector identity


∇ × ( 
∇ × A) = 
∇( 
∇ · A)− ∇2A (2.11)

to simplify this, one obtains

c2

(
1

c2

∂2

∂t2
− ∇2

)
A = j

ε0
− 
∇

(
∂φ

∂t
+ c2( 
∇ · A)

)
. (2.12)

It is already apparent from eqns. (2.8) that the potentials φ,A are not unique.
This fact can now be used to tidy up eqn. (2.12), by making a choice for φ and
A:


∇ · A+ 1

c2

∂φ

∂t
= 0. (2.13)
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2.1 Maxwell’s equations 13

The right hand side of eqn. (2.13) is chosen to be zero, but, of course, any
constant would do. Making this arbitrary (but not random) choice, is called
choosing a gauge. It partially fixes the freedom to choose the scalar field s in
eqns. (2.8). Specifically, eqn. (2.13) is called the Lorentz gauge. This common
choice is primarily used to tidy up the equations of motion, but, as noted above,
at some point one has to make a choice anyway so that a single pair of vector
potentials (scalar, vector) corresponds to only one pair of physical fields (E,B).

The freedom to choose the potentials is not entirely fixed by the adoption of
the Lorentz condition, however, as we may see by substituting eqn. (2.8) into
eqn. (2.13). Eqn. (2.13) is not completely satisfied; instead, one obtains a new
condition (

∇2 − ∂2

∂t2

)
s = 0. (2.14)

A second condition is required in general to eliminate all of the freedom in the
vector potentials.

General covariance is now within reach. The symmetry with which space and
time, and also φ and A, enter into these equations leads us to define spacetime
vectors and derivatives:

∂µ =
(

1

c
∂t , 
∇

)
(2.15)

xµ =
(

ct
x

)
, (2.16)

with Greek indices µ, ν = 0, . . . , n and x0 ≡ ct . Repeated indices are summed
according to the usual Einstein summation convention, and we define1

= ∂µ∂µ = − 1

c2
∂2

t + ∇2. (2.17)

In n space dimensions and one time dimension (n = 3 normally), the (n + 1)
dimensional vector potential is defined by

Aµ =
(
φ/c
A

)
. (2.18)

Using these (n + 1) dimensional quantities, it is now possible to re-write
eqn. (2.12) in an extremely beautiful and fully covariant form. First, one
re-writes eqn. (2.10) as

− A = J
c2ε0

− 
∇∂µAµ. (2.19)

1 In some old texts, authors wrote 2 for the same operator, since it is really a four-sided
(four-dimensional) version of ∇2.
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14 2 The electromagnetic field

Next, one substitutes the gauge condition eqn. (2.13) into eqn. (2.9), giving

− φ = ρe

ε0
. (2.20)

Finally, the (n + 1) dimensional current is defined by

Jµ =
(

cρe

J

)
, (2.21)

and we end up with the (n + 1) dimensional field equation

− Aµ = µ0 Jµ, (2.22)

where c2 = (µ0ε0)
−1 has been used. The potential is still subject to the

constraint in eqn. (2.13), which now appears as

∂µAµ = 0. (2.23)

2.1.4 The field strength

The new attention given to the potential Aµ should not distract from the main
aim of electromagnetism: namely to solve Maxwell’s equations for the electric
and magnetic fields. These two physical components also have a covariant
formulation; they are now elegantly unified as the components of a rank 2 tensor
which is denoted Fµν and is defined by

Fµν = ∂µAν − ∂ν Aµ; (2.24)

the tensor is anti-symmetric

Fµν = −Fνµ. (2.25)

This anti-symmetry, which was alluded to earlier, is the reason for the gauge
invariance. The form of eqn. (2.24) is like a (3 + 1) dimensional curl,
expressed in index notation. The explicit components of this field tensor are
the components of the electric and magnetic field components, in a Cartesian
basis E = (E1, E2, E3), etc.:

Fµν =




0 −E1/c −E2/c −E3/c
E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0


 . (2.26)

In chapter 9, it will be possible to provide a complete understanding of how
the symmetries of spacetime provide an explanation for why the electric and
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2.1 Maxwell’s equations 15

magnetic components of this field appear to be separate entities, in a fixed
reference frame.

With the help of the potentials, three of Maxwell’s equations (eqns. (2.1a,c,d))
are now expressed in covariant form. Eqn. (2.1c) is solved implicitly by the
vector potential. The final equation (and also eqn. (2.1c), had one not used the
vector potential) is an algebraic identity, called the Jacobi or Bianchi identity.
Moreover, the fact that it is an identity is only clear when we write the equations
in covariant form. The final equation can be written

εµνλρ∂µFνλ = 0, (2.27)

where εµνλρ is the completely anti-symmetric tensor in four dimensions, defined
by its components in a Cartesian basis:

εµνλρ =


+1 µνλρ = 0123 and even permutations
−1 µνλρ = 0132 and other odd permutations
0 otherwise.

(2.28)

This equation is not a condition on Fµν , in spite of appearances. The anti-
symmetry of both εµνλρ and Fµν implies that the expansion of eqn. (2.27),
in terms of components, includes many terms of the form (∂µ∂ν − ∂ν∂µ)Aλ,
the sum of which vanishes, provided Aλ contains no singularities. Since the
vector potential is a continuous function in all physical systems,2 the truth of the
identity is not in question here.

The proof that this identity results in the two remaining Maxwell’s equations
applies only in 3+ 1 dimensions. In other numbers of dimensions the equations
must be modified. We shall not give it here, since it is easiest to derive using the
index notation and we shall later re-derive our entire formalism consistently in
that framework.

2.1.5 Covariant field equations using Fµν

The vector potential has been used thus far, because it was easier to identify the
structure of the (3 + 1) dimensional vectors than to guess the form of Fµν , but
one can now go back and re-express the equations of motion in terms of the
so-called physical fields, or field strength Fµν . The arbitrary choice of gauge in
eqn. (2.22) is then eliminated.

Returning to eqn. (2.9) and adding and subtracting ∂2
0φ, one obtains

− φ − ∂0(∂ν Aν) = ρe

ε0
. (2.29)

2 The field strength can never change by more than a step function, because of Gauss’ law: the
field is caused by charges, and a point charge (delta function) is the most singular charge that
exists physically. This ensures the continuity of Aµ.
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16 2 The electromagnetic field

Adding this to eqn. (2.19) (without choosing a value for ∂ν Aν), one has

− Aµ = Jµ

c2ε0
− ∂µ(∂ν Aν). (2.30)

Taking the last term on the right hand side over to the left and using eqn. (2.17)
yields

∂ν(∂
µAν − ∂ν Aµ) = Jµ

c2ε0
. (2.31)

The parenthesis on the left hand side is now readily identified as

∂νFµν = µ0 Jµ. (2.32)

This is the covariant form of the field equations for the physical fields. It
incorporates two of the four Maxwell equations as before (eqn. (2.1c) is implicit
in the structure we have set up). The final eqn. (2.27) is already expressed in
terms of the physical field strength, so no more attention is required.

2.1.6 Two invariants

There are two invariant, scalar quantities (no free indices) which can be written
down using the physical fields in (3+ 1) dimensions. They are

F = FµνFµν (2.33)

G = εµνλρFµνFλρ. (2.34)

The first of these evaluates to

F = 2

(
B2 − 1

c2
E2

)
. (2.35)

In chapter 4 this quantity is used to construct the action of the system: a
generating function the dynamical behaviour. The latter gives

G = E · B. (2.36)

In four dimensions, this last quantity vanishes for a self-consistent field: the
electric and magnetic components of a field (resulting from the same source)
are always perpendicular. In other numbers of dimensions the analogue of this
invariant does not necessarily vanish.

The quantity F has a special significance. It turns out to be a Lagrangian,
or generating functional, for the electromagnetic field. It is also related to the
energy density of the field by a simple transformation.
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2.1 Maxwell’s equations 17

2.1.7 Gauge invariance and physical momentum

As shown, Maxwell’s equations and the physical field Fµν are invariant under
gauge transformations of the form

Aµ→ Aµ + (∂µs). (2.37)

It turns out that, when considering the interaction of the electromagnetic field
with matter, the dynamical variables for matter have to change under this gauge
transformation in order to uphold the invariance of the field equations.

First, consider classical particles interacting with an electromagnetic field.
The force experienced by classical particles with charge q and velocity v is the
Lorentz force

FEM = q(E+ v× B). (2.38)

The total force for an electron in an external potential V and an electromagnetic
field is therefore

dpi

dt
= −e(Ei + εi jkv j Bk)− ∂i V . (2.39)

Expressing E and B in terms of the vector potential, we have

∂t(pi − eAi ) = −eFi j ẋ j − ∂i (V + eAt). (2.40)

This indicates that, apart from a gauge-invariant Biot–Savart contribution in the
first term on the right hand side of this equation, the electromagnetic interaction
is achieved by replacing the momentum pi and the energy E by

pµ→ (pµ − eAµ). (2.41)

The Biot–Savart term can also be accounted for in this way if we go over to a
relativistic, Lorentz-covariant form of the equations:

d

dτ
(pµ − eAµ)+ Fµν I νl = 0, (2.42)

where Iµl = −edxµ/dτ ∼ I dl is the current in a length of wire dx (with
dimensions current × length) and τ is the proper time. In terms of the more
familiar current density, we have

d

dτ
(pµ − eAµ)+

∫
dσ Fµν J ν = 0. (2.43)

We can now investigate what happens under a gauge transformation. Clearly,
these equations of motion can only be invariant if pµ also transforms so as to
cancel the term, ∂µs, in eqn. (2.37). We must have in addition

pµ→ pµ + e∂µs. (2.44)
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18 2 The electromagnetic field

Without a deeper appreciation of symmetry, this transformation is hard to under-
stand. Arising here in a classical context, where symmetry is not emphasized,
it seems unfamiliar. What is remarkable, however, is that the group theoretical
notions of quantum theory of matter makes the transformation very clear. The
reason is that the state of a quantum mechanical system is formulated very
conveniently as a vector in a group theoretical vector space. Classically, po-
sitions and momenta are not given a state-space representation. In the quantum
formulation, gauge invariance is a simple consequence of the invariance of
the equations of motion under changes of the arbitrary complex phase of the
quantum state or wavefunction.

In covariant vector language, the field equations are invariant under a re-
definition of the vector potential by

Aµ→ Aµ + (∂µs), (2.45)

where s(x) is any scalar field. This symmetry is not only a mathematical
curiosity; it also has a physical significance, which has to do with conservation.

2.1.8 Wave solutions to Maxwell’s equations

The equation for harmonic waves W (x), travelling with speed v, is given by(
∇2 − 1

v2

∂2

∂t2

)
W (x) = 0. (2.46)

If the speed of the waves is v = c, this may be written in the compact form

− W (x) = 0. (2.47)

It should already be apparent from eqn. (2.22) that Maxwell’s equations have
wavelike solutions which travel at the speed of light. Writing eqn. (2.22) in
terms of the field strength tensor, we have

− Fµν = µ0(∂µ Jν − ∂ν Jµ). (2.48)

In the absence of electric charge Jµ = 0, the solutions are free harmonic waves.
When Jµ �= 0, Maxwell’s equations may be thought of as the equations of
forced oscillations, but this does not necessarily imply that all the solutions
of Maxwell’s equations are wavelike. The Fourier theorem implies that any
function may be represented by a suitable linear super-position of waves. This is
understood by noting that the source in eqn. (2.48) is the spacetime ‘curl’ of the
current, which involves an extra derivative. Eqn. (2.32) is a more useful starting
point for solving the equations for many sources. The free wave solutions for
the field are linear combinations of plane waves with constant coefficients:

Aµ(k) = Ck exp(ikµxµ). (2.49)
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2.1 Maxwell’s equations 19

By substituting this form into the equation

− Aµ = 0, (2.50)

one obtains a so-called dispersion relation for the field:

kµkµ = k2 = k2 − ω2/c2 = 0. (2.51)

This equation may be thought of as a constraint on the allowed values of k. The
total field may be written compactly in the form

Aµ(x) =
∫

dn+1k

(2π)n+1
eikµxµ Aµ(k) δ(k

2), (2.52)

where A(k)µ represents the amplitude of the wave with wavenumber ki , and
the vector index specifies the polarization of the wave modes. From the gauge
condition in eqn. (2.23), we have

kµA(k)µ = 0. (2.53)

The delta-function constraint in eqn. (2.52) ensures that the combination of
waves satisfies the dispersion relation in eqn. (2.51). If we use the property
of the delta function expressed in Appendix A, eqn. (A.15), then eqn. (2.52)
may be written

Aµ(x) = ε̂µ
∫

dn+1k

(2π)n+1
ei(ki xi−ωt) A(k)

1

c ki

(
∂ω

∂ki

)
×

(
δ(k0 −

√
k2)+ δ(k0 +

√
k2)

)
. (2.54)

The delta functions ensure that the complex exponentials are waves travelling at
the so-called phase velocity

vi
ph = ±

ω

ki
(2.55)

where ω and ki satisfy the dispersion relation. The amplitude of the wave clearly
changes at the rate

vi
gr =

∂ω

∂ki
, (2.56)

known as the group velocity. By choosing the coefficient C(k) for each
frequency and wavelength, the super-position principle may be used to build
up any complementary (steady state) solution to the Maxwell field. We shall use
this approach for other fields in chapter 5.
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20 2 The electromagnetic field

2.2 Conservation laws

The simple observation of ‘what goes in must come out’ applies to many
physical phenomena, including electromagnetism, and forms a predictive frame-
work with rich consequences. Conservation is a physical fact, which must be
reflected in dynamical models. Just as economics uses money as a book-keeping
parameter for transactions, so physics accounts for transactions (interactions)
with energy, charge and a variety of similarly contrived labels which have proven
useful in keeping track of ‘stock’ in the physical world.

2.2.1 Current conservation

Perhaps the central axiom of electromagnetism is the conservation of total
electric charge. An algebraic formulation of this hypothesis provides an
important relationship, which will be referred to many times. Consider the
electric current I , defined in terms of the rate of flow of charge:

I =
∫

dσ · J = dQ

dt
. (2.57)

Expressing the charge Q as the integral over the charge density, one has∫
∇ · Jdσ = −∂t

∫
ρedσ. (2.58)

Comparing the integrand on the left and right hand sides gives

∂ρe

∂t
+ 
∇ · J = 0, (2.59)

or, in index notation,

∂i J i = −∂tρe. (2.60)

This may now be expressed in 4-vector language (or (n + 1)-vector language),
and the result is:

∂µ Jµ = 0. (2.61)

This result is known as a continuity condition or a conservation law. All
conservation laws have this essential form, for some (n+1) dimensional current
vector Jµ. The current is then called a conserved current. In electromagnetism
one can verify that the conservation of current is compatible with the equations
of motion very simply in eqn. (2.32) by taking the 4-divergence of the equation:

∂µ∂νFµν = µ0 ∂µ Jµ = 0. (2.62)

The fact that the left hand size is zero follows directly from the anti-symmetrical
and non-singular nature of Fµν .
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2.2 Conservation laws 21

2.2.2 Poynting’s vector and energy conservation

The electromagnetic field satisfies a continuity relation of its own. This relation
is arrived at by considering the energy flowing though a unit volume of the field.
The quantities defined below will later re-emerge in a more general form as the
so-called field theoretical energy–momentum tensor.

The passage of energy through an electromagnetic system may be split up into
two contributions. The first is the work done on any electric charges contained
in the volume. This may be expressed in terms of the current density and the
electric field as follows. The rate at which work is done on a moving charge is
given by the force vector dotted with the rate of change of the displacement (i.e.
the velocity), F · v. The force, in turn, is given by the charge multiplied by the
electric field strength qE, which we may write in terms of the charge density ρe

inside a spatial volume dσ as ρeEdσ . The rate at which work is done on charges
may now be expressed in terms of an external source or current, by identifying
the external current to be the density of charge which is flowing out of some
volume of space with a velocity v

Jext = ρev. (2.63)

We have

Rate of work = E · Jextdσ. (2.64)

The second contribution to the energy loss from a unit volume is due to the
flux of radiation passing through the surface (S) which bounds the infinitesimal
volume (σ ). This flux of radiation is presently unknown, so we shall refer to it
as S. If we call the total energy density H, then we may write that the loss of
energy from an infinitesimal volume is the sum of these two contributions:

−∂t

∫
σ

H dσ =
∫

S
S · dS+

∫
σ

E · Jextdσ. (2.65)

In 1884, Poynting identified H and S using Maxwell’s equations. We shall now
do the same. The aim is to eliminate the current Jext from this relation in order
to express H and S in terms of E and B only. We begin by using the fourth
Maxwell equation (2.1d) to replace Jext in eqn. (2.65):

E · Jext = E · (∇ × B)
µ0

− ε0 E · ∂t E. (2.66)

Using the vector identity in Appendix A, eqn. (A.71), we may write

E · (∇ × B) = ∇ · (B× E)+ B · (∇ × E). (2.67)

The second Maxwell eqn. (2.1b) may now be used to replace ∇ × E, giving

E · (∇ × B) = ∇ · (B× E)− B∂t B. (2.68)
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22 2 The electromagnetic field

Finally, noting that

1

2
∂t(X · X) = X∂t X, (2.69)

and using this with X = E and X = B in eqns. (2.66) and (2.68), we may write:

E · Jext = ∇ · (B× E)
µ0

− 1

2
∂t

(
ε0E · E+ 1

µ0
B · B

)
. (2.70)

This equation has precisely the form of eqn. (2.65), and the pieces can now be
identified:

S0 = H = 1

2

(
ε0E · E+ 1

µ0
B · B

)

≡ 1

2
(E · D+ B ·H) (2.71)

Si = S = E× B
cµ0

≡ E×H
c

. (2.72)

The new fields D = ε0E and µ0H = B have been defined. The energy density H
is often referred to as a Hamiltonian for the free electromagnetic field, whereas
S is referred to as the Poynting vector.

∂µSµ = (
F0µ Jµext

)
(2.73)

is the rate at which work is done by an infinitesimal volume of the field. It
is clear from the appearance of an explicit zero component in the above that
this argument cannot be the whole story. One expects a generally covariant
expression. The expression turns out to be

∂µθ
µν

Maxwell = Fµν Jµ, (2.74)

where θµν is the energy–momentum tensor. Notice how it is a surface integral
which tells us about flows in and out of a volume of space. One meets this idea
several times, in connection with boundary conditions and continuity.

2.3 Electromagnetism in matter

To describe the effect of matter on the electromagnetic field in a covariant way,
one may use either a microscopic picture of the field interacting with matter at
the molecular level, or a macroscopic, effective field theory, which hides the
details of these interactions by defining equivalent fields.
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2.3 Electromagnetism in matter 23

Fig. 2.1. Matter is not electrically neutral at the microscopic level.

2.3.1 Dielectrics

One tends to think of ordinary matter as being electrically neutral, but of course
it is composed of atoms and molecules, which have a centre of positive charge
and a centre of negative charge – and these two centres do not necessarily lie at
the same place. The more symmetrical a molecule is, the more neutral it is: for
instance, the noble gases have highly symmetrical electron orbits and thus have
almost no polarizability on average; the water molecule, on the other hand, has
an asymmetry which allows a trickle of water to be attracted by a charged comb.

When an electric field is switched on in the vicinity of a dielectric material, the
centres of positive and negative charge in each molecule are forced apart slightly
(see figure 2.1) in a substance-dependent way. We say that such a molecule has
a certain polarizability.

For classical external fields, atoms and molecules behave like dipoles, i.e.
there is a clear separation of the charge into two parts: a positive pole and a
negative pole. But we would be doing a disservice to the radiation field (not to
mention the quantum theory) if we did not recall that the field has a wave nature
and a characteristic wavelength. Molecules behave like dipoles if the wavelength
of the external field is large compared to the size of the molecule – since then
there is a clear direction to the field at every point inside the molecule’s charge
cloud. If, on the other hand, the wavelength of the field is of the order of the size
of the molecule or less, then the field can reverse direction inside the molecule
itself. The charge then gets re-distributed into a more complex pattern, and so-
called quadrapole moments and perhaps higher ‘pole moments’ must be taken
into account. In this text, we shall only consider the dipole approximation.

The simplest way to model the polarization of an atom or molecule is to view
it as opposite charges coupled together by a spring. This model is adequate for
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24 2 The electromagnetic field

many materials, provided the external electric field is not too strong. Materials
which behave like this are called linear media. Initially, the centres of positive
and negative charge are in the same place, but, as the external field is switched
on, they are pulled further and further apart, balanced by the restoring force of
the spring. This separation of charge creates a new local field, which tends to
cancel the external field inside the molecule, but to reinforce it at the poles. If the
charge clouds have charge q and the spring constant is κ then the force equation
is simply

F = −κs = Eq, (2.75)

where s is the displacement of the charges from one another, in the rest frame
of the atoms. The separation multiplied by the charge gives the effective
contribution to the field at the poles of a single molecule, denoted the dipole
moment d:

d = |s|q = q2

κ
E. (2.76)

The quantity q2/κ is denoted by α and is called the polarizability; it denotes the
effective strength of the resistance to polarization. The polarization field is

P = ρN d = ρNαE (2.77)

where ρN is the total number of molecules per unit volume. It is proportional
to the field of particles displacements si (x) and it hides some non-covariant
assumptions (see the next section). Normally speaking, one writes q = −e,
where −e is the charge on the electron. Then,

αstatic = −q2

κ
. (2.78)

If one considers time-varying fields, or specifically waves of the form

E = E0ei(k·x−ωt), (2.79)

it is found that, for a single optically active electron (i.e. one in an orbit which
can be affected by an external field), the equation of motion is now that of a
damped harmonic oscillator:

m(ω0 + iγω − ω2)s = −eE0, (2.80)

where ω2
0 = κ/m and γ is a damping term. Using this equation to replace for s

in eqn. (2.76), we get

α(ω) = q2/m

(ω2
0 + iγω − ω2)

. (2.81)
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2.3 Electromagnetism in matter 25

Thus the polarizability is a frequency-dependent quantity. This explains why a
prism can split a mixture of white light into its component frequencies. A further
definition is of interest, namely the electric susceptibility χe = Nα(ω)/ε0. For
ρN particles per unit volume, this is often expressed in terms of the plasma
frequency ω2

p = Ne2/m. Thus,

P = ε0χeE. (2.82)

This is closely related to the change in the refractive index, n2 = 1 + χe, of
a material due to polarization, when µr = 1 (which it nearly always is). In
real space, we note from eqn. (2.80) that the polarization satisfies a differential
equation

(∂2
t − γ ∂t + ω2

0)P =
q2

m
ρN E (2.83)

and thus the real space susceptibility can be thought of as a Green function for
the differential operator and E may be thought of as a source.

P(t) = ε0

∫
dt χ(t − t ′)E. (2.84)

χ(t− t ′) is taken to satisfy retarded boundary conditions, which, in turn, implies
that its real and imaginary parts in terms of ω are related. The relationship is
referred to as a Kramers–Kronig relation, and is simply a consequence of the
fact that a retarded Green function is real.

2.3.2 Covariance and relative motion: the Doppler effect

The frequency-dependent expressions above are true only in the rest frame of the
atoms. The results are not covariant with respect to moving frames of reference.
When one studies solid state systems, such as glasses and crystals, these
expressions are quite adequate, because the system has a naturally preferred
rest frame and the atoms in the material do not move relative to one another, on
average. However, in gaseous matter or plasmas, this is not the case: the thermal
motion of atoms relative to one another can be important, because of the Doppler
effect. This fact can be utilized to good effect; for example, in laser cooling the
motion of atoms relative to a laser radiation field can be used to bring all of the
atoms into a common rest frame by the use of a resonant, frequency-dependent
interaction. A Galilean-covariant expression can be written by treating the field
as one co-moving mass, or as a linear super-position of co-moving masses. With
only one component co-moving, the transformation of the position of an atom
in the displacement field can be written

x(t)→ x+ vt, (2.85)
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26 2 The electromagnetic field

where v is the velocity of the motion relative to some reference frame (usually
the container of the gaseous matter, or the laboratory frame). This means that
the invariant form (kx − ωt) is transformed into

k · x− ωt → k · (x+ vt)− ωt = k · x− ωβ t, (2.86)

where

ωβ = ω(1− k̂ · β) = ω(1− k̂ · v/c). (2.87)

Thus, the expressions above can be used, on replacing ω with a sum over all ωβ ,
and integrated over all the values of the velocity vector β i of which the field is
composed. The polarizability takes the form

α(ω) = q2/m

(ω2
0 + iγω − ω2

β)
. (2.88)

where

ωβ = (1− k̂iβi )ω. (2.89)

2.3.3 Refractive index in matter

It appears that the introduction of a medium destroys the spacetime covariance
of the equations of motion. In fact this is false. What is interesting is that
covariance can be restored by re-defining the (n + 1) dimensional vectors so as
to replace the speed of light in a vacuum with the effective speed of light in a
medium. The speed of light in a dielectric medium is

v = c

n
(2.90)

where n = εrµr > 1 is the refractive index of the medium.
Before showing that covariance can be restored, one may consider the

equation of motion for waves in a dielectric medium from two perspectives.
The purpose is to relate the multifarious fields to the refractive index itself. It is
also to demonstrate that the polarization terms can themselves be identified as
currents which are set in motion by the electric field. In other words, we will
show the equivalence of (i) P �= 0, but Jµ = 0, and (ii) P = 0 with Jµ given by
the current resulting from charges on springs! Taking

J 0 = cρe J i = −ρN ec
dsi

dt
, (2.91)

the current is seen to be a result of the net charge density set in motion by the
field. This particular derivation applies only in 3+ 1 dimensions.
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2.3 Electromagnetism in matter 27

To obtain the wave equation we begin with the Bianchi identity

εi jk∂ j Ek + ∂t Bi = 0, (2.92)

and then operate from the left with εilm∂l . Using the identity (A.38) (see
Appendix A) for the product of two anti-symmetric tensors, we obtain[∇2 Ei − ∂i (∂

j E j )
]+ εilm∂l∂t Bi = 0. (2.93)

Taking ∂t of the fourth Maxwell equation, one obtains

1

µ0µr
εi jk∂ j∂t Bk = ∂t Ji + ε0εr

∂2 Ei

∂t2
. (2.94)

These two equations can be used to eliminate Bi , giving an equation purely
in terms of the electric field. Choosing the charge distribution to be isotropic
(uniform in space), we have ∂iρe = 0, and thus[

∇2 − n2

c2

∂2

∂t2

]
Ei = µ0µr∂t Ji . (2.95)

In this last step, we used the definition of the refractive index in terms of εr:

n2 = εrµr = (1+ χe)µr. (2.96)

This result is already suggestive of the fact that Maxwell’s equations in a
medium can be written in terms of an effective speed of light.

We may now consider the two cases: (i) P �= 0, but Jµ = 0,[
∇2 − n2

c2

∂2

∂t2

]
Ei = 0; (2.97)

and (ii) P = 0 (n = 1), Jµ �= 0.[
∇2 − 1

c2

∂2

∂t2

]
Ei = µ0µr

−ρN e2ω2/m · Ei

(ω2
0 + iγω − ω2)

. (2.98)

The differential operators on the left hand side can be replaced by k2 and ω2, by
using the wave solution (2.79) for the electric field to give a ‘dispersion relation’
for the field. This gives:

k2

ω2
= 1

c2

(
1+ µr

ε0

ρN e2ω2/m

(ω2
0 + iγω − ω2)

)

= n2

c2
. (2.99)
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28 2 The electromagnetic field

So, from this slightly cumbersome expression for the motion of charges, one
derives the microscopic form of the refractive index. In fact, comparing
eqns. (2.99) and (2.98), one sees that

n2 = 1+ ρNα(ω)µr

ε0
. (2.100)

Since µr is very nearly unity in all materials that waves penetrate, it is common
to ignore this and write

n2 ∼ 1+ χe. (2.101)

The refractive index is a vector in general, since a material could have a
different index of refraction in different directions. Such materials are said to be
anisotropic. One now has both microscopic and macroscopic descriptions for
the interaction of radiation with matter, and it is therefore possible to pick and
choose how one wishes to represent this physical system. The advantage of the
microscopic formulation is that it can easily be replaced by a quantum theory
at a later stage. The advantage of the macroscopic field description is that it is
clear why the form of Maxwell’s equations is unaltered by the specific details of
the microscopic interactions.

2.4 Aharonov–Bohm effect

The physical significance of the vector potential Aµ (as opposed to the field
Fµν) was moot prior to the arrival of quantum mechanics. For many, the
vector potential was merely an artifice, useful in the computation of certain
boundary value problems. The formulation of quantum mechanics as a local
field theory established the vector potential as the fundamental local field, and
the subsequent attention to gauge symmetry fuelled pivotal developments in the
world of particle physics. Today, it is understood that there is no fundamental
difference between treating the basic electromagnetic interaction as a rank 2
anti-symmetric tensor Fµν , or as a vector with the additional requirement of
gauge invariance. They are equivalent representations of the problem. In
practice, however, the vector potential is the easier field to work with, since
it couples locally. The price one pays lies in ensuring that gauge invariance is
maintained (see chapter 9).

The view of the vector potential as a mathematical construct was shaken by
the discovery of the Aharonov–Bohm effect. This was demonstrated is a classic
experiment of electron interference through a double slit, in which electrons are
made to pass through an area of space in which Aµ �= 0 but where Fµν = 0.
The fact that a change in the electron interference pattern was produced by this
configuration was seen as direct evidence for the physical reality of Aµ. Let us
examine this phenomenon.
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2.4 Aharonov–Bohm effect 29
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Fig. 2.2. The Aharonov–Bohm experiment.

The physical layout of the double-slit experiment is shown in figure 2.2.
An electron source fires electrons at the slits, these pass through the slits and
interfere in the usual way, forming an interference pattern on the screen at the
end of their path. In order to observe the Aharonov–Bohm effect, one places a
solenoid on the far side of the slits, whose magnetic field is constrained within
a cylinder of radius R. The vector potential arising from the solenoid geometry
is not confined to the inside of the solenoid however. It also extends outside of
the solenoid, but in such a way as to produce no magnetic field.

What is remarkable is that, when the solenoid is switched on, the interference
pattern is shifted by an amount x . This indicates that a phase shift �θ is
introduced between the radiation from the two slits, and is caused by the
presence of the solenoid. If the distance L is much greater than x and a then we
have

a ∼ x

L
d

�θ = 2π

(
L1 − L2

λ

)
= 2πa

λ

x =
(

Lλ

2πd

)
�θ. (2.102)

The phase difference can be accounted for by the gauge transformation of the
electron field by the vector potential. Although the absolute value of the vector
potential is not gauge-invariant, the potential difference between the paths is.
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30 2 The electromagnetic field

The vector potential inside and outside the solenoid position is

(r < R) : Aφ = 1

2
Br, Ar = Az = 0

(r > R) : Aφ = B R2

2r
, Ar = Az = 0. (2.103)

The magnetic field in the regions is

Bz = ∇r Aφ − ∇φAr

= ∇r Aφ

= 1

r

[
∂

∂r
(r Aφ)− ∂

∂φ
Ar

]
= 0 (r < R)

= B (r > R). (2.104)

The phase difference can be determined, either from group theory, or from
quantum mechanics to be

exp(iθ) = exp

(
i
e

h̄

∫
P

Ai dxi

)
, (2.105)

where ‘P’ indicates the integral along a given path. Around the closed loop
from one slit to the screen and back to the other slit, the phase difference is
(using Stokes’ theorem)

�θ = θ1 − θ2

∼ e

h̄

∮
Aφ dr

= e

h̄

∫
( 
∇ × B) · dS

= e

h̄

∫
B · dS. (2.106)

The phase shift therefore results from the paths having to travel around the
solenoid, i.e. in a loop where magnetic flux passes through a small part of
the centre. Note, however, that the flux does not pass through the path of the
electrons, only the vector potential is non-zero for the straight-line paths.

There are two ways of expressing this: (i) electrons must be affected by the
vector potential, since the field is zero for any classical path from the slits to the
screen; or (ii) electrons are stranger than we think: they seem to be affected by
a region of space which is classically inaccessible to them. The viewpoints are
really equivalent, since the vector potential is simply an analytic extension of
the field strength, but the result is no less amazing. It implies a non-locality in

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


2.4 Aharonov–Bohm effect 31

the action of the magnetic field: action at a distance, and not only at a distance,
but from within a container. If one chooses to believe in the vector potential as
a fundamental field, the behaviour seems less objectionable: the interaction is
then local. There is no action at a distance, and what happens inside the solenoid
is of less interest.

Whether one chooses to view this as evidence for the physical reality of
the vector potential or of the strangeness of quantum mechanics is a matter
of viewpoint. Indeed, the reality of any field is only substantiated by the
measurable effect it has on experiments. However, there are deeper reasons for
choosing the interpretation based on the reality of the vector potential, which
have to do with locality and topology, so at the very least this gives us a new
respect for the utility of the vector potential. In view of the utility of Aµ and its
direct appearance in dynamical calculations, it seems reasonable to accept it as
the fundamental field in any problem which is simplified by that assumption.
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3
Field parameters

The parameters which measure change in dynamical systems have a unique
importance: they describe both the layout and the development of a system.
Space (position) and time are the most familiar parameters, but there are other
possibilities, such as Fourier modes.

In the previous chapter, it was seen how the unification of spatial and temporal
parameters, in electromagnetism, led to a tidier and deeper form of the Maxwell
equations. It also made the equations easier to transform into other relativistic
frames. In the covariant approach to physics one is concerned with what
does and does not change, when shifting from one perspective to another,
i.e. with the properties of a system which are dependent and independent of
the circumstances of observation. In a continuous, holonomic system, this is
summarized by two independent concepts: parameter spaces and coordinates.

• Parameter space (manifold). This represents the stage for physical
reality. A parameter space has coordinate-independent properties such
as topology and curvature.

• Coordinates. These are arbitrary labels used to mark out a reference
scheme, or measurement scheme, in parameter space. There is no unique
way to map out a parameter space, e.g. Cartesian or polar coordinates.
If there is a special symmetry, calculations are often made easier by
choosing coordinates which match this symmetry.

Coordinates are labels which mark a scale on a parameter space. They measure
a distance in a particular direction from an arbitrary origin. Clearly, there
is nothing fundamental about coordinates: by changing the arbitrary origin,
or orientation of measurement, all coordinate labels are changed, but the
underlying reality is still the same. They may be based on flat Cartesian (x, y, z)
or polar (r, θ, φ) conventions; they can be marked on flat sheets or curved shells.

32

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


3.1 Choice of parametrization 33

Underneath the details of an arbitrary system of measurement is a physical
system which owes nothing to those details.

The invariant properties or symmetries of parameter spaces have many
implicit consequences for physical systems; not all are immediately intuitive.
For this reason, it is useful to study these invariant properties in depth, to see
how they dictate the possibilities of behaviour (see chapter 9). For now it is
sufficient to define a notation for coordinates on the most important parameter
spaces.

This chapter summarizes the formulation of (n + 1) dimensional vectors in
Minkowski spacetime and in its complementary space of wavevectors k, usually
called momentum space or reciprocal lattice space.

3.1 Choice of parametrization

The dynamical variables, in field theory, are the fields themselves. They are
functions of the parameters which map out the background space or spacetime;
e.g.

ψ(t), φ(t, x), χ(t, r, θ, φ). (3.1)

Field variables are normally written as functions of spacetime positions, but
other decompositions of the field are also useful. Another ubiquitous choice
is to use a complementary set of variables based upon a decomposition of the
field into a set of basis functions, a so-called spectral decomposition. Given
a complete set of functions ψi (x), one can always write an arbitrary field as a
linear super-position:

φ(x) =
∑

i

ci ψi (x). (3.2)

Since the functions are fixed and known, a knowledge of the coefficients ci in
this decomposition is equivalent to a knowledge of φ(x), i.e. as a function of x .
However, the function may also be written in a different parametrization:

φ(c1, c2, c3 . . .). (3.3)

This is a shorthand for the decomposition above, just as φ(x) is a shorthand for
a polynomial or series in x . Usually, an infinite number of such coefficients is
needed to prescribe a complete decomposition of the field, as, for instance, in
the Fourier expansion of a function, described below.

Spacetime is an obvious parameter space for a field theory since it comprises
the world around us and it includes laboratories where experiments take place,
but other basis functions sometimes reveal simpler descriptions. One important
example is the complementary Fourier transform of spacetime. The Fourier
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34 3 Field parameters

transform is important in situations where one suspects a translationally invari-
ant, homogeneous system. The Fourier transform of a function of x is defined
to be a new function of the wavenumber k (and the inverse transform) by the
relations:

f (x) =
∫

dk

2π
eikx f (k)

f (k) =
∫

dx eikx f (x). (3.4)

k is a continuous label on a continuous set of functions exp(ikx), not a discrete
set of ci , for integer i . In solid state physics, the space parametrized by k is
called the reciprocal lattice space. Fourier transform variables are useful for
many purposes, such as revealing hidden periodicities in a function, since the
expansion is based on periodic functions. The Fourier transform is also a useful
calculational aid.

Spacetime (configuration space) and the Fourier transform are two com-
plementary ways of describing the basic evolution of most systems. These
two viewpoints have advantages and disadvantages. For example, imagine a
two-state system whose behaviour in time can be drawn as a square wave. To
represent a square wave in Fourier space, one requires either an infinite number
of Fourier waves of different frequencies, or merely two positions over time. In
that case, it would be cumbersome to use a Fourier representation of the time
evolution.

3.2 Configuration space

The four-dimensional vectors used to re-write electromagnetism are easily
generalized to (n+1) spacetime dimensions, for any positive n. They place time
and space on an almost equal footing. In spite of the notational convenience of
unified spacetime, some caution is required in interpreting the step. Time is not
the same as space: formally, it distinguishes itself by a sign in the metric tensor;
physically, it plays a special role in determining the dynamics of a system.

3.2.1 Flat and curved space

Physical systems in constrained geometries, such as on curved surfaces, or
within containers, are best described using curvilinear coordinates. Experi-
mental apparatus is often spherical or toroidal; shapes with a simple symmetry
are commonly used when generating electromagnetic fields; rectangular fields
with sharp corners are less common, since these require much higher energy to
sustain.

Studies of what happens within the volumes of containers, and what happens
on their surface boundaries, are important in many situations [121]. When
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3.2 Configuration space 35

generalizing, to study systems in (n + 1) dimensions, the idea of surfaces and
volumes also has to be generalized. The distinction becomes mainly one of
convenience: (n + 1) dimensional curved surfaces are curved spacetimes. The
fact that they enclose a volume or partition a space which is (n+2) dimensional
is not always germane to the discussion at hand. This is particularly true in
cosmology.

It is important to distinguish between curvilinear coordinates in flat space
and coordinate labellings of curved space. An example of the former is the
use of polar (r, θ) coordinates to map out a plane. The plane is flat, but the
coordinates span the space in a set of curved rings. An example of the latter
is (θ, φ) coordinates (at fixed r ), mapping out the surface of a sphere. Over
very short distances, (θ, φ) can be likened to a tiny planar patch with Cartesian
coordinates (x, y).

Einstein’s contribution to the theory of gravity was to show that the laws of
gravitation could be considered as an intrinsic curvature of a (3+1) dimensional
spacetime. Einstein used the idea of covariance to argue that one could view
gravity in one of two equivalent ways: as forced motion in a flat spacetime,
or as free-fall in a curved spacetime. Using coordinates and metric tensors,
gravitation could itself be described as a field theory, in which the field gµν(x)
was the shape of spacetime itself.

Gravitational effects may be built into a covariant formalism to ensure that
every expression is general enough to be cast into an arbitrary scheme of
coordinates. If one allows for general coordinates (i.e. general covariance),
one does not assume that all coordinates are orthogonal Cartesian systems, and
gravity and curvature are not excluded from the discussion.

Spacetime curvature will not be treated in detail here, since this topic is widely
discussed in books on relativity. However, we take the issue of curvature ‘under
advisement’ and construct a formalism for dealing with arbitrary coordinates,
assured that the results will transform correctly even in a curved environment.

3.2.2 Vector equations

Vector methods express spatial relationships, which remain true regardless of
the system of coordinates used to write them down. They thus play a central
role in covariant formulation. For example, the simple vector equation

A · B = 0 (3.5)

expresses the fact that two vectors A and B are orthogonal. It says nothing about
the orientation of the vectors relative to a coordinate system, nor their position
relative to an origin; rather, it expresses a relationship of more intrinsic value
between the vectors: their relative orientation. Vector equations and covariance
are natural partners.
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36 3 Field parameters

Vector equations are form-invariant under changes of coordinates, but the
details of their components do change. For instance, in the above equation,
if one fixes a coordinate system, then the components of the two vectors take on
definite values. If one then rotates or translates the coordinates, the values of the
components change, but the equation itself remains true.

3.2.3 Coordinate bases

A coordinate basis is a set of (n + 1) linearly independent reference vectors
eµ, used to provide a concise description of any vector within a vector space.
They are ‘standard arrows’; without them, every direction would need to have a
different name.1

In index notation, the components of a vector a are written, relative to a basis
or set of axes ei , as {ai }, i.e.

a =
∑
µ

aµ eµ ≡ aµ eµ. (3.6)

Note that, as usual, there is an implied summation convention over repeated
indices throughout this book. The subscript µ runs over the number of
dimensions of the space.

Linearity is a central concept in vector descriptions. One does not require
what happens within the space to be linear, but the basis vectors must be locally
linear in order for the vector description to be single-valued. Consider, then,
the set of all linear scalar functions of vectors. Linearity implies that a linear
combination of arguments leads to a linear combination of the functions:

ω(cµeµ) = cµω(eµ). (3.7)

Also, the linear combination of different functions results in new linear func-
tions:

ω′(v) =
∑
µ

cµω
µ(v). (3.8)

The space of these functions is therefore also a vector space V ∗, called the dual
space. It has the same dimension as the vector space (also called the tangent
space). The duality refers to the fact that one may consider the 1-forms to be
linear functions of the basis vectors, or vice versa, i.e.

ω(v) = v(ω). (3.9)

1 In terms of information theory, the vector basis provides a systematic (n+1)-tuple of numbers,
which in turn provides an optimally compressed coding of directional information in the vector
space. Without such a system, we would be stuck with names like north, south, east, west,
north-north-west, north-north-north-west etc. for each new direction.
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3.2 Configuration space 37

Vector components vi are written

v = vµeµ, (3.10)

and dual vector (1-form) components are written

v = vµωµ. (3.11)

The scalar product is

v · v = v∗v = (vµωµ)(vνeν)
= vµvν (ωµeν)

= vµvν δ νµ
= vµvµ, (3.12)

where

(ωµeν) = δµν. (3.13)

The metric tensor gµν maps between these equivalent descriptions:

vµ = gµνv
ν

vµ = gµνvν, (3.14)

and

eµ · eν = gµν (3.15a)

ωµ · ων = gµν. (3.15b)

When acting on scalar functions, the basis vectors eµ→ ∂µ are tangential to the
vector space; the 1-forms ωµ→ dxµ lie along it.

In general, under an infinitesimal shift of the coordinate basis by an amount
dxµ, the basis changes by an amount

deµ = � λ
µν eλ dxν. (3.16)

The symbol � λ
µν is called the affine connection, or Christoffel symbol. From

this, one determines that

∂νeµ = � λ
µν eλ, (3.17)

and by differentiating eqn. (3.13), one finds that

∂νω
λ = −� λ

νµ ωµ. (3.18)

The connection can be expressed in terms of the metric, by differentiating
eqn. (3.15a):

∂λgµν = ∂λeµ · eν + eµ · ∂λeν
= � λ

µλ gρν + gρµ�
λ

νλ . (3.19)
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38 3 Field parameters

By permuting indices in this equation, one may show that

� σ
λµ = 1

2
gνσ

{
∂λgµν + ∂µgλν − ∂νgµλ

}
. (3.20)

The connection is thus related to cases where the metric tensor is not constant.
This occurs in various contexts, such when using curvilinear coordinates, and
when fields undergo conformal transformations, such as in the case of gauge
transformations.

3.2.4 Example: Euclidean space

In n-dimensional Euclidean space, the spatial indices i of a vector’s components
run from 1 to n except where otherwise stated. The length of a vector interval
ds is an invariant quantity, which is defined by the inner product. This may be
written

ds · ds = dx2 + dy2 + dz2 (3.21)

in a Cartesian basis. In the index notation (for n = 3) this may be written,

ds · ds = dxi dxi . (3.22)

Repeated indices are summed over, unless otherwise stated. We distinguish, in
general, between vector components with raised indices (called contravariant
components) and those with lower indices (called, confusingly, covariant
components,2 and ‘normal’ components, which we shall almost never use. In a
Cartesian basis (x, y, z . . .) there is no difference between these components. In
other coordinate systems, such as polar coordinates however, they are different.

Results which are independent of coordinate basis always involve a sum over
one raised index and one lower index. The length of the vector interval above
is an example. We can convert an up index into a down index using a matrix
(actually a tensor) called the metric tensor gi j ,

ai = gi j a
j . (3.23)

The inverse of the metric gi j is written gi j (with indices raised), and it serves to
convert a lower index into an upper one:

ai = gi j a j . (3.24)

The metric and its inverse satisfy the relation,

gi j g
jk = g k

i = δ k
i . (3.25)

2 There is no connection between this designation and the usual meaning of covariant.
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3.2 Configuration space 39

In Cartesian components, the components of the metric are trivial. It is simply
the identity matrix, or Kronecker delta:

(Cartesian) : gi j = gi j = δi j . (3.26)

To illustrate the difference between covariant, contravariant and normal
components, consider two-dimensional polar coordinates as an example. The
vector interval, or line element, is now written

ds · ds = dr2 + r2dθ2. (3.27)

The normal components of the vector ds have the dimensions of length in this
case, and are written

(dr, rdθ). (3.28)

The contravariant components are simply the coordinate intervals,

dsi = (dr, dθ), (3.29)

and the covariant components are

dsi = (dr, r2dθ). (3.30)

The metric tensor is then defined by

gi j =
(

1 0
0 r2

)
, (3.31)

and the inverse tensor is simply

gi j =
(

1 0
0 r−2

)
. (3.32)

The covariant and contravariant components are used almost exclusively in the
theory of special relativity.

Having introduced the metric tensor, we may define the scalar product of any
two vectors a and b by

a · b = ai bi = ai gi j b
j . (3.33)

The definition of the vector product and the curl are special to three space di-
mensions. We define the completely anti-symmetric tensor in three dimensions
by

εi jk =


+1 i jk = 123 and even permutations
−1 i jk = 321 and other odd permutations
0 otherwise.

(3.34)
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40 3 Field parameters

This is also referred to as the three-dimensional Levi-Cevita tensor in some
texts. Since its value depends on permutations of 123, and its indices run only
over these values, it can only be used to generate products in three dimensions.
There are generalizations of this quantity for other numbers of dimensions, but
the generalizations must always have the same number of indices as spatial
dimensions, thus this object is unique in three dimensions. More properties
of anti-symmetric tensors are described below.

In terms of this tensor, we may write the i th covariant component of the three-
dimensional vector cross-product as

(b× c)i = εi jkb j ck . (3.35)

Contracting with a scalar product gives the volume of a parallelepiped spanned
by vectors a, b and c,

a · (b× c) = εi jkai b j ck, (3.36)

which is basis-independent.

3.2.5 Example: Minkowski spacetime

The generalization of Euclidean space to relativistically motivated spacetime
is called Minkowski spacetime. Close to the speed of light, the lengths of n-
dimensional spatial vectors are not invariant under boosts (changes of speed),
due to the Lorentz length contraction. From classical electromagnetism, one
finds that the speed of light in a vacuum must be constant for all observers:

c2 = 1

ε0µ0
, (3.37)

and one deduces from this that a new quantity is invariant; we refer to this as the
invariant line element

ds2 = −c2 dt2 + dx2 + dy2 + dz2 = −c2 dτ 2, (3.38)

where dτ is referred to as the proper time. By comparing the middle and
rightmost terms in this equation, it may be seen that the proper time is the
time coordinate in the rest frame of a system, since there is no change in the
position variables. The negative sign singles out the time contribution as special.
The nomenclature ‘timelike separation’ is used for intervals in which ds2 < 0,
‘spacelike separation’ is used for ds2 > 0, and ‘null’ is used for ds2 = 0.

In terms of (n + 1) dimensional vectors, one writes:

ds2 = dxµdxµ = dxµgµνdxν (3.39)
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3.2 Configuration space 41

where µ, ν = 0, 1, 2, . . . , n In a Cartesian basis, the contravariant and covariant
components of the spacetime interval are defined, respectively, by

dxµ = ( ct, x, y, z, . . .)

dxµ = (−ct, x, y, z, . . .), (3.40)

and the metric tensor in this Cartesian basis, or locally inertial frame (LIF), is
the constant tensor

ηµν ≡ gµν
∣∣∣
LIF
=



−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1


 . (3.41)

This is a special case of a metric in a general frame gµν .
This placement of signs in the metric is arbitrary, and two other conventions

are found in the literature: the opposite sign for the metric, with corresponding
movement of the minus sign from the time to the space parts in the covariant
and contravariant components; and a Euclidean formulation, in which the
metric is entirely positive (positive definite), and the time components of
the components are symmetrically ict . This last form, called a Euclidean
formulation (or Riemannian in curved spacetime), has several uses, and thus
we adopt conventions in this text in which it is trivial to convert to the Euclidean
form and back.

Contravariant vectors describe regular parametrizations of the coordinates. In
order to define a frame-invariant derivative, we need to define partial derivatives
by the requirement that the partial derivative of x1 with respect to x1 be unity:

∂

∂x1
x1 = ∂1x1 = 1. (3.42)

Notice that ‘dividing by’ an upper index makes it into an object with an
effectively lower index. More generally, we require:

∂

∂xµ
xν = ∂µxν = δ νµ . (3.43)

From this, one sees that the Cartesian components of the derivative must be

∂µ =
(

1

c
∂t , ∂x , ∂y, ∂z, . . .

)

∂µ =
(
−1

c
∂t , ∂x , ∂y, ∂z, . . .

)
. (3.44)
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42 3 Field parameters

Velocity is a relative concept, by definition. It is intimately associated with a
choice of Lorentz frame. The relative velocity is defined as the time derivative
of the position

βµ = 1

c

dxµ

dt
= dxµ

dx0
. (3.45)

Unfortunately, because both xµ and t are frame-dependent, this quantity does
not transform like a vector. To obtain a vector, we choose to look at

Uµ = 1

c

xµ

dτ
. (3.46)

The components of the relative velocity are as follows:

βµ = (β0, β i ) = (1, vi/c). (3.47)

The relationship to the velocity vector is given by

Uµ = γ cβµ. (3.48)

Hence,

UµUµ = −c2. (3.49)

3.3 Momentum space and waves

The reciprocal wavevector space of kµ plays a complementary role to that of
spacetime. It measures changes in waves when one is not interested in spacetime
locations. Pure harmonic (sinusoidal) waves are spread over an infinite distance.
They have no beginning or end, only a definite wavelength.

In the quantum theory, energy and momentum are determined by the operators

E → ih̄∂t , pi →−ih̄∂i , (3.50)

which have pure values when acting on plane wave states

ψ ∼ exp i(ki x
i − ωt). (3.51)

In (n + 1) dimensional notation, the wavevector becomes:

kµ =
(
−ω

c
, ki

)
, (3.52)

so that plane waves take the simple form

ψ ∼ exp(ikµxµ). (3.53)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


3.4 Tensor transformations 43

The energy and momentum are therefore given by the time and space eigenval-
ues of the operator

pµ = −ih̄∂µ, (3.54)

respectively, as they act upon a plane wave. This leads to the definition of an
(n + 1) dimensional energy–momentum vector,

pµ = h̄kµ =
(
−E

c
, pi

)
. (3.55)

The identification pµ = h̄kµ is the de Broglie relation for matter waves. This is
one of the most central and important relations in the definition of the quantum
theory of matter.

In discussing wavelike excitations, it is useful to resolve the components of
vectors along the direction of motion of the wave (longitudinal) and perpen-
dicular (transverse) to the direction of motion. A longitudinal vector is one
proportional to a vector in the direction of motion of a wave kµ. A transverse
vector is orthogonal to this vector. The longitudinal and transverse components
of a vector are defined by

V µ

L ≡
kµkν

k2
V ν

V µ

T ≡
(

gµν − kµkν
k2

)
V ν. (3.56)

It is straightforward to verify that the two projection operators

PL
µ
ν =

kµkν
k2

PT
µ
ν =

(
gµν − kµkν

k2

)
(3.57)

are orthogonal to one another:

(PL)
µ
ν(PT)

ν
λ = 0. (3.58)

3.4 Tensor transformations

Vector equations remain true in general coordinate frames because the com-
ponents of a vector transform according to specific rules under a coordinate
transformation U :

v′ = U v, (3.59)
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44 3 Field parameters

or

v′i = U i
j v

j , (3.60)

where the components of the matrix U are fixed by the requirement that the
equations remain true in general coordinate systems. This is a valuable property,
and we should be interested in generalizations of this idea which might be useful
in physics.

Tensors are objects with any number of indices, which have the same basic
transformation properties as vectors. The number of indices on a tensor is its
rank. Each free index in a tensor equation requires a transformation matrix
under changes of coordinates; free indices represent the components in a specific
coordinate basis, and each summed index is invariant since scalar products are
independent of basis.

Under a change of coordinates, x → x ′, a scalar (rank 0-tensor) transforms
simply as

φ(x)→ φ(x ′). (3.61)

For a vector (rank 1-tensor), such a simple rule does make sense. If one
rotates a coordinate system, for instance, then all the components of a vector
must change, since it points in a new direction with respect to the coordinate
axes. Thus, a vector’s components must transform separately, but as linear
combinations of the old components. The rule for a vector with raised index
is:

V µ(x ′) = ∂x ′µ

∂xν
V ν(x) = (∂νx ′µ) V ν(x). (3.62)

For a vector with lowered index, it is the converse:

Vµ(x
′) = ∂xν

∂x ′µ
Vν(x) = (∂ ′µxν) Vν(x). (3.63)

Here we have used two notations for the derivatives: the longhand notation first
for clarity and the shorthand form which is more compact and is used throughout
this book.

The metric tensor is a tensor of rank 2. Using the property of the metric in
raising and lowering indices, one can also deduce its transformation rule under
the change of coordinates from x to x ′. Starting with

V µ(x ′) = gµν(x ′)Vν(x ′), (3.64)

and expressing it in the x coordinate system, using the transformation above,
one obtains:

(∂νx
′µ)V ν(x) = gµσ (x ′)(∂ ′σ xρ)Vρ(x). (3.65)
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3.5 Properties 45

However, it is also known that, in the unprimed coordinates,

V ν(x) = gνσ (x)Vσ (x). (3.66)

Comparing eqns. (3.65) and (3.66), it is possible to deduce the transformation
rule for the inverse metric gµν . To do this, one rearranges eqn. (3.65) by
multiplying by (∂ ′µxτ ) and using the chain-rule:

(∂νx
′µ)(∂ ′µxτ ) = δ τν . (3.67)

Being careful to re-label duplicate indices, this gives

δν τ V ν(x) = gµσ (x ′)(∂ ′µxτ )(∂ ′σ xρ) Vρ(x), (3.68)

which is

V τ (x) = gµρ(x ′)(∂ ′µxτ )(∂ ′ρxσ )Vσ (x). (3.69)

Comparing this with eqn. (3.66), one finds that

gρµ(x ′)(∂ ′µxτ )(∂ ′ρxσ ) = gτσ (x), (3.70)

or, equivalently, after re-labelling and re-arranging once more,

gµν(x ′) = (∂ρx ′µ)(∂σ x ′ν)gρσ (x). (3.71)

One sees that this follows the same pattern as the vector transformation with
raised indices. The difference is that there is now a partial derivative matrix
(∂σ x ′ν) for each index. In fact, this is a general feature of tensors. Each raised
index transforms with a factor like (∂σ x ′ν) and each lowered index transforms
with a factor like ∂ ′µxν . For instance,

T µνρσ (x
′) = (∂αx ′µ)(∂βx ′ν)(∂ ′ρxγ )(∂ ′σ xδ)T αβγ δ. (3.72)

3.5 Properties

The following properties of tensors are instructive and useful.

(1) Any matrix T may be written as a sum of a symmetric part T i j = 1
2(Ti j +

Tji ) and an anti-symmetric part T̃i j = 1
2(Ti j − Tji ). Thus one may write

any 2× 2 matrix in the form

T =
(

T 11 T 12 + T̃12

T 12 − T̃12 T 22

)
(3.73)

(2) It may be shown that the trace of the product of a symmetric matrix with

an anti-symmetric matrix is zero, i.e. S
i j

T̃i j = 0.
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46 3 Field parameters

(3) By considering similarity transformations of the form T →  −1T , one
may show that the trace of any matrix is an invariant, equal to the sum of
its eigenvalues.

(4) By definition, a rank 2-tensor T transforms by the following matrix
multiplication rule:

T →  T T  , (3.74)

for some transformation matrix  . Consider a general 2× 2 tensor

T =
(

1
2 t +�T11 T 12 + T̃12

T 12 + T̃12
1
2 t +�T22

)
,

where t is the trace t = (T 11 + T 22), and consider the effect of the
following matrices on T :

 0 =
(

a 0
0 d

)

 1 =
(

0 i
−i 0

)

 2 =
(

0 1
1 0

)

 3 = 1√
2

(
1 1
1 −1

)
. (3.75)

For each of these matrices, compute:

(a)  T ,

(b)  T T  .

It may be shown that, used as a transformation on T :

(a) the anti-symmetric matrix  1 leaves anti-symmetric terms invariant
and preserves the trace of T ;

(b) the off-diagonal symmetric matrix  2 leaves the off-diagonal sym-
metric terms invariant and preserves the trace of T ;

(c) the symmetrical, traceless matrix  3, preserves only the trace of T .

It may thus be concluded that a tensor T in n dimensions has three
separately invariant parts and may be written in the form

Ti j = 1

n
T k

k δi j + T i j +
(

T̃i j − 1

n
T k

k δi j

)
. (3.76)
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3.6 Euclidean and Riemannian spacetime 47

3.6 Euclidean and Riemannian spacetime

Minkowski spacetime has an indefinite metric tensor signature. In Euclidean
and Riemannian spacetime, the metric signature is definite (usually positive
definite). General curved spaces with a definite signature are referred to
as Riemannian manifolds. Multiplying the time components of vectors and
tensors by the square-root of minus one (i) allows one to pass from Minkowski
spacetime to Euclidean spacetime and back again. This procedure is known as
Wick rotation and is encountered in several contexts in quantum theory. For
instance, it serves a regulatory role: integrals involving the Lorentzian form
(k2 + m2)−1 are conveniently evaluated in Euclidean space, where k2 + m2

has no zeros. Also, there is a convenient relationship between equilibrium
thermodynamics and quantum field theory in Euclidean space.

We shall use subscripts and superscripts ‘E’ to indicate quantities in Euclidean
space; ‘M’ denotes Minkowski space, for this section only. Note that the
transformation affects only the time or zeroth components of tensors; the space
parts are unchanged.

The transformation required to convert from Minkowski spacetime (with its
indefinite metric) to Euclidean spacetime (with its definite metric) is motivated
by the appearance of plane waves in the Fourier decomposition of field variables.
Integrals over plane waves of the form exp i(k · x − ωt) have no definite
convergence properties, since the complex exponential simply oscillates for
all values of k and ω. However, if one adds a small imaginary part to time
t → t − iτ , then we turn the oscillatory behaviour into exponential decay:

ei(k·x−ωt)→ ei(k·x−ωt)e−ωτ . (3.77)

The requirement of decay rather than growth chooses the sign for the Wick
rotation. An equivalent motivation is to examine the Lorentzian form:

1

k2 + m2
= 1

−k2
0 + k2 + m2

= 1

(−k0 +
√

k2 + m2)(k0 +
√

k2 + m2)
.

(3.78)

This is singular and has poles on the real k0 axis at k0 = ±√k2 + m2. This
makes the integral of k0 non-analytical, and a prescription must be specified for
integrating around the poles. The problem can be resolved by adding a small
(infinitesimal) imaginary part to the momenta:

1

k2 + m2 − iε
= 1

(−k0 − iε +√k2 + m2)(k0 − iε +√k2 + m2)
.

(3.79)

This effectively shifts the poles from the real axis to above the axis for negative
k0 and below the axis for positive k0. Since it is possible to rotate the contour
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48 3 Field parameters

90 degrees onto the imaginary axis without having to pass through any poles, by
defining (see section 6.1.1)

kE
0 = ik0, (3.80)

this once again chooses the sign of the rotation. The contour is rotated clockwise
by 90 degrees, the integrand is positive definite and no poles are encountered in
an integral over κ0:

1

−k2
0 + k2 + m2 − iε

→ 1

k2
0E + k2 + m2

. (3.81)

All variables in a field theory must be rotated consistently:

x0
E = −ix0 (3.82)

xE
0 = ix0 (3.83)

kE
0 = ik0 = −iω/c. (3.84)

The inner product

kµxµ = k · x+ k0x0 → k · x+ κ0x0 (3.85)

is consistent with

∂0x0 = ∂E
0 x0

E = 1 (3.86)

where

∂E
0 = i∂0, (3.87)

since ∂E
0 → iκ0. Since the Wick transformation affects derivatives and vectors,

it also affects Maxwell’s equations. From

∂νFµν = µ0 Jµ, (3.88)

we deduce that

J E
0 = iJ0 (3.89)

AE
0 = iA0, (3.90)

which are necessary in view of the homogeneous form of the field strength:

−iFE
0i = ∂0 Ai − ∂i A0 = F0i . (3.91)

Notice that, in (3+ 1) dimensions, this means that

1

2
FµνFµν =

(
B2 − E2

c2

)
=

(
B2 + E2

E

c2

)
. (3.92)
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3.6 Euclidean and Riemannian spacetime 49

Notice how the Euclideanized Lagrangian takes on the appearance of a Hamilto-
nian. This result is the key to relating Wick-rotated field theory to thermodynam-
ical partition functions. It works because the quantum phase factor exp(iSM/h̄)
looks like the partition function, or statistical weight factor exp(−βHM) when
Wick-rotated:

SE = −iSM, (3.93)

since the volume measure dV E
x = −idVx . The superficial form of the

Lagrangian density is unchanged in theories with only quadratic derivatives
provided everything is written in terms of summed indices, but internally all
of the time-summed terms have changed sign. Thus, one has that

exp

(
i
SM

h̄

)
= exp

(
− SE

h̄

)
∼ exp

(
−1

h̄

∫
dVE HM

)
. (3.94)

A Euclideanized invariant becomes something which looks like a Minkowski
space non-invariant. The invariant F2, which is used to deduce the dynamics of
electromagnetism, transformed into Euclidean space, resembles a non-invariant
of Minkowski space called the Hamiltonian, or total energy function (see
eqn. (2.70)). This has physical as well as practical implications for field theories
at finite temperature. If one takes the Euclidean time to be an integral from zero
to h̄β and take H = ∫

dσH,

exp

(
i
SM

h̄

)
= exp

(
− 1

β
HM

)
, (3.95)

then a Euclidean field theory phase factor resembles a Minkowski space, finite-
temperature Boltzmann factor. This is discussed further in chapter 6.

In a Cartesian basis, one has

gµν → gE
µν = δµν. (3.96)
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4
The action principle

The variational principle is central to covariant field theory. It displays
symmetries, field equations and continuity conditions on an equal footing. It
can be used as the starting point for every field theoretical analysis. In older
books, the method is referred to as Hamilton’s principle. In field theory it is
referred to more colloquially as the action principle. Put plainly, it is a method
of generating functionals; it compresses all of the kinematics and dynamics of a
physical theory into a single integral expression S called the action.

The advantage of the action principle is that it guarantees a well formulated
dynamical problem, assuming only the existence of a set of parameters on
which the dynamical variables depends. Any theory formulated as, and derived
from an action principle, automatically leads to a complete dynamical system
of equations with dynamical variables which play the roles of positions and
momenta, by analogy with Newtonian mechanics. To formulate a new model
in physics, all one does is formulate invariant physical properties in the form of
an action, and the principle elucidates the resulting kinematical and dynamical
structure in detail.

4.1 The action in Newtonian particle mechanics

Consider a system consisting of a particle with position q(t) and momentum
p(t). The kinetic energy of the particle is

T = 1

2
mq̇2, (4.1)

and the potential energy is simply denoted V (q). The ‘dot’ over the q denotes
the time derivative, or

q̇ = dq

dt
. (4.2)

50
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4.1 The action in Newtonian particle mechanics 51

Classical mechanics holds that the equation of motion for a classical particle is
Newton’s law:

F = mq̈ = −dV

dq
, (4.3)

but it is interesting to be able to derive this equation from a general principle.
If many equations of motion could be derived from a common principle, it
would represent a significant compression of information in physics. This is
accomplished by introducing a generating function L called the Lagrangian.
For a conservative system, the Lagrangian is defined by

L = T − V, (4.4)

which, in this case, becomes

L = 1

2
mq̇2 − V (q). (4.5)

This form, kinetic energy minus potential energy, is a coincidence. It does not
apply to all Lagrangians. In relativistic theories, for instance, it is not even clear
what one should refer to as the kinetic and potential energies. The Lagrangian
is a generating function; it has no unique physical interpretation.

The Lagrangian is formally a function of q and q̇ . The general rule for
obtaining the equations of motion is the well known Euler–Lagrange equations.
They are

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0. (4.6)

If the physical system is changed, one only has to change the Lagrangian: the
general rule will remain true. Evaluating, in this case,

∂L

∂q
= −dV

dq
∂L

∂ q̇
= mq̇, (4.7)

one obtains the field equations (4.3), as promised.
Is this approach better than a method in which one simply writes down the

field equations? Rather than changing the field equations for each case, one
instead changes the Lagrangian. Moreover, eqn. (4.6) was pulled out of a hat,
so really there are two unknowns now instead of one! To see why this approach
has more to offer, we introduce the action.
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52 4 The action principle

4.1.1 Variational principle

The fact that one can derive known equations of motion from an arbitrary
formula involving a constructed function L is not at all surprising – there are
hundreds of possibilities; indeed, the motivation for such an arbitrary procedure
is not clear. The fact that one can obtain them from a function involving
only the potential and kinetic energies of the system, for any conservative
system, is interesting. What is remarkable is the fact that one can derive the
Euler–Lagrange equations (i.e. the equations of motion), together with many
other important physical properties for any system, from one simple principle:
the action principle.

Consider the action S from the Lagrangian by

S12 =
∫ t2

t1

L(q, q̇)dt. (4.8)

The action has (naturally) dimensions of action or ‘energy × time’, and is
thought of as being a property of the path q(t) of our particle between the
fixed points q(t1) and q(t2). The action has no physical significance in itself.
Its significance lies instead in the fact that it is a generating functional for the
dynamical properties of a physical system.

When formulating physics using the action, it is not necessary to consider the
fact that q and q̇ are independent variables: that is taken care of automatically. In
fact, the beauty of the action principle is that all of the useful information about
a physical system falls out of the action principle more or less automatically.

To extract information from S, one varies it with respect to its dynamical
variables, i.e. one examines how the integral changes when the key variables in
the problem are changed. The details one can change are t1 and t2, the end-points
of integration, and q(t), the path or world-line of the particle between those two
points (see figure 4.1). Note however that Q(t) is the path the particle would
take from A to B, and that is not arbitrary: it is determined by, or determines,
physical law, depending on one’s view. So, in order to make the variational
principle a useful device, we have to be able to select the correct path by some
simple criterion.

Remarkably, the criterion is the same in every case: one chooses the path
which minimizes (or more correctly: makes stationary) the action; i.e. we look
for paths q(t) satisfying

δS

δq(t)
= 0. (4.9)

These are the stable or stationary solutions to the variational problem. This tells
us that most physical laws can be thought of as regions of stability in a space
of all solutions. The action behaves like a potential, or stability measure, in this
space.
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4.1 The action in Newtonian particle mechanics 53

It is an attractive human idea (Occam’s razor) that physical systems do the
‘least action’ possible; however, eqn. (4.9) is clearly no ordinary differentiation.
First of all, S is a scalar number – it is integrated over a dummy variable t ,
so t is certainly not a variable on which S depends. To distinguish this from
ordinary differentiation of a function with respect to a variable, it is referred to as
functional differentiation because it is differentiation with respect to a function.

The functional variation of S with respect to q(t) is defined by

δS = S[q + δq]− S[q], (4.10)

where δq(t) is an infinitesimal change in the form of the function q at time t .
Specifically, for the single-particle example,

δS =
∫

dt

{
1

2
m(q̇ + δq̇)2 − V (q + δq)

}
−

∫
dt

{
1

2
mq̇2 − V (q)

}
.(4.11)

Now, since δq is infinitesimal, we keep only the first-order contributions, so on
expanding the potential to first order as a Taylor series about q(t),

V (q + δq) = V (q)+ dV

dq
δq + · · · , (4.12)

one obtains the first-order variation of S,

δS =
∫

dt

{
mq̇(∂tδq)− dV

dq
δq

}
. (4.13)

A ‘dot’ has been exchanged for an explicit time derivative to emphasize the
time derivative of δq. Looking at this expression, one notices that, if the time
derivative did not act on δq, we would be able to take out an overall factor of
δq, and we would be almost ready to move δq to the left hand side to make
something like a derivative. Since we are now operating under the integral sign,
it is possible to integrate by parts, using the property:∫

dt A(∂t B) =
[

AB
]t2

t1
−

∫
dt (∂t A)B, (4.14)

so that the time derivative can be removed from δq, giving:

δS =
∫

dt

{
−mq̈(t)− dV

dq(t)

}
δq(t)+

[
mq̇ · δq(t)

]t2

t1
. (4.15)

The stationary action criterion tells us that δS = 0. Assuming that q(t) is not
always zero, one obtains a restriction on the allowed values of q(t). This result
must now be interpreted.
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54 4 The action principle

t2

t
1

q(t)

A

B

Fig. 4.1. The variational formula selects the path from A to B with a stationary value
of the action. Stationary or minimum means that the solution is stable on the surface of
all field solutions. Unless one adds additional perturbations in the action, it will describe
the ‘steady state’ behaviour of the system.

4.1.2 δS: equation of motion

The first thing to notice about eqn. (4.15) is that it is composed of two logically
separate parts. The first term is an integral over all times which interpolate
between t1 and t2, and the second is a term which lives only at the end-points.
Now, suppose we ask the question: what path q(t) is picked out by the action
principle, if we consider all the possible variations of paths q(t)+ δq(t), given
that the two end-points are always fixed, i.e. δq(t1) = 0 and δq(t2) = 0?

The requirement of fixed end-points now makes the second term in eqn. (4.15)
vanish, so that δS = 0 implies that the contents of the remaining curly braces
must vanish. This gives precisely the equation of motion

mq̈ = −dV

dq
. (4.16)

The action principle delivers the required formula as promised. This arises from
an equation of constraint on the path q(t) – a constraint which forces the path to
take a value satisfying the equation of motion. This notion of constraint recurs
later, in more advanced uses of the action principle.

4.1.3 The Euler–Lagrange equations

The Euler–Lagrange equations of motion are trivially derived from the action
principle for an arbitrary Lagrangian which is a function of q and q̇. The action
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4.1 The action in Newtonian particle mechanics 55

one requires is simply

S =
∫

dt L(q(t), q̇(t)), (4.17)

and its variation can be written, using the functional chain-rule,

δS =
∫

dt

{
δL

δq
δq + δL

δ(∂tq)
δ(∂tq)

}
= 0. (4.18)

The variation of the path commutes with the time derivative (trivially), since

δ(∂tq) = ∂tq(τ + δτ)− ∂tq(τ ) = ∂t(δq). (4.19)

Thus, one may re-write eqn. (4.18) as

δS =
∫

dt

{
δL

δq
δq + δL

δ(∂tq)
∂t(δq)

}
= 0. (4.20)

Integrating the second term by parts, one obtains

δS =
∫

dt

{
δL

δq
δq − ∂t

(
δL

δ(∂tq)

)
(δq)

}
+

∫
dσ

[
δL

δ(∂tq)
δq

]
= 0.

(4.21)

The second term vanishes independently (since its variation is zero at the fixed
end-points), and thus one obtains the Euler–Lagrange equations (4.6).

4.1.4 δS: continuity

Before leaving this simple world of classical particles, there is one more thing to
remark about eqn. (4.21). Consider the second term; when one asks the question:
what is the condition on q(t) for the classical trajectories with stationary action
and fixed end-points? – this term drops out. It vanishes by assumption. It
contains useful information however. If we consider the example of a single
particle, the surface term has the form

mq̇ · δq = pδq. (4.22)

This term represents the momentum of the particle. For a general Lagrangian,
one can use this fact to define a ‘generalized momentum’. From eqn. (4.21)

p = δL

δ(∂tq)
≡ !. (4.23)

Traditionally, this quantity is called the canonical momentum, or conjugate
momentum, and is denoted generically as !.
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t

B

A

t

t1

2

_

ε

Fig. 4.2. The continuity of paths obeying the equations of motion, over an infinitesi-
mal interval is assured by the null variation of the action over that interval.

Suppose one asks a different question of the variation. Consider only an
infinitesimal time period t2 − t1 = ε, where ε → 0. What happens between
the two limits of integration in eqn. (4.21) is now less important. In fact, it
becomes decreasingly important as ε → 0, since

δS12 = [ pδq]t2
t1 + O(ε). (4.24)

What infinitesimal property of the action ensures that δS = 0 for all intermediate
points between the limits t1 and t2? To find out, we relax the condition that the
end-points of variation should vanish. Then, over any infinitesimal interval ε,
the change in δq(t) can itself only be infinitesimal, unless q(t) is singular, but
it need not vanish. However, as ε → 0, the change in this quantity must also
vanish as long as q(t) is a smooth field, so one must take �(δq) = 0.1 This
means that

�p ≡ p(t2)− p(t1) = 0; (4.25)

i.e. the change in momentum across any infinitesimal surface is zero, or
momentum is conserved at any point. This is a continuity condition on q(t).
To see this, ask what would happen if the potential V (q) contained a singular
term at the surface:

V (q, t) = δ(t − t)�V + V (q), (4.26)

1 Note that we are assuming that the field is a continuous function, but the momentum need
not be strictly continuous if there are impulsive forces (influences) on the field. This is fully
consistent with our new philosophy of treating the ‘field’ q as a fundamental variable, and p
as a derived quantity.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


4.1 The action in Newtonian particle mechanics 57

where 1
2(t1 + t2) is the mid-point of the infinitesimal interval. Here, the delta

function integrates out immediately, leaving an explicit surface contribution
from the potential, in addition to the term from the integration by parts:

δS12 = d�V

dq
δq + [ pδq]t2

t1 + O(ε) = 0, (4.27)

Provided �V is finite, using the same argument as before, one obtains,

�p = −d�V

dq
, (4.28)

i.e. the change in momentum across any surface is a direct consequence of the
impulsive force d�V/dq at that surface.

We thus have another facet of the action: it evaluates relationships between
dynamical variables which satisfy the constraints of stable behaviour. This
property of the action is very useful: it generates standard continuity and
boundary conditions in field theory, and is the backbone of the canonical
formulation of both classical and quantum mechanics. For instance, in the
case of the electromagnetic field, we can generate all of the ‘electromagnetic
boundary conditions’ at interfaces using this technique (see section 21.2.2). This
issue occurs more generally in connection with the energy–momentum tensor,
in chapter 11, where we shall re-visit and formalize this argument.

4.1.5 Relativistic point particles

The relativistically invariant form of the action for a single point particle is

S =
∫

dt
√−g00

{
−1

2
m

dxi (t)

dt
gi j

dx j (t)

dt
+ V

}
. (4.29)

The particle positions trace out world-lines q(τ ) = x(τ ). If we re-express this
in terms of the proper time τ of the particle, where

τ = tγ−1

γ = 1/
√
(1− β2)

β2 = v2

c2
= 1

c2

(
dx
dt

)2

, (4.30)

then the action may now be written in the frame of the particle,

dt → γ dτ√
g → γ

√
g, (4.31)
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58 4 The action principle

giving

S =
∫

dτ
√

g00

{
−1

2
m

(
dx(τ )

dτ

)2

+ V γ−2

}
. (4.32)

The field equations are therefore

δS

δx
= m

d2x
dτ 2

+ ∂V ′

∂x
= 0, (4.33)

i.e.

F = ma, (4.34)

where

F = −∇V ′

a = d2x
dτ 2
. (4.35)

The conjugate momentum from the continuity condition is

p = m
dx
dτ
, (4.36)

which is simply the relativistic momentum vector p. See section 11.3.1 for the
energy of the classical particle system.

In the above derivation, we have treated the metric tensor as a constant, but in
curved spacetime gµν depends on the coordinates. In that case, the variation of
the action leads to the field equation

d

dτ

(
gµν

dxν

dτ

)
− 1

2
(∂µgρν)

dxν

dτ

dxρ

dτ
= 0. (4.37)

The equation of a free particle on a curved spacetime is called the geodesic
equation. After some manipulation, it may be written

d2xµ

dτ 2
+ �µνρ

dxν

dτ

dxρ

dτ
= 0. (4.38)

Interestingly, this equation can be obtained from the absurdly simple variational
principle:

δ

∫
ds = 0, (4.39)

where ds is the line element, described in section 3.2.5. See also section 25.4.
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4.2 Frictional forces and dissipation 59

4.2 Frictional forces and dissipation

In many branches of physics, phenomenological equations are used for the
dissipation of energy. Friction and ohmic resistance are two common examples.
Empirical frictional forces cannot be represented by a microscopic action
principle, since they arise physically only through time-dependent boundary
conditions on the system. No fundamental dynamical system is dissipative at
the microscopic level; however, fluctuations in dynamical variables, averaged
over time, can lead to a re-distribution of energy within a system, and this is
what leads to dissipation of energy from one part of a system to another. More
advanced statistical notions are required to discuss dissipation fully, but a few
simple observations can be made at the level of the action.

Consider the example of the frictional force represented by Langevin’s
equation:

m
d2x

dt
+ α ẋ = F(t). (4.40)

Initially it appears as though one could write the action in the following way:

S =
∫

dt

{
1

2
m

(
dx

dt

)2

+ 1

2
αx

dx

dt

}
. (4.41)

However, if one varies this action with respect to x , the term proportional to α
gives ∫

dt α

(
δx

d

dt
x + x

d

dt
δx

)
. (4.42)

But this term is a total derivative. Integrating by parts yields∫
dtb

a

d

dt
(x2) = x2

∣∣∣b
a
= 0, (4.43)

which may be ignored, since it exists only on the boundary. Because of the
reversibility of the action principle, one cannot introduce terms which pick out a
special direction in time. The only place where such terms can appear is through
boundary conditions. For the same reason, it is impossible to represent Ohm’s
law

J i = σ Ei (4.44)

in an action principle. An ohmic resistor has to dissipate heat as current passes
through it.

In some cases, the action principle can tricked into giving a non-zero con-
tribution from velocity-dependent terms by multiplying the whole Lagrangian
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60 4 The action principle

with an ‘integrating factor’ exp(γ (t)), but the resulting field equations require
γ (t) to make the whole action decay exponentially, and often the results are
ambiguous and not physically motivated.

We shall return to the issue of dissipation in detail in chapter 6 and show the
beginnings of how physical boundary conditions and statistical averages can be
incorporated into the action principle, in a consistent manner, employing the
principle of causality. It is instructive to show that it is not possible to write
down a gauge-invariant action for the equation

J i = σ Ei . (4.45)

i.e. Ohm’s law, in terms of the vector potential Aµ. The equation is only an
effective representation of an averaged statistical effect, because it does provide
a reversible description of the underlying physics.

(1) By varying with respect to Aµ, one may show that the action

S =
∫
(dx)

{
J i Ai − σi j Ai E j

}
(4.46)

with Ei = −∂t Ai − ∂i A0, does not give eqn. (4.45). If one postulates
that Ei and J i may be replaced by their steady state (time-independent)
averages 〈Ei 〉 and 〈J i 〉, then we can show that this does give the correct
equation. This is an indication that some averaging procedure might be
the key to representing dissipative properties of bulk matter.

(2) Consider the action

S =
∫
(dx)

{
JµAµ − σi j Ai E j e−γ

µxµ
}
. (4.47)

This may be varied with respect to A0 and Ai to find the equations of
motion; gauge invariance requires the equations to be independent of the
vector potential Aµ. On taking σi j = σδi j , one can show that gauge
invariance requires that the vector potential decay exponentially. Readers
are encouraged to check whether the resulting equations of motion are a
satisfactory representation of Ohm’s law.

4.3 Functional differentiation

It is useful to define the concept of functional differentiation, which is to
ordinary differentiation what δq(t) is to dq. Functional differentiation differs
from normal differentiation in some important ways.

The ordinary derivative of a function with respect to its control variable is
defined by

d f (t)

dt
= lim
δt→0

f (t + δt)− f (t)

δt
. (4.48)
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4.4 The action in covariant field theory 61

It tells us about how a function changes with respect to the value of its control
variable at a given point. Functional differentiation, on the other hand, is
something one does to an integral expression; it is performed with respect to
a function of some variable of integration. The ‘point of differentiation’ is now
a function f (t) evaluated at a special value of its control variable t ′. It takes
some value from within the limits of the integral. So, whereas we start with a
quantity which is not a function of t or t ′, the result of the functional derivation
is a function which is evaluated at the point of differentiation. Consider, as an
example, the arbitrary functional

F[ f ] =
∫

dt
∑

n

an( f (t))n. (4.49)

This is clearly not a function of t due to the integral. The variation of such a
functional F[ f ] is given by

δF[ f ] = F[ f (t)+ δ f (t)]− F[ f (t)]. (4.50)

We define the functional derivative by

δF

δ f (t ′)
= lim
ε→0

F[ f (t)+ εδ(t − t ′)]− F[ f (t)]

ε
. (4.51)

This is a function, because an extra variable t ′ has been introduced. You can
check that this has the unusual side effect that

δq(t)

δq(t ′)
= δ(t − t ′), (4.52)

which is logical (since we expect the derivative to differ from zero only if the
function is evaluated at the same point), but unusual, since the right hand side is
not dimensionless – in spite of the fact that the left hand side seems to be. On
the other hand, if we define a functional

Q =
∫

dtq(t) (4.53)

then we have

δQ

δq(t ′)
=

∫
dt
δq(t)

δq(t ′)
=

∫
δ(t − t ′) = 1. (4.54)

Thus, the integral plays a key part in the definition of differentiation for
functionals.

4.4 The action in covariant field theory

The action principle can be extended to generally covariant field theories. This
generalization is trivial in practice. An important difference is that field theories
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62 4 The action principle

are defined in terms of variables which depend not only on time but also on
space; φ(x, t) = φ(x). This means that the action, which must be a scalar,
without functional dependence, must also be integrated over space in addition
to time. Since the final action should have the dimensions of energy× time, this
means that the Lagrangian is to be replaced by a Lagrangian density L

S =
∫ σ ′

σ

(dx)L(φ(x, t), ∂µφ(x, t), x). (4.55)

The integral measure is (dx) = dVx/c, where dVx = cdtdnx
√

g = dx0dnx
√

g.
Although it would be nice to use dVx here (since this is the Minkowski space
volume element), this is not possible if L is an energy density and S is to have the
dimensions of action.2 The non-relativistic action principle has already chosen
this convention for us. The special role played by time forces is also manifest in
that the volume is taken between an earlier time t and a later time t ′ – or, more
correctly, from one spacelike hyper-surface, σ , to another, σ ′.

The classical interpretation of the action as the integral over T−V , the kinetic
energy minus the potential energy, does not apply in the general case. The
Lagrangian density has no direct physical interpretation, it is merely an artefact
which gives the correct equations of motion. What is important, however, is
how one defines a Hamiltonian, or energy functional, from the action. The
Hamiltonian is related to measurable quantities, namely the total energy of the
system at a given time, and it is responsible for the time development of the
system. One must be careful to use consistent definitions, e.g. by sticking to the
notation and conventions used in this book.

Another important difference between field theory and particle mechanics is
the role of position. Particle mechanics describes the trajectories of particles,
q(t), as a function of time. The position was a function with time as a parameter.
In field theory, however, space and time are independent parameters, on a par
with one another, and the ambient field is a function which depends on both
of them. In particle mechanics, the action principle determines the equation
for a constrained path q(t); the field theoretical action principle determines an
equation for a field which simultaneously exists at all spacetime points, i.e.
it does not single out any trajectory in spacetime, but rather a set of allowed
solutions for an omnipresent field space. In spite of this difference, the formal
properties of the action principle are identical, but for an extra integration:

2 One could absorb a factor of c into the definition of the field φ(x), since its dimensions are
not defined, but this would then mean that the Lagrangian and Hamiltonian would not have
the dimensions of energy. This blemish on the otherwise beautiful notation is eliminated when
one chooses natural units in which c = 1.
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4.4 The action in covariant field theory 63

4.4.1 Field equations and continuity

For illustrative purposes, consider the following action:

S =
∫
(dx)

{1

2
(∂µφ)(∂µφ)+ 1

2
m2φ2 − Jφ

}
, (4.56)

where dVx = cdt dx. Assuming that the variables φ(x) commute with one
another, the variation of this action is given by

δS =
∫
(dx)

{
(∂µδφ)(∂µφ)+ m2φδφ − Jδφ

}
. (4.57)

Integrating this by parts and using the commutativity of the field, one has

δS =
∫
(dx)

{
− φ + m2φ − J

}
+

∫
dσµ δφ(∂µφ). (4.58)

From the general arguments given earlier, one recognizes a piece which is purely
a surface integral and a piece which applies the field in a general volume of
spacetime. These terms vanish separately. This immediately results in the field
equations of the system,

(− + m2)φ(x) = J (x), (4.59)

and a continuity condition which we shall return to presently.
The procedure can be reproduced for a general Lagrangian density L and

gives the Euler–Lagrange equations for a field. Taking the general form of the
action in eqn. (4.55), one may write the first variation

δS =
∫
(dx)

{
∂L
∂φ
δφ + ∂L

∂(∂µφ)
δ(∂µφ)

}
. (4.60)

Now, the variation symbol and the derivative commute with one another since
they are defined in the same way:

∂µδφ = ∂µφ(x +�x)− ∂µφ(x)
= δ(∂µφ); (4.61)

thus, one may integrate by parts to obtain

δS =
∫
(dx)

{
∂L
∂φ

− ∂µ
(

∂L
∂(∂µφ)

)}
+ 1

c

∫
dσµ δφ

(
∂L

∂(∂µφ)

)
(4.62)

The first of these terms exists for every spacetime point in the volume of
integration, whereas the second is restricted only to the bounding hyper-surfaces
σ and σ ′. These two terms must therefore vanish independently in general.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


64 4 The action principle

The vanishing integrand of the first term gives the Euler–Lagrange equations of
motion for the field

∂L
∂φ

− ∂µ
(

∂L
∂(∂µφ)

)
= 0, (4.63)

and the vanishing of the second term leads to the boundary continuity condition,

�

(
δφ

∂L
∂(∂µφ)

)
= 0. (4.64)

If this result is compared with eqns. (4.22) and (4.23), an analogous ‘momen-
tum’, or conjugate variable to the field φ(x), can be defined. This conjugate
variable is unusually denoted !(x):

!(x) = δL

∂(∂0φ)
, (4.65)

and is derived by taking the canonical spacelike hyper-surface with σ = 0. Note
the position of indices such that the variable transforms like a covariant vector
p = ∂0q. The covariant generalization of this is

!σ(x) = δL

∂(∂σφ)
. (4.66)

4.4.2 Uniqueness of the action

In deriving everything from the action principle, one could gain the impression
that there is a unique prescription at work. This is not the case. The definition
of the action itself is not unique. There is always an infinity of actions
which generates the correct equations of motion. This infinity is obtained by
multiplying the action by an arbitrary complex number. In addition to this trivial
change, there may be several actions which give equivalent results depending on
(i) what we take the object of variation to be, and (ii) what we wish to deduce
from the action principle. For example, we might choose to re-parametrize the
action using new variables. The object of variation and its conjugate are then
re-defined.

It is clear from eqn. (4.21) that the field equations and boundary conditions
would be the same if one were to re-define the Lagrangian by multiplying by a
general complex number:

S → (a + ib)S. (4.67)

The complex factor would simply cancel out of the field equations and boundary
conditions. Moreover, the Lagrangian itself has no physical meaning, so there
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4.4 The action in covariant field theory 65

is no physical impediment to such a re-definition. In spite of this, it is normal
to choose the action to be real. The main reason for this is that this choice
makes for a clean relationship between the Lagrangian and a new object, the
Hamiltonian, which is related to the energy of the system and is therefore, by
assumption, a real quantity.

Except in the case of the gravitational field, one is also free to add a term on
to the action which is independent of the field variables, since this is always zero
with respect to variations in the fields:

S → S +
∫
(dx)  . (4.68)

Such a term is often called a cosmological constant, because it was introduced
by Einstein into the theory of relativity in order to create a static (non-expansive)
cosmology. Variations of the action with respect to the metric are not invariant
under the addition of this term, so the energy–momentum tensor in chapter 11
is not invariant under this change, in general. Since the Lagrangian density is an
energy density (up to a factor of c), the addition of this arbitrary term in a flat
(gravitation-free) spacetime simply reflects the freedom one has in choosing an
origin for the scale of energy density for the field.3

Another way in which the action can be re-defined is by the addition of a total
derivative,

S → S +
∫
(dx)∂µFµ[φ]

= S +
∫

dσµFµ[φ]. (4.69)

The additional term exists only on the boundaries σ of the volume integral.
By assumption, the surface term vanishes independently of the rest, thus, since
the field equations are defined entirely from the non-surface contributions, they
will never be affected by the addition of such a total derivative. However,
the boundary conditions or continuity will depend on this addition. This has
a physical interpretation: if the boundary of a physical system involves a
discontinuous change, it implies the action of an external agent at the boundary.
Such a jump is called a contact potential. It might signify the connection of a
system to an external potential source (a battery attached by leads, for instance).
The connection of a battery to a physical system clearly does not change the laws
of physics (equations of motion) in the system, but it does change the boundary
conditions.

In light of this observation, we must be cautious to write down a ‘neutral’,
or unbiased action for free systems. This places a requirement on the action,

3 Indeed, the action principle δS = 0 can be interpreted as saying that only potential differences
are physical. The action potential itself has no unique physical interpretation.
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66 4 The action principle

namely that the action must be Hermitian, time-reversal-invariant, or symmetri-
cal with respect to the placement of derivatives, so that, if we let t → −t , then
nothing is changed. For instance, one writes

(∂µφ)(∂µφ) instead of φ(− φ), (4.70)

for quadratic derivatives, and

1

2
(φ∗

↔
∂t φ) = 1

2
(φ∗(∂tφ)− (∂tφ

∗)φ) instead of φ∗∂tφ, (4.71)

in the case of linear derivatives. These alternatives differ only by an integration
by parts, but the symmetry is essential for the correct interpretation of the action
principle as presented. This point recurs in more detail in section 10.3.1.

4.4.3 Limitations of the action principle

In 1887, Helmholtz showed that an equation of motion can only be derived from
Lagrange’s equations of motion (4.6) if the generalized force can be written

Fi = −∂i V + d

dt

∂V

∂q̇i
, (4.72)

where V = V (q, q̇, t) is the potential L = T − V , and the following identities
are satisfied:

∂Fi

∂q̈ j
= ∂Fj

∂q̈i

∂Fi

∂q̇ j
+ ∂Fj

∂q̇i
= d

dt

(
∂Fi

∂q̈ j
+ ∂Fj

∂ q̈i

)

∂ j Fi − ∂i Fj = d

dt

(
∂Fi

∂q̇ j
− ∂Fj

∂ q̇i

)
(4.73)

For a review and discussion of these conditions, see ref. [67]. These relations lie
at the core of Feynman’s ‘proof’ of Maxwell’s equations [42, 74]. Although they
are couched in a form which derives from the historical approach of varying the
action with respect to the coordinate qi and its associated velocity, q̇i , separately,
their covariant generalization effectively summarizes the limits of generalized
force which can be derived from a local action principle, even using the approach
taken here. Is this a significant limitation of the action principle?

Ohm’s law is an example where a Lagrangian formulation does not work
convincingly. What characterizes Ohm’s law is that it is a substantive rela-
tionship between large-scale averages, derived from a deeper theory, whose
actual dynamics are hidden and approximated at several levels. The relation
summarizes a coarse average result of limited validity. Ohm’s law cannot be
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4.4 The action in covariant field theory 67

derived from symmetry principles, only from a theory with complex hidden
variables. The deeper theory from which it derives (classical electrodynamics
and linear response theory) does have an action principle formulation however.

Ohm’s law is an example of how irreversibility enters into physics. The
equations of fundamental physics are reversible because they deal only with
infinitesimal changes. An infinitesimal interval, by assumption, explores so
little of its surrounding phase space that changes are trivially reversed. This
is the main reason why a generating functional (action) formulation is so
successful at generating equations of motion: it is simply a mechanism for
exploring the differential structure of the action potential-surface in a local
region; the action is a definition of a conservation book-keeping parameter
(essentially energy), parametrized in terms of field variables. The reversible,
differential structure ensures conservation and generates all of the familiar
quantities such as momentum. Irreversibility arises only when infinitesimal
changes are compounded into significant changes; i.e. when one is able to
explore the larger part of the phase space and take account of long-term history
of a system. The methods of statistical field theory (closed time path [116]
and density matrices [49]) may be used to study long-term change, based on
sums of differential changes. Only in this way can one relate differential law to
macroscopic change.

Another way of expressing the above is that the action principle provides a
concise formulation of Markov processes, or processes whose behaviour now
is independent of what happened in their past. Non-Markov processes, or
processes whose behaviour now depends on what happened to them earlier,
require additional long-term information, which can only be described by the
combination of many infinitesimal changes.

Clearly, it is possible to write down equations which cannot be easily derived
from an action principle. The question is whether such equations are of
interest to physics. Some of them are (such as Ohm’s law), but these only fail
because, employing an action principle formulation of a high-level emergent
phenomenon ignores the actual energy accounting taking place in the system.
If one jumps in at the level of an effective field theory, one is not guaranteed
an effective energy parameter which obeys the reversible accounting rules of
the action principle. If an action principle formulation fails to make sense,
it is possible to go to a deeper, more microscopic theory and re-gain an
action formulation, thereby gaining a more fundamental (though perhaps more
involved) understanding of the problem.

So are there any fundamental, elementary processes which cannot be derived
from an action principle? The answer is probably not. Indeed, today all
formulations of elementary physics assume an action principle formulation at
the outset. What one can say in general is that any theory derived from an
action principle, based on local fields, will lead to a well defined problem,
within a natural, covariant formulation. This does not guarantee any prescription
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68 4 The action principle

understanding physical phenomena, but it does faithfully generate differential
formulations which satisfy the symmetry principle.

4.4.4 Higher derivatives

Another possibility which is not considered in this book is that of higher
derivative terms. The actions used here are at most quadratic in the derivatives.
Particularly in speculative gravitational field theories, higher derivative terms do
occur in the literature (often through terms quadratic in the curvature, such as
Gauss–Bonnet terms or Weyl couplings); these are motivated by geometrical or
topological considerations, and are therefore ‘natural’ to consider. Postulating
higher order derivative terms is usually not useful in other contexts.

Higher derivative terms are often problematic, for several reasons. The
main reason is that they lead to acausal solutions and ‘ghost’ excitations,
or to field modes which appear to be solutions, but which actually do not
correspond to physical propagations. In the quantum field theory, they are
non-renormalizable. Although none of these problems is itself sufficient to
disregard higher derivatives entirely, it limits their physical significance and
usefulness. Some higher derivative theories can be factorized and expressed
as coupled local fields with no more than quadratic derivatives; thus, a difficult
action may be re-written as a simpler action, in a different formulation. This
occurs, for instance, if the theories arise from non-local self-energy terms.

4.5 Dynamical and non-dynamical variations

It is convenient to distinguish between two kinds of variations of tensor quanti-
ties. These occur in the derivation of field equations and symmetry generators,
such as energy and momentum, from the action.

4.5.1 Scalar fields

The first kind of variation is a dynamical variation; it has been used implicitly
up to now. A dynamical variation of an object q is defined by

δq = q ′(x)− q(x). (4.74)

This represents a change in the function q(x) at constant position x . It is like
the ‘rubber-banding’ of a function into a new function: a parabola into a cubic
curve, and so on.

The other kind of variation is a coordinate variation, or kinematical variation,
which we denote

δxq(x) = q(x ′)− q(x). (4.75)
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4.5 Dynamical and non-dynamical variations 69

This is the apparent change in the height of the function when making a shift
in the coordinates x , or perhaps some other parameter which appears either
explicitly or implicitly in the action. More generally, the special symbol δξ is
used for a variation with respect to the parameter ξ . By changing the coordinates
in successive variations, δx , one could explore the entire function q(x) at
different points. This variation is clearly related to the partial (directional)
derivative of q. For instance, under a shift

xµ→ xµ + εµ, (4.76)

i.e. δxµ = εµ, we have

δxq(x) = (∂µq)εµ. (4.77)

One writes the total variation in the field q as

δT ≡ δ +
∑

i

δξ i . (4.78)

4.5.2 Gauge and vector fields

The coordinate variation of a vector field is simply

δx Vµ = Vµ(x
′)− Vµ(x)

= (∂λVµ)ε
λ. (4.79)

For a gauge field, the variation is more subtle. The field at position x ′ need only
be related to the Taylor expansion of the field at x up to a gauge transformation,
so

δx Aµ = Aµ(x
′)− Aµ(x)

= (∂λAµ)ε
λ + ∂λ(∂µs)ελ. (4.80)

The gauge transformation s is important because δx Aµ(x) is a potential differ-
ence, and we know that potential differences are observable as the electric and
magnetic fields, so this variation should be gauge-invariant. To make this so,
one identifies the arbitrary gauge function s by ∂λs = −Aλ, which is equally
arbitrary, owing to the gauge symmetry. Then one has

δx Aµ = (∂λAµ − ∂µAλ)ε
λ

= Fλµε
λ. (4.81)

Neglect of the gauge freedom has led to confusion over the definition of the
energy–momentum tensor for gauge fields; see section 11.5.
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70 4 The action principle

The dynamical variation of a vector field follows from the general tensor
transformation

V ′(x ′) = ∂xρ

∂x ′µ
Vρ(x). (4.82)

From this we have

δVµ(x) = V ′
µ(x)− Vµ(x)

= V ′
µ(x

′)− (∂λVµ)ε
λ − Vµ(x)

= ∂xρ

∂x ′µ
Vρ(x)− (∂λVµ)ε

λ − Vµ(x)

= −(∂νεµ)V ν − (∂λVµ)ε
λ. (4.83)

For the gauge field, one should again be wary about the implicit coordinate
variation. The analogous derivation gives

δAµ(x) = A′µ(x)− Aµ(x)

= A′µ(x
′)− Fλµε

λ − Aµ(x)

= ∂xρ

∂x ′µ
Aρ(x)− Fλµε

λ − Aµ(x)

= −(∂νεµ)Aν − Fλµε
λ. (4.84)

4.5.3 The metric and second-rank tensors

The coordinate variation of the metric is obtained by Taylor-expanding the
metric about a point x ,

δx gµν = gµν(x
′)− gµν(x)

= (∂λgµν(x))ελ. (4.85)

To obtain the dynamical variation, we must use the tensor transformation rule

g′µν(x
′) = ∂xρ

∂x ′µ
∂xσ

∂x ′ν
gρσ (x), (4.86)

where

∂xρ

∂x ′µ
= δρµ − (∂µερ)+ · · · + O(ε2). (4.87)

Thus,

δgµν = g′µν(x)− gµν(x)

= ∂xρ

∂x ′µ
∂xσ

∂x ′ν
gρσ(x) − (∂ρg′µν)ε

ρ − gµν(x)
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= −(∂λgµν)ελ − (∂µελ)gλν − (∂νελ)gλµ
= −(∂λgµν)ελ −

{
∂µεν + ∂νεµ

}
, (4.88)

where one only keeps terms to first order in εµ.

4.6 The value of the action

There is a frequent temptation to assign a physical meaning to the action, beyond
its significance as a generating functional. The differential structure of the
action, and the variational principle, give rise to canonical systems obeying
conservation laws. This is the limit of the action’s physical significance. The
impulse to deify the action should be stifled.

Some field theorists have been known to use the value of the action as an
argument for the triviality of a theory. For example, if the action has value zero,
when evaluated on the constraint shell of the system, one might imagine that this
is problematic. In fact, it is not. It is not the numerical value of the action but its
differential structure which is relevant.

The vanishing of an action on the constraint shell is a trivial property of any
theory which is linear in the derivatives. For instance, the Dirac action and the
Chern–Simons [12] action have this property. For example:

S =
∫
(dx)ψ(iγ µ∂µ + m)ψ

δS

δψ
= (iγ µ∂µ + m)ψ = 0

S
∣∣∣
ψ
= 0. (4.89)

The scalar value of the action is irrelevant, even when evaluated on some speci-
fied constraint surface. Whether it is zero, or non-zero, it has no meaning. The
only exception to this is in the Wick-rotated theory, where a serendipitous link
to finite temperature physics relates the Wick-rotated action to the Hamiltonian
or energy operator of the non-rotated theory.
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5
Classical field dynamics

A field is a dynamically changing potential V (x, t), which evolves in time
according to an equation of motion. The equation of motion is a constraint
on the allowed behaviour of the field. It expresses the dynamical content of the
theory. The solution of that constraint, called the physical field, is the pivotal
variable from which we glean all of the physical properties of the system. In
addition to dynamical equations, a field theory has a conceptual basis composed
of physical assumptions, interpretations and boundary conditions.

The familiar equations of motion, in classical field dynamics, include the
Schrödinger equation, Maxwell’s equations, Dirac’s relativistic equation and
several others. In the context of field theory, we call such equations classical
as long as we are not doing quantum field theory (see chapter 15), since the
method of solution is directly analogous to that of classical electrodynamics.
In spite of this designation, we know that the solutions of Schrödinger’s field
equation are wavefunctions, i.e. the stuff of quantum mechanics. Whole books
have been written about these solutions and their interpretation, but they are not
called field theory; they use a different name.

Field theory embraces both quantum mechanics and classical electrodynam-
ics, and goes on to describe the most fundamental picture of matter and energy
known to physics. Our aim here is to seek a unified level of description for
matter and radiation, by focusing on a field theoretical formulation. This ap-
proach allows a uniquely valuable perspective, which forms the basis for the full
quantum theory. The equations presented ‘classically’ in this book have many
features in common, although they arise from very different historical threads,
but – as we shall see in this chapter – the completeness of the field theoretical
description of matter and radiation can only be appreciated by introducing
further physical assumptions brought forcefully to bear by Einsteinian relativity.
This is discussed in chapter 15.

72
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5.1 Solving the field equations 73

5.1 Solving the field equations

A solution is a mathematical expression of the balance between the freedom
expressed by the variables of a theory and the constraints which are implicitly
imposed upon them by symmetries and equations of motion.

Each physical model has a limited validity, and each has a context into
which one builds its interpretation. Some solutions must be disregarded on the
basis of these physical assumptions. Sometimes, additional constraints, such as
boundary conditions, are desirable to make contact with the real world. The
basic vocabulary of solutions involves some common themes.

5.1.1 Free fields

Free particles or fields do not interact. They experience no disturbances and
continue in a fixed state of motion for ever. Free particles are generally described
by plane wave fields or simple combinations of plane waves, which may be
written as a Fourier transform,

#(x) =
∫

dn+1k

(2π)n+1
eikx#(k), (5.1)

or, using Schwinger’s compact notation for the integration measure, as

#(x) =
∫
(dk) eikx#(k). (5.2)

For this combination to satisfy the field equations, we must add a condition
χ(k) = 0, which picks out a hyper-surface (a sub-set) of all of the kµ which
actually satisfy the equations of motion:

#(x) =
∫
(dk)eikx#χ(k)δ(χ), (5.3)

where χ = 0 is the constraint imposed by the equations of motion on k. Without
such a condition, the Fourier transform can represent an arbitrary function.
Notice that#(k) and#χ(k) have different dimensions by a factor of k due to the
delta function. This condition χ is sometimes called the mass shell in particle
physics. Elsewhere it is called a dispersion relation. Fields which satisfy this
condition (i.e. the equations of motion) are said to be on shell, and values of k
which do not satisfy this condition are off shell. For free fields we have

χR = h̄2(−ω2 + k2c2)+ m2c4 = 0

χNR = h̄2k2

2m
− ω = 0, (5.4)

for the relativistic and non-relativistic scalar fields, respectively. The delta-
function constraint ensures that the combinations of plane waves obey the
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74 5 Classical field dynamics

field equations. It has the additional side effect that one component of the
wavenumber kµ is not independent and can be eliminated. It is normal to
integrate over the zeroth (energy) component to eliminate the delta function.
From Appendix A, eqn. (A.15), we have

#(x) =
∫
(dk)

∣∣∣∣ ∂χ∂k0

∣∣∣∣−1

ei(k·x−ω(k)t)#(k, ω(k)). (5.5)

Travelling waves carry momentum ki > 0 or ki < 0, while stationary waves
carry no momentum, or rather both ki and −ki in equal and opposite amounts.

5.1.2 Boundary conditions and causality I

A common strategy for simplifying the analysis of physical systems is to assume
that they are infinitely large, or that they are uniform in space and/or time, or that
they have been running uniformly in a steady state for ever. Assumptions like
this allow one to do away with the complicated behaviour which is associated
with the starting up or shutting down of a dynamical process. It also allows
one to consider bulk behaviour without dealing with more difficult effects in the
vicinity of the edges of a system. Some of the effects of finite size and starting
up/shutting down can be dealt with by imposing boundary conditions on the
behaviour of a system. The term boundary conditions is used with a variety of
meanings.

• Boundary conditions can be a specification of the absolute value of the
field at some specific spacetime points, e.g.

φ(x)

∣∣∣∣∣
x=x0

= 0. (5.6)

This indicates a constraint associated with some inhomogeneity in space-
time.

• A corollary to the above is the specification of the value of the field on the
walls of a container in a finite system.

• At junctions or interfaces, one is interested in continuity conditions, like
those derived in section 4.1.4 and generalizations thereof. Here, one
matches the value of the field, perhaps up to a symmetry transformation,
across the junction, e.g.

�φ(x0) = 0, (5.7)

meaning that the field does not change discontinuously across a junction.
Conditions of this type are sometimes applied to fields, but usually it
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is more correct to apply them to conserved quantities such as invariant
products of fields, probabilities

�
(
ψ†ψ

) = 0, (5.8)

etc. since fields can undergo discontinuous phase changes at boundaries
when the topology of spacetime allows or demands it.

• Related to the last case is the issue of spatial topology. Some boundary
conditions tell us about the connectivity of a system. For example, a field
in a periodic lattice or circle of length L could satisfy

φ(x + L) = U (L) φ(x). (5.9)

In other words, the value of the field is identical, up to a possible phase or
symmetry factor U (L), on translating a distance L .

• Another kind of condition which one can impose on a reversible physical
system is a direction for causal development. The keywords here are
advanced, retarded and Feynman boundary conditions or fluctuations.
They have to do with a freedom to change perspective between cause and
effect in time-reversible systems. Is the source switched on/off before
or after a change in the field? In other words, does the source cause
the effect or does it absorb and dampen the effect? This is a matter
of viewpoint in reversible systems. The boundary conditions known as
Feynman boundary conditions mix these two causal perspectives and
provide a physical model for fluctuations of the field or ‘virtual particles’:
a short-lived effect which is caused and then absorbed shortly afterwards.

5.1.3 Positive and negative energy solutions

The study of fields in relativistic systems leads to solutions which can be
interpreted as having both positive and negative energy. Free relativistic field
equations are all transcriptions of the energy relation

E = ±
√

p2c2 + m2c4, (5.10)

with the operator replacement pµ = −ih̄∂µ and a field on which the operators
act. This is most apparent in the case of the Klein–Gordon equation,

(−h̄2c2 + m2c4)φ(x) = 0. (5.11)

Clearly, both signs for the energy are possible from the square-root in
eqn. (5.10). The non-relativistic theory does not suffer from the same problem,
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76 5 Classical field dynamics

since the Schrödinger equation is linear in the energy and the sign is defined to
be positive:

p2

2m
= E . (5.12)

The field φ(x) can be expanded as a linear combination of a complete set of
plane wavefunctions satisfying the equation of motion. The field can therefore
be written

φ(x) =
∫
(dk)φ(k)eikxδ

(
h̄2c2k2 + m2c4

)
, (5.13)

where φ(k) are arbitrary coefficients, independent of x . The integral ranges over
all energies, but one can separate the positive and negative energy solutions by
writing

φ(x) = φ(+)(x)+ φ(−)(x), (5.14)

where

φ(+)(x) =
∫
(dk)φ(k)eikxθ(k0)δ

(
h̄2c2k2 + m2c4

)
φ(−)(x) =

∫
(dk)φ(k)eikxθ(−k0)δ

(
h̄2c2k2 + m2c4

)
. (5.15)

The symmetry of the energy relation then implies that

φ(+)(x) = (
φ(−)(x)

)∗
. (5.16)

The physical interpretation of negative energy solutions is an important issue,
not because negative energy is necessarily unphysical (energy is just a label
which embraces a variety of conventions), but rather because there are solutions
with arbitrarily large negative energy. A transition from any state to a state with
energy E = −∞ would produce an infinite amount of real energy for free. This
is contrary to observations and is, presumably, nonsense.

The positive and negative energy solutions to the free relativistic field equa-
tions form independently complete sets, with respect to the scalar product,

(φ(+)(x), φ(+)(x)) = const.

(φ(−)(x), φ(−)(x)) = const.

(φ(+)(x), φ(−)(x)) = 0. (5.17)

In the search for physically meaningful solutions to the free relativistic equa-
tions, it might therefore be acceptable to ignore the negative energy solutions
on the basis that they are just the mirror image of the positive energy solutions,
describing the same physics with a different sign.
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This is the case for plane waves, or any solutions which are translationally
invariant in time. Such a wave has a time dependence of the form,

φ(t) ∼ exp

(
−i

E

h̄
(t − t0)

)
, (5.18)

where t0 is an arbitrary origin for time. If E < 0, one can simply recover a
positive energy description by moving the origin for time t0 into the far future,
t0 → ∞, which essentially switches t → −t . Since a free particle cannot
change its energy by interaction, it will always have a definite energy, either
positive or negative. It cannot therefore extract energy from the field by making
a transition.

The real problem with negative energies arises in interacting theories. It is not
clear how to interpret these solutions from the viewpoint of classical field theory.
An extra assumption is needed. This assumption is more clearly justified in the
quantum theory of fields (see chapter 15), but is equally valid in the classical
theory. The assumption is that there exists a physical state of lowest energy
(called the vacuum state) and that states below this energy are interpreted as
anti-matter states.

It is sometimes stated that relativistic quantum mechanics (prior to second
quantization) is sick, and that quantum field theory is required to make sense
of this problem. This is not correct, and would certainly contradict modern
thinking about effective field theories.1 All that is required is a prescription for
interpreting the negative energies. The assumptions of quantum field theory,
although less well justified, are equally effective and no more arbitrary here. In
fact, they are essential since the classical field theory is a well defined limit to
the fully quantized field theory.

5.1.4 Sources

The terms source and current are often used interchangeably in field theory,
but they refer to logically distinct entities. Sources (sometimes referred to
emphatically as external sources) are infinitesimal perturbations to a physical
system; currents represent a transfer between one part of a system and another.
In an isolated (closed) system, matter and energy can flow from one place to
another, and such currents are conserved. There is a close formal similarity
between sources and currents, which is no accident. Sources – and their
opposites: sinks – can be thought of as infinitesimal currents which are not
conserved. They represent the flow of something into or out of a physical
system, and thus a perturbation to it. Sources are also the generators of
infinitesimal field changes, called virtual processes or fluctuations.

1 Certain specific Lagrangians lead to unphysical theories, but this is only a reason to reject
certain models, not the quantum theory itself.
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78 5 Classical field dynamics

In mathematics, any quantity on the ‘right hand side’ of a field equation is
called a source, ‘forcing term’ or ‘driving term’. A source perturbs or drives the
field linearly. For example, consider the Klein–Gordon equation(

− + m2c2

h̄2

)
φ(x) = J. (5.19)

One says that J (x) is a source for the field φ(x). J is sometimes also referred
to as a generalized force. Sources are included in the action in the form

S → S +
∫
(dx)Jφ(x). (5.20)

For example, the Klein–Gordon action with a source term becomes

S =
∫
(dx)

{
1

2
h̄2c2(∂µφ)(∂µφ)+ 1

2
m2c4φ2 − Jφ

}
. (5.21)

When this action is varied, one obtains

δS

δφ
= (−h̄2c2 + m2c4

)
φ − J = 0, (5.22)

which leads directly to eqn. (5.19). Other source terms include

SMaxwell → SMaxwell +
∫
(dx)JµAµ (5.23)

for the electromagnetic field, and

Scomplex → Scomplex +
∫
(dx)

{
Jφ∗ + J ∗φ

}
(5.24)

for a complex scalar field. Most interactions with the field do not have the form
of an infinitesimal perturbation. For instance, the interaction with a Schrödinger
field, in quantum mechanics, has the form ψ∗Vψ , making J = Vψ , which is
not infinitesimal. However, if one assumes that V is small, or infinitesimal, then
this may be expanded around the field ψ for a free theory in such a way that
it appears to be a series of infinitesimal impulsive sources; see section 17.5. In
this way, the source is the basic model for causal change in the field.

Another definition of the source is by functional differentiation:

δS

δφA
= JA, (5.25)

where φ is a generic field. This is a generic definition and it follows directly
from eqn. (5.20), where one does not treat the source term as part of the action
S.
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A current represents a flow or transport. To define current, one looks to the
only example of current known prior to field theory, namely the electric current.
Recall Maxwell’s equation

∂µFνµ = µ0 J ν. (5.26)

The quantity Jµ is the (n + 1) dimensional current vector. It is known,
from the microscopics of electromagnetism, that this is the electric current:
electric currents and electric charges are responsible for the electromagnetic
field. However, one may also say that Jµ is a source for the electromagnetic
field, because it prevents the left hand side of this equation from being equal to
zero. It perturbs the equation of motion. In electromagnetism the current is a
source for the field Fµν or Aµ, so it is common to treat source and current as
being the same thing. This tendency spills over for other fields too, and one
often defines a generic current by eqn. (5.25). Of course, normally one imagines
a current as being a vector, whereas the quantity in eqn. (5.25) is a scalar, but
this may be used as a definition of ‘current’. The notion of conserved currents
and their relation to symmetries recurs in chapter 9.

5.1.5 Interactions and measurements

Fields undergo interactions with other fields, and perhaps with themselves
(self-interaction). When fields interact with other fields or potentials (either
static or dynamical), the state of the field is modified. Classically, the field
responds deterministically according to a well defined differential equation
(the equation of motion), and interactions apply new constraints. One way to
understand weakly interacting systems is to imagine them to be assemblies
of weakly-coupled oscillators. In special circumstances, it is possible to
construct models with interactions which can be solved exactly. Often, however,
approximate methods are required to unravel the behaviour of interacting fields.

In quantum mechanics the act of measurement itself is a kind of temporary
interaction, which can lead to a discontinuous change of state. It is not funda-
mentally different from switching on a potential in field theory. The ‘collapse of
the wavefunction’ thus occurs as a transition resulting from an interaction with a
measurement apparatus. This collapse has no detailed description in the theory.

5.2 Green functions and linear response

5.2.1 The inverse problem

Consider an equation of the form

D y(t) = f (t), (5.27)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


80 5 Classical field dynamics

where D is a differential operator, y(t) is a variable we seek to determine, and
f (t) is some forcing term, or ‘source’. We meet this kind of equation repeatedly
in field theory, and D is often an operator of the form D = − + m2.

Normally, one would attempt to solve a differential equation either by
integrating it directly, or by ‘substituting in’ a trial solution and looking for
consistency. An alternative method is the method of Green functions. The idea
can be approached in a number of ways. Let us first take a naive approach.

If D is an operator, then, if a unique solution to the above equation exists,
it must have an inverse. We can therefore write the solution to this equation
formally (because the following step has no meaning until we have defined the
inverse) by

y(t) = (D)−1 f (t) = f (x)

D . (5.28)

This is much like the approach used to solve matrix equations in linear algebra.
Both the notations in the equation above are to be found in the literature. If the
inverse exists, then it must be defined by a relation of the form

D
D = DD−1 = I, (5.29)

where I is the identity operator.2 We do not yet know what these quantities
are, but if an inverse exists, then it must be defined in this way. An obvious
thing to notice is that our eqn. (5.27) is a differential equation, so the solution
involves some kind of integration of the right hand side. Let us now postpone the
remainder of this train of thought for a few lines and consider another approach.

The second way in which we can approach this problem is to think of
eqn. (5.27) as a ‘linear response’ equation. This means that we think of the right
hand side as being a forcing term which perturbs the solution y(t) by kicking it
over time into a particular shape. We can decompose the force f (t) into a set of
delta-function impulse forces over time,

f (t) =
∫

dt ′δ(t, t ′) f (t ′). (5.30)

This equation, although apparently trivial (since it defines the delta function),
tells us that we can think of the function f (t) as being a sum of delta functions
at different times, weighted by the values of f (t ′). We can always build up a
function by summing up delta functions at different times. In most physical
problems we expect the value of y(t) to depend on the past history of all the
kicks it has received from the forcing function f (t). This gives us a clue as to
how we can define an inverse for the differential operator D.

2 Note that the ordering of the operator and inverse is an issue for differential operators. We
require a ‘right-inverse’, but there may be no left inverse satisfying D−1D = I .
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Suppose we introduce a bi-local function G(t, t ′), such that

y(t) =
∫

dt ′ G(t, t ′) f (t ′); (5.31)

i.e. when we sum up the contributions to the force over time with this weight,
it gives us not the force itself at a later time, but the solution. This, in fact, is
the way we define the inverse D−1. It has to be a bi-local function, as we shall
see below, and it involves an integration, in spite of the purely formal notation
in eqn. (5.29).

Substituting this trial solution into the equation of motion, we have

D
∫

dt ′ G(t, t ′) f (t ′) = f (t), (5.32)

where the operator D acts on the variable t only, since the dummy variable t ′ is
integrated out from minus to plus infinity. Thus, we may write,∫

dt ′
t
D G(t, t ′) f (t ′) = f (t). (5.33)

This equation becomes the defining equation for the delta function (5.30) if and
only if

t
D G(t, t ′) = δ(t, t ′), (5.34)

and this equation is precisely of the form of an inverse relation, where the delta
function is the identity operator. We have therefore obtained a consistent set of
relations which allow us to write a formal solution y(t) in terms of an inverse for
the operator G(t, t ′); we also have an equation which this inverse must satisfy,
so the problem has been changed from one of finding the solution y(t) to one of
calculating the inverse function. It turns out that this is often an easier problem
than trying to integrate eqn. (5.27) directly.

The function G(t, t ′) goes by several names. It is usually referred to as the
Green(’s) function for the operator D, but it is also called the kernel for D and,
in quantum field theory, the propagator.

We can, of course, generalize this function for differential operators which
act in an (n + 1) dimensional spacetime. The only difference is that we replace
t, t ′ by x, x ′ in the above discussion:

D y(x) = f (x)

DG(x, x ′) = cδ(x, x ′)

y(x) =
∫
(dx ′)G(x, x ′) f (x ′). (5.35)
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82 5 Classical field dynamics

Or, equivalently,

DG(x, x ′) = δ(x, x′)δ(t, t ′)
y(x) =

∫
(dx ′)G(x, x ′) f (x ′). (5.36)

We are not quite finished with Green functions yet, however: we have skirted
around an important issue above, which is described in the next section.

5.2.2 Boundary conditions and causality II

The discussion above is not quite complete: we have written down a function
which relates the solution at x to a forcing term at x ′ via a bi-local function
G(x, x ′). The inverse relation involves an integral over all intermediate times
and positions x ′, but over what values does this integral run? And over what
values of x ′ was the force defined? Was it switched on suddenly at some time
in the past (giving an integral from a fixed time in the past to the present), or
has it always existed (giving an integral from minus infinity)? Moreover, why
should x ′ be in the past? We know that physics is usually time-reversible, so
why could we not run time backwards and relate a solution in the past to a value
of the force in the future, or perhaps a combination of the past and future?

All of these things are possible using different Green functions. We therefore
see that the inverse is not unique, and it is not unique because the definition of
the inverse involves an integration, and integrals have limits. Physically we are
talking about the need to specify initial or boundary conditions on our physical
system.

The commonly used Green functions are as follows.

• Retarded Green function Gr(x, x ′). This relates a solution at the present
to forces strictly in the past. It is the basis of linear response theory. Due to
its origins in electromagnetism, it is often referred to as the susceptibility
χ(x, x ′) ≡ χ ′ + iχ ′′ in other books, with real and imaginary parts as
denoted.

• Advanced Green function Ga(x, x ′). This relates a solution at the present
to forces strictly in the future.

• Feynman Green function GF(x, x ′). This relates a solution at the present
to forces disposed equally in the past and the future. Its interpretation
is rather subtle, since it turns real fields into complex fields as they
propagate. The Feynman Green function is a correlation function, and
a model for fluctuations in a system. It is sometimes denoted �(x, x ′),
C(x, x ′) or S(x, x ′) in other books.
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• Wightman functions. The positive and negative frequency Wightman
functions G(±)(x, x ′) may be thought of as building blocks out of which
all the other Green functions may be constructed.

5.2.3 Green functions in Fourier momentum space3

A useful way of calculating quantities is to use an integral transformation,
usually the Fourier transformation on the Green functions. The purpose of this
step is to turn an operator equation into an ordinary algebraic equation, plus a
single integral. This is often referred to as transforming into ‘momentum space’,
since the choice of units makes the Fourier transform variables equivalent to
momenta.

We shall focus largely on the Green functions for the scalar field, since most of
the Green functions for other fields can be obtained from this by differentiation.
We are looking to solve an equation of the form

(− + M2)G(x, x ′) = δ(x, x ′), (5.37)

where M2 is some real mass term. We define the Fourier transforms of the Green
function by the mutually inverse relations,

G(r) =
∫
(dk)eikr G(k) (5.38a)

G(k) =
∫
(dr)e−ikr G(x, x ′), (5.38b)

where we have assumed that G(r) = G(x, x ′) is a translationally invariant
function of the coordinates (a function only of the difference x − x ′), which is
reasonable since M2 is constant with respect to x . We shall also have use for the
Fourier representation of the delta function, defined in Appendix A, eqn. (A.10).
Notice how the Fourier integral is a general linear combination of plane waves
exp(ik(x − x ′)), with coefficients G(k). Using this as a solution is just like
substituting complex exponentials into differential equations. Substituting these
transformed quantities into eqn. (5.37), and comparing the integrands on the left
and right hand sides, we obtain

(k2 + M2)G(k) = 1. (5.39)

This is now an algebraic relation which may be immediately inverted and
substituted back into eqn. (5.38b) to give

G(x, x ′) =
∫
(dk)

eik(x−x ′)

k2 + M2
. (5.40)

3 In this section we set h̄ = c = 1 for convenience.
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84 5 Classical field dynamics

In addition to this ‘particular integral’, one may add to this any linear combina-
tion of plane waves which satisfies the mass shell constraint k2+M2 = 0. Thus
the general solution to the Green function is

GX(x, x ′) =
∫
(dk)eik(x−x ′)

[
1

k2 + M2
+ X (k, x) δ(k2 + M2)

]
, (5.41)

where X (k, x) is an arbitrary function of k, and in the unusual case of inhomo-
geneous systems it can also depend on the average position x = 1

2(x + x ′).
This arbitrariness in the complementary function is related to the issue of
boundary conditions in the previous section and the subsequent discussion in
the remainder of this chapter, including the choice of integration path for the
Green function. In most cases studied here, X (k, x) = 0, and we choose a
special solution (retarded, advanced, etc.) for the Green function. This term
becomes important in satisfying special boundary conditions, and occurs most
notably in statistical ‘many-particle’ systems, which vary slowly with t away
from equilibrium.

We are therefore left with an integral which looks calculable, and this is
correct. However, its value is ambiguous for the reason mentioned above:
we have not specified any boundary conditions. The ambiguity in boundary
conditions takes on the form of a division by zero in the integrand, since

k2 + M2 = −k2
0 + k2 + M2 = (ωk − k0)(ωk + k0), (5.42)

where ωk =
√

k2 + M2. This G(k) has simple poles at

k0 = ±ωk . (5.43)

In order to perform the integral, we need to define it unambiguously in the
complex plane, by choosing a prescription for going around the poles. It
turns out that this procedure, described in many texts, is equivalent to choosing
boundary conditions on the Green function.

5.2.4 Limitations of the Green function method

The Green function method nearly always works well in field theory, but it is
not without its limitations. The limitations have to do with the order of the
differential operator, D, the number of spacetime dimensions and whether or
not the operator contains a mass term. For a massive operator

(− + M2)φ(x) = J (x), (5.44)

the general solution is given by

φ(x) =
∫
(dx) G(x, x ′)J (x ′). (5.45)
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For a massless field, it is clear that one can always add to this a polynomial of
order lower than the order of the differential operator. In the example above,
setting M = 0 allows us to add

φ(x) =
∫
(dx) G(x, x ′)J (x ′)+ α(x − x ′)+ β. (5.46)

A more serious limitation of the Green function method arises when the order of
the differential operator exceeds the number of spacetime dimensions involved
in the operator. This leads to non-simple poles in the Green function, which
presents problems for the evaluation of the Green function. For example, a
second-order operator in one dimension

∂2
t G(t, t ′) = δ(t, t ′). (5.47)

If we try to solve this using the Fourier method, we end up with an integral of
the form

G(t, t ′) =
∫

dω

2π

e−iω(t−t ′)

−(ω ± iε)2
. (5.48)

This integral has a second-order pole and cannot be used to solve an equation
involving ∂2

t . For example, the equation for the position of a Newtonian body

∂2
t x(t) = F/m, (5.49)

cannot be solved in this way since it is not homogeneous in the source F/m.
The solution is easily obtained by integration

x(t) = 1

2

F

m
t2 + vt + x0. (5.50)

Since there are terms in this solution which are not proportional to F/m, it is
clear that the Green function method cannot provide this full answer. However,
the equation can still be solved by the Green function method in two stages.

5.2.5 Green functions and eigenfunction methods

In introductory quantum mechanics texts, the usual approach to solving the
system is based on the use of the eigenfunctions of a Hamiltonian operator.
This is equivalent to the use of Green functions. The Fourier space expressions
given thus far assume that an appropriate expansion can be made in terms of
plane wave eigenfunctions:

uk(x) = eikx . (5.51)
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Written in this notation, the Green functions have the form

G(x, x ′) =
∑

n

Gn un(x)u
∗
n(x

′) , (5.52)

where the un are a complete set of eigenfunctions, or solutions of the field
equations, and the Gn are a set of constants in this new expansion. The labels n
are sometimes discrete (as in bound state problems) and sometimes continuous,
as in the case n = k, G(k) and so on. In addition to the above expansion, the
question of boundary conditions must be addressed. This can be accomplished
by multiplying the coefficients by step functions:

Gn(x, x ′) ∝ (
αn θ(t − t ′)+ βn θ(t

′ − t)
)
. (5.53)

This is true in many situations, at least when the system concerned is transla-
tionally invariant. However, in bound state problems and situations of special
symmetry, this expansion leads to an inefficient and sometimes pathological
approach.

Consider the relativistic scalar field as an example. The complex scalar field
satisfies the equation (− + m2 + V

)
φ(x) = J (x). (5.54)

Now let ϕn be a complete set of eigenfunctions of the operator in this equation,
such that a general wavefunction φ(x) may be expanded in terms of a complete
set of these with coefficients cn ,

φ(x) =
∑

n

cnϕn(x), (5.55)

such that ∫
dσx(ϕn, ϕm)

∣∣∣∣∣
t=t ′

= δnm . (5.56)

The wavefunction φ(x) and the eigenfunctions ϕn(x) are assumed to be one-
particle wavefunctions. The discrete indices n,m denote any bound state
quantum numbers which the wavefunction might have. The eigenfunctions
satisfy (− + m2 + V

)
ϕn(x) = 0. (5.57)

The eigenfunctions can also be expressed in terms of their positive and negative
frequency parts,

ϕn(x) = ϕ(+)n (x)+ ϕ(−)n (x), (5.58)
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where ϕ(+)n (x) = (ϕ(−)n (x))∗,

φ(+)n (x) =
∫
(dk)eikxθ(−k0)δ(k

2 + m2 + V )an(k), (5.59)

and an(k) is a c-number. The Green function for the field (wavefunction) φ(x)
is the inverse of the operator in eqn. (5.54), satisfying,(− + m2 + V

)
Gnm(x, x ′) = δnmδ(x, x ′). (5.60)

Using eqn. (5.57) and eqn. (A.21) from Appendix A, we can solve this equation
with an object of the form

Gnm =
(
α θ(t − t ′)+ β θ(t ′ − t)

)∑
n,m

ϕn(x)ϕ
∗
m(x

′), (5.61)

where α and β are to be fixed by the choice of boundary conditions on the Green
function.

5.3 Scalar field Green function

The Green function for the scalar field is defined by the relation

(−h̄2c2 + m2c4)G(x, x ′) = δ(x, x′)δ(t, t ′). (5.62)

It is often convenient to express this in terms of the (n + 1) dimensional delta
function

δ(x, x′)δ(t, t ′) = cδ(x, x′)δ(x0, x0′) = cδ(x, x ′). (5.63)

The right hand side of eqn. (5.62) differs from an (n + 1) dimensional delta
function by a factor of c because the action is defined as an integral over
dVt = (dx) rather than dVx . This convention is chosen because it simplifies
the coupling between matter and radiation, and because it makes the Lagrangian
density have the dimensions of an energy density. In natural units, h̄ = c = 1,
this distinction does not arise. The formal expression for the scalar Green
function on solving this equation is

G(x, x ′) = c
∫
(dk)

eik(x−x ′)

p2c2 + m2c4
, (5.64)

where pµ = h̄kµ. Thus, G(x, x ′) has the dimensions of φ2(x). This Green
function can be understood in a number of ways. For the remainder of this
section, we shall explore its structure in terms of the free-field solutions and the
momentum-space constraint surface p2c2 + m2c4 = 0, which is referred to in
the literature as the ‘mass shell’.
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88 5 Classical field dynamics

5.3.1 The Wightman functions

It is useful to define two quantities, known in quantum field theory as the positive
and negative frequency Wightman functions, since all the Green functions can
be expressed in terms of these. The Wightman functions are the solutions to the
free differential equation,4

(−h̄2c2 + m2c4)G(±)(x, x ′) = 0. (5.65)

For convenience, it is useful to separate the solutions of this equation into
those which have positive frequency, k0 = |ωk |, and those which have negative
frequency, k0 = −|ωk |. They may be written by inspection as a general linear
combination of plane waves, using a step function, θ(±k0), to restrict the sign
of the frequency, and a delta function to ensure that the integral over all k is
restricted only to those values which satisfy the equations of motion,

G(+)(x, x ′) = −2π i c
∫
(dk)eik(x−x ′)θ(−k0)δ(p

2c2 + m2c4)

G(−)(x, x ′) = 2π i c
∫
(dk)eik(x−x ′)θ(k0)δ(p

2c2 + m2c4). (5.66)

Because of unitarity,5 these two functions are mutually conjugate (adjoint) in
the relativistic theory.

G(+)(x, x ′) = [
G(−)(x, x ′)

]∗ = −G(−)(x ′, x). (5.67)

In the non-relativistic limit, field theory splits into a separate theory for particles
(which have positive energy) and for anti-particles (which have negative energy).
Although this relation continues to be true, when comparing the particle theory
with the anti-particle theory, it is not true for straightforward Schrödinger theory
where the negative frequency Wightman function is zero at zero temperature.

The delta function in the integrands implies that one of the components of the
momentum is related to all the others,6 thus we may integrate over one of them,
k0, in order to eliminate this and express it in terms of the others. The equations
of motion tell us that ck0 = ±ωk , where

h̄ωk =
√

h̄2k2c2 + m2c4, (5.68)

i.e. there are two solutions, so we may use the identity proven in eqn. (A.15) to
write

δ(p2c2 + m2c4) = 1

2h̄2c2|ωk |

{
δ

(
−k0 + |ωk |

c

)
+ δ

(
k0 + |ωk |

c

)}
(5.69)

4 They are analogous to the complementary function in the theory of linear partial differential
equations.

5 Unitarity is the property of field theories which implies conservation of energy and probabili-
ties.

6 The momentum is said to be ‘on shell’ since the equation, k2+m2 = 0, resembles the equation
of a spherical shell in momentum space with radius im.
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5.3 Scalar field Green function 89

This relation is valid under the integral sign for k0. Noting that the step
functions, θ(±k0), pick out only one or the other delta function on the right
hand side, we have

G(+)(x, x ′) = −2π i (h̄2c)−1
∫
(dk)
2π

1

2ωk
ei(k·(x−x′)−|ωk |(t−t ′))

G(−)(x, x ′) = 2π i (h̄2c)−1
∫
(dk)
2π

1

2ωk
ei(k·(x−x′)+|ωk |(t−t ′))

= 2π i (h̄2c)−1
∫
(dk)
2π

1

2ωk
e−i(k·(x−x′)−|ωk |(t−t ′)).

(5.70)

Before leaving this section, we define two further symbols which appear in field
theory,

G̃(x, x ′) = G(+)(x, x ′)+ G(−)(x, x ′)
G(x, x ′) = G(+)(x, x ′)− G(−)(x, x ′). (5.71)

G(x, x ′) is the sum of all solutions to the free-field equations and, in quantum
field theory, becomes the so-called anti-commutator function.7 Note that
this quantity is explicitly the sum of G(+)(x, x ′) and its complex conjugate
G(−)(x, x ′) and is therefore real in the relativistic theory.8

The symmetric and anti-symmetric combinations satisfy the identities

x ′
∂t G(x, x ′)

∣∣∣∣∣
t=t ′

= 0 (5.72)

and

x ′
∂t G̃(x, x ′)

∣∣∣∣∣
t=t ′

= δ(x, x′). (5.73)

The latter turns out to be equivalent to the fundamental commutation relations
in the quantum theory of fields. G̃(x, x ′) becomes the commutator function in
the quantum theory of fields.

7 This looks wrong from the definitions in terms of Green functions, but recall the signs in the
definitions of the Green functions. The tilde denotes the fact that it is a commutator of the
quantum fields in the quantum theory.

8 This symmetry is broken by the non-relativistic theory as G(−)(x, x ′) vanishes at the one-
particle level.
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90 5 Classical field dynamics

Finally, we may note that ωk is always positive, since it is the square-root of a
positive, real quantity, so we may drop the modulus signs in future and take this
as given.

5.3.2 Boundary conditions and poles in the k0 plane

When solving differential equations in physics, the choice of boundary con-
ditions normally determines the appropriate mixture of particular integral and
complementary functions. The same is true for the Green function approach, but
here the familiar procedure is occluded by the formalism of the Green function.

The Wightman functions are the general solutions of the free-field equations:
they are the complementary functions, which one may always add to any
particular integral. There are two ways to add them to a special solution. One
is to use the term X in eqn. (5.41); the other is to deform the complex contour
around the poles. This deformation accomplishes precisely the same result as
the addition of complementary solutions with complex coefficients. Let us now
consider how the deformation of the complex contour leads to the choice of
boundary conditions for the field.

The retarded, advanced and Feynman Green functions solve the equations
of motion in the presence of a source, with specific boundary conditions as
mentioned in section 5.2.2. In this section, we shall impose those boundary
conditions and show how this leads to an automatic prescription for dealing
with the complex poles in the integrand of eqn. (5.40). The most intuitive way
of imposing the boundary conditions is to write the Green functions in terms of
the step function:

Gr(x, x ′) = −θ(σ, σ ′)G̃(x, x ′) (5.74a)

Ga(x, x ′) = θ(σ ′, σ )G̃(x, x ′) (5.74b)

GF(x, x ′) = −θ(σ, σ ′)G(+)(x, x ′)+ θ(σ ′, σ )G(−)(x, x ′). (5.74c)

Note that, since the retarded and advanced Green functions derive from G̃(x, x ′),
they are real in x, x ′ space (though this does not mean that their Fourier
transforms are real in k space), except in the non-relativistic theory. When
we write θ(σ, σ ′) in this way, the σ ’s usually refer to two time coordinates
θ(t, t ′), but in general we may be measuring the development of a system
with respect to more general spacelike hyper-surfaces, unconnected with the
Cartesian coordinate t or x0. For simplicity, we shall refer to t and t ′ in
future. The physical meaning of these functions is as advertised: the retarded
function propagates all data from earlier times to later times, the advanced
function propagates all data from future times to past times, and the Feynman
function takes positive frequency data and propagates them forwards in time,
while propagating negative frequency data backwards in time.
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5.3 Scalar field Green function 91

To convert these expressions into momentum-space integrals, we make use of
the integral representations of the step function,

θ(t − t ′) = i lim
ε→0

∫ ∞

∞

dα

2π

e−iα(t−t ′)

α + iε

θ(t ′ − t) = −i lim
ε→0

∫ ∞

∞

dα

2π

e−iα(t−t ′)

α − iε
. (5.75)

Writing �x ≡ x − x ′ for brevity, we can now evaluate these expressions using
the momentum-space forms for the Wightman functions in eqn. (5.70).

To evaluate the Green functions in momentum-space, it is useful to employ
Cauchy’s residue theorem, which states that the integral around a closed (anti-
clockwise) circuit of a function equals 2π times the sum of the residues of the
function. Suppose the function φ(z) has simple poles in the complex plane at zi ,
then, assuming that the closed contour is in the anti-clockwise (positive) sense,
we have ∮

C
φ(z)dz = 2π i

∑
i

(z − zi )φ(z)

∣∣∣∣∣
z=zi

. (5.76)

If the contour C is in the clockwise sense, the sign is reversed.
The complex contour method for evaluating integrals is a useful tool for

dealing with Green functions, but one should not confuse the contours with the
Green functions themselves. The Green functions we seek are only defined
on the real axis, but Cauchy’s formula only works for a closed contour with
generally complex pieces. We can evaluate integrals over any contour, in order
to use Cauchy’s formula, provided we can extract the value purely along the
real axis at the end. The general strategy is to choose a contour so that the
contributions along uninteresting parts of the curve are zero.

5.3.3 Retarded Green function

Let us begin with the retarded (causal) Green function, sometimes called the
susceptibility χ , and write it as an integral expression in k space. We substitute
the integral expressions in eqn. (5.75) into eqn. (5.70) and eqn. (5.74a), giving

Gr(x, x ′) = − 2π

h̄2c

∫
dα

2π

e−iα�t

α + iε

∫
(dk)
2π

[
ei(k�x−ωk�t)

2ωk
− ei(k�x+ωk�t)

2ωk

]

= − 1

h̄2c

∫
(dk)dα
(2π)

[
ei(k�x−(ωk+α)�t)

2ωk(α + iε)
− ei(k�x−(α−ωk )�t)

2ωk(α + iε)

]
.

(5.77)
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92 5 Classical field dynamics

We now shift α→ α−ωk in the first term and α→ α+ωk in the second term.
This gives

Gr(x, x ′) = − (h̄2c)−1
∫

dnkdα

(2π)n+1

ei(k�x−α�t)

2ωk

×
[

1

(α − ωk + iε)
− 1

(α + ωk + iε)

]
. (5.78)

Re-labelling α→ k0 and combining the partial fractions on the right hand side,
we are left with,

Gr(x, x ′) = (h̄2c)−1
∫
(dk) eik�x 1

−(k0 + iε)2 + ω2
k

, (5.79)

or to first order, re-defining ε → ε/2,

Gr(x, x ′) = c
∫
(dk) eik�x 1

p2c2 + m2c4 − ip0ε
. (5.80)

This is the significant form we have been looking for. It may be compared
with the expression in eqn. (5.40), and we notice that it reduces to eqn. (5.40)
in the limit ε → 0. What is important is that we now have an unambiguous
prescription for dealing with the poles: they no longer lie in the real k0 axis. If
we examine the poles of the integrand in eqn. (5.79) we see that they have been
shifted below the axis to

ck0 = ±ωk − iε; (5.81)

see figure 5.1. An alternative and completely equivalent contour is shown in
figure 5.2. In this approach, we bend the contour rather than shift the poles; the
end result is identical.

This iε prescription tells us how to avoid the poles on the real axis, but it
does not tell us how to complete the complex contour. Although the result we
are looking for is equal to the value of the integral along the real axis only,
Cauchy’s theorem only gives us a prescription for calculating an integral around
a closed contour, so we must complete the contour by joining the end of the real
axis at +∞ and −∞ with a loop. After that, we extract the value of the portion
which lies along the real axis.

The simplest way to evaluate the contribution to such a loop is to make it a
semi-circle either in the upper half-plane or in the lower half-plane (see figure
5.2). But which do we choose? In fact, the choice is unimportant as long as we
can extract the part of integral along the real axis.

Evaluation around two closed loops We begin by writing the integrals piece-
wise around the loop in the complex k0 plane. It is convenient to use ω = k0c as
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5.3 Scalar field Green function 93

Fig. 5.1. Contour in the complex plane for the retarded Green function with poles
shifted using the iε prescription.

Fig. 5.2. Contour in the complex plane for the retarded Green function.
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94 5 Classical field dynamics

the integration variable, since this is what appears in the complex exponential.
The contour in figure 5.1 has the simplest shape, so we shall use this as our
template. We write eqn. (5.79) schematically: the integral over ω is written
explicitly, but we absorb all the remaining integrals and the integrand into an
object which we shall call G ′

r(k) to avoid clutter;∮
dωe−iω(t−t ′)G ′

r(k) =
∫ +∞

−∞
dωe−iω(t−t ′)G ′

r(k)

+
∫

SC
dωe−iω(t−t ′)G ′

r(k), (5.82)

where the first term on the right hand side is the piece we wish to find and the
second term is the contribution from the semi-circle.

By Cauchy’s theorem, the value of the left hand side is equal to 2π i times the
sum of the residues of the integrand which are enclosed by the contour. Since all
of the poles lie in the lower half-plane, the left hand side is zero if we complete
in the upper half-plane. In the lower half-plane it is∮

dωe−iω(t−t ′)G ′
r(k) = −2π i (h̄2c)−1

∫
dnk

(2π)n+1
×[

ei(k·�x+ωk�t)

−2ωk
+ ei(k·�x−ωk�t)

2ωk
.

]
(5.83)

Re-labelling k →−k in the first term and using

eix − e−ix = 2i sin(x), (5.84)

we have (�t > 0)∮
dωe−iω(t−t ′)G ′

r(k) =
∫
(h̄2c)−1 dnk

(2π)n
cos(k ·�x) sin(ωk�t)

ωk
. (5.85)

This is clearly real.

Semi-circle in the upper half-plane The integral around the semi-circle in the
upper half-plane can be parametrized using polar coordinates. We let

ω = reiθ = r(cos θ + i sin θ), (5.86)

so that,∫
SC

dωe−iω(t−t ′)G ′
r(k) =

∫ π

0
ireiθdθ e−ir(cos θ+i sin θ)(t−t ′)G ′

r(reiθ )

=
∫ π

0
ireiθdθ e−ir cos θ(t−t ′)er sin θ(t−t ′)G ′

r(reiθ ).

(5.87)
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5.3 Scalar field Green function 95

Note what has happened here. The imaginary component from the semi-circle
(the contribution involving sin θ(t− t ′)) has created a real exponential. This real
exponential causes the integrand to either blow up or decay to zero at r = ∞,
depending on the sign of the sin θ(t − t ′) term. So we have two cases:∫

SC
dωe−iω(t−t ′)G ′

r(k) = 0 (t − t ′ < 0)

= ? (t − t ′ > 0). (5.88)

In the first case, in which we do not expect the retarded function to be defined,
the integral over the semi-circle vanishes. Since the complete integral around
the loop also vanishes here, the real axis contribution that we are looking for
(looking at eqn. (5.82)), must also be zero. In the second case, the contribution
from the loop is difficult to determine, so the contribution to the real axis part,
from eqn. (5.82) is also difficult to determine. In fact, we cannot derive any
useful information from this, so for t − t ′ > 0, we cannot determine the value of
the integral. In order to evaluate the integral for t − t ′ > 0 we close the contour
in the lower half-plane where the semi-circle contribution is again well behaved.

Semi-circle in the lower half-plane The integral around the semi-circle in the
lower half-plane can also be parametrized using polar coordinates,∫

SC
dωe−iω(t−t ′)G ′

r(k) = −
∫ −π

0
ireiθdθ e−ir(cos θ+i sin θ)(t−t ′)G ′

r(reiθ )

= −
∫ −π

0
ireiθdθ e−ir cos θ(t−t ′)e−r | sin θ |(t−t ′)G ′

r(reiθ ).

(5.89)

Now the opposite happens:∫
SC

dωe−iω(t−t ′)G ′
r(k) = ? (t − t ′ < 0)

= 0 (t − t ′ > 0). (5.90)

This time the situation is reversed. The value of the integral tells us nothing for
t − t ′ < 0. In the second case, however, the contribution to the loop goes to
zero, making the integral along the real axis equal to the loop integral result in
eqn. (5.85).

Piece-wise definition Because of the infinite pieces, we must close the contour
for the retarded Green function separately for t − t ′ > 0 (lower half-plane,
non-zero result) and t − t ′ < 0 (upper half-plane, zero result). This is not a
serious problem for evaluating single Green functions, but the correct choice
of contour becomes more subtle when calculating products of Green functions
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96 5 Classical field dynamics

using the momentum-space forms. We have nonetheless established that these
momentum-space prescriptions lead to a Green function which propagates from
the past into the future:

Gr(x, x ′) = (h̄2c)−1
∫

dnk
(2π)n

cos(k ·�x) sin(ωk�t)

ωk
(t − t ′ > 0)

= 0 (t − t ′ < 0). (5.91)

5.3.4 Advanced Green function

The treatment of this function is identical in structure to that for the retarded
propagator. The only difference is that the poles lie in the opposite half-plane,
and thus the results are reversed:

Ga(x, x ′) = − (h̄2c)−1
∫
(dk) eik�x 1

−(k0 − iε)2 + ω2
k

. (5.92)

We see that the poles are shifted above the axis and that the complex contour
may now be completed in the opposite manner to the retarded Green function.
The result is

Ga(x, x ′) = − (h̄2c)−1
∫

dnk
(2π)n

sin(k ·�x− ωk�t)

ωk
(t − t ′ < 0)

= 0 (t − t ′ > 0). (5.93)

5.3.5 Feynman Green function

GF(x, x ′) = − 2π

h̄2c

∫
dα

2π

(dk)
(2π)

[
ei(k�x−(ωk+α)�t)

(α + iε)2ωk
− ei(k�x−(α−ωk )�t)

(α − iε)2ωk

]
.

(5.94)

Shifting α→ α−ωk in the first fraction and α→ α+ωk in the second fraction,
and re-labelling α→ k0 we obtain,

GF(x, x ′) = (h̄2c)−1
∫
(dk)

eik�x

2ωk

[
1

(k0 + ωk − iε)
− 1

(k0 − ωk + iε)

]
.

(5.95)

It is normal to re-write this in the following way. Remember that we are
interested in the limit ε → 0. Combining the partial fractions above, we get

GF(x, x ′) = (h̄2c)−1
∫
(dk) eik�x

[ −1

(k0 + ω − iε)(k0 − ω + iε)
+ O(ε)

]
.

(5.96)
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5.3 Scalar field Green function 97

Fig. 5.3. Contour in the complex plane for the Feynman Green function. This shows
how the iε prescription moves the poles effectively from the real axis.

From this expression, we see that the poles have been shifted from the real axis
to

ck0 = ωk − iε

ck0 = −ωk + iε, (5.97)

i.e. the negative root is shifted above the axis and the positive root below the axis
in the k0 plane (see figure 5.4). An equivalent contour is shown in figure 5.3.
Although it does not improve one’s understanding in any way, it is normal in the
literature to write the Feynman Green function in the following way. Re-writing
the denominator, we have

(ck0 + ω − iε)(ck0 − ω + iε) = c2k2
0 − ω2

k + 2iεωk + ε2. (5.98)

Now, since ε is infinitesimal and ωk > 0, we may drop ε2, and write 2iεωk = iε′.
This allows us to write

GF(x, x ′) = c
∫
(dk)

eik�x

p2c2 + m2c4 − iε′
. (5.99)
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98 5 Classical field dynamics

Fig. 5.4. Contour in the complex plane for the Feynman Green function. Here we
bend the contour rather than moving the poles. The result is identical.

5.3.6 Comment on complex contours

The procedure described by Green functions is a formalism for extracting
solutions to the inverse-operator problem. It has a direct analogy in the theory of
matrices or linear algebra. There the issue concerns the invertibility of matrices
and the determinant of the matrix operator. Suppose we have a matrix equation

M · x = J, (5.100)

with a matrix M given by

M =
(

a b
c d

)
. (5.101)

If this matrix has an inverse, which is true if the determinant ad − bc does not
vanish,

M−1 = 1

ad − bc

(
d −b
−c a

)
, (5.102)

then eqn. (5.100) has a unique solution. We would not expect this case to
correspond to the solution of a differential equation such as the one we are
considering, since we know that the general solution to second-order differential
equations usually involves a linear super-position of many solutions.
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5.4 Scalar Green functions in real space 99

If the determinant of M does vanish, then it means that there is an infinite
number of solutions, which corresponds to a sub-space of x (a hyper-surface
which is determined by a constraint linking the coordinates). In this case, the
inverse defined above in eqn. (5.102) has a pole. For example, suppose we take
M to be the matrix

M =

 1 2 1

1 1 0
4 8 4


 , (5.103)

and

J =

 4

2
16


 . (5.104)

This matrix clearly has no inverse, since the third row is a multiple of the first.
The determinant vanishes, but in this trivial case we can solve the equations
directly. Since there are only two independent equations and three unknowns, it
is not possible to find a unique solution. Instead, we eliminate all but one of the
variables, leaving

x2 + x3 = 2. (5.105)

This is the equation of a straight line, or a sub-space of the full three-dimensional
solution space. We regard this as an incomplete constraint on the solution space
rather than a complete solution.

This is analogous to the situation we have with the Green functions. The poles
indicate that the solution to the differential equation which we are trying to solve
is not unique. In fact, there is an infinite number of plane wave solutions which
lie on the hyper-surface k2 + m2 = 0, called the mass shell.

5.4 Scalar Green functions in real space

Although the momentum-space representations of the Green functions are useful
for calculations, we are usually interested in their forms in real space. For
general fields with a mass, these can be quite complicated, but in the massless
limit the momentum-space integrals can be straightforwardly evaluated.

Again, since the other relativistic Green functions can be expressed in terms
of that for the scalar field, we shall focus mainly on this simple case.
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100 5 Classical field dynamics

5.4.1 The retarded Green function for n = 3 as m → 0

From Cauchy’s residue theorem in eqn. (5.76), we have

Gr(x, x ′) = −2π i (h̄2c)−1
∫

d3k
(2π)4

[
ei(k·�x−ωk�t)

2ωk
− ei(k·�x+ωk�t)

2ωk

]
.

(5.106)

For general m �= 0, this integral defines Bessel functions. For m = 0,
however, the integral is straightforward and can be evaluated by going to
three-dimensional polar coordinates in momentum space:

ωk = |r |c∫
d3k =

∫ ∞

0
r2 dr

∫ π

0
sin θdθ

∫ 2π

0
dφ

k · x = |r |�X cos θ, (5.107)

where �X = |�x|, so that

Gr(x, x ′) = −i

16π3
(h̄2c)−1

∫ ∞

0
2πr2 dr

×
∫ π

0
sin θ dθ

eir�x cos θ

r

[
e−irc�t − eirc�t

]
. (5.108)

The integral over dθ may now be performed, giving

Gr(x, x ′) = −1

8π2�X
(h̄2c)−1

∫ ∞

0
dr

{
e−ir(�X+c�t)

− eir(�t−c�X) − eir(�X−c�t) + eir(�X+c�t)
}
. (5.109)

Note that both �t and �x are positive by assumption. From the definition of
the delta function, we have

2πδ(x) =
∫ +∞

−∞
dk eikx

=
∫ ∞

0

[
eikx + e−ikx

]
. (5.110)

Using this result, we see that the first and last terms in eqn. (5.109) vanish, since
�x can never be equal to −�t as both �x and �t are positive. This leaves us
with

Gr(x, x ′) = 1

4h̄2cπ�X
δ(ct −�X)

= 1

4π h̄2c|x− x′| δ
(
c(t − t ′)− |x− x′|) . (5.111)
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5.4 Scalar Green functions in real space 101

5.4.2 The G(±) and GF for n = 3 as m → 0

From eqn. (5.74c) we can see that the Feynman propagator is manifestly equal
to −G(+) for t > t ′ and is equal to G(−) for t ′ < t . The calculation of all three
quantities can therefore be taken together. We could, in fact, write this down
from the definitions, but it is useful to use the residue theorem on eqn. (5.95)
to show the consistency of the procedure with the definitions we have already
given. In fact, we shall see that the Wightman functions are just the residues, up
to a sign which depends on the orientation of the closed contour.

For t − t ′ > 0, we complete the contour in the lower half-plane, creating an
anti-clockwise contour. The residue theorem then tells us that∮

dk0G ′
F(k0) = (h̄2c)−1

∫
d(k)
(2π)

1

2ωk
eik�x ×−2π i {−1}

∣∣∣∣∣
k0=ωk

. (5.112)

Comparing this equation with eqns. (5.66), we see that this is precisely equal to
−G(+)(x, x ′). In the massless limit with n = 3, we may therefore write

G(+) = −i (h̄2c)−1 d3k
(2π)4

eik�x

2|k|c2

= −1

8π2h̄2c|x′ − x|
∫ ∞

0
dr

{
e−ir(�X+c�t) − eir(�X−c�t)

}
.

(5.113)

Similarly, for t − t ′ > 0, we complete the contour in the upper half-plane,
creating a clockwise contour. This gives∮

dk0G ′
F(k0) = (h̄2c)−1

∫
d(k)
(2π)

1

2ωk
ei(k·�x+ωk�t) × 2π i {+1}

∣∣∣∣∣
k0=ωk

(5.114)

Comparing this equation with eqn. (5.66), we see that this is precisely equal to
G(−)(x, x ′), and

G(−) = 1

8π2h̄2c|x′ − x|
∫ ∞

0
dr

{
e−ir(�X−c�t) − eir(�X+c�t)

}
. (5.115)

It may be checked that these expressions satisfy eqn. (5.67). Finally, we may
piece together the Feynman Green function from G(±). Given that the �t are
assumed positive, we have

GF(x, x ′) = 1

8π2h̄2c|x− x′|
∫ ∞

0
dr

{
e−ir(�X) − eir(�X)e−irc�t

}
= −i

4π2h̄2c|x− x′|
∫ ∞

0
dr sin(r |x′ − x|)e−irc|t−t ′|. (5.116)
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102 5 Classical field dynamics

We may note that the difference between the retarded and Feynman Green
functions is

GF(x, x ′)− Gr(x, x ′) = lim
α→0

2
∫ ∞

0
dr eir(c�t−�X+iα) − eir(c�t+�X+iα)

= i

|x− x′| − c|t − t ′| −
i

|x+ x′| − c|t − t ′| ,
(5.117)

where α is introduced to define the infinite limit of the complex exponential.
This difference is a purely imaginary number, which diverges on the light cone.

5.4.3 Frequency-dependent form of GF and Gr in n = 3

In atomic physics and optics, one usually deals in implicitly translational
invariant systems, in the rest frames of an atom, where the frequency ω and time
are the only variables entering physical models. To use standard field theoretical
methods in these cases, it is useful to have the Green functions in such a form,
by integrating over spatial wavenumbers leaving only the Fourier transform over
time. These are obtained trivially by re-writing the non-zero contributions to
eqns. (5.109) and (5.116) with r → ω/c:

GF(x, x ′) = −i

4π2h̄2c2|x− x′|
∫ ∞

0
dω sin

(ω
c
|x− x′|

)
e−iω|t−t ′|

Gr(x, x ′) = 1

4π2h̄2c2|x− x′|
∫ ∞

0
dω cos

(ω
c
|x− x′| − ω|t − t ′|

)
.

(5.118)

5.4.4 Euclidean Green function in 2+ 0 dimensions

In the special case of a space-only Green function (the inverse of the Laplacian
operator), there is no ambiguity in the boundary conditions, since the Green
function is time-independent and there are no poles in the integrand. Let us
define the inverse Laplacian by

(−∇2 + m2)g(x, x ′) = δ(x, x ′). (5.119)

To evaluate this function, we work in Fourier space and write

g(x, x ′) =
∫

d2k

(2π)2
eik(x−x ′)

k2 + m2
, (5.120)

where k2 = k2
1 + k2

2. Expressing this in polar coordinates, we have

g(x, x ′) =
∫ 2π

0

∫ ∞

0

rdrdθ

(2π)2
eir |x−x ′| cos θ

r2 + m2
. (5.121)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


5.4 Scalar Green functions in real space 103

Massless case In the massless limit, this integral can be evaluated straight-
forwardly using a trick which is frequently useful in the evaluation of Fourier
integrals. The trick is only valid strictly when x �= x ′, but we shall leave it as
an exercise to show what happens in that case. The integral is then evaluated by
setting m to zero in eqn. (5.121) and cancelling a factor of r from the integration
measure. To evaluate the expression, we differentiate under the integral sign
with respect to the quantity |x − x ′|:

d

d|x − x ′|g(x − x ′) =
∫ 2π

0

∫ ∞

0

i cos θ

(2π)2
eir |x−x ′| cos θdr dθ. (5.122)

Notice that this step cancels a factor of r in the denominator, which means that
the integral over r is now much simpler. Formally, we have

d

d|x − x ′|g(x − x ′) =
∫ 2π

0

dθ

(2π)2
eir |x−x ′| cos θ

∣∣∣∣∣
∞

0

. (5.123)

There is still a subtlety remaining, however: since we are integrating a complex,
multi-valued function, the limit at infinity has an ambiguous limit. The limit can
be defined uniquely (analytically continued) by adding an infinitesimal positive
imaginary part to r , so that r → r(i + ε) and letting ε → 0 afterwards. This
makes the infinite limit converge to zero, leaving only a contribution from the
lower limit:

d

d|x − x ′|g(x − x ′) = lim
ε→0

∫ 2π

0

dθ

(2π)2
1

1− iε
e(ir−εr)|x−x ′| cos θ

∣∣∣∣∣
∞

0

= −
∫ 2π

0

dθ

(2π)2
1

|x − x ′| . (5.124)

To complete the evaluation, we evaluate the two remaining integrals trivially,
first the anti-derivative with respect to |x − x ′|, which gives rise to a logarithm,
and finally the integral over θ , giving:

g(x, x ′) = − 1

2π
ln |x − x ′|, (5.125)

where it is understood that x �= x ′.

5.4.5 Massive case

In the massive case, we can write down the result in terms of Bessel functions
Jν, Kν , by noting the following integral identities [63]:

Jν(z) = (z/2)ν

�(ν + 1
2)�(

1
2)

∫ π

0
e±iz cos θ sin2ν θ dθ (5.126)

Kν−µ(ab) = 2µ�(µ+ 1)

aν−µbµ

∫ ∞

0

Jν(bx) xν+1

(x2 + a2)
dx . (5.127)
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104 5 Classical field dynamics

From the first of these, we can choose ν = 0 and use the symmetry of the cosine
function to write

J0(z) = 1

2π

∫ 2π

0
eiz cos θdθ. (5.128)

Eqn. (5.121) may now be expressed in the form

g(x, x ′) =
∫ ∞

0

rdr

2π

J0(r |x − x ′|)
r2 + m2

, (5.129)

and hence

g(x, x ′) = 1

2π
K0(m|x − x ′|). (5.130)

The massless limit is singular, but with care can be inferred from the small
argument expansion

K0(m(x − x ′)) = lim
m→0

− ln

(
m(x − x ′)

2

) ∞∑
k=0

(
m(x−x ′)

2

)2k

(k!)2
. (5.131)

5.5 Schrödinger Green function

Being linear in the time derivative, the solutions of the Schrödinger equation
have positive definite energy. The Fourier transform may therefore be written
as,

ψ(x) =
∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk) ei(k·�x−ω̃�t)ψ(k, ω̃)θ(ω̃)δ

(
h̄2k2

2m
− h̄ω̃

)
.

(5.132)

This singles out the Schrödinger field amongst the other relativistic fields which
have solutions of both signs. Correspondingly, the Schrödinger field has only a
positive energy Wightman function, the negative energy function vanishes from
the particle theory.9 The positive frequency Wightman function is

G(+)
NR (x, x ′) = −2π i

∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk)ei(k·�x−ω̃�t)θ(ω̃)δ

(
h̄2k2

2m
− h̄ω̃

)
.

(5.133)

The negative frequency Wightman function vanishes now,

G(−)
NR (x, x ′) = 0, (5.134)

9 This does not remain true at finite temperature or in interacting field theory, but there remains
a fundamental asymmetry between positive and negative energy Green functions in the non-
relativistic theory.
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5.5 Schrödinger Green function 105

since there is no pole in the negative ω̃ plane to enclose. Moreover, this means
that there is no Feynman Green function in the non-relativistic theory, only a
retarded one. In the non-relativistic limit, both the Feynman Green function and
the retarded Green function for relativistic particles reduce to the same result,
which has poles only in the lower half complex ω̃ plane. This non-relativistic
Green function satisfies the equation(

− h̄2∇2

2m
− ih̄∂t

)
GNR(x, x ′) = δ(x, x′)δ(t, t ′). (5.135)

This Green function can be evaluated from the expression corresponding to
those in eqns. (5.74):

GNR(x, x ′) = −θ(t − t ′)G(+)
NR (x, x ′). (5.136)

Using eqn. (5.75) in eqn. (5.133), we have

GNR(x, x ′) = −
∫ +∞

−∞
dα

∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk)

×ei(k·�x−(ω̃+α)�t)

(α + iε)
δ

(
h̄2k2

2m
− h̄ω̃

)
. (5.137)

The integral over α can be shifted, α → α − ω̃, without consequences for the
limits or the measure, giving

GNR(x, x ′) = −
∫ +∞

−∞
dα

∫ ∞

0

dω̃

2π

∫ +∞

−∞
(dk)

× ei(k·�x−α�t)

(α − ω̃)+ iε
δ

(
h̄2k2

2m
− h̄ω̃

)
. (5.138)

We may now integrate over ω̃ to invoke the delta function. Noting that the
argument of the delta function is defined only for positive ω̃, and that the integral
is also over this range, we have simply

GNR(x, x ′) = −
∫ +∞

−∞
dα

∫ +∞

−∞
(dk)

ei(k·�x−α�t)(
h̄α − h̄2k

2

2m

)
+ iε

, (5.139)

or, re-labelling α→ ω̃,

GNR(x, x ′) =
∫ +∞

−∞
dω̃

∫ +∞

−∞
(dk)

ei(k·�x−ω̃�t)(
h̄2k2

2m − h̄ω̃
)
− iε

. (5.140)

In spite of appearances, the parameter ω̃ is not really the energy of the system,
since it runs from minus infinity to plus infinity. It should properly be regarded
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106 5 Classical field dynamics

only as a variable of integration. It is clear from this expression that the
Schrödinger field has a single pole in the lower half complex plane. It therefore
satisfies purely retarded boundary conditions. We shall see in section 13.2.2
how the relativistic Feynman Green function reduces to a purely retarded one in
the non-relativistic limit.

5.6 Dirac Green functions

The Dirac Green function satisfies an equation which is first order in the
derivatives, but which is matrix-valued. The equation of motion for the Dirac
field,

(−iγ µ∂µ + m)ψ = J, (5.141)

tells us that a formal solution may be written as

ψ =
∫

dVx ′S(x, x ′)J (x ′), (5.142)

where the spinor Green function is defined by

(−ih̄cγ µ∂µ + mc2)S(x, x ′) = δ(x, x ′). (5.143)

Although this looks rather different to the scalar field case, S(x, x ′) can be
obtained from the expression for the scalar propagator by noting that

(−ih̄cγ µ∂µ + mc2)(ih̄cγ µ∂µ + mc2)

= −h̄2c2 + m2c4 + 1

2
[γ µ, γ ν]∂µ∂ν, (5.144)

and the latter term vanishes when operating on non-singular objects. It follows
for the free field that

(ih̄cγ µ∂µ + mc2)G(±)(x, x ′) = S(±)(x, x ′) (5.145)

(ih̄cγ µ∂µ + mc2)GF(x, x ′) = SF(x, x ′) (5.146)

(−ih̄cγ µ∂µ + mc2)S(±)(x, x ′) = 0 (5.147)

(−ih̄cγ µ∂µ + mc2)SF(x, x ′) = δ(x, x ′). (5.148)

5.7 Photon Green functions

The Green function for the Maxwell field satisfies the (n+1) dimensional vector
equation [− δ νµ + ∂µ∂ν

]
Aµ(x) = µ0 J ν. (5.149)
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5.7 Photon Green functions 107

As usual, we look for the inverse of the operator,10 which satisfies[− δ νµ + ∂µ∂ν
]

Dρ
ν (x, x ′) = µ0cδ ρµ δ(x, x ′). (5.150)

Formally, it can be written as a Fourier transform:

Dµν(x, x ′) = µ0c
∫
(dk)eik(x−x ′)

[
gµν
k2
− kµkν

k4

]
. (5.151)

In this case, however, there is a problem. In inverting the operator, we are
looking for a constraint which imposes the equations of motion. For scalar
particles, this is done by going to momentum space and constructing the Green
function, which embodies the equations of motion in the dispersion relation
k2 + m2 = 0 (see eqn. (5.40)). In this case, that approach fails.

The difficulty here is the gauge symmetry. Suppose we consider the determi-
nant of the operator in eqn. (5.149). A straightforward computation shows that
this determinant vanishes:∣∣∣∣ − + ∂0∂

0 ∂0∂
i

∂i∂
0 − + ∂i∂

i

∣∣∣∣ = 0. (5.152)

In linear algebra, this would be a signal that the matrix was not invertible, the
matrix equivalent of dividing by zero. It also presents a problem here. The
problem is not that the operator is not invertible (none of the Green function
equations are invertible when the constraints they impose are fulfilled, since
they correspond precisely to a division by zero), but rather that it implies no
constraint at all. In the case of a scalar field, we have the operator constraint, or
its momentum-space form:

−h̄2c2 + m2c4 = 0

p2c2 + m2c4 = 0. (5.153)

In the vector case, one has

det
[− δ νµ + ∂µ∂ν

] = 0, (5.154)

but this is an identity which is solved for every value of the momentum. Thus,
the Green function in eqn. (5.151) supplies an infinite number of solutions for
Aµ for every J , one for each unrestricted value of k, which makes eqn. (5.151)
singular.

The problem can be traced to the gauge symmetry of the field Aµ(x). Under
a gauge transformation, Aµ→ Aµ + ∂µs, but[− δ νµ + ∂µ∂ν

]
(∂νs) = 0 (5.155)

10 Note that the operator has one index up and one index down, thereby mapping contravariant
eigenvectors to contravariant eigenvectors
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108 5 Classical field dynamics

for any function s(x). It can be circumvented by breaking the gauge symmetry
in such a way that the integral over k in eqn. (5.151) is restricted. A convenient
choice is the so-called Lorentz gauge condition

∂µAµ = 0. (5.156)

This can be enforced by adding a Lagrange multiplier to the Maxwell action,

S →
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ + 1

2α
µ−1

0 (∂
µAµ)

2

}
, (5.157)

so that eqn. (5.149) is modified to[
− δ νµ +

(
1− 1

α

)
∂µ∂

ν

]
Aµ(x) = J ν. (5.158)

It may now be verified that the determinant of the operator no longer vanishes
for all α; thus, a formal constraint is implied over the kµ, and the Green function
may be written

Dµν(x, x ′) = cµ0

∫
(dk)eik(x−x ′)

[
gµν
k2
+ (α − 1)

kµkν
k4

]
. (5.159)

This constraint is not a complete breakage of the gauge symmetry, since one
may gauge transform eqn. (5.156) and show that

∂µAµ→ ∂µAµ + s(x) = 0. (5.160)

Thus, the gauge condition still admits restricted gauge transformations such that

s(x) = 0. (5.161)

However, this modification is sufficient to obtain a formal Green function, and
so the additional gauge multi-valuedness is often not addressed.

5.8 Principal values and Kramers–Kronig relations

Green functions which satisfy retarded (or advanced) boundary conditions
satisfy a special pair of Fourier frequency-space relations, called the Kramers–
Kronig relations (these are also referred to as Bode’s law in circuit theory),
by virtue of the fact that all of their poles lie in one half-plane (see figure
5.5). These relations are an indication of purely causal or purely acausal
behaviour. In particular, physical response functions satisfy such relations,
including the refractive index (or susceptibility, in non-magnetic materials) and
the conductivity.
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5.8 Principal values and Kramers–Kronig relations 109

Fig. 5.5. Contour in the complex plane for the Kramers–Kronig relations.

Cauchy’s integral formula states that the value of a function G(ω), which is
analytic at every point within and on a closed curve C , and is evaluated at a point
ω = z, is given by the integral around the closed loop C of∮

C

G(ω)

ω − z
= 2π iG(z). (5.162)

If a point P lies outside the closed loop, the value of the integral at that point is
zero. Consider then a field G(t−t ′)which satisfies retarded boundary conditions

G(t − t ′) =
∫

dω

2π
e−iω(t−t ′)G(ω). (5.163)

The Fourier transform G(ω), where

G(ω) =
∫

d(t − t ′)eiω(t−t ′)G(t − t ′) (5.164)

is analytic in the upper half-plane, as in figure 5.5, but has a pole on the real
axis. In the analytic upper region, the integral around a closed curve is zero, by
Cauchy’s theorem: ∮

C

G(ω)dω

ω − z
= 0, (5.165)
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110 5 Classical field dynamics

where we assume that G(z) has a simple pole at ω = z. We can write the
parts of this integral in terms of the principal value of the integral along the
real axis, plus the integral around the small semi-circle enclosing the pole. The
integral over the semi-circle at infinity vanishes over the causal region, since
exp(iω(t − t ′)) converges if t − t ′ > 0 and ω has a positive imaginary part.
Around the semi-circle we have, letting ω − z = ε eiθ ,∮

SC

G(ω)dω

ω − z
= − lim

ε→0

∫ π

0

G(εeiθ )iεeiθdθ

εeiθ

= −iπ(εeiθ + z)

∣∣∣∣∣
ε→0

= −iπG(z). (5.166)

Then we have ∮
C

G(ω)dω

ω − z
= P

∫ ∞

−∞

G(ω)dω

ω − z
− iπG(z) = 0. (5.167)

The first term on the left hand side is the so-called principal value of the integral
along the real axis. For a single pole, the principal value is defined strictly by
the limit

P
∫ +∞

−∞
≡ lim
ε→0

{∫ pi−ε

−∞
+

∫ ∞

pi+ε

}
, (5.168)

which approaches the singularity from equal distances on both sides. The
expression may be generalized to two or more poles by arranging the limits
of the integral to approach all poles symmetrically. Thus, if we now write the
real and imaginary parts of G(ω) explicitly as

G(z) ≡ GR(z)+ iGI(z), (5.169)

and substitute this into eqn. (5.167), then, comparing real and imaginary parts
we have:

P
∫ ∞

−∞

GR(ω)dω

ω − z
= −πGI(z)

P
∫ ∞

−∞

GI(ω)dω

ω − z
= πGR(z). (5.170)

These are the so-called Kramers–Kronig relations. They indicate that the
analyticity of G(t − t ′) implies a relationship between the real and imaginary
parts of G(t − t ′).

The generalization of these expressions to several poles along the real axis
may be written

P
∫ ∞

−∞

GI/R(ω)dω

ω − z
=

∑
poles

±πGR/I(z). (5.171)
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5.9 Representation of bound states in field theory 111

The integral along the real axis piece of the contour may be used to derive an
expression for the principal value of 1/ω. From eqn. (5.167), we may write

1

ω − z
= P

1

ω − z
− iπδ(ω − z). (5.172)

This relation assumes that we have integrated along the real axis in a positive
direction, avoiding a single pole on the real axis by passing above it (or,
equivalently, by pushing the pole into the lower half-plane by an infinitesimal
amount iε). Apart from these assumptions, it is quite general. It does not make
any other assumptions about the nature of G(ω), nor does it depend on the
presence of any other poles which do not lie on the real axis. It is a property
of the special contour segment which passes around one pole. Had the contour
passed under the pole instead of over it, the sign of the second term would have
been changed. These results can be summarized and generalized to several poles
on the real axis, by writing

1

ω − z ± iε j
= P

1

ω − z
∓

∑
j

iπδ(ω − z j ), (5.173)

where z is a general point in the complex plane, zi are the poles on the real axis
and ε → 0 is assumed. The upper sign is that for passing over the poles, while
the lower sign is for passing under.

5.9 Representation of bound states in field theory

Bound states are states in which ‘particles’ are completely confined by a
potential V (x). Confinement is a simple interaction between two different fields:
a dynamical field ψ(x) and a static confining field V (x). The way in which one
represents bound states in field theory depends on which properties are germane
to the description of the physical system. There are two possibilities.

The first alternative is the approach traditionally used in quantum mechanics.
Here one considers the potential V (x) to be a fixed potential, which breaks
translational symmetry, e.g.(

− h̄2

2m
∇2 + V (x)

)
ψ(x) = i∂tψ(x). (5.174)

One then considers the equation of motion of ψ(x) in the rest frame of this
potential and solves it using whatever methods are available. A Green function
formulation of this problem leads to the Lippman–Schwinger equation for
example (see section 17.5). In this case, the dynamical variable is the field,
which moves in an external potential and is confined by it, e.g. electrons moving
in the spherical hydrogen atom potential.
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112 5 Classical field dynamics

A second possibility is to consider bound states as multi-level, internal
properties of the dynamical variables in question. For instance, instead of
formulating the motion of electrons in a hydrogen atom, one formulates the
motion of hydrogen atoms with internal electron levels which can be excited.
To do this, one introduces multiplet states (an index A on the field and on the
constant potential), e.g.(

− h̄2

2m
∇2 + VA

)
ψA(x) = i∂tψA(x). (5.175)

This is an effective theory in which one takes the average value of the potential
VA at N different levels, where A = 1, . . . , N . The values of VA signify the
energy differences between levels in the atom. The field ψA now represents
the whole atom, not the electron within in. Clearly, all the components of ψA

move together, according to the same equation of motion. The internal indices
have the character of a broken internal ‘symmetry’. This approach allows one to
study the dynamics and kinematics of hydrogen atoms in motion (rather than the
behaviour of electrons in the rest frame of the atom). Such a study is of interest
when considering how transitions are affected by sources outside the atom. An
example of this is provided by the classic interaction between two levels of a
neutral atom and an external radiation field (see section 10.6.3). This approach
is applicable to laser cooling, for instance, where radiation momentum has a
breaking effect on the kinetic activity of the atoms.
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6
Statistical interpretation of the field

6.1 Fluctuations and virtual processes

Although it arises naturally in quantum field theory from unitarity, the Feynman
Green function does not arise naturally in classical field theory. It contains
explicitly acausal terms which defy our experience of mechanics. It has special
symmetry properties: it depends only on |x − x ′|, and thus distinguishes no
special direction in space or time. It seems to characterize the uniformity of
spacetime, or of a physical system in an unperturbed state.

The significance of the Feynman Green function lies in the effective under-
standing of complex systems, where Brownian fluctuations in bulk have the
macroscopic effect of mixing or stirring. In field theory, its use as an intuitive
model for fluctuations allows the analysis of population distributions and the
simulation of field decay, by spreading an energy source evenly about the
possible modes of the system.

6.1.1 Fluctuation generators: GF(x, x ′) and GE(x, x ′)

The Feynman Green function is related to the Green function for Euclidean
space. Beginning with the expression in eqn. (5.99), one performs an anti-
clockwise rotation of the integration contour (see figure 5.3):

kE
0 = ik0. (6.1)

There are no obstacles (poles) which prevent this rotation, so the two expressions
are completely equivalent. With this contour definition the integrand is positive
definite and no poles are encountered in an integral over k̂0E:

1

−k2
0 + k2 + m2 − iε

→ 1

k2
0E + k2 + m2

. (6.2)

There are several implications to this equivalence between the Feynman Green
function and the Euclidean Green function. The first is that Wick rotation to

113
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114 6 Statistical interpretation of the field

Euclidean space is a useful technique for evaluating Green function integrals,
without the interference of poles and singularities. Another is that the Euclidean
propagator implies the same special causal relationship between the source and
the field as does the Feynman Green function. In quantum field theory, one
would say that these Green functions formed time-ordered products.

In the classical theory, the important point is the spacetime symmetry of the
Green functions. Owing to the quadratic nature of the integral above, it is
clear that both the Feynman and Euclidean Green functions depend only on the
absolute value of |x−x ′|. They single out no special direction in time. Physically
they represent processes which do not develop in time, or whose average effect
over an infinitesimal time interval is zero.

These Green functions are a differential representation of a cycle of emission
and absorption (see below). They enable one to represent fluctuations or virtual
processes in the field which do not change the overall state. These are processes
in which an excitation is emitted from a source and is absorbed by a sink over
a measurable interval of time.1 This is a doorway to the study of statistical
equilibria.

Statistical (many-particle) effects are usually considered the domain of quan-
tum field theory. their full description, particularly away from equilibrium,
certainly requires the theory of interacting fields, but the essence of statistical
mechanics is contained within classical concepts of ensembles. The fact that
a differential formulation is possible through the Green function has profound
consequences for field theory. Fluctuations are introduced implicitly through the
boundary conditions on the Green functions. The quantum theory creates a more
elaborate framework to justify this choice of boundary conditions, and takes it
further. However, when it comes down to it, the idea of random fluctuations
in physical systems is postulated from experience. It does not follow from any
deeper physical principle, nor can it be derived. Its relationship to Fock space
methods of counting states is fascinating though. This differential formulation
of statistical processes is explored in this chapter.2

6.1.2 Correlation functions and generating functionals

The Feynman (time-ordered) Green function may be obtained from a generating
functional W which involves the action. From this generating functional it
is possible to see that a time-translation-invariant field theory, expressed in
terms of the Feynman Green function, is analytically related to a statistically

1 Actually, almost all processes can be studied in this way by assuming that the field tends to a
constant value (usually zero) at infinity.

2 In his work on source theory, Schwinger [118, 119] constructs quantum transitions and
statistical expectation values from the Feynman Green function �+, using the principle of
spacetime uniformity (the Euclidean hypothesis). The classical discussion here is essentially
equivalent to his treatment of weak sources.
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6.1 Fluctuations and virtual processes 115

weighted ensemble of static systems. The action S[φ(x)] is already a generating
functional for the mechanics of the system, as noted in chapter 4. The additional
generating functional W [J ] may be introduced in order to study the statistical
correlations in the field. This is a new concept, and it requires a new generating
functional, the effective action. The effective action plays a central role in
quantum field theory, where the extension to interacting fields makes internal
dynamics, and thence the statistical interpretation, even more pressing.

We begin by defining averages and correlated products of the fields. This
is the route to a statistical interpretation. Consider a field theory with fields
φA, φ†B and action S(2). The superscript here denotes the fact that the action
is one for free fields and is therefore of purely quadratic order in the fields. In
the following sections, we use the complex field φ(x) to represent an arbitrary
field. The same argument applies, with only irrelevant modifications, for general
fields. We may write

S(2) =
∫
(dx) φ†AÔABφ

B, (6.3)

where the Gaussian weighted average, for statistical weight ρ = exp(iS/s) is
then defined by

〈F[φ]〉 = Tr(ρF)

Tr ρ

=
∫

dµ[φ]F[φ]e
i
s S(2)∫

dµ[φ]e
i
s S(2)

. (6.4)

where s is an arbitrary scale with the dimensions of action. In quantum field
theory, it is normal to use s = h̄, but here we keep it general to emphasize that
the value of this constant cancels out of relevant formulae at this classical level.
Do not be tempted to think that we are now dealing with quantum field theory,
simply because this is a language which grew up around the second quantization.
The language is only a convenient mathematical construction, which is not tied
to a physical model. In this section, we shall show that the Gaussian average
over pairs of fields results in the classical Feynman Green function. Consider
the generating functional

Z
[
J, J †

] = ∫
dµ

[
φ, φ†

]
e

i
s

∫
(dx)

[
φ†AÔABφ

B−φ†A JA−J †
Bφ

B
]
, (6.5)

which bears notable similarities to the classical thermodynamical partition
function. From the definitions above, we may write

Z
[
J, J †

]
Z [0, 0]

=
〈

exp

(
− i

s

∫
(dx)φ†A JA − i

s

∫
(dx)J †

Aφ
A

)〉
, (6.6)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


116 6 Statistical interpretation of the field

where the currents J A and J †B are of the same type as φA and φ†B , respectively.
The effective action, as a function of the sources W [J, J †], is defined by

exp

(
i

s
W [J, J †]

)
= Z

[
J, J †

]
, (6.7)

thus W [J, J †] is like the average value of the action, where the average is
defined by the Gaussian integral. Now consider a shift of the fields in the action,
which diagonalizes the exponent in eqn. (6.6):

(φ† A + K A)ÔAB(φ
B + L B)− K AÔAB L B

= φ†AÔABφ
B + φ†AÔAB L B + K AÔABφ

B . (6.8)

The right hand side of this expression is the original exponent in eqn. (6.5),
provided we identify

ÔAB L B(x) = J A(x) (6.9)

⇒ L A(x) =
∫
(dx ′)(Ô−1)AB(x, x ′)JB(x

′) (6.10)

and

K A(x)ÔAB = J †
B(x) (6.11)

⇒ K A(x) =
∫
(dx ′)J †

B(x
′)(Ô−1)AB(x, x ′), (6.12)

where
∫
(dx ′)Ô−1 ABÔBC = δA

C . With these definitions, it follows that

K AÔAB L B =
∫
(dx)(dx ′) J †

A(Ô−1)AB JB (6.13)

and so

Z [J, J †] =
∫

dµ[φ, φ†] e
i
s

∫
(dx)

[
(φ†A+K A)ÔAB (φ

B+L B )−J †
A(Ô−1)AB JB

]
.

(6.14)

We may now translate away L A and K A, assuming that the functional measure
is invariant. This leaves

Z
[
J, J †

] = exp

(
− i

s

∫
(dx)(dx ′) J †

A(Ô−1)AB JB

)
Z [0, 0] (6.15)

or

W [J, J †] = −
∫
(dx)(dx ′) J †

A(Ô−1)AB JB + const. (6.16)
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6.1 Fluctuations and virtual processes 117

By differentiating W [J, J †] with respect to the source, we obtain

〈φ†A〉 = δW

δ J †
A(x)

= is
∫
(dx ′)J †

A(Ô−1)AB (6.17)

〈φB〉 = δW

δ JB(x)
= is

∫
(dx ′)(Ô−1)AB JB (6.18)

〈φ†Aφ†B〉 = is
δ2W

δ J †δ J †
B

= 0 (6.19)

〈φAφB〉 = is
δ2W

δ JAδ JB
= 0 (6.20)

〈φAφ†B〉 = is
δ2W

δ J †
Aδ JB

= is(Ô−1)AB (6.21)

One may now identify (Ô−1)AB as the inverse of the operator in the quadratic
part of the action, which is clearly a Green function, i.e.

〈φAφ†B〉 = isG AB(x, x ′). (6.22)

Moreover, we have evaluated the generator for correlations in the field W [J ].
Returning to real scalar fields, we have

W [J ] = −1

2

∫
(dx)(dx ′) JA(x)G

AB(x, x ′)JB(x
′). (6.23)

We shall use this below to elucidate the significance of the Green function for
the fluctuations postulated in the system. Notice that although the generator, in
this classical case, is independent of the scale s, the definition of the correlation
function in eqn. (6.21) does depend on this scale. This tells us simply the
magnitude of the fluctuations compared with the scale of W [J ] (the typical
energy scale or rate of work in the system over a time interval). If one takes
s = h̄, we place the fluctuations at the quantum level. If we take s ∼ β−1,
we place fluctuations at the scale of thermal activity kT .3 Quantum fluctuations
become unimportant in the classical limit h̄ → 0; thermal fluctuations become
unimportant in the low-temperature limit β → ∞. At the level of the present
discussion, the results we can derive from the correlators are independent of
this scale, so a macroscopic perturbation would be indistinguishable from a
microscopic perturbation. It would be a mistake to assume that this scale were
unimportant however. Changes in this scaling factor can lead to changes in
the correlation lengths of a system and phase transitions. This, however, is the
domain of an interacting (quantum) theory.

3 These remarks reach forward to quantum field theories; they cannot be understood from the
simple mechanical considerations of the classical field. However they do appeal to one’s
intuition and make the statistical postulate more plausible.
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118 6 Statistical interpretation of the field

We have related the generating functional W [J ] to weighted-average products
over the fields. These have an automatic symmetry in their spacetime arguments,
so it is clear that the object G AB(x, x ′) plays the role of a correlation function for
the field. The symmetry of the generating functional alone implies that (Ô−1)i j

must be the Feynman Green function. We shall nevertheless examine this point
more closely below.

A note of caution to end this section: the spacetime symmetry of the Green
function follows from the fact that the integrand in

G(x, x ′) =
∫
(dk)

eik(x−x ′)

k2 + m2
(6.24)

is a purely quadratic quantity. A correlator must depend only on the signless
difference between spacetime events |x − x ′|, if it is to satisfy the relations
in the remainder of this section on dissipation and transport. If the spectrum
of excitations were to pick up, say, an absorbative term, which singled out a
special direction in time, this symmetry property would be spoiled, and, after an
infinitesimal time duration, the Green functions would give the wrong answer
for the correlation functions. In that case, it would be necessary to analyse
the system more carefully using methods of non-equilibrium field theory. In
practice, the simple formulae given in the rest of this chapter can only be applied
to derive instantaneous tendencies of the field, never prolonged instabilities.

6.1.3 Symmetry and causal boundary conditions

There are two Green functions which we might have used in eqn. (6.21) as the
inverse of the Maxwell operator; the retarded Green function and the Feynman
Green function. Both satisfy eqn. (5.62). The symmetry of the expression

W = −1

2

∫
(dx)(dx ′)J (x)G(x, x ′)J (x ′) (6.25)

precludes the retarded function however. The integral is spacetime-symmetrical,
thus, only the symmetrical part of the Green function contributes to the integral.
This immediately excludes the retarded Green function, since

Wr = −1

2

∫
(dx)(dx ′)J (x)Gr(x, x ′)J (x ′)

= −1

2

∫
(dx)(dx ′)J (x)[G(+)(x, x ′)+ G(−)(x, x ′)]J (x ′)

= −1

2

∫
(dx)(dx ′)J (x)[G(+)(x, x ′)− G(+)(x ′, x)]J (x ′)

= 0, (6.26)
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6.1 Fluctuations and virtual processes 119

where the last line follows on re-labelling x, x ′ in the second term. This relation
tells us that there is no dissipation in one-particle quantum theory. As we shall
see, however, it does not preclude dissipation by re-distribution of energy in
‘many-particle’ or statistical systems coupled to sources. See an example of this
in section 7.4.1. Again, the link to statistical systems is the Feynman Green
function or correlation function. The Feynman Green function is symmetrical
in its spacetime arguments. It is straightforward to show that

W = −1

2

∫
(dx)(dx ′)J (x)GF(x, x ′)J (x ′)

= −1

2

∫
(dx)(dx ′)J (x)G(x, x ′)J (x ′). (6.27)

The imaginary part of G(x, x ′) is

Im G(x, x ′) = 2 Im G(+)(x, x ′). (6.28)

6.1.4 Work and dissipation at steady state

Related to the idea of transport is the idea of energy dissipation. In the presence
of a source J , the field can decay due to work done on the source. Of course,
energy is conserved within the field, but the presence of fluctuations (briefly
active sources) allows energy to be transferred from one part of the field to
another; i.e. it allows energy to be mixed randomly into the system in a form
which cannot be used to do further work. This is an increase in entropy.

The instantaneous rate at which the field decays is proportional to the imagi-
nary part of the Feynman Green function. In order to appreciate why, we require
a knowledge of the energy–momentum tensor and Lorentz transformations, so
we must return to this in section 11.8.2. Nonetheless, it is possible to gain a
partial understanding of the problem by examining the Green functions, their
symmetry properties and the roles they play in generating solutions to the field
equations. This is an important issue, which is reminiscent of the classical theory
of hydrodynamics [53].

The power dissipated by the field is the rate at which field does work on
external sources,4

P = dw

dt
. (6.29)

Although we cannot justify this until chapter 11, let us claim that the energy of
the system is determined by

energy = −δS[φ]

δt

∣∣∣∣∣
φ=∫

G J

. (6.30)

4 Note that we use a small w for work since the symbol W is generally reserved to mean the
value of the action, evaluated at the equations of motion.
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120 6 Statistical interpretation of the field

So, the rate of change of energy in the system is equal to minus the rate at which
work is done by the system:

d

dt
energy = −dw

dt
. (6.31)

Let us define the action functional W by

δW

δ J
= δS[φ, J ]

δ J

∣∣∣
φ=∫

G J
, (6.32)

where the minus sign is introduced so that this represents the work done by
the system rather than the energy it possesses. The object W clearly has the
dimensions of action, but we shall use it to identify the rate at which work is
done. Eqn. (6.32) is most easily understood with the help of an example. The
action for a scalar field is

δJ S = −
∫
(dx) δ Jφ(x), (6.33)

so, evaluating this at

φ(x) =
∫
(dx ′) G(x, x ′)J (x ′), (6.34)

one may write, up to source-independent terms,

W [J ] = −1

2

∫
(dx)(dx ′) J (x)GF(x, x ′)J (x ′). (6.35)

This bi-linear form recurs repeatedly in field theory. Schwinger’s source theory
view of quantum fields is based on this construction, for its spacetime symmetry
properties. Notice that it is based on the Feynman Green function. Eqn. (6.34)
could have been solved by either the Feynman Green function or the retarded
Green function. The explanation follows shortly. The work done over an
infinitesimal time interval is given by

�w = Im
dW

dt
. (6.36)

Expressed in more useful terms, the instantaneous decay rate of the field is∫
dtγ (t) = − 2

χh
ImW. (6.37)

The sign, again, indicates the difference between work done and energy lost.
The factor of χh is included because we need a scale which relates energy and
time (frequency). In quantum mechanics, the appropriate scale is χh = h̄. In
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6.1 Fluctuations and virtual processes 121

fact, any constant with the dimensions of action will do here. There is nothing
specifically quantum mechanical about this relation. The power is proportional
to the rate of work done. The more useful quantity, the power spectrum P(ω) or
power at frequency ω, is ∫

dω
P(ω, t)

h̄ω
= −γ (t), (6.38)

giving the total power

P =
∫

dωP(ω). (6.39)

We speak of the instantaneous decay rate because, in a real analysis of dissipa-
tion, the act of work being done acts back on all time varying quantities. Taking
the imaginary part of W to be the decay rate for the field assumes that the system
changes only adiabatically, as we shall see below.

6.1.5 Fluctuations

The interpretation of the field as a statistical phenomenon is made plausible
by considering the effect of infinitesimal perturbations to the field. This may
be approached in two equivalent ways: (i) through the introduction of linear
perturbations to the action, or sources

S → S −
∫
(dx) Jφ, (6.40)

where J is assumed to be weak, or (ii) by writing the field in terms of a
fluctuating ‘average’ part 〈φ〉 and a remainder part ϕ,

φ(x) = 〈φ(x)〉 + ϕ(x). (6.41)

These two constructions are equivalent for all dynamical calculations. This can
be confirmed by the use of the above generating functionals, and a change of
variable.

It is worth spending a moment to consider the meaning of the function W [J ].
Although originally introduced as part of the apparatus of quantum field theory
[113], we find it here completely divorced from such origins, with no trace of
quantum field theoretical states or operators (see chapter 15). The structure
of this relation is a direct representation of our model of fluctuations or virtual
processes. W [J ] is the generator of fluctuations in the field. The Feynman Green
function, in eqn. (6.25), is sandwiched between two sources symmetrically.
The Green function itself is symmetrical: for retarded times, it propagates a
field radiating from a past source to the present, and for advanced times it
propagates the field from the present to a future source, where it is absorbed.
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122 6 Statistical interpretation of the field

The symmetry of advanced and retarded boundary conditions makes W [J ] an
explicit representation of a virtual process, at the purely classical level.5

The first derivative of the effective action with respect to the source is

δW

δ J (x)
= 〈φ(x)〉, (6.42)

which implies that, for the duration of an infinitesimal fluctuation J �= 0, the
field has an average value. If it has an average value, then it also deviates from
this value, thus we may write

φ(x) = δW

δ J (x)
+ ϕ(x), (6.43)

where ϕ(x) is the remainder of the field due to J . The average value vanishes
once the source is switched off, meaning that the fluctuation is the momentary
appearance of a non-zero average in the local field. This is a smearing, stirring or
mixing of the field by the infinitesimal generalized force J . The rate of change
of this average is

(ih̄)
δ2W [J ]

δ2 J
= 〈φ(x)φ(x ′)〉 − 〈φ(x)〉〈φ(x ′)〉. (6.44)

This is the correlation function CAB(x, x ′), which becomes the Feynman Green
function as J → 0. It signifies the response of the field to its own fluctuations
nearby, i.e. the extent to which the field has become mixed. The correlation
functions become large as the field becomes extremely uniform. This is called
(off-diagonal6) long-range order.

The correlation function interpretation is almost trivial at the classical (free-
field) level, but becomes enormously important in the interacting quantum
theory.

Instantaneous thermal fluctuations Fluctuations have basically the same form
regardless of their origin. If we treat all thermal fluctuations as instantaneous,
then we may account for them by a Euclidean Green function; the fluctuations
of the zero-temperature field are generated by the Feynman Green function. In
an approximately free theory, these two are the same thing. Consider a thermal
Boltzmann distribution

Tr(ρ(x, x ′)φ(x)φ(x ′)) = Tr(e−βh̄ωφ(ω)φ(−ω)). (6.45)

5 For detailed discussions of these points in the framework of quantum field theory, see the
original papers of Feynman [46, 47, 48] and Dyson [41]. The generator W [J ] was introduced
by Schwinger in ref. [113].

6 ‘Off-diagonal’ refers to x �= x ′.
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6.1 Fluctuations and virtual processes 123

Since the average weight is eiS/h̄ , and the Green function in momentum space
involves a factor exp(−iω(t − t ′)), one can form a representation of the
Boltzmann exponential factor exp(−βE) by analytically continuing

t → t − ih̄β (6.46)

or

t ′ → t + ih̄β. (6.47)

This introduces an imaginary time element such as that obtained by Wick
rotating to Euclidean space. It also turns the complex exponential into a real,
decaying exponential. If the real part of the time variable plays no significant
role in the dynamics (a static system), then it can be disregarded altogether. That
is why Euclidean spacetime is essentially equivalent to equilibrium thermody-
namics. However, from the spacetime symmetry of the correlation functions,
we should have the same result if we re-label t and t ′ so

G(t − t ′ + ih̄β) = G(t ′ − t + ih̄β) (6.48)

or, in the Wick-rotated theory,

G(tE − t ′E + h̄β) = G(t ′E − tE + h̄β). (6.49)

This is only possible if

eiωE(tE−h̄β−t ′E) = eiωE(t ′E−h̄β−tE) (6.50)

or

eih̄βωE = 1. (6.51)

From this; we deduce that the Euclidean Green function must be periodic in
imaginary time and that the Euclidean frequency

ωE(n) = 2nπ

β
, n = 0,±1,±2, . . . , (6.52)

where ωE(n) are called the Matsubara frequencies.

Thermal fluctuations in time Using the fluctuation model, we may represent
a system in thermal equilibrium by the same idealization as that used in
thermodynamics. We may think of the source and sink for thermal fluctuations
as being a large reservoir of heat, so large that its temperature remains constant
at T = 1/kβ, even when we couple it to our system. The coupling to the heat
bath is by sources. Consider the fluctuation model as depicted in figure 6.1.
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124 6 Statistical interpretation of the field

Now

x
x x

(–)
G     

(+)
–G

emission re-absorption

(x,x )(x,x )

Fig. 6.1. Thermal fluctuations occur when the source is a heat reservoir at constant
temperature.

Since the fluctuation generator is W [J ], which involves

W [J ] = −1

2

∫
(dx)(dx ′) J (x)GF(x, x ′)J (x ′)

∼ J (x)
[−G(+)(ω)θ(past)+ G(−)(ω)θ(future)

]
J (x ′), (6.53)

then, during a fluctuation, the act of emission from the source is represented
by −G(+)(ω) and the act of re-absorption is represented by G(−)(ω). In other
words, these are the susceptibilities for thermal emission and absorption. In
an isolated system in thermal equilibrium, we expect the number of fluctuations
excited from the heat bath to be distributed according to a Boltzmann probability
factor [107]:

emission

absorption
= −G(+)(ω)

G(−)(ω)
= eh̄β|ω|. (6.54)

We use h̄ω for the energy of the mode with frequency ω by tradition, though h̄
could be replaced by any more appropriate scale with the dimensions of action.
This is a classical understanding of the well known Kubo–Martin–Schwinger
relation [82, 93] from quantum field theory. In the usual derivation, one makes
use of the quantum mechanical time-evolution operator and the cyclic property
of the trace in eqn. (6.45) to derive this relation for a thermal equilibrium. What
makes these two derivations equivalent is the principle of spacetime uniformity
of fluctuations. The argument given here is identical to Einstein’s argument for
stimulated and spontaneous emission in a statistical two-state system, and the
derivation of the well known A and B coefficients. It can be interpreted as the
relative occupation numbers of particles with energy h̄ω. Here, the two states
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Fig. 6.2. Contact with a thermodynamic heat bath. Fluctuations represent emission
and absorption from a large thermal field.

are the heat bath and the system (see figure 6.2). We can use eqn. (6.54) to find
the thermal forms for the Wightman functions (and hence all the others). To do
so we shall need the extra terms X (k) mentioned in eqn. (5.41). Generalizing
eqns. (5.66), we write,

G(+)(k) = −2π i[θ(k0)+ X ]δ(p2c2 + m2c2)

G(−)(k) = 2π i[θ(−k0)+ Y ]δ(p2c2 + m2c4) (6.55)

with X and Y to be determined. The commutator function G̃(x, x ′) represents
the difference between the emission and absorption processes, which cannot
depend on the average state of the field since it represents the completeness
of the dynamical system (see section 14.1.8 and eqn. (5.73)). It follows that
X = Y . Then, using eqn. (6.54), we have

θ(ω)+ X = eh̄ωβ[θ(−ω)+ X ] (6.56)

and hence

X (eβ h̄|ω| − 1) = θ(ω), (6.57)

since θ(−ω)eβω = 0. Thus, we have

X = θ(ω) f (ω), (6.58)

where

f (ω) = 1

eβh̄ω − 1
. (6.59)
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126 6 Statistical interpretation of the field

This is the Bose–Einstein distribution. From this we deduce the following
thermal Green functions by re-combining G(±)(k):

G(+)(k) = −2π iθ(k0)[1+ f (|k0|)]δ(p2c2 + m2c4) (6.60)

GF(k) = 1

p2c2 + m2c4 − iε
+ 2π i f (|k0|)δ(p2c2 + m2c4)θ(k0).

(6.61)

For a subtlety in the derivation and meaning of eqn. (6.59), see section 13.4.
The additional mixture of states which arise from the external (boundary)

conditions on the system X thus plays the role of a macrostate close to steady
state. Notice that the retarded and advanced Green functions are independent of
X . This must be the case for unitarity to be preserved.

6.1.6 Divergent fluctuations: transport

The fluctuations model introduced above can be used to define instantaneous
transport coefficients in a statistical system. Long-term, time-dependent ex-
pressions for these coefficients cannot be obtained because of the limiting
assumptions of the fluctuation method. However, such a non-equilibrium
situation could be described using the methods of non-equilibrium field theory.

Transport implies the propagation or flow of a physical property from one
place to another over time. Examples include

• thermal conduction,

• electrical conduction (current),

• density conduction (diffusion).

The conduction of a property of the field from one place to another can only be
accomplished by dynamical changes in the field. We can think of conduction as
a persistent fluctuation, or a fluctuation with very long wavelength, which never
dies. All forms of conduction are essentially equivalent to a diffusion process
and can be analysed hydrodynamically, treating the field as though it were a
fluid.

Suppose we wish to consider the transport of a quantity X : we are therefore
interested in fluctuations in this quantity. In order to generate such fluctuations,
we need a source term in the action which is generically conjugate to the
fluctuation (see section 14.5). We add this as follows:

S → S −
∫
(dx)X · F, (6.62)
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6.1 Fluctuations and virtual processes 127

and consider the generating functional of fluctuations W [F] as a function of the
infinitesimal source F(x); Taylor-expanding, one obtains

δW [F] = W [0] +
∫
(dx)

δW [0]

δF(x)
F(x)

+
∫
(dx)(dx ′)

δ2W [0]

δF(x)δF(x ′)
F(x)δF(x ′)+ · · · . (6.63)

Now, since

W [F] =
∫
(dx)(dx ′) F(x)〈X (x)X (x ′)〉F(x ′), (6.64)

we have the first few terms of the expansion

W [0] = 0
δW [0]

δF(x)
= 〈X (x)〉

δ2W [0]

δF(x)δF(x ′)
= − i

h̄
〈X (x)X (x ′)〉 (6.65)

Thus, linear response theory gives us, generally,

〈X (x)〉 = i

h̄

∫
(dx ′)〈X (x)X (x ′)〉F(x ′), (6.66)

or

δ〈X (x)〉
δF(x ′)

= i

h̄
〈X (x)X (x ′)〉. (6.67)

Since the correlation functions have been generated by the fluctuation generator
W , they satisfy Feynman boundary conditions; however, in eqn. (6.81) we
shall derive a relation which may be used to relate this to the linear response
of the field with retarded boundary conditions. It remains, of course, to
express the correlation functions of the sources in terms of known quantities.
Nevertheless, the above expression may be used to determine the transport
coefficients for a number of physical properties. As an example, consider the
electrical conductivity, as defined by Ohm’s law,

Ji = σi j Ei . (6.68)

If we write Ei ∼ ∂t Ai in a suitable gauge, then we have

Ji (ω) = σi jωA j (ω), (6.69)

or

δ Ji

δA j
= σi jω. (6.70)
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128 6 Statistical interpretation of the field

From eqn. (6.67), we may therefore identify the transport coefficient as the limit
in which the microscopic fluctuations’ wavelength tends to infinity and leads to
a lasting effect across the whole system,

σi j (ω) = lim
k→0

i

h̄ω
〈Ji (ω)Jj (−ω)〉. (6.71)

The evaluation of the right hand side still needs to be performed. To do this,
we need to know the dynamics of the sources Ji and the precise meaning of the
averaging process, signified by 〈. . .〉. Given this, the source method provides us
with a recipe for calculating transport coefficients.

In most cases, one is interested in calculating the average transport coeffi-
cients in a finite temperature ensemble. Thermal fluctuations may be accounted
for simply by noting the relationship between the Feynman boundary conditions
used in the generating functional above and the retarded boundary conditions,
which are easily computable from the mechanical response. We make use of
eqn. (6.54) to write

Gr(t, t
′) = −θ(t − t ′)

[
G(+) + G(−)]

= −θ(t − t ′)G(+) [1− e−h̄βω
]
. (6.72)

The retarded part of the Feynman Green function is

GF = −θ(t − t ′)G(+)θ(t − t ′), (6.73)

so, over the retarded region,

Gr(x, x ′) = (1− e−h̄βω)GF(x, x ′), (6.74)

giving

σi j (ω) = lim
k→0

(1− e−h̄βω)

h̄ω
〈Ji (ω)Jj (−ω)〉, (6.75)

for the conductivity tensor, assuming a causal response between source and
field. The formula in eqn. (6.75) is one of a set of formulae which relate the
fluctuations in the field to transport coefficients. The strategy for finding such
relations is to identify the source which generates fluctuations in a particular
quantity. We shall return to this problem in general in section 11.8.5.

6.1.7 Fluctuation dissipation theorem

In a quasi-static system, the time-averaged field may be defined by

〈φ〉 = 1

T

∫ t+T/2

t−T/2
φ(x)dt. (6.76)
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6.1 Fluctuations and virtual processes 129

From the generating functional in eqn. (6.5), we also have

〈φ(x)〉 = ih̄
δW [J ]

δ J (x)
, (6.77)

and further

δ〈φ〉
δ J

∣∣∣∣∣
J=0

= − i

h̄
〈φ(x)φ(x ′)〉 = Im GF(x, x ′). (6.78)

The field may always be causally expressed in terms of the source, using the
retarded Green function in eqn. (6.76), provided the source is weak so that higher
terms in the generating functional can be neglected; thus

〈φ〉 = 1

T

∫ t+T/2

t−T/2

∫
(dx ′)Gr(x, x ′)J (x ′)dt. (6.79)

Now, using eqns. (6.78) and (6.79), we find that

δ

δ J (x ′)
δ

δt
φ(x) = −Im ∂t GF(x, x ′) = 1

T
Gr(x, x ′). (6.80)

Thus, on analytically continuing to Euclidean space,

Gr(ω) = −h̄βω GE(ω). (6.81)

This is the celebrated fluctuation dissipation theorem. It is as trivial as it is
profound. It is clearly based on assumptions about the average behaviour of
a statistical system over macroscopic times T , but also refers to the effects of
microscopic fluctuations over times contained in x − x ′. It relates the Feynman
Green function to the retarded Green function for a time-averaged field; i.e. it
relates the correlation function, which measures the spontaneous fluctuations

ϕ = φ − 〈φ〉 (6.82)

in the field, to the retarded Green function, which measures the purely mechan-
ical response to an external source. The fluctuations might be either thermal or
quantum in origin, it makes no difference. their existence is implicitly postulated
through the use of the correlation function. Thus, the truth or falsity of this
expression lies in the very assumption that microscopic fluctuations are present,
even though the external source J → 0 on average (over macroscopic time T ).
This requires further elaboration.

In deriving the above relation, we have introduced sources and then taken the
limit in which they tend to zero. This implies that the result is only true for an
infinitesimal but non-zero source J . The source appears and disappears, so that
it is zero on average, but it is present long enough to change the distribution
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130 6 Statistical interpretation of the field

of modes in the system, little by little. An observer who could resolve only
macroscopic behaviour would therefore be surprised to see the system changing,
apparently without cause. This theorem is thus about the mixing of scales.

The fluctuation dissipation theorem tells us that an infinitesimal perturbation
to the field, J → 0, will lead to microscopic fluctuations, which can decay by
mechanical response (mixing or diffusion). The decay rate may be related to the
imaginary part of the correlation function, but this gives only an instantaneous
rate of decay since the assumptions we use to derive the expression are valid
only for the brief instant of the fluctuation.7

The Feynman Green function seems to have no place in a one-particle
mechanical description, and yet here it is, at the classical level. But we have
simply introduced it ad hoc, and the consequences are profound: we have
introduced fluctuations into the system. This emphasizes the importance of
boundary conditions and the generally complex nature of the field.

6.2 Spontaneous symmetry breaking

Another aspect of fluctuating statistical theories, which arises in connection with
symmetry, is the extent to which the average state of the field, 〈φ〉, displays
the full symmetry afforded it by the action. In interacting theories, collective
effects can lead to an average ordering of the field, known as long-range order.
The classic example of this is the ferromagnetic state in which spin domains
line up in an ordered fashion, even though the action allows them to point
in any direction, and indeed the fluctuations in the system occur completely
at random. However, it is energetically favourable for fluctuations to do this
close to an average state in which all the spins are aligned, provided the
fluctuations are small. Maximum stability is then achieved by an ordered state.
As fluctuations grow, perhaps by increasing temperature, the stability is lost and
a phase transition can occur. This problem is discussed in section 10.7, after the
chapters on symmetry.

7 The meaning of this ‘theorem’ for Schwinger’s source theory viewpoint is now clear [119].
Spacetime uniformity in the quantum transformation function tells us that the Green function
we should consider is the Feynman Green function. The symmetry of the arguments
tells us that this is a correlation function and it generates fluctuations in the field. The
infinitesimal source is a model for these fluctuations. Processes referred to as the decay of
the vacuum in quantum field theory are therefore understood in a purely classical framework,
by understanding the meaning of the Feynman boundary conditions.
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7
Examples and applications

To expose the value of the method in the foregoing chapters, it is instructive to
apply it to a number of important and well known physical problems. Through
these examples we shall see how a unified methodology makes the solution of
a great many disparate systems essentially routine. The uniform approach does
not necessarily convey with it any automatic physical understanding, but then
no approach does. What we learn from this section is how many problems can
be reduced to the basics of ‘cause followed by effect’, or, here, ‘source followed
by field’.

7.1 Free particles

Solving Newton’s law F = ma using a Green function approach is hardly to
be recommended for any practical purpose; in fact, it is a very inefficient way
of solving the problem. However, it is useful to demonstrate how the Green
function method can be used to generate the solution to this problem. This
simple test of the theory helps to familiarize us with the working of the method
in practice. The action for a one-dimensional-particle system is

S =
∫

dt

{
−1

2
mẋ2 − Fx

}
. (7.1)

The variation of the action leads to

δS =
∫

dt {mẍ − F} δx +�(mẋ)δx = 0, (7.2)

which gives us the equation of motion

F = mẍ (7.3)

and the continuity condition

�(mẋ) = 0, (7.4)

131

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


132 7 Examples and applications

which is the conservation of momentum. The equation of motion can be written
in the form of ‘operator acting on field equals source’,

Dx = J, (7.5)

by rearranging

∂2
t x(t) = F/m. (7.6)

Clearly, we can integrate this equation directly with a proper initial condition
x(t0) = x0, ẋ(t0) = v, to give

x(t)− x0 = F

2m
(t − t0)+ v(t − t0). (7.7)

But let us instead try to use the Green function method to solve the problem.
There are two ways to do this: the first is quite pointless and indicates a
limitation of the Green function approach, mentioned in section 5.2.4. The
second approach demonstrates a way around the limitation and allows us to see
the causality principle at work.

Method 1 The operator on the left hand side of eqn. (7.6) is ∂2
t , so we define a

Green function

∂2
t G(t, t ′) = δ(t, t ′). (7.8)

As usual, we expect to find an integral expression by Fourier transforming the
above equation:

G(t − t ′) =
∫

dω

2π

e−iω(t−t ′)

−ω2
. (7.9)

This expression presents us with a problem, however: it has a non-simple pole,
which must be eliminated somehow. One thing we can do is to re-write the
integral as follows:

G(t − t ′) =
∫

dt̃
∫

dt̃
∫

dω

2π
e−iωt̃ ,

=
∫

dt̃
∫

dt̃ δ(t̃), (7.10)

where t̃ = t − t ′. It should be immediately clear that this is just telling us to
replace the Green function with a double integration (which is how one would
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7.1 Free particles 133

normally solve the equation). We obtain two extra, unspecified integrals:

x(t) =
∫

dt ′ G(t, t ′)F/m

=
∫

dt̃dt̃dt ′ δ(t − t ′)F/m

=
∫

dt̃dt̃ F/m

=
∫

dt̃
[
F/m(t − t ′)+ v]

= F

2m
(t − t0)

2 + v(t − t0)+ x0. (7.11)

So, the result is the same as that obtained by direct integration and for the
same reason: the Green function method merely adds one extra (unnecessary)
integration and re-directs us to integrate the equation directly. The problem here
was that the denominator contained a non-simple pole. We can get around this
difficulty by integrating it in two steps.

Method 2 Suppose we define a Green function for the linear differential operator

∂t g(t, t ′) = δ(t, t ′). (7.12)

From section A.2, in Appendix A, we immediately recognize this function as the
Heaviside step function. (We could take the Fourier transform, but this would
only lead to an integral representation of the step function.) The solution has
advanced and retarded forms

gr(t, t
′) = θ(t − t ′)

ga(t, t
′) = −θ(t ′ − t). (7.13)

Now we have an integrable function, which allows us to solve the equation in
two steps:

∂t x(t) =
∫

dt ′ gr(t, t
′) F/m

= F

m
(t − t ′)+ ∂t x(t ′) (t > t ′). (7.14)

Then, applying the Green function again,

x(t) =
∫

dt ′ gr(t − t ′)
[

F

m
(t − t ′)+ ∂t x(t ′)

]

= F

2m
(t − t0)

2 + v(t − t0)+ x0. (7.15)
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134 7 Examples and applications

Again we obtain the usual solution, but this time we see explicitly the causality
inferred by a linear derivative. The step function tells us that the solution only
exists for a causal relationship between force F and response x(t).

7.1.1 Velocity distributions

In a field of many particles, there is usually a distribution of velocities or
momenta within the field. In a particle field this refers to the momenta pi of
individual localizable particles. In other kinds of field there is a corresponding
distribution of wavenumbers ki of the wave modes which make up the field.
The action describes the dynamics of a generic particle, but it does not capture
the macroscopic state of the field. The macrostate is usually described in terms
of the numbers of components (particles or modes) with a given momentum or
energy (the vector nature of momentum is not important in an isotropic plasma).

The distribution function f is defined so that its integral with respect to the
distribution parameter gives the number density or particles per unit volume. We
use a subscript to denote the control variable:

N =
∫

dnk fk(k)

=
∫

dnp f p(p)

=
∫

dnv fv(v). (7.16)

This distribution expresses averages of the field. For example, the average
energy is the weighted average of the energies of the different momenta:

〈E〉 = 1

N

∫
dnk fk(k)E(k). (7.17)

7.2 Fields of bound particles

A field of particles, sometimes called a plasma when charged, is an effective
field, formed from the continuum approximation of discrete particles. Its
purpose is to capture some of the bulk dynamics of material systems; it should
not be confused with the deeper description of the atoms and their sub-atomic
components in terms of fundamental fields which might focus on quite different
properties, not relevant for the atoms in a bulk context. The starting point for
classical analyses of atomic systems coupled to an electromagnetic field is the
idea that matter consists of billiard-ball atoms with some number density ρN ,
and that the wavelength of radiation is long enough to be insensitive to the
particle nature of the atoms. The only important fact is that there are many
particles whose combined effect in space is to act like a smooth field. When
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7.2 Fields of bound particles 135

perturbed by radiation (which we shall represent as an abstract source Ji ) the
particles are displaced by a spatial vector si where i = 1, 2, . . . , n. The action
for this system may be written

Seff = 1

σx

∫
(dx)

{
−1

2
mṡ2 + 1

2
κs2 − mγ sṡ − J i si

}
. (7.18)

This requires some explanation. The factor of the spatial volume of the total sys-
tem, σx , reflects the fact that this is an effective average formulation. Dividing
by a total scale always indicates an averaging procedure. As an alternative to
using this explicit value, we could use the average density, ρ = m/σx , and other
parameter densities to express the action in appropriate dimensions. The first
term is a kinetic energy term, which will describe the acceleration of particles
in response to the forcing term J i . The second term is a harmonic oscillator
term, which assumes that the particles are bound to a fixed position si = 0, just
as electrons are bound to atoms or ions are bound in a lattice. The effective
spring constant of the harmonic interaction is κ . Because si (x) represents the
displacement of the particles from their equilibrium position, we use the symbol
si rather than xi , since it is not the position which is important, but the deviation
from equilibrium position. The dimensions of si (x) are position divided by the
square-root of the density because of the volume integral in the action, and si (x)
is a function of xµ because the displacement could vary from place to place and
from time to time in the system. The final term in eqn. (7.18) is a term which will
provide a phenomenological damping term for oscillations, as though the system
were leaky or had friction. As we have already discussed in section 4.2, this kind
of term is not well posed unless there is some kind of boundary in the system
which can leak energy. The term is actually a total derivative. Nevertheless,
since this is not a microscopic fundamental theory, it is possible to make sense
of this as an effective theory by ‘fiddling’ with the action. This actually forces
us to confront the reason why such terms cannot exist in fundamental theories,
and is justifiable so long as we are clear about the meaning of the procedure.

The variation of the action is given, after partial integration, by

δS = 1

σx

∫
(dx) {ms̈i + κsi − mγ ṡi + mγ ṡi − Ji } δsi

+ 1

σx

∫
dσ [mṡi + mγ si ] δs

i . (7.19)

The terms containing γ clearly cancel, leaving only a surface term. But suppose
we divide the source into two parts:

J i = J i
γ + J i

s , (7.20)

where J i
γ is postulated to satisfy the equation

−mγ ṡi = J i
γ . (7.21)
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136 7 Examples and applications

This then has the effect of preventing the frictional terms from completely
disappearing. Clearly this is a fiddle, since we could have simply introduced
a source in the first place, with a velocity-dependent nature. However, this
is precisely the point. If we introduce a source or sink for the energy of the
system, then it is possible to violate the conservational properties of the action
by claiming some behaviour for J i which is not actually determined by the
action principle. The lesson is this: if we specify the behaviour of a field rather
than deriving it from the action principle, we break the closure of the system
and conservation laws. What this tells us is that dissipation in a system has to
come from an external agent; it does not arise from a closed mechanical theory,
and hence this description of dissipation is purely phenomenological. Taking
eqn. (7.21) as given, we have the equation of motion for the particles

ms̈i − mγ ṡi + κs = J i
s , (7.22)

with continuity condition

�(mṡ + mγ s) = 0. (7.23)

It is usual to define the natural frequency ω2
0 = κ/m and write

(∂2
t − γ ∂t + ω2

0)s
i (x) = J i

s

m
. (7.24)

If we consider a plane wave solution of the form

s(x) =
∫
(dk) ei(ki xi−ωt)s(k), (7.25)

then we may write

(−ω2 + iγω + ω2
0)s

i (k) = J i
s (k)

m
. (7.26)

From this we see that the Green function Gi j (x, x ′) for si (x) is

Gi j (x, x ′) = δi j

∫
(dk)

ei(ki xi−ωt)

(−ω2 + iγω + ω2
0)
. (7.27)

As long as the integral contains both positive and negative frequencies, this
function is real and satisfies retarded boundary conditions. It is often referred to
as the susceptibility, χi j . In a quantum mechanical treatment, h̄ω0 = E2− E1 is
the difference between two energy levels.

Notice that the energy density

Pi Ei =
∫

Ei (x)Gi j (x, x ′)E j (x
′) (dx ′) (7.28)
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7.3 Interaction between matter and radiation 137

cannot be expressed in terms of a retarded Green function, since the above
expression requires a spacetime symmetrical Green function. The Feynman
Green function is then required. This indicates that the energy of the field
is associated with a statistical balance of virtual processes of emission and
absorption, rather than simply being a process of emission. In general, the
interaction with matter introduces an imaginary part into the expression for the
energy, since the Green function idealizes the statistical processes by treating
them as steady state, with no back-reaction. It thus implicitly assumes the
existence of an external source whose behaviour is unaffected by the response
of our system. The energy density reduces to E2 in the absence of material
interactions and the result is then purely real.

7.3 Interaction between matter and radiation

Classical field theory is normally only good enough to describe non-interacting
field theories. A complete description of interactions requires the quantum
theory. The exception to this rule is the case of an external source. In
electromagnetism we are fortunate in having a system in which the coupling
between matter and radiation takes on the form of a linear external source Jµ,
so there are many systems which behave in an essentially classical manner.

7.3.1 Maxwell’s equations

The interaction between matter and radiation begins with the relativistically
invariant Maxwell action

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ

}
. (7.29)

The variation of the action,

δS =
∫
(dx)

{
(∂µδAν)Fµν − JµδAµ

}
=

∫
(dx)

{
δAν(−∂µFµν)− JµδAµ

}+ ∫
dσµ

{
δAνFµν

}
= 0, (7.30)

leads immediately to the field equations for the electromagnetic field interacting
with charges in an ambient vacuum:

∂µFµν = −µ0 J ν. (7.31)

The spatial continuity conditions are

�Fiµ = 0, (7.32)
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138 7 Examples and applications

or

�Ei = 0

�Bi = 0. (7.33)

7.3.2 Electromagnetic waves

In the Lorentz gauge, ∂µAµ = 0, Maxwell’s equations (7.31) reduce to

− Aµ = Jµ. (7.34)

The solution to this equation is a linear combination of a particular integral
with non-zero Jµ and a complementary function with Jµ = 0. The free-field
equation,

− Aµ = 0, (7.35)

is solved straightforwardly by taking the Fourier transform:

Aµ(x) =
∫

dn+1k

(2π)n+1
eikµxµ Aµ(k). (7.36)

Substituting into the field equation, we obtain the constraint

χ(k) = k2 = kµkµ =
(
−ω

2

c2
+ ki ki

)
= 0. (7.37)

This is the result we found in eqn. (2.52), obtained only slightly differently. The
retarded and Feynman Green functions for the field clearly satisfy

− Dµν(x, x ′) = gµν cδ(x, x ′). (7.38)

Thus, the solution to the field in the presence of the source is, by analogy with
eqn. (5.41),

Aµ(x) =
∫
(dx ′)Dµν(x, x ′)J ν(x ′)

=
∫
(dk) eikµ(x−x ′)µ

[
1

k2
+ X (k)δ(k2)

]
J (x ′), (7.39)

where X (k) is an arbitrary and undetermined function. In order to determine
this function, we need to make some additional assumptions and impose some
additional constraints on the system.
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7.3 Interaction between matter and radiation 139

7.3.3 Dispersion and the Faraday effect

When linearly polarized electromagnetic waves propagate through a magnetized
medium, in the direction of the applied magnetization, the plane of polarization
becomes rotated in an anti-clockwise sense about the axis of propagation by an
amount proportional to z, where z is the distance travelled through the medium.
The angle of rotation

ψ = V Bz, (7.40)

where B is the magnetic field and V is Verdet’s constant, the value of which
depends upon the dielectric properties of the material. This phenomenon is
important in astronomy in connection with the polarization of light from distant
stars. It is also related to optical activity and the Zeeman effect.

Classical descriptions of this effect usually involve a decomposition of the
electric field vector into two contra-rotating vectors which are then shown
to rotate with different angular velocities. The sum of these two vectors
represents the rotation of the polarization plane. An alternative description can
be formulated in complex coordinates to produce the same result more quickly
and without prior assumptions about the system.

Let us now combine some of the above themes in order to use the action
method to solve the Faraday system. Suppose we have a particle field, si (x), of
atoms with number density ρN , which measures the displacement of optically
active electrons −e from their equilibrium positions, and a magnetic field B =
B3, which points along the direction of motion for the radiation. In the simplest
approximation, we can represent the electrons as being charges on springs with
spring constant κ . As they move, they generate an electric current density

Ji = −eρN ṡi . (7.41)

Since the Faraday effect is about the rotation of radiation’s polarization vector
(which is always perpendicular to the direction of motion x3), we need only si

for i = 1, 2. The action then can be written

S = 1

σx

∫
(dx)

{
−1

2
m(∂t s)(∂t s)+ 1

2
eBεi j s

i (∂t s)+ ksi si − J i si

}
.

(7.42)

Here, J i is an external source which we identify with the radiation field

J i (x) = −eEi (x) = −e

c
F0i (x). (7.43)

As is often the case with matter–radiation interactions, the relativistically
invariant electromagnetic field is split into Ei , Bi by the non-relativistically
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140 7 Examples and applications

invariant matter field si . The field equations are now obtained by varying the
action with respect to δsi :

δS =
∫
(dx)

{
ms̈i + eBεi j ṡ

j + κsi − Ji
}
δsi

+
∫

dσ
[
mṡi + eBεi j s

j
]
δsi . (7.44)

Thus, the field equations are

ms̈i + eBεi j ṡ
j + κsi = Ji = −eEi , (7.45)

and continuity of the field requires

�(mṡi ) = 0

�(eBεi j s
j ) = 0. (7.46)

The first of these is simply the conservation of momentum for the electrons.
The latter tells us that any sudden jumps in the magnitude of magnetic field
must be compensated for by a sudden jump in the amplitude of the transverse
displacement.

If we compare the action and the field equations with the example in section
7.2, it appears as though the magnetic field has the form of a dissipative term.
In fact this is not the case. Magnetic fields do no work on particles. The crucial
point is the presence of the anti-symmetric matrix εi j which makes the term well
defined and non-zero.

Dividing eqn. (7.45) through by the mass, we can defined the Green function
for the si (x) field:[(

d2

dt2
+ ω2

0

)
δi j + eB

m
εi j

]
G jk(x, x ′) = δik(x, x ′), (7.47)

where ω2
0 = κ/m, so that the formal solution for the field is

si (x) =
∫
(dx ′)Gi j (x, x ′)J j (x ′). (7.48)

Since we are interested in coupling this equation to an equation for the radiation
field Ji , we can go no further. Instead, we turn to the equation of motion (7.34)
for the radiation. Because of the gauge freedom, we may use a gauge in which
A0 = 0, this simplifies the equation to

− Ai = µ0 J e
i

Ei = −∂t Ai . (7.49)

Thus, using the Green function Di j (x, x ′),

− Di j (x, x ′) = δi j cδ(x, x ′), (7.50)
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for Ai (x), we may write the solution for the electric field formally as

Ei (x) = −µ0∂t

∫
(dx ′)Di j (x, x ′)(−eρN ṡ j (x

′)) = −Ji/e. (7.51)

This result can now be used in eqn. (7.45), giving[(
d2

dt2
+ ω2

0

)
δi j + eBω

m
εi j

]
sj(x) =

−e2

m
ρNµ0 ∂t

∫
(dx ′)D jk(x, x ′)ṡk . (7.52)

Operating from the left with − x
, we have

(− )

[(
d2

dt2
+ ω2

0

)
δi j + eBω

m
εi j

]
sj(x) = −e2

m
ρNµ0s̈i . (7.53)

This is a matrix equation, with a symmetric part proportional to δi j and an anti-
symmetric part proportional to εi j . If we take plane wave solutions moving
along the x3 = z axis,

si (x) =
∫

dn+1k

(2π)n+1
ei(kz z−ωt)si (k)δ(χ)

Ei (x) =
∫

dn+1k

(2π)n+1
ei(kz z−ωt)Ei (k)δ(χ), (7.54)

for the dispersion relation χ implied by eqn. (7.53), eqn. (7.53) implies that the
wavenumber kz must be a matrix in order to find a solution. This is what will
lead to the rotation of the polarization plane for Ei . Substituting the above form
for si (x) into eqn. (7.53) leads to the replacements ∂z → ikz and ∂t → −iω.
Thus the dispersion relation is

χ =
(

k2
z −

ω2

c2

)[
(−ω2 + ω2

0)δi j + eBω

m
εi j

]
− e2

m
ρNµ0ω

2 δi j = 0,

(7.55)

or re-arranging,

k2
z i j =

ω2

c2


δi j +

e2

mε0
ρN

[
(ω2 + ω2

0)δi j + eBω
m εi j

]
(−ω2 + ω2

0)
2 − ( eBω

m )
2


 . (7.56)

This only makes sense if the wavenumber kz is itself a matrix with a symmetric
and anti-symmetric part:

kz i j = kδi j + k̃εi j . (7.57)
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It is the anti-symmetric part which leads to a rotation of the plane of polarization.
In fact, kz has split into a generator of linear translation k plus a generator or
rotations k̃ about the z axis:

kz = k ×
(

1 0
0 1

)
+ k̃ ×

(
0 1
−1 0

)
. (7.58)

The exponential of the second term is(
cos(k̃z) sin(k̃z)
− sin(k̃z) cos(k̃z)

)
, (7.59)

so k̃ is the rate of rotation. Using a binomial approximation for small B, we can
write simply

k̃z i j =
e3 B

2mε0
ρN

(−ω2 + ω2
0)

2 − ( eBω
m )

2
. (7.60)

Verdet’s constant is defined by the phenomenological relation,

k̃z = V Bz, (7.61)

so we have

V = Ne3ω2

2m2cε0|(ω2
o − ω2)2 − (eBω/m)2| . (7.62)

7.3.4 Radiation from moving charges in n = 3: retardation

The derivation of the electromagnetic field emanating from a charged particle
in motion is one of the classic topics of electrodynamics. It is an important
demonstration of the Green function method for two reasons. First of all, the
method of Green functions leads quickly to the answer using only straightfor-
ward algebraic steps. Prior to the Green function method, geometrical analyses
were carried out with great difficulty. The second reason for looking at this
example here is that it brings to bear the causal or retarded nature of the physical
field, i.e. the property that the field can only be generated by charge disturbances
in the past. This retardation property quickly leads to algebraic pitfalls, since the
dynamical variables become defined recursively in term of their own motion in
a strange-loop. Unravelling these loops demonstrates important lessons.

We begin by choosing the Lorentz gauge for the photon propagator with α =
1. This choice will give the result for the vector potential in a form which is most
commonly stated in the literature. Our aim is to compute the vector potential
Aµ(x), and thence the field strength Fµν , for a particle at position xp(t) which
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7.3 Interaction between matter and radiation 143

is in motion with speed v = ∂t xp(t). The current distribution for a point particle
is singular, and may be written

Jµ = qcβµ δn(x− xp(t)). (7.63)

The vector potential is therefore, in terms of the retarded propagator,

Aµ(x) = µ0

∫
(dx ′) Gr(x, x ′)Jµ(x ′)

= q

4πε0c

∫
(dx ′) βµ(t ′)

δ
(
c(t ′ − tret)

)
|x− x′| δ

(
x′ − xp(t)

)
, (7.64)

where the retarded time is defined by tret = t−|x−x′|/c. Performing the integral
over x0′ in the presence of the delta function sets t ′ → tret:

Aµ(x) = q

4πε0c

∫
dσx ′

βµ(tret)δ
(
x′ − xp(tret)

)
|x− x′| . (7.65)

Here x is a free continuous coordinate parameter, which varies over all space
around the charge, and xp(tret) is the retarded trajectory of the charge q. We may
now perform the remaining integral. Here it is convenient to change variables.
Let ∫

dσx ′δ(x′ − xp(tret)) =
∫

dσrδ(r)|J |, (7.66)

where J = det Ji j and

J−1
i j = ∂ ′i r j = ∂ ′i (x ′ − x p(tret)) j

= gi j −
∂xi

p

∂tret

∂tret

∂xi ′ , (7.67)

is the Jacobian of the transformation. At this stage, tret is given by tret = t −
|x − x′|/c, i.e. it does not depend implicitly on itself. After the integration we
are about to perform, it will. We complete the integration by evaluating the
Jacobian:

∂ ′i tret = r̂i

c

J−1
i j = gi j − v j

c
r̂i

det J−1
i j = (1− β i r̂i )

∣∣∣
tret

. (7.68)

The last line uses the fact that ri depends only on x ′i , not on x j for i �= j . In this
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instance, the determinant becomes 1+ Tr(J−1
i j ), giving

Aµ(x) = q

4πε0c

∫
dσr

βµ(tret)δ(r)
|x− xp(tret)− r|

= qβµ(tret)

4πε0cκ|x− xp| , (7.69)

where κ ≡ (1 − β · r̂), and all quantities (including κ itself) are evaluated at
tret. If we define the light ray rµ as the vector from xp to x, then rµ = (r, r)
and r = |r|, since, for a ray of light, r = c�t = c × r/c. Finally, noting that
rκ = −rµβµ, we have the Liénard–Wiechert potential in the Lorentz gauge,

Aµ(x) = −q

4πε0c

(
βµ

rµβµ

)
tret

. (7.70)

To proceed with the evaluation of the field strength Fµν , or equivalently the
electric and magnetic fields, it is useful to derive a number of relations which
conceal subtleties associated with the fact that the retarded time now depends
on the position evaluated at the retarded time. In other words, the retarded time
tret satisfies an implicit equation

tret = t − |x− xp(tret)|
c

= t − r

c
. (7.71)

The derivation of these relations is the only complication to this otherwise purely
algebraic procedure. Differentiating eqn. (7.71) with respect to tret, we obtain

1 = ∂t

∂tret
+ r̂ iβi (tret)

∂t(tret) = κ−1
∣∣∣
tret

. (7.72)

Moreover,

(∂i tret) = −1

c
(∂i r), (7.73)

(∂i r) = ∂i

√
r jr j

= r̂ j (∂i r j ), (7.74)

(∂i r j ) = gi j −
∂x p j

∂tret
(∂i tret)

= gi j + β j (∂i r) (7.75)

(∂i r j ) = gi j + β j r̂
k(∂i rk). (7.76)

The last line cannot be simplified further; however, on substituting eqn. (7.76)
into eqn. (7.74), it is straightforward to show that

(∂i r)(1− (r̂ · β)2) = r̂i (1+ r̂ · β), (7.77)
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and thus

(∂i r) = r̂i

κ
. (7.78)

This may now be substituted back into eqn. (7.75) to give

(∂i r j ) = gi j + β j r̂i

κ
. (7.79)

Continuing in the same fashion, one derives the following relations:

(∂0r) = − r̂ iβi

κ

(∂0r i ) = −β
i

κ

(∂i r) = r̂i

κ

(∂i r j ) = gi j + β j r̂i

κ
.

(∂0βi ) = αi

κ

(∂iβ j ) = − r̂iα j

κ

∂0(rκ) = 1

κ

(
β2 − r̂ · β − α · r)

∂i (rκ) = r̂i

κ

(
1− β2 + α · r)− βi , (7.80)

where we have defined αµ = ∂0βµ = (0, v̇/c2). The field strength tensor may
now be evaluated. From eqn. (7.70) one has

Fµν = ∂µAν − ∂ν Aµ

= q

4πε0c

[
∂µβν − ∂νβµ

rκ
− (βν∂µ − βµ∂ν)(rκ)

r2κ2

]
. (7.81)

And, noting that β0 = −1 is a constant, we identify the three-dimensional
electric and magnetic field vectors:

Ei = cFi0

= −q

4πε0

[
∂0βi

rκ
− (βi∂0 − β0∂i )(rκ)

r2κ2

]

= −q

4πε0

[
αi

κ2r
+ (βi − r̂i )

r2κ3

(
α · r+ (1− β2)

)]
. (7.82)
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Bi = 1

2
εi jk Fjk

= q

4πε0c
εi jk

[
∂ jβk

rκ
− (βk∂ j )(rκ)

r2κ2

]

= −q

4πε0c
εi jkr̂ j

[
αk

κ
+ βk

r2κ3

(
α · r+ (1− β2)

)]
(7.83)

= 1

c
εi jkr̂ j Ek

= 1

c
(r̂× E)i . (7.84)

From these relations, it is clear that the magnetic field is perpendicular to both
the light ray r and the electric field. The electric field can be written as a sum of
two parts, usually called the radiation field and the near field:

Ei rad =
q

4πε0c

[
αi

κ2r
+ (βi − r̂i )(α · r̂)

κ3r

]
(7.85)

Ei near =
q

4πε0c

[
(βi − r̂i )(1− β2)

r2κ3

]
. (7.86)

The near field falls off more quickly than the long-range radiation field. The
radiation field is also perpendicular to the light ray r̂. Thus, the far-field electric
and magnetic vectors are completely transverse to the direction of propagation,
but the near-field electric components are not completely transverse except at
very high velocities β ∼ 1. Note that all of the vectors in the above expressions
are assumed to be evaluated at the retarded time.

Owing to their special relationship, the magnitude of the magnetic and electric
components are equal up to dimensional factors:

|E|2 = c2|B|2. (7.87)

Finally, the rate of work or power expended by the field is given by Poynting’s
vector,

Si = εi jk E j Hk

= (µ0c)−1εi jk E j (r̂× E)k
= ε0cεi jk E j (εklmr̂l Em)

S = −ε0c(E · E)r̂. (7.88)

7.4 Resonance phenomena and dampening fields

In the interaction between matter and radiation, bound state transitions lead to
resonances, or phenomena in which the strength of the response to a radiation
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7.4 Resonance phenomena and dampening fields 147

field is amplified for certain frequencies. Classically these special frequencies
are the normal modes of vibration for spring-like systems with natural frequency
ω0; quantum mechanically they are transitions between bound state energy
levels with a definite energy spacing ω0 = (E2 − E − 1)/h̄. The examples
which follow are all cases of one mathematical phenomenon which manifests
itself in several different physical scenarios. We see how the unified approach
reveals these similarities.

7.4.1 Cherenkov radiation

The radiation emitted by charged particles which move in a medium where
the speed of light is less than the speed of the particles themselves is called
Cherenkov radiation. The effect was observed by Cherenkov [25] and given
a theoretical explanation by Tamm and Frank [127] within the framework
of classical electrodynamics. The power spectrum of the radiation may be
calculated with extraordinary simplicity using covariant field theory [122].

Using the covariant formulation in a material medium from section 21.2.4
and adapting the expression in eqn. (5.118) for the Maxwell field, we have the
Feynman Green function in the Lorentz–Feynman α = 1 gauge, given by

DF(x, x ′) = −i

4π2c2|x− x′|
∫ ∞

0
dω sin

(nω

c
|x− x′|

)
e−iω|t−t ′|,

(7.89)

where n is the refractive index of the medium. Note that this index is assumed
to be constant here, which is not the case in media of interest. One should
really consider n = n(ω). However, the expressions generated by this form will
always be correct in ω space for each value of ω, since the standard textbook
assumption is to ignore transient behaviour (t-dependence) of the medium. We
may therefore write the dissipation term as

W = µ0µr

∫
(dx)(dx ′) Ĵµ(x)D̂Fµν(x, x ′) Ĵ ν(x ′), (7.90)

and we are interested in the power spectrum which is defined by∫
dω

P(ω)

ω
= 2

h̄
Im

dW

dt
. (7.91)

Substituting in expressions for Ĵµ, we obtain

ImW = − 1

8π2

∫
dω(dx)(dx ′)

µ0µr sin( nω
c |x− x′|)

c2|x− x′|
× cos(ω|t − t ′|) Ĵµ Ĵµ, (7.92)
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from which we obtain

P(ω) = −ωµ0µr

4π2n2

∫
dσx(dx ′)

sin( nω
c |x− x′|)

n2|x− x′| cos(ω|t − t ′|)

×
[
ρ(x)ρ(x ′)− n2

c2
J i (x)Ji (x

′)
]
. (7.93)

The current distribution for charged particles moving at constant velocity is

ρ = qδ(x− vt)

J i = qviδ(x− vt); (7.94)

thus we have

P(ω, t) = q2

4π2

µ0µrωβ

c

(
1− 1

n(ω)2β2

)∫ ∞

−∞
sin(nβωτ) cos(ωτ)dτ

=
{

0 nβ < 1
q2

4π
µ0µrωβ

c

(
1− 1

n2β2

)
nβ > 1.

(7.95)

This is the power spectrum for Cherenkov radiation, showing the threshold
behaviour at nβ = 1. We have derived the Cherenkov resonance condition
for charges interacting with electromagnetic radiation. The Cherenkov effect is
more general than this, however. It applies to any interaction in which particles
interact with waves, either transverse or longitudinal.

7.4.2 Cyclotron radiation

Cyclotron, or synchrotron, radiation is emitted by particles accelerated by a
homogeneous magnetic field. Its analysis proceeds in the same manner as that
for Cherenkov radiation, but with a particle distribution executing circular rather
than linear motion. For the current, one requires

ρ = qδ(x− x0)

J i = qviδ(x− x0), (7.96)

where x0 is the position of the charged particle. Since the electromagnetic field
is not self-interacting, the Green function for the radiation field is not affected by
the electromagnetic field in the absence of a material medium. In the presence
of a polarizable medium, there is an effect, but it is small. (See the discussion
of Faraday rotation.)

The force on charges is

Fi = dpi

dt
= q(v× B)i

= q Fi jv
j , (7.97)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


7.4 Resonance phenomena and dampening fields 149

and, since this is always perpendicular to the motion, no work is done; thus the
energy is a constant of the motion:

dE

dt
= 0. (7.98)

The generic equation of circular motion is

dvi

dt
= (ω × v)i , (7.99)

which, in this case, may be written as

dvi

dt
= q

m

√
1− β2(v× B)i , (7.100)

where pi = mvi/
√

1− β2 and βi = vi/c. Thus, the angular frequency of orbit
is the Larmor frequency,

ωi = −q Bi

m

√
1− β2 = −q Bi c2

E
, (7.101)

which reduces to the cyclotron frequency, ωc " eB/m, in the non-relativistic
limit βi → 0. The radius of revolution is correspondingly

R = |v|
ω
= mcβ

|q|B
√

1− β2
. (7.102)

The primary difficulty in analysing this problem is a technical one associated
with the circular functions. Taking boundary conditions such that the particle
position is given by

x1(t) = R cos(ωt)

x2(t) = R sin(ωt)

x3(t) = 0, (7.103)

one finds the velocity

v1(t) = −Rω sin(ωt)

v2(t) = Rω cos(ωt)

v3(t) = 0. (7.104)

This may be substituted into the current in order to evaluate the power spectrum.
This is now more difficult: one can use an integral representation of the delta
function, such as the Fourier transform; this inevitably leads to exponentials
of sines and cosines, or Bessel functions. We shall not pursue these details of
evaluation here. See ref. [121] for further study of this topic.
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7.4.3 Landau damping

Landau damping is the name given to the dissipative mixing of momenta in
any particle field or plasma which interacts with a wave. The phenomenon of
Landau damping is quite general and crops up in many guises, but it is normally
referred to in the context of the interaction of a plasma with electromagnetic
waves. In a collisionless plasma (no scattering by self-interaction), there is still
scattering by the interaction of plasma with the ambient electromagnetic field,
similar to the phenomenon of stimulated absorption/emission. However, any
linear perturbation or source can cause the energy in one plasma mode to be re-
channelled into other modes, thus mixing the plasma and leading to dissipation.
All one needs is a linear interaction between the waves and the plasma field, and
a resonant amplifier, which tends to exaggerate a specific frequency.

In simple terms, a wave acts like a sinusoidal potential which scatters and
drags the particle field. If the phase of the field is such that it strikes the upward
slope of the wave, it is damped or reflected, losing energy. If the phase is such
that the field ‘rolls down’ the downward slope of the wave, it is enhanced and
gains energy. In a random system, the average effect is to dissipate or to dampen
the field so that all particles or field modes tend to become uniform. In short,
Landau damping is the re-organization of energy with the modes of a field due
to scattering off wavelets of another field.

Let us consider an unbound particle displacement field with action

S = 1

σx

∫
(dx)

{
−1

2
mṡ2 − J i si

}
, (7.105)

coupled through the current Ji to the electromagnetic field. The position of a
particle is

xi = xi + δxi = xi + si , (7.106)

and its velocity is

ẋ i = vi + δv. (7.107)

The velocity of a free particle is constant until the instant of its infinitesimal
perturbation by a wave, so we write

xi = vt, (7.108)

so that

kµ xµ = ki x
i − ωt = ki s

i + (kiv
i − ω)t. (7.109)

The perturbation is found from the solution to the equation of motion:

si =
∫
(dx)Gi j (x, x ′)E j (x

′), (7.110)
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or

δvi = q

m
Re

Ei
0 exp i

(
ki si + (kiv

i − ω)t ± γ t
)

i(kiv
i − ω)± γ

si = q

m
Re

Ei
0 exp i

(
ki si + (kiv

i − ω)t ± γ t
)

[
i(kiv

i − ω)± γ ]2 . (7.111)

An infinitesimal regulating parameter, γ , is introduced here in order to define a
limit in what follows. This has causal implications for the system. It means that
the field either grows from nothing in the infinite past or dissipates to nothing
in the infinite future. This is reflected by the fact that its sign determines the
sign of the work done. Eventually, we shall set γ to zero. The work done by
this interaction between the charged particle q and the electric field Ei is q Ei xi .
The rate of work is

q
d

dt

[
Ei x

i
] = q∂t Ei xi + Eiv

i . (7.112)

The two terms signify action and reaction, so that the total rate of work is zero,
expressed by the total derivative. The second term is the rate of work done
by the charge on the field. It is this which is non-zero and which leads to the
dampening effect and apparent dissipation. Following Lifshitz and Pitaevskii
[90], we calculate the rate of work per particle as follows,

dw

dt
= Re qvi Ei

= Re q(vi + δvi )E(t, x+ s)

= Re q(vi + δvi )(Ei (t, x)+ ∂ j Ei (t, x)s j + · · ·). (7.113)

To first order, the average rate of work is thus〈
dw

dt

〉
= Re qvi 〈(∂ j Ei )s

i 〉 + Re q〈δvi Ei 〉

= 1

2
qvi (∂ j E∗i )s

i + 1

2
qδvi E∗i . (7.114)

Here we have used the fact that

Re A = 1

2
(A + A∗) (7.115)

and

〈Re A · Re B〉 = 1

4
(AB∗ + A∗B) = 1

2
Re (AB∗), (7.116)
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since terms involving A2 and B2 contain e2iωt average to zero over time (after
setting γ → 0). Substituting for si and δvi , we obtain〈

dw

dt

〉
= q2

2m
Ei E j

[
ivi k j

[i(kivi − ω)± γ ]2
+ δi j

[i(kivi − ω)± γ ]

]
.

(7.117)

The tensor structure makes it clear that the alignment, ki , and polarization, Ei
0, of

the electric wave to the direction of particle motion, vi , is important in deciding
the value of this expression. Physically, one imagines a wave (but not a simple
transverse wave) moving in direction ki and particles surfing over the wave in a
direction given by vi . The extent to which the wave offers them resistance, or
powers them along, decides what work is done on them. For transverse wave
components, ki Ei = 0, the first term vanishes. From the form of eqn. (7.117)
we observe that it is possible to write〈

dw

dt

〉
= q2

2m
Ei E j

d

d(kiv j )

[ ±γ (kmv
m)

[i(kivi − ω)± γ ]

]
, (7.118)

and, using

lim
γ→0

γ

z2 + γ 2
= π δ(z) (7.119)

we have 〈
dw

dt

〉
= ±q2π

m
Ei E j

d

d(kiv j )
(kiv

i )δ(k jv
j − ω). (7.120)

To avoid unnecessary complication, let us consider the contribution to this
which is most important in the dampening process, namely a one-dimensional
alignment of ki and vi :〈

dw

dt

〉
= ±q2π

2m
|E‖|2 d

d(kv)
(kv) δ(kv − ω). (7.121)

This expression is for one particle. For the whole particle field we must perform
the weighted sum over the whole distribution, f (ω), giving the total rate of
work: 〈

dW

dt

〉
= ±q2π

2m
|E‖|2

∫
dω f (ω)

d

d(kv)
(kv)δ(kv − ω)

= ∓q2π

m
|E‖|2

∫
dω

d f (ω)

dω
(kv)δ(kv − ω)

= ∓q2piω

2m
|E‖|2 d f (ω)

dω

∣∣∣∣∣
v=ω/k

. (7.122)
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The integral over the delta function picks out contributions when the velocity
of particles, vi , matches the phase velocity of the electromagnetic wave, ω/ki .
This result can now be understood either in real space from eqn. (7.114) or
in momentum space from eqn. (7.122). The appearance of the gradient of the
electric field in eqn. (7.114) makes it clear that the dissipation is caused as a
result of motion in the potential of the electric field. Eqn. (7.122) contains
d f/dω, for frequencies where the phase velocity is in resonance with the
velocity of the particles within the particle field; this tells us that particles with
v < ω/k gain energy from the wave, whereas v > ω/k lose energy to it (γ > 0).
The electric field will be dampened if the shape of the distribution is such that
there are more particles with v < ω/k than with v > ω/k. This is typical for
long-tailed distributions like thermal distributions.

This can be compared with the discussion in section 6.1.4.

7.4.4 Laser cooling

Another example of resonant scattering with many experimental applications is
the phenomenon of laser cooling. This can be thought of as Landau damping for
neutral atoms, using the dipole force as the breaking agent. We shall consider
only how the phenomenon comes about in terms of classical fields, and sketch
the differences in the quantum mechanical formulation. By now, this connection
should be fairly familiar. The shift in energy of an electromagnetic field by virtue
of its interaction with a field of dipoles moving at fractional speed β i is the work
done in the rest frame of the atom,

�W = −1

2

∫
dσx P(x) · E(x)

= q2

2m

∫
(dx ′)dσx Ei (x)Gβ

i j (x, x ′)E j (x ′), (7.123)

where

((1− β i )2∂2
t − γ ∂t + κ)Gβ

i j (x, x ′) = δi j cδ(x, x ′) (7.124)

(see eqn. (2.88)), and therefore the dipole force F on each atom may be deduced
from dW = F · dr. The imaginary part of the energy is the power exchanged
by the electromagnetic field, which is related to the damping rate or here the
cooling rate of the atoms. The force on an atom is the gradient of the real part
of the work:

Fβi = −
q2

2m

∫
dσx

x
∂i

[
E j (x)

∫
(dx ′)Gβ

jk(x, x ′)Ek(x ′)
]
. (7.125)

If we consider a source of monochromatic radiation interacting with the particle
field (refractive index ni ),

Ei (x) = Ei
0 eikx = Ei

0 ei(k·x−ωt), (7.126)
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Table 7.1. Doppler effect on momentum.

Resonance-enhanced Parallel Anti-parallel

(diagonal) k̂iβi > 0 k̂iβi < 0
ωβ > ω0 Fi β̂

i < 0 Fi β̂
i > 0

ωβ < ω0 Fi β̂
i > 0 Fi β̂

i < 0

where the frequency ω is unspecified but satisfies k2c2 = nω2, then we have

Fβi = −
q2

2m
E2

0ρN

∫
dσx ∂i

eix(k+k′)+ix ′(k′−k)

−ω2
β + ω2

0 + iγω

= − q2

2m
E2

0ρN

∫
dσx ∂i

ei2kx

−ω2
β + ω2

0 + iγω
. (7.127)

This expression contains forward and backward moving photons of fixed
frequency, ω, and wavenumber, ki . The sign of the force acting on the atoms
depends on the frequency relative to the resonant frequency, ω0, and we are
specifically interested in whether the force acts to accelerate the atoms or
decelerate them relative to their initial velocity. The fact that atoms in the
particle field move in all directions on average means that some will expe-
rience Doppler blue-shifted radiation frequencies and others will experience
red-shifted frequencies, relative to the direction of photon wavevector, ki . In
effect, the Doppler effect shifts the resonant peak above and below its stationary
value making two resonant ‘side bands’. These side bands can lead to energy
absorption. This is best summarized in a table (see table 7.1).

As the velocity component, vi = β i c, of a particle field increases, the value
of 1 − β i k̂i either increases (when k̂ and β i point in opposing directions) or
decreases (when k̂ and β i point in the same direction). The component of
velocity in the direction of the photons, Ei , is given by k̂iβi , and its sign has
two effects. It can bring ωβ closer to or further from the resonant frequency, ω0,
thus amplifying or attenuating the force on the particles. The force is greater
for those values which are closest to resonance. It also decides whether the sign
of the force is such that it tends to increase the magnitude of β i or decrease the
magnitude of β i . It may be seen from table 7.1 that the force is always such as to
make the velocity tend to a value which makes ωβ = ω0. Thus by sweeping the
value of ω from a value just above resonance to resonance, it should be possible
to achieve β i → 0. The lowest attainable temperature according to this simple
model is limited by the value of ω0.

In order to reduce all of the components of the velocity to minimal values, it is
desirable to bathe a system in crossed laser beams in three orthogonal directions.
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Such laser beams are called optical molasses, a kind of quagmire for resonant
particle fields. Clearly, systems with a low-frequency resonance are desirable in
order to push the magnitude of β i down to a minimum. The rate of energy loss
is simply the damping constant, γ .

7.5 Hydrodynamics

The study of the way in which bulk matter fields spread through a system is
called hydrodynamics. Because it deals with bulk matter, hydrodynamics is a
macroscopic, statistical discussion. It involves such ideas as flow and diffusion,
and is described by a number of essentially classical phenomenological equa-
tions.

7.5.1 Navier–Stokes equations

The Navier–Stokes equations are the central equations of fluid dynamics. They
are an interesting example of a vector field theory because they can be derived
from an action principle in two different ways. Fluid dynamics describes a
stationary system with a fluid flowing through it. The velocity is a function
of position and time, since the flow might be irregular; moreover, because the
fluid flows relative to a fixed pipe or container, the action is not invariant under
boosts.

Formulation as a particle field Using a ‘microscopic’ formulation, we can treat
a fluid as a particle displacement field without a restoring force (spring tension
zero). We begin by considering such a field at rest:

S =
∫
(dx)

{
1

2
ρ ṡ2 − 1

2
η(∂ i s j )

↔
∂t (∂i s,)+ si (Fi − ∂i P)

}
. (7.128)

Notice the term linear in the derivative which is dissipative and represents the
effect of a viscous frictional force (see section 7.2). η is the coefficient of
viscosity. In this form, the equations have made an assumption which relates
bulk and shear viscosity, leaving only a single effective viscosity. This is the
form often used experimentally. Varying the action with respect to si leads to
the field equation

−ρ s̈i + η∇2 ṡi + Fi − ∂i P = 0. (7.129)

Or, setting vi ≡ ṡi ,

ρv̇i − η∇2 vi + ∂i P = Fi . (7.130)

This is the equation of a velocity field at rest. In order to boost it into a moving
frame, we could re-define positions by xi → xi − vi t , but it is more convenient
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to re-define the time coordinate to so-called retarded time (see section 9.5.2).
With this transformation, we simple replace the time derivative for vi by

d

dtret
= ∂t + vi ∂ j . (7.131)

This gives

ρ
d

dtret
vi − η∇2 vi + ∂i P = Fi . (7.132)

In fluid dynamics, this derivative is sometimes called the substantive derivative;
it is just the total derivative relative to a moving frame. This transformation of
perspective introduces a non-linearity into the equation which was not originally
present. It arises physically from a non-locality in the system; i.e. the fact that
the velocity-dependent forces at a remote point lead to a delayed effect on the
velocity at local point. Put another way, the velocity at one point interacts
with the velocity at another point because of the flow, just as in a particle
scattering problem. In particle theory parlance, we say that the velocity field
scatters off itself, or is self-interacting. It would have been incorrect to apply
this transformation to the action before variation since the action is a scalar and
was not invariant under this transformation, thus it would amount to a change
of the physics. Since the action is a generator of constraints, it would have
additional consequences for the system, as we shall see below.

Formulation as an effective velocity field The description above is based upon
a microscopic picture of a fluid as a collection of particles. We need not think
like this, however. If we had never built a large enough microscope to be able to
see atoms, then we might still believe that a fluid were a continuous substance.
Let us then formulate the problem directly in terms of a velocity field. We may
write the action

S = τ
∫
(dx)

{
−1

2
ρ vi

↔
∂t vi + 1

2
η(∂ iv j )(∂iv j )− vi (Fi − ∂i P)

}
. (7.133)

The constant scale τ has the dimensions of time and is necessary on purely
dimensional grounds. The fact that we need such an arbitrary scale is an
indication that this is just an average, smeared out field theory rather than a
microscopic description. It has no physical effect on the equations of motion
unless we later attempt to couple this action to another system where the same
scale is absent or different. Such is the nature of dimensional analysis. The
linear derivatives in the action are symmetrized for the reasons discussed in
section 4.4.2. Varying this action with respect to the velocity vi , and treating ρ
as a constant for the time being, leads to

ρ ∂tvi − η∇2 vi + ∂i P = Fi . (7.134)
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Changing to retarded time, as before, we have the Navier–Stokes equation,

ρ ∂tvi + ρv j (∂ jvi )− η∇2 vi + ∂i P = Fi . (7.135)

Again, it would be incorrect to transform the action before deriving the field
equations, since the action is a scalar and it is not invariant under this transfor-
mation.

Consider what would have happened if we had tried to account for the
retardation terms in the action from the beginning. Consider the action

S = τ
∫
(dx)

{
−1

2
ρ vi

↔
∂t vi + 1

2
ρ vi (∂iv j )v

j − 1

2
ρ ∂i (v

iv j )v j

+ 1

2
η(∂ iv j )(∂iv j )− vi (Fi − ∂i P)

}
. (7.136)

The action is now non-linear from the beginning since it contains the same
retardation information as the transformed eqn. (7.132). The derivatives are
symmetrized also in spatial directions. The variation of the action is also more
complicated. We shall now let ρ depend on x . After some calculation, variation
with respect to vi leads to an equation which can be separated into parts:

(∂tρ)vi + ρvi (∂ jv
j )+ 1

2
(∂iρ)v

2 = 0

ρ (∂tvi )+ ρv j∂iv j − η∇2 vi + ∂i P = Fi . (7.137)

The first of these occurs because the density is no longer constant; it is
tantalizingly close to the conservation equation for current

−∂tρ = ∂i (ρv
i ), (7.138)

but alas is not quite correct. The equations of motion (7.137) are almost the
same as before, but now the derivative terms are not quite correct. Instead of

v j∂ jvi (7.139)

we have the symmetrical

v j∂iv j . (7.140)

This result is significant. The terms are not unrelated. In fact, since we can
always add and subtract a term, it is possible to relate them by

v j∂ jvi = v j (∂iv j )+ v j (∂ jvi − ∂iv j ). (7.141)

The latter term is the curl of the velocity. What this means is that the two terms
are equivalent provided that the curl of the velocity vanishes. It vanishes in
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the absence of eddies or other phenomena which select a preferred direction
in space or time. This is indicative of the symmetry of the action. Since the
action was invariant under space and time reversal, it can only lead to equations
of motion with the same properties. Physically, this restriction corresponds to
purely irrotational flow. Notice how the symmetry which is implicit in the action
leads directly to a symmetry in the field equations. The situation was different
in our first formulation, where we chose to transform the action to retarded time
(an intrinsically asymmetrical operation).

The problem of an x-dependent density ρ is not resolvable here. The
fundamental problem is that the flow equation is not reversible, whereas the
action would like to be. If we omit the non-linear terms, the problem of
finding an action which places no restriction on ρ is straightforward, though
not particularly well motivated. We shall not pursue this here. The lesson
to be learned from this exercise is that, because the action is a scalar, the
action principle will always tend to generate field equations consistent with the
symmetries of the fields it is constructed from. Here we have tried to generate
a term v j∂ jvi from an action principle, but the infinitesimal variation of this
term led to new constraints since action is spacetime-reflection-invariant. The
problem of accommodating an x-dependent density is confounded by these
other problems. In short, non-covariant analyses do not lend themselves to a
covariant formulation, but should be obtained as a special case of a more well
defined problem as in the first method.

7.5.2 Diffusion

Let us consider the rate at which conserved matter diffuses throughout a system
when unencumbered by collisions. Consider a matter current, Jµ, whose
average, under the fluctuations of the system, is conserved:

∂µ〈Jµ〉 = 0. (7.142)

We need not specify the nature of the averaging procedure, nor the origin of the
fluctuations here. Phenomenologically one has a so-called constitutive relation
[53], which expresses a phenomenological rate of flow in terms of local density
gradients:

〈Ji 〉 = −D∂i 〈ρ〉. (7.143)

Substituting this into the conservation equation gives

(∂t − D∇2)〈ρ〉 = 0. (7.144)

This is a diffusion equation, with diffusion coefficient D. If we multiply this
equation by the positions squared, x2, and integrate over the entire system,∫

dσ x2(∂t − D∇2)〈ρ〉 = 0, (7.145)
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we can interpret the diffusion constant in terms of the mean square displacement
of the field. Integrating by parts, and assuming that there is no diffusion at the
limits of the system, one obtains

∂t〈x2〉 − 2D ∼ 0, (7.146)

or

〈x2〉 ∼ 2Dt, (7.147)

which indicates that particles diffuse at a rate of
√

2D metres per unit time.
Notice that, since D characterizes the diffusion of averaged quantities, it need
not be a constant. We shall think of it as a slowly varying function of space and
time. The variation, however, must be so slow that it is effectively constant over
the dominant scales of the system. We shall derive a Kubo-type relation for this
quantity [53].

From eqn. (7.144), we may solve

〈ρ〉(x) =
∫

dnkdω

(2π)n+1
ei(k·x−ωt)ρ(k) δ(−iω − Dk2), (7.148)

or

G(±)(k) = 1

∓iω − Dk2
. (7.149)

Thus

〈ρ〉(x) =
∫

dnkdω

(2π)n+1
eik·x−Dk2tρ(k). (7.150)

To determine the effect of fluctuations in this system, consider adding an
infinitesimal source,

(∂t − D∇2)〈ρ〉 = F. (7.151)

The purely mechanical retarded response to F gives us the following relation:

〈ρ〉(x) =
∫
(dx ′) Gr(x, x ′)F(x ′), (7.152)

where the retarded Green function may be evaluated by analogy with eqn. (5.77)

Gr(x, x ′) =
∫

dnkdω

(2π)n+1
ei(k·x−ωt)

[
1

ω + iDk2 − iε
− 1

ω − iDk2 + iε

]

=
∫

dnkdω

(2π)n+1
ei(k·x−ωt) −2iDk2

(ω − iε)2 + D2k4
. (7.153)
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From eqn. (6.67) we have

〈ρ〉 = i

h̄

∫
(dx ′)〈ρ(x)ρ(x ′)〉F(x ′), (7.154)

where

i

h̄
〈ρ(x)ρ(x ′)〉 = δ

2W

δF2
= −iImGF(x, x ′). (7.155)

The Feynman Green function may be evaluated using the phase, or weight
exp(iS/h̄), by analogy with eqn. (5.95):

GF(x, x ′) =
∫

dnkdω

(2π)n+1
ei(k·x−ωt)

[
1

ω + iDk2 − iε
− 1

ω − iDk2 + iε

]

=
∫

dnkdω

(2π)n+1
ei(k·x−ωt) −2iDk2

ω2 + D2k4 − iε
. (7.156)

For thermal or other distributions it will be somewhat different. We may now
compare this (in momentum space) with the linear response equation:

〈ρ〉(k) = ImGF(k)F = 2Dk2

ω2 + D2k4
F. (7.157)

Thus, eliminating the source from both sides of this equation, we may define
the instantaneous ‘D.C.’ (ω → 0) diffusion constant, given by the Kubo-type
relation,

〈D(ω→ 0)〉 = lim
ω→0

(
lim
k→0

ω2

k2
GF(k)

)
. (7.158)

If we take GF from eqn. (7.156), we see the triviality of this relation for purely
collisionless quantum fluctuations of the field, 〈ρ〉. By taking the fluctuation
average to be exp(iS/h̄), we simply derive a tautology. However, once we
switch on thermal fluctuations or quantum interactions (for which we need to
know about quantum field theory), the Feynman Green function picks up a
temperature dependence and a more complicated analytical structure, and this
becomes non-trivial; see eqn. (6.61). Then it becomes possible to express D in
terms of independent parameters, rather than as the phenomenological constant
in eqn. (7.143).

7.5.3 Forced Brownian motion

A phenomenological description of Brownian motion for particles in a field is
given by the Langevin model. Newton’s second law for a particle perturbed by
random forces may be written in the form

m
dvi

dt
= Fi − αvi , (7.159)
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7.5 Hydrodynamics 161

where vi is the velocity of a particle in a field and α is a coefficient of
friction, by analogy with Stokes’ law. This equation clearly expresses only a
statistical phenomenology, and it cannot be derived from an action principle,
since it contains explicitly velocity-dependent terms, which can only arise
from statistical effects in a real dynamical system. The forcing term, Fi , is a
random force. By this, we mean that the time average of this force is zero,
i.e. it fluctuates in magnitude and direction in such a way that its time average
vanishes:

〈F(t)〉 = 1

T

∫ t+T/2

t−T/2
F(t) dt = 0. (7.160)

We may solve this equation simply, in the following ways.

Green function approach Consider the general solution of

a
du

dt
+ bu = f (t), (7.161)

where a and b are positive constants. Using the method of Green functions, we
solve this in the usual way. Writing this in operator/source form,(

a
d

dt
+ b

)
u = f (t), (7.162)

we have the formal solution in terms of the retarded Green function

u(t) =
∫

dt ′Gr(t, t
′) f (t ′), (7.163)

where (
a

d

dt
+ b

)
Gr(t, t

′) = δ(t, t ′). (7.164)

Taking the Fourier transform, we have

Gr(t − t ′) =
∫

dω

2π

e−iω(t−t ′)

(−iaω + b)
. (7.165)

This Green function has a simple pole for t − t ′ > 0 at ω = −ib/a, and the
contour is completed in the lower half-plane for ω, making the semi-circle at
infinity vanish. The solution for the field u(t) is thus

u(t) =
∫

dτ
∫

dω

2π

e−iω(t−τ)

(−iaω + b)
f (τ )

=
∫ t

−∞
dτ

1

2π
− 2π i

(
1

−ia
e

b
a (τ−t) f (τ )

)

= 1

a

∫ t

−∞
dτ f (τ ) e

b
a (τ−t). (7.166)
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162 7 Examples and applications

The lower limit of the integral is written as minus infinity since we have not
specified the time at which the force was switched on, but we could replace this
by some finite time in the past by specifying boundary conditions more fully.

Differential equation approach Although the Green function method is straight-
forward and quite simple, this eqn. (7.161) can also be solved by an alternative
method. When f (t) = 0 it is solved by separation of variables, giving

du

dt
= −b

a
u

u(t) = u0 e−
b
a t , (7.167)

for some constant u0. This is therefore the complementary function for the
differential equation. If the forcing term f (t) is non-zero, this hints that we can
make the equation integrable by multiplying through by the integrating factor
exp(−bt/a).

d

dt

(
e

b
a t u(t)

)
= 1

a

(
a

du

dt
+ b u(t)

)
e

b
a t

e
b
a t u(t) = 1

a

∫ t

0
dτ f (τ )e

b
a τ

u(t) = 1

a

∫ t

0
dτ f (τ )e

b
a (τ−t). (7.168)

This is exactly analogous to making a gauge transformation in electrodynamics.
Note that, since the integral limits are from 0 to t , u(t) cannot diverge unless
f (t) diverges. The lower limit is by assumption. The general solution to
eqn. (7.161) is therefore given by the particular integral in eqn. (7.168) plus
an arbitrary constant times the function in eqn. (7.167). The solutions are
typically characterized by exponential damping. This reproduces the answer
in eqn. (7.166) marginally more quickly than the tried and trusted method of
Green functions. This just goes to show that it never does any harm to consider
alternative methods, even when in possession of powerful methods of general
applicability.

Diffusion and mobility Langevin’s equation plays a central role in the kinetic
theory of diffusion and conduction. Let ẋ i = vi , then, multiplying through by
x , we have

mx
dẋ

dt
= m

[
d

dt
(x ẋ)− ẋ2

]
= −αx ẋ + x F(t). (7.169)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core
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Taking the kinetic (ensemble) average of both sides, and recalling that the
fluctuating force has zero average, we have that

m

〈
d

dt
(x ẋ)

〉
= m

d

dt
〈x ẋ〉 = kT − α〈x ẋ〉, (7.170)

where we have used the result from kinetic theory (the equi-partition theorem)
that 1

2 m〈ẋ2〉 = 1
2 kT . We can solve this to give

〈x ẋ〉 = C e−αt/m + kT

α
. (7.171)

At large times, the first of these terms decays and the system reaches a steady
state. We may integrate this to give

〈x2〉 = 2kT

α
t. (7.172)

This tells us the mean square position. By comparing this to the diffusion
equation in eqn. (7.146) we find the effective diffusion coefficient

D = kT

α
. (7.173)

A related application is that of electrical conduction. Consider the same
diffusion process for charges e in a uniform electric field E . The average of
the Langevin equation is now

m
d〈vi 〉

dt
= eEi − α〈vi 〉, (7.174)

since 〈F〉 = 0. In a steady state, the average acceleration is also zero, even
though microscopically there might be collisions which cause fluctuations in
the velocity. Thus we have, at steady state,

eEi = α〈vi 〉. (7.175)

We define the mobility, µ, of the charges, for an isotropic system, as

µ = 〈vi 〉
Ei

= e

α
. (7.176)

The mobility is related to the diffusion constant by the Einstein relation

µ

D
= e

kT
. (7.177)

In an anisotropic system, there might be different coefficients for diffusion and
mobility in different directions. Then, eqn. (7.176) would become a tensor
relation, µi j Evi/E j .
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164 7 Examples and applications

7.6 Vortex fields in 2 + 1 dimensions

Although one generally avoids speaking of particulate matter in field theory,
since classically it is used to describe mainly smooth, continuous fields, there are
occasions on which the solutions to the equations of motion lead unambiguously
to pointlike objects. One such situation is the case of vortices.

Vortices are charged, singular objects which arise in some physical systems
such as the non-linear Schrödinger equation. Vortices have the property that
they acquire a phase factor, by an Aharonov–Bohm-like effect, when they wind
around one another. They can usually be thought of as pointlike objects which
are penetrated by an infinitely thin line of magnetic flux. In 2 + 1 dimensions,
vortices are also referred to as anyons, and have a special relationship with
Chern–Simons field theories. It might seem strange that a field variable φ(x),
which covers all of space and time, could be made to represent such singular
objects as vortices. As we shall see in the following example, this is made
possible precisely by the singular nature of Green functions.

Consider a field, φ(x), representing pointlike objects in two spatial dimen-
sions with coordinates denoted for simplicity by r = (x, y). We define the
winding angle, θ , between any two pointlike objects in the field by

θ(r − r ′) = tan−1 �y

�x
= tan−1 y − y′

x − x ′
. (7.178)

Notice that θ(r − r ′) is a function of coordinate differences between pairs of
points. We shall, in fact, relate this winding angle to the Green function g(x, x ′),
for the Laplacian in two dimensions, which was calculated in section 5.4.4.

7.6.1 A vortex model

The study of Chern–Simons theories is motivated principally by two observa-
tions: namely that important aspects of the quantum Hall effect are described
by a Chern–Simons theory, and that a viable theory of high-temperature super-
conductivity should be characterized by a parity-violating, anti-ferromagnetic
state. Symmetry considerations lead to an action which does not possess
space-reflection symmetry. The Chern–Simons action fits this prescription.
These two physical systems are also believed to be essentially two-dimensional,
planar systems.

In its most primitive form, the action for the Chern–Simons model may be
written in (2+ 1) dimensional flat spacetime as

S =
∫

dtd2x

(
(Dµ#)†(Dµ#)+ m2#2 + λ

6
#4 + 1

2
µεµνλAµ∂ν Aλ

)
.

(7.179)
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7.6 Vortex fields in 2 + 1 dimensions 165

The equation of motion is thus

1

2
µεµνλFνλ = Jµ. (7.180)

The gauge-invariant current, Jµ, is introduced for convenience and represents
the interaction with the matter fields arising from the gauge-covariant derivatives
in eqn. (7.179). We shall not consider the full dynamics of this theory here;
rather, it is interesting to see how the singular vortex phenomenon is reflected in
the field variables.

7.6.2 Green functions

The basic Green function we shall use in the description of two-dimensional
vortices is the inverse Laplacian which was derived in section 5.4.4, but it
is also useful to define and elaborate on some additional symbols which are
encountered in the literature. We shall use the symbol r i as an abbreviation for
the coordinate difference �r i = �xi = xi − xi ′, and the symbol �r for the
scalar length of this vector. Some authors define a Green function vector by

Gi (r − r ′) = εi j∂ j g(r − r ′)

= − 1

2π
εi j r̂ j

r − r ′
, (7.181)

where r̂ is a unit vector along r − r ′. The two-dimensional curl of this function
is thus

∇ ×G(r) = εi j∂i G j (r − r ′)
= εi jε jk∂i∂k g(r − r ′)
= −∇2g(r − r ′)
= δ(r − r ′). (7.182)

In other words, Gi (r − r ′) is the inverse of the curl operator.

7.6.3 Relationship between θ(r − r ′) and g(r − r ′)

To obtain a relationship between the coordinates and the winding function θ(r),
we note that

∂i tan θ(r − r ′) = ∂i

(
sin θ(r − r ′)
cos θ(r − r ′)

)
= ∂iθ(r − r ′) sec2 θ(r − r ′)
= ∂iθ(r − r ′)(1+ tan2 θ(r − r ′)). (7.183)
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166 7 Examples and applications

From eqn. (7.178), this translates into

∂iθ =
∂i

(
�y
�x

)
1+

(
�y
�x

)2

= �x(∂i�y)−�y(∂i�x)

r2

= −εi j
r̂ j

r
. (7.184)

This last form is significant since the logarithm has a similar property, namely

εi j∂ j ln |r − r ′| = εi j r̂ j

r − r ′
, (7.185)

and thus we immediately have the relationship:

− 1

2π
(∂iθ(r − r ′)) = G(r) = −εi j∂ j g(r − r ′). (7.186)

It is understood that partial derivatives acting on r − r ′ act on the first argument
r .

7.6.4 Singular nature of θ(r − r ′)

The consistency of the above relations supplies us with an unusual, and perhaps
somewhat surprising relation, namely

εi j∂i∂ jθ(r − r ′) = 2π δ(r − r ′) (7.187)

or

[∂1, ∂2]θ(r − r ′) = 2πδ(r − r ′). (7.188)

This relation tells us that the partial derivatives do not commute when acting on
the function θ(r). This is the manifestation of a logarithmic singularity in the
field, or, physically, the non-triviality of the phase accrued by winding vortices
around one another. Although the field is formally continuous, it has this non-
analytical property at every point.

Using complex coordinates z = x1+ ix2 and conjugate variables z, the above
discussion leads to the relations in complex form:

∂z(z)
−1 = ∂z∂z ln |z|2
= πδ(|z|). (7.189)
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Groups and fields
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8
Field transformations

The previous chapters take a pragmatic, almost engineering, approach to the
solution of field theories. The recipes of chapter 5 are invaluable in generating
solutions to field equations in many systems, but the reason for their effective-
ness remains hidden. This chapter embarks upon a train of thought, which lies
at the heart of the theory of dynamical systems, which explain the fundamental
reasons why field theories look the way they do, how physical quantities are
related to the fields in the action, and how one can construct theories which give
correct answers regardless of the perspective of the observer. Before addressing
these issues directly, it is necessary to understand some core notions about
symmetry on a more abstract level.

8.1 Group theory

To pursue a deeper understanding of dynamics, one needs to know the language
of transformations: group theory. Group theory is about families of transforma-
tions with special symmetry. The need to parametrize symmetry groups leads
to the idea of algebras, so it will also be necessary to study these.

Transformations are central to the study of dynamical systems because all
changes of variable, coordinates or measuring scales can be thought of as
transformations. The way one parametrizes fields and spacetime is a matter of
convenience, but one should always be able to transform any results into a new
perspective whenever it might be convenient. Even the dynamical development
of a system can be thought of as a series of transformations which alter the
system’s state progressively over time. The purpose of studying groups is
to understand the implications posed by constraints on a system: the field
equations and any underlying symmetries – but also the rules by which the
system unfolds on the background spacetime. In pursuit of this goal, we shall
find universal themes which enable us to understand many structures from a few
core principles.

169
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170 8 Field transformations

8.1.1 Definition of a group

A group is a set of objects, usually numbers or matrices, which satisfies the
following conditions.

(1) There is a rule of composition for the objects. When two objects in a
group are combined using this rule, the resulting object also belongs to
the group. Thus, a group is closed under the action of the composition
rule. If a and b are two matrices, then a · b �= b · a is not necessarily true.
If a ·b = b ·a, the group is said to be Abelian, otherwise it is non-Abelian.

(2) The combination rule is associative, i.e. (a · b) · c = a · (b · c).
(3) The identity element belongs to the set, i.e. an object which satisfies

a · I = a.

(4) Every element a in the set has a right-inverse a−1, such that a−1 · a = I .

A group may contain one or more sub-groups. These are sub-sets of the whole
group which also satisfy all of the group axioms. Sub-groups always overlap
with one another because they must all contain the identity element. Every
group has two trivial or improper sub-groups, namely the identity element and
the whole group itself. The dimension of a group dG is defined to be the
number of independent degrees of freedom in the group, or the number of
generators required to represent it. This is most easily understood by looking
at the examples in the next section. The order of a group OG is the number of
distinct elements in the group. In a continuous group the order is always infinite.

If the ordering of elements in the group with respect to the combination rule
matters, i.e. the group elements do not commute with one another, the group is
said to be non-Abelian. In that case, there always exists an Abelian sub-group
which commutes with every element of the group, called the centre. Schur’s
lemma tells us that any element of a group which commutes with every other
must be a multiple of the identity element. The centre of a group is usually a
discrete group, Z N , with a finite number, N , of elements called the rank of the
group.

8.1.2 Group transformations

In field theory, groups are used to describe the relationships between compo-
nents in a multi-component field, and also the behaviour of the field under
spacetime transformations. One must be careful to distinguish between two
vector spaces in the discussions which follow. It is also important to be very
clear about what is being transformed in order to avoid confusion over the
names.
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8.1 Group theory 171

• Representation space. This is the space on which the group trans-
formations act, or the space in which the objects to be transformed
live. In field theory, when transformations relate to internal symmetries,
the components of field multiplets (φ1, φ2, . . . , φdR ) are the coordinates
on representation space. When transformations relate to changes of
spacetime frame, then spacetime coordinates are the representation space.

• Group space. This is an abstract space of dimension dG . The dimension
of this space is the number of independent transformations which the
group is composed of. The coordinates (θ1, θ2, . . . , θdG ) in this space are
measured with respect to a set of basis matrices called the generators of
the group.

Since fields live on spacetime, the full representation space of a field consists
of spacetime (µ, ν indices) combined with any hidden degrees of freedom: spin,
charge, colour and any other hidden labels or indices (all denoted with indices
A, B, a, b, α, β) which particles might have. In practice, some groups (e.g. the
Lorentz group) act only on spacetime, others (e.g. SU (3)) act only on hidden
indices. In this chapter, we shall consider group theory on a mainly abstract
level, so this distinction need not be of concern.

A field, φ(x), might be a spacetime-scalar (i.e. have no spacetime indices),
but also be vector on representation space (have a single group index).

φ(x)A =



φ1(x)
φ2(x)
...

φdR (x)


 . (8.1)

The transformation rules for fields with spacetime (coordinate) indices are
therefore

φ→ φ′

Aµ→ U ν
µ Aν

gµν → U ρ
µ U λ

ν gρλ, (8.2)

and for multiplet transformations they are

φA → UAB φ
B

Aa
µ→ Uab Ab

µ

g A
µν → UAB gB

µν. (8.3)

All of the above have the generic form of a vector v with Euclidean components
vA = vA transforming by matrix multiplication:

v → Uv, (8.4)
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172 8 Field transformations

or

vA ′ = U A
B v

B . (8.5)

The label A = 1, . . . , dR , where dR is the dimension of the representation. Thus,
the transformation matrix U is a dR×dR matrix and v is a dR-component column
vector. The group space is Euclidean, so raised and lowered A, B indices are
identical here.

Note that multiplet indices (those which do not label spacetime coordinates)
for general group representations G R are labelled with upper case Latin charac-
ters A, B = 1, . . . , dR throughout this book. Lower case Latin letters a, b =
1, . . . , dG are used to distinguish the components of the adjoint representation
Gadj.

In general, the difference between a representation of a group and the group
itself is this: while a group might have certain unique abstract properties which
define it, the realization of those properties in terms of numbers, matrices or
functions might not be unique, and it is the explicit representation which is
important in practical applications. In the case of Lie groups, there is often a
variety of possible locally isomorphic groups which satisfy the property (called
the Lie algebra) that defines the group.

8.1.3 Use of variables which transform like group vectors

The property of transforming a dynamical field by simple matrix multiplication
is very desirable in quantum theory where symmetries are involved at all
levels. It is a direct representation of the Markov property of physical law. In
chapter 14, it becomes clear that invariances are made extremely explicit and
are algebraically simplest if transformation laws take the multiplicative form in
eqn. (8.5).

An argument against dynamical variables which transform according to group
elements is that they cannot be observables, because they are non-unique.
Observables can only be described by invariant quantities. A vector is, by
definition, not invariant under transformations; however, the scalar product of
vectors is invariant.

In classical particle mechanics, the dynamical variables q(t) and p(t) do
not transform by simple multiplication of elements of the Galilean symmetry.
Instead, there is a set of eqns. (14.34) which describes how the variables change
under the influence of group generators. Some would say that such a formulation
is most desirable, since the dynamical variables are directly observable, but the
price for this is a more complicated set of equations for the symmetries.

As we shall see in chapter 14, the quantum theory is built upon the idea that
the dynamical variables should transform like linear combinations of vectors on
some group space. Observables are extracted from these vectors with the help
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8.2 Cosets and the factor group 173

of operators, which are designed to pick out actual data as eigenvalues of the
operators.

8.2 Cosets and the factor group

8.2.1 Cosets

Most groups can be decomposed into non-overlapping sub-sets called cosets.
Cosets belong to a given group and one if its sub-groups. Consider then a group
G of order OG , which has a sub-group H of order OH . A coset is defined by
acting with group elements on the elements of the sub-group. In a non-Abelian
group one therefore distinguishes between left and right cosets, depending on
whether the group elements pre- or post-multiply the elements of the sub-group.
The left coset of a given group element is thus defined by

G H ≡ {
G H1,G H2, . . . ,G HdH

}
(8.6)

and the right coset is defined by

H G = {
H1G, H2G, . . . , HdH G

}
. (8.7)

The cosets have order OH and one may form a coset from every element of G
which is not in the sub-group itself (since the coset formed by a member of the
coset itself is simply that coset, by virtue of the group axioms). This means that
cosets do not overlap.

Since cosets do not overlap, one can deduce that there are OG − OH distinct
cosets of the sub-group. It is possible to go on forming cosets until all these
elements are exhausted. The full group can be written as a sum of a sub-group
and all of its cosets.

G = H + G1 H + G2 H + · · · + G p H, (8.8)

where p is some integer. The value of p can be determined by counting the
orders of the elements in this equation:

OG = OH + OH + OH + · · · + OH = (p + 1)OH . (8.9)

Thus,

OG = (p + 1)OH . (8.10)

Notice that the number of elements in the sub-group must be a factor of the
number of elements in the whole group. This is necessarily true since all cosets
are of order OH .
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174 8 Field transformations

8.2.2 Conjugacy and invariant sub-groups

If g1 is an element of a group G, and g2 is another element, then gc defined by

gc = g2 g g−1
2 (8.11)

is said to be an element of the group G which is conjugate to g1. One can form
conjugates from every other element in the group. Every element is conjugate
to itself since

g = I g I−1. (8.12)

Similarly, all elements in an Abelian group are conjugate only to themselves.
Conjugacy is a mutual relationship. If g1 is conjugate to g2, then g2 is conjugate
to g1, since

g1 = g g2 g−1

g2 = g−1 g1 (g
−1)−1. (8.13)

If g1 is conjugate to g2 and g2 is conjugate to g3, then g1 and g3 are also
conjugate. This implies that conjugacy is an equivalence relation.

Conjugate elements of a group are similar in the sense of similarity transfor-
mations, e.g. matrices which differ only by a change of basis:

A′ =  M  −1. (8.14)

The conjugacy class of a group element g is the set of all elements conjugate to
g: {

I g I−1, g1 g g−1
1 , g2 g g−1

2 , . . .
}
. (8.15)

A sub-group H of G is said to be an invariant sub-group if every element of the
sub-group is conjugate to another element in the sub-group:

Hc = G H G−1 = H. (8.16)

This means that the sub-group is invariant with respect to the action of the group,
or that the only action of the group is to permute elements of the sub-group. It
follows trivially from eqn. (8.16) that

G H = H G, (8.17)

thus the left and right cosets of an invariant sub-group are identical. This means
that all of the elements within H commute with G. H is said to belong to the
centre of the group.
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8.2 Cosets and the factor group 175

8.2.3 Schur’s lemma and the centre of a group

Schur’s lemma states that any group element which commutes with every other
element of the group must be a multiple of the identity element. This result
proves to be important in several contexts in group theory.

8.2.4 The factor group G/H

The factor group, also called the group of cosets is formed from an invariant
sub-group H of a group G. Since each coset formed from H is distinct, one can
show that the set of cosets of H with G forms a group which is denoted G/H .
This follows from the Abelian property of invariant sub-groups. If we combine
cosets by the group rule, then

Hg1 · Hg2 = H H g1 g2 = H(g1 · g2, ) (8.18)

since H · H = H . The group axioms are satisfied.

(1) The combination rule is the usual combination rule for the group.

(2) The associative law is valid for coset combination:

(Hg1 · Hg2) · Hg3 = H(g1 · g2) · Hg3 = H((g1 · g2) · g3). (8.19)

(3) The identity of G/H is H · I .

(4) The inverse of Hg is Hg−1.

The number of independent elements in this group (the order of the group) is,
from eqn. (8.10), p + 1 or OG/OH . Initially, it might appear confusing from
eqn. (8.7) that the number of elements in the sub-group is in fact multiplied
by the number of elements in the group, giving a total number of elements in
the factor group of OG × OH . This is wrong, however, because one must be
careful not to count cosets which are similar more than once; indeed, this is
the point behind the requirement of an invariant sub-group. Cosets which are
merely permutations of one another are considered to be equivalent.

8.2.5 Example of a factor group: SU (2)/Z2

Many group algebras generate groups which are the same except for their
maximal Abelian sub-group, called the centre. This virtual equivalence is
determined by factoring out the centre, leaving only the factor group which
has a trivial centre (the identity); thus, factor groups are important in issues
of spontaneous symmetry breaking in physics, where one is often interested in
the precise group symmetry rather than algebras. As an example of a factor
group, consider SU (2). The group elements of SU (2) can be parametrized in
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176 8 Field transformations

terms of dG = 3 parameters, as shown in eqn. (8.131). There is a redundancy in
these parameters. For example, one can generate the identity element from each
of the matrices g1(θ1), g2(θ2), g3(θ3) by choosing θA to be zero.

A non-trivial Abelian sub-group in these generators must come from the
diagonal matrix g3(θ3). Indeed, one can show quite easily that g3 commutes with
any of the generators for any θA �= 0, if and only if exp(i 1

2θ3) = exp(−i 1
2θ3) =

±1. Thus, there are two possible values of θ3, arising from one of the generators;
these lead to an Abelian sub-group, and the group elements they correspond to
are:

H =
{ (

1 0
0 1

)
,

( −1 0
0 −1

) }
, (8.20)

which form a 2 × 2 representation of the discrete group Z2. This sub-group is
invariant, because it is Abelian, and we may therefore form the right cosets of
H for every other element of the group:

H · H = { 1 , −1 }
H · g1(θ1) = {g1(θ1) , −g1(θ1)}
H · g1(θ

′
1) = {g1(θ

′
1) , −g1(θ

′
1)}

H · g1(θ
′′
1 ) = {g1(θ

′′
1 ) , −g1(θ

′′
1 )}

...

H · g2(θ2) = {g2(θ2) , −g2(θ2)}
H · g2(θ

′
2) = {g2(θ

′
2) , −g2(θ

′
2)}

...

H · g3(θ3) = {g3(θ3) , −g2(θ3)}
... (8.21)

The last line is assumed to exclude the members of g3, which generate H , and
the elements of g1 and g2, which give rise to the identity in Z2, are also excluded
from this list. That is because we are listing distinct group elements rather than
the combinations, which are produced by a parametrization of the group.

The two columns on the right hand side of this list are two equivalent copies
of the factor group SU (2)/Z2. They are simply mirror images of one another
which can be transformed into one another by the action of an element of Z2.
Notice that the full group is divided into two invariant pieces, each of which has
half the total number of elements from the full group. The fact that these coset
groups are possible is connected with multiple coverings. In fact, it turns out
that this property is responsible for the double-valued nature of electron spin,
or, equivalently, the link between the real rotation group SO(3) (dG = 3) and
the complexified rotation group, SU (2) (dG = 3).

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


8.3 Group representations 177

8.3 Group representations

A representation of a group is a mapping between elements of the group and
elements of the general linear group of either real matrices, GL(n, R), or
complex matrices, GL(n,C). Put another way, it is a correspondence between
the abstract group and matrices such that each group element can be represented
in matrix form, and the rule of combination is replaced by matrix multiplication.

8.3.1 Definition of a representation G R

If each element g of a group G can be assigned a non-singular dR × dR matrix
UR(g), such that matrix multiplication preserves the group combination rule
g12 = g1 · g2,

UR(g12) = UR(g1 · g2) = UR(g1)UR(g2), (8.22)

then the set of matrices is said to provide a dR dimensional representation of
the group G. The representation is denoted collectively G R and is composed
of matrices UR . In most cases we shall call group representations U to avoid
excessive notation.

8.3.2 Infinitesimal group generators

If one imagines a continuous group geometrically, as a vector space in which
every point is a new element of the group, then, using a set of basis vectors, it is
possible to describe every element in this space in terms of coefficients to these
basis vectors. Matrices too can be the basis of a vector space, which is why
matrix representations are possible. The basis matrices which span the vector
space of a group are called its generators.

If one identifies the identity element of the group with the origin of this
geometrical space, the number of linearly independent vectors required to reach
every element in a group, starting from the identity, is the dimension of the
space, and is also called the dimension of the group dG . Note that the number
of independent generators, dG , is unrelated to their size dR as matrices.

Thus, given that every element of the group lies in this vector space, an
arbitrary element can be described by a vector whose components (relative to the
generator matrices) uniquely identify that element. For example, consider the
group SU (2), which has dimension dG = 3. In the fundamental representation,
it has three generators (the Pauli matrices) with dR = 2:

T1 = 1

2

(
0 1
1 0

)
, T2 = 1

2

(
0 −i
i 0

)
, T3 = 1

2

(
1 0
0 −1

)
. (8.23)

A general point in group space may thus be labelled by a dG dimensional vector
(θ1, θ2, θ3):

& = θ1 T1 + θ2 T2 + θ3 T3. (8.24)
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178 8 Field transformations

A general element of the group is then found by exponentiating this generalized
generator:

UR = exp(i&). (8.25)

UR is then a two-dimensional matrix representation of the group formed from
two-dimensional generators. Alternatively, one may exponentiate each gener-
ator separately, as in eqn. (8.131) and combine them by matrix multiplication
to obtain the same result. This follows from the property that multiplication of
exponentials leads to the addition of the arguments.

For continuous groups generally, we can formalize this by writing a Taylor
expansion of a group element U (θ) about the identity I ≡ U (0),

U (θA) =
dG∑

A=1

θA

(
∂U

∂θA

) ∣∣∣
θA=0

+ · · · , (8.26)

where dG is the dimension of the group. We can write this

U (θ) = U (0)+
dG∑

A=1

θATA + 1

2!
θAθB TATB + · · · + O(θ3)

= I +
dG∑

A=1

θATA + 1

2!
θAθB TATB + · · · + O(θ3), (8.27)

where

TA =
(
∂U

∂θA

) ∣∣∣
θA=0

. (8.28)

TA is a matrix generator for the group.

8.3.3 Proper group elements

All infinitesimal group elements can be parametrized in terms of linear com-
binations of generators TA; thus, it is normal for group transformations to be
discussed in terms of infinitesimal transformations. In terms of the geometrical
analogy, infinitesimal group elements are those which are very close to the
identity. They are defined by taking only terms to first order in θ in the sum
in eqn. (8.27). The coefficients θA are assumed to be infinitesimally small, so
that all higher powers are negligible. This is expressed by writing

U (δθ) = U (0)+ δθATA, (8.29)

with an implicit summation over A. With infinitesimal transformations, one
does not get very far from the origin; however, the rule of group composition
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8.3 Group representations 179

may be used to build (almost) arbitrary elements of the group by repeated
application of infinitesimal elements. This is analogous to adding up many
infinitesimal vectors to arrive at any point in a vector space.

We can check the consistency of repeatedly adding up N group elements by
writing δθA = θA/N , combining U (θ) = U (δθ)N and letting N → ∞. In this
limit, we recover the exact result:

U (θ) = lim
N→∞

(
I + i

δθA

N
TA

)
= eiθATA , (8.30)

which is consistent with the series in eqn. (8.27). Notice that the finite group
element is the exponential of the infinitesimal combination of the generators. It
is often stated that we obtain a group by exponentiation of the generators.

It will prove significant to pay attention to another form of this exponentiation
in passing. Eqn. (8.30) may also be written

U (θ) = exp

(
i
∫ θ

0
TAdθ ′A

)
. (8.31)

From this we note that

∂U (θ)

∂θA
= iTA U (θ), (8.32)

and hence

dU

U
= iTAdθ ≡ �. (8.33)

This quantity, which we shall often label � in future, is an infinitesimal linear
combination of the generators of the group. Because of the exponential form, it
can also be written as a differential change in the group element U (θ) divided
by the value of U (θ) at that point. This quantity has a special significance in
geometry and field theory, and turns up repeatedly in the guise of gauge fields
and ‘connections’.

Not all elements of a group can necessarily be generated by combining
infinitesimal elements of the group. In general, it is only a sub-group known
as the proper group which can be generated in this way. Some transformations,
such as reflections in the origin or coordinate reversals with respect to a
group parameter are, by nature, discrete and discontinuous. A reflection is
an all-or-nothing transformation; it cannot be broken down into smaller pieces.
Groups which contain these so-called large transformations are expressible as a
direct product of a connected, continuous group and a discrete group.
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180 8 Field transformations

8.3.4 Conjugate representations

Given a set of infinitesimal generators, T A, one can generate infinitely many
more by similarity transformations:

T A →  T A −1. (8.34)

This has the effect of generating an equivalent representation. Any two
representations which are related by such a similarity transformation are said
to be conjugate to one another, or to lie in the same conjugacy class. Conjugate
representations all have the same dimension dR .

8.3.5 Congruent representations

Representations of different dimension dR also fall into classes. Generators
which exponentiate to a given group may be classified by congruency class. All
group generators with different dR exponentiate to groups which are congruent,
modulo their centres, i.e. those which are the same up to some multiple covering.
Put another way, the groups formed by exponentiation of generators of different
dR are identical only if one factors out their centres.

A given matrix representation of a group is not necessarily a one-to-one
mapping from algebra to group, but might cover all of the elements of a group
one, twice, or any integer number of times and still satisfy all of the group
properties. Such representations are said to be multiple coverings.

A representation UR and another representation UR′ lie in different congru-
ence classes if they cover the elements of the group a different number of times.
Congruence is a property of discrete tiling systems and is related to the ability
to lay one pattern on top of another such that they match. It is the properties of
the generators which are responsible for congruence [124].

8.4 Reducible and irreducible representations

There is an infinite number of ways to represent the properties of a given group
on a representation space. A representation space is usually based on some
physical criteria; for instance, to represent the symmetry of three quarks, one
uses a three-dimensional representation of SU (3), although the group itself is
eight-dimensional. It is important to realize that, if one chooses a large enough
representation space, the space itself might have more symmetry than the group
which one is using to describe a particular transformation. Of the infinity
of possible representations, some can be broken down into simpler structures
which represent truly invariant properties of the representation space.
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8.4 Reducible and irreducible representations 181

8.4.1 Invariant sub-spaces

Suppose we have a representation of a group in terms of matrices and vectors;
take as an example the two-dimensional rotation group SO(2), with the repre-
sentation

U =
(

cos θ sin θ
− sin θ cos θ

)
, (8.35)

so that the rotation of a vector by an angle θ is accomplished by matrix
multiplication: (

x ′1
x ′2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x1

x3

)
. (8.36)

It is always possible to find higher-dimensional representations of the same
group by simply embedding such a group in a larger space. If we add an extra
dimension x3, then the same rotation is accomplished, since x1 and x2 are altered
in exactly the same way:

 x ′1
x ′2
x ′3


 =


 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1





 x1

x2

x3


 . (8.37)

This makes sense: it is easy to make a two-dimensional rotation in a three-
dimensional space, and the same generalization carries through for any number
of extra dimensions. The matrix representation of the transformation has zeros
and a diagonal 1, indicating that nothing at all happens to the x3 coordinate. It
is irrelevant or ignorable:

U =

 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1


 . (8.38)

A six-dimensional representation would look like this:


x ′1
x ′2
x ′3
x ′4
x ′5
x ′6



=




cos θ3 sin θ3 0 0 0 0
− sin θ3 sin θ3 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







x1

x2

x3

x4

x5

x6


 . (8.39)

The matrix has a block-diagonal form. These higher-dimensional represen-
tations are said to be reducible, since they contain invariant sub-spaces, or
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182 8 Field transformations

coordinates which remain unaltered by the group. In the six-dimensional case
above, the 6× 6 matrix factorizes into a direct sum of block-diagonal pieces: a
2×2 piece, which is the actual SO(2) part, and a trivial four-dimensional group
composed of only the identity I4. The direct sum is written

SO(2)6 = SO(2)2 ⊕ I4. (8.40)

When a matrix has the form of eqn. (8.39), or is related to such a form by a
similarity transformation

 −1 U  , (8.41)

it is said to be a completely reducible representation of the group. In block-
diagonal form, each block is said to be an irreducible representation of the
group. The smallest representation with all of the properties of the group
intact is called the fundamental representation. A representation composed
of dG × dG matrices, where dG is the dimension of the group, is called the
adjoint representation. In the case of SO(3), the fundamental and adjoint
representations coincide; usually they do not.

Whilst the above observation might seem rather obvious, it is perhaps less
obvious if we turn the argument around. Suppose we start with a 6 × 6 matrix
parametrized in terms of some group variables, θA, and we want to know which
group it is a representation of. The first guess might be that it is an irreducible
representation of O(6), but if we can find a linear transformation  which
changes that matrix into a block-diagonal form with smaller blocks, and zeros
off the diagonal, then it becomes clear that it is really a reducible representation,
composed of several sub-spaces, each of which is invariant under a smaller
group.

8.4.2 Reducibility

The existence of an invariant sub-space S in the representation space R implies
that the matrix representation G R is reducible. Suppose we have a representation
space with a sub-space which is unaffected by the action of the group. By
choosing coordinates we can write a group transformation g as(

X ′R
X ′S

)
=

(
A(g) B(g)

0 C(g)

)(
X R

X S

)
, (8.42)

which shows that the coordinates X S belonging to the sub-space are independent
of the remaining coordinates X R . Thus no matter how X R are transformed, X S

will be independent of this. The converse is not necessarily true, but often is.
Our representation,

UR(g) =
(

A(g) B(g)
0 C(g)

)
, (8.43)
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satisfies the group composition law; thus,

UR(g1)UR(g2) =
(

A(g1) B(g1)

0 C(g1)

)(
A(g2) B(g2)

0 C(g2)

)

=
(

A(g1) A(g2) A(g1)B(g2)+ B(g1)C(g2)

0 C(g1)C(g2)

)
(8.44)

Comparing this with the form which a true group representation would have:(
A(g1 · g2) B(g1 · g2)

0 C(g1 · g2)

)
, (8.45)

one sees that A and C also form representations of the group, of smaller size.
B does not, however, and its value is constrained by the condition B(g1 · g2) =
A(g1)B(g2) + B(g1)C(g2). A representation of this form is said to be partially
reducible.

If B = 0 in the above, then the two sub-spaces decouple: both are invariant
under transformations which affect the other. The representation is then said
to be completely reducible and takes the block-diagonal form mentioned in the
previous section.

8.5 Lie groups and Lie algebras

Groups whose elements do not commute are called non-Abelian. The com-
mutativity or non-commutativity of the group elements U (θ) follows from
the commutation properties of the generators Ta , as may be seen by writing
the exponentiation operation as a power series. In a non-Abelian group the
commutation relations between generators may be written in this form:

[Ta, Tb] = Cab. (8.46)

A special class of groups which is interesting in physics is the Lie groups, which
satisfy the special algebra,

[Ta, Tb] = −i f c
ab Tc. (8.47)

f c
ab is a set of structure constants, and all the labels a, b, c run over the group

indices from 1, . . . , dG . Eqn. (8.47) is called a Lie algebra. It implies that the
matrices which generate a Lie group are not arbitrary; they are constrained to
satisfy the algebra relation. The matrices satisfy the algebraic Jacobi identity

[T a, [T b, T c]]+ [T b, [T c, T a]]+ [T c, [T a, T b]] = 0. (8.48)

Many of the issues connected to Lie algebras are analogous to those of the
groups they generate. We study them precisely because they provide a deeper
level of understanding of groups. One also refers to representations, equivalence
classes, conjugacy for algebras.
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184 8 Field transformations

8.5.1 Normalization of the generators

The structure of the dR × dR dimensional matrices and the constants fabc which
make up the algebra relation are determined by the algebra relation, but the
normalization is not. If we multiply T a

R and fabc by any constant factor, the
algebra relation will still be true. The normalization of the generators is fixed
here by relating the trace of a product of generators to the quadratic Casimir
invariant:

Tr
(
T a

R T b
R

) = I2(G R)δ
ab, (8.49)

where I2 is called the Dynkin index for the representation G R . The Dynkin
index may also be written as

I2(G R) = dR

dG
C2(G R) (8.50)

where dR is the dimension (number of rows/columns) of the generators in
the representation G R , and dG is the dimension of the group. C2(G R) is the
quadratic Casimir invariant for the group in the representation, G R: C2(G R)

and I2(G R) are constants which are listed in tables for various representations
of Lie groups [96]. dG is the same as the dimension of the adjoint representation
of the algebra Gadj, by definition of the adjoint representation. Note, therefore,
that I2(Gadj) = C2(Gadj).

The normalization is not completely fixed by these conditions, since one
does not know the value of the Casimir invariant a priori. Moreover, Casimir
invariants are often defined with inconsistent normalizations, since their main
property of interest is their ability to commute with other generators, rather
than their absolute magnitude. The above relations make the Casimir invariants
consistent with the generator products. To complete the normalization, it is usual
to define the length of the longest roots or eigenvalues of the Lie algebra as 2.
This fixes the value of the Casimir invariants and thus fixes the remaining values.
For most purposes, the normalization is not very important as long as one is
consistent, and most answers can simply be expressed in terms of the arbitrary
value of C2(G R). Thus, during the course of an analysis, one should not be
surprised to find generators and Casimir invariants changing in definition and
normalization several times. What is important is that, when comparisons are
made between similar things, one uses consistent conventions of normalization
and definition.

8.5.2 Adjoint transformations and unitarity

A Lie algebra is formed from the dG matrices T a which generate a Lie group.
These matrices are dR × dR matrices which act on the vector space, which
has been denoted representation space. In addition, the dG generators which
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8.5 Lie groups and Lie algebras 185

fulfil the algebra condition form a basis which spans the group space. Since
the group is formed from the algebra by exponentiation, both a Lie algebra A
and its group G live on the vector space referred to as group space. In the case
of the adjoint representation G R = Gadj, the group and representation spaces
coincide (dG = dR , a, b, c ↔ A, B,C). The adjoint representation is a direct
one-to-one mapping of the algebra properties into a set of matrices. It is easy to
show that the structure constants themselves form a representation of the group
which is adjoint. This follows from the Jacobi identity in eqn. (8.48). Applying
the algebra relation (8.47) to eqn. (8.48), we have

[T a,−i f bcd T d]+ [T b,−i f cad T d]+ [T c,−i f abd T d] = 0. (8.51)

Using it again results in[− f bcd f ade − f cad f bde − f abd f cde
]

T e = 0. (8.52)

Then, from the coefficient of T e, making the identification,[
T a

]
BC
≡ i f a

BC (8.53)

it is straightforward to show that one recovers

[T a, T b] = −i f abd T d . (8.54)

Thus, the components of the structure constants are the components of the
matrices in the adjoint representation of the algebra. The representation is
uniquely identified as the adjoint since all indices on the structure constants
run over the dimension of the group a, b = 1, . . . , dG .

The group space to which we have been alluding is assumed, in field
theory, to be a Hilbert space, or a vector space with a positive definite metric.
Representation space does not require a positive definite metric, and indeed, in
the case of groups like the Lorentz group of spacetime symmetries, the metric
in representation space is indefinite. The link between representation space and
group space is made by the adjoint representation, and it will prove essential
later to understand what this connection is.

Adjoint transformations can be understood in several ways. Suppose we take
a group vector va which transforms by the rule

v′a = Uadj
a
b v

b, (8.55)

where

Uadj = exp
(

iθa T a
adj

)
. (8.56)

It is also possible to represent the same transformation using a complete set of
arbitrary matrices to form a basis for the group space. For the matrices we shall
choose the generators TR , is an arbitrary representation

VR = va T a
R . (8.57)
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186 8 Field transformations

If we assume that the va in eqns. (8.55) and (8.57) are the same components,
then it follows that the transformation rule for VR must be written

V ′
R = va ′T a

R = U−1
R VR UR, (8.58)

where

UR = exp
(
iθa T a

R

)
. (8.59)

This now has the appearance of a similarity transformation on the group space.
To prove this, we shall begin with the assumption that the field transforms as in
eqn. (8.58). Then, using the matrix identity

exp(A)B exp(−A) = B + [A, B]+ 1

2!
[A, [A, B]]+

1

3!
[A, [A, [A, B]]]+ · · · , (8.60)

it is straightforward to show that

VR
′ = va

{
δa

r − θb f ab
r +

1

2
θbθc f ca

s f bs
r +

− 1

3!
θbθcθd f da

q f cq
p f bp

r + · · ·
}

T r
R, (8.61)

where the algebra commutation relation has been used. In our notation, the
generators of the adjoint representation may written

(T a
adj)

b
c = i f ab

c , (8.62)

and the structure constants are real. Eqn. (8.61) may therefore be identified as

VR
′ = va(Uadj)

a
bT b

R , (8.63)

where

Uadj = exp(iθaT a
adj). (8.64)

If we now define the components of the transformed field by

VR
′ = v′aT a

R , (8.65)

in terms of the original generators, then it follows that

v′a = (Uadj)
a
bv

b. (8.66)

We can now think of the set of components, va and v′a , as being grouped into
dG-component column vectors v and v′, so that

v′ = Uadjv. (8.67)
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8.5 Lie groups and Lie algebras 187

Thus, we see that the components of a group vector, va , always transform
according to the adjoint representation, regardless of what type of basis we
use to represent them. To understand the significance of this transformation
rule, we should compare it with the corresponding tensor transformation rule in
representation space. If we use the matrix

UR = [UR]A
B (8.68)

where A, B = 1, . . . , dR , as a transformation of some representation space
vector φA or tensor [VR]A

B , then, by considering the invariant product

φ† VR φ→ (Uφ)† U VRU−1 (Uφ), (8.69)

we find that the transformation rule is the usual one for tensors:

φA = U A
B φ

B (8.70a)

VAB = U A
CU B

D VC D. (8.70b)

The transformation rule (8.58) agrees with the rule in eqn. (8.70b) provided

U † = U−1. (8.71)

This is the unitary property, and it is secured in field theory also by the use
of a Hilbert space as the group manifold. Thus, the form of the adjoint
transformation represents unitarity in the field theory, regardless of the fact that
the indices A, B might have an indefinite metric.

The object VR , which transforms like U−1V U , signifies a change in the
disposition of the system. This form is very commonly seen; for example, in
dynamical changes:

∂µφ→ ∂µ(Uφ) = (∂µU )φ +U (∂µφ)

= U (∂µ + �µ)φ (8.72)

where

�µ = U−1∂µU. (8.73)

This object is usually called a ‘connection’, but, in this context, it can be viewed
as an expression of a change in the dynamical configuration, of the internal
constraints on a system. In the following two chapters, we shall see examples of
these transformations, when looking at the Lorentz group and gauge symmetries
in particular.
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188 8 Field transformations

8.5.3 Casimir invariants

From the Lie algebra relation in eqn. (8.47), it is straightforward to show that
the quadratic sum of the generators commutes with each individual generator:

[T a, T bT b] = T a T bT b − T bT b T a

= T a T bT b − T b (T aT b + i f abcT c)

= [T a, T b] T b − i f abc T bT c

= −i f abc [T cT b + T bT c]

= 0. (8.74)

The last line follows since the bracket is a symmetric matrix, whereas the
structure constants are anti-symmetric. In fact, the quadratic sum of the
generators is proportional to the identity matrix. This follows also from Schur’s
lemma:

T aT a = 1

dG
C2(G R) IR, (8.75)

or

f a
bc f dbc = − 1

dG
C2(Gadj)δ

ad . (8.76)

8.5.4 Sub-algebra

Just as groups have sub-groups, algebras have sub-algebras. A sub-set, H , of an
algebra, A, is called a linear sub-algebra of A if H is a linear sub-space of the
group space and is closed with respect to the algebra relation. i.e. for any matrix
elements of the sub-algebra h1, h2 and h3, one has

[t1, t2] = −i f 3
12 t3. (8.77)

This is a non-Abelian sub-algebra. Sub-algebras can also be Abelian:

[h1, h2] = 0. (8.78)

8.5.5 The Cartan sub-algebra

The Cartan sub-algebra is an invariant sub-algebra whose elements generate the
centre of a Lie group when exponentiated. This sub-algebra has a number of
extremely important properties because many properties of the group can be
deduced directly from the sub-set of generators which lies in the Cartan sub-
algebra.
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8.5 Lie groups and Lie algebras 189

The generators of the Cartan sub-algebra commute with one another but not
necessarily with other generators of the group. Since the Cartan sub-algebra
generates the centre of the group (the maximal Abelian sub-group) under
exponentiation, Schur’s lemma tells us that the group elements found from these
are diagonal and proportional to the identity matrix. The Cartan sub-algebra is
the sub-set the group generators T a which are simultaneously diagonalizable in
a suitable basis. In other words, if there is a basis in which one of the generators,
T a , is diagonal, then, in general, several of the generators will be diagonal in the
same basis. One can begin with a set of generators, T a

R , in a representation, G R ,
and attempt to diagonalize one of them using a similarity transformation:

T a ′ →  T a
R  

−1. (8.79)

The same transformation,  , will transform a fixed number of the matrices into
diagonal form. This number is always the same, and it is called the rank of
the group or rank(G). The diagonalizable generators are denoted Hi , where
i = 1, . . . , rank(G). These form the Cartan sub-algebra. Note that, in the case
of the fundamental representation of SU (2), the third Pauli matrix is already
diagonal. This matrix is the generator of the Cartan sub-algebra for SU (2) in
the dR = 2 representation. Since only one of the generators is diagonal, one
concludes that the rank of SU (2) is 1.

8.5.6 Example of diagonalization

The simplest example of a Cartan sub-algebra may be found in the generators
of the group SO(3) in the fundamental representation, or identically of SU (2)
in the adjoint representation. These matrices are well known as the generators
of rotations in three dimensions, and are written:

T 1 =

 0 0 0

0 0 −i
0 i 0




T 2 =

 0 0 i

0 0 0
−i 0 0




T 3 =

 0 −i 0

i 0 0
0 0 0


 . (8.80)

To find a basis which diagonalizes one of these generators, we pick T 1 to
diagonalize, arbitrarily. The self-inverse matrix of eigenvectors for T 1 is easily
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190 8 Field transformations

found. It is given by

 =



−1 0 0

0 1√
2

−i√
2

0 i√
2

−1√
2


 . (8.81)

Constructing the matrices  −1T a , one finds a new set of generators,

T 1 =

 0 0 0

0 1 0
0 0 −1




T 2 = 1√
2


 0 1 i

1 0 0
−i 0 0




T 3 = 1√
2


 0 i 1
−i 0 0
1 0 0


 . (8.82)

Since only one of these is diagonal, rank rank SU (2) = 1. Equally, we could
have chosen to diagonalize a different generator. This would then have had
the same eigenvalues, and it would have been the generator of the Cartan sub-
algebra in an alternative basis. None of the generators are specially singled out
to generate the sub-algebra. The diagonalizability is an intrinsic property of the
algebra.

8.5.7 Roots and weights

The roots and weights of algebra representations are proportional to eigenvalues
of the Cartan sub-algebra generators for different dR . The roots are denoted αA

and the weights are denoted λA. Because the algebra relation ensures exactly dG

independent vectors on the group space, there are dG independent eigenvalues
to be found from the generators.1 We shall explore the significance of these
eigenvalues in the next section.

1 This might seem confusing. If one has rank(G) simultaneously diagonalizable dR × dR
matrices, then it seems as though there should be dR × rank(G) eigenvalues to discern. The
reason why this is not the case is that not all of the generators are independent. They are
constrained by the algebra relation. The generators are linearly independent but constrained
through the quadratic commutator condition
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8.5 Lie groups and Lie algebras 191

For generators of the Cartan sub-algebra, Hi
R , in a representation G R , the

weights are eigenvalues:

Hi
R =



λi

1
λi

2
λi

3
. . .


 . (8.83)

The name root is reserved for an eigenvalue of the adjoint representation:

Hi
adj =



αi

1
αi

2
αi

3
. . .


 . (8.84)

The significance of the adjoint representation is that it is a direct one-to-one
mapping of intrinsic algebra properties. The roots have a special significance
too: the algebra can be defined purely in terms of its roots. The diagonal basis
we have referred to above is a step towards showing this, but to see the true
significance of the root and weights of an algebra, we need to perform another
linear transformation and construct the Cartan–Weyl basis.

8.5.8 The Cartan–Weyl basis

The Cartan–Weyl basis is one of several bases in which the generators of
the Cartan sub-algebra are diagonal matrices. To construct this basis we can
begin from the diagonal basis, found in the previous section, and form linear
combinations of the remaining non-diagonal generators. The motivation for this
requires a brief theoretical diversion.

Suppose that& and# are arbitrary linear combinations of the generators of a
Lie algebra. This would be the case if & and # were non-Abelian gauge fields,
for instance

& = θa T a

# = φa T a, (8.85)

where a = 1, . . . , dG . Then, consider the commutator eigenvalue equation

[&,#] = α#, (8.86)

where α is an eigenvalue for the ‘eigenvector’ #. If we write this in component
form, using the algebra relation in eqn. (8.47), we have

θaφb fabcT c = α φl T
l . (8.87)
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192 8 Field transformations

Now, since the T a are linearly independent we can compare the coefficients of
the generators on the left and right hand sides:

(φa f c
ab − α δ c

b )φ
b = 0. (8.88)

This equation has non-trivial solutions if the determinant of the bracket vanishes,
and thus we require

det
∣∣φa f c

ab − α δ c
b

∣∣ = 0. (8.89)

For a dG dimensional Lie algebra this equation cannot have more than dG

independent roots, α. Cartan showed that if one chooses & so that the secular
equation has the maximum number of different eigenvalues or roots, then only
zero roots α = 0 can be degenerate (repeated). If α = 0 is r -fold degenerate,
then r is the rank of the semi-simple Lie algebra.

The generators associated with zero eigenvalues are denoted Hi , where i =
1, . . . , rank(G) and they satisfy

[θ j H j , Hi ] = 0, (8.90)

i.e. they commute with one another. The remaining generators, which they do
not commute with are written Eα, for some non-zero α, and they clearly satisfy

[θ j H j , Eα] = α Eα. (8.91)

We can think of the roots or eigenvalues as vectors living on the invariant sub-
space spanned by the generators Hi . The components can be found by allowing
the Hi to act on the Eα. Consider

[θ j H j , [Hi , Eα]] = [θ j H j , Hi Eα]− [θ j H j , EαHi ]

= α[Hi , Eα]. (8.92)

This result can be interpreted as follows. If Eα is an ‘eigenvector’ associated
with the eigenvalue α, then there are rank(G) eigenvectors [Hi , Eα] belonging
to the same eigenvalue. The eigenvectors must therefore each be proportional to
Eα:

[Hi , Eα] = αi Eα, (8.93)

and the components of the vector are defined by

α = αi θ i . (8.94)

This relation defines the components of a root vector on the invariant Cartan
sub-space. Comparing eqn. (8.93) with the algebra relation in eqn. (8.47),

f b
ia = αi δ

b
a . (8.95)
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8.5 Lie groups and Lie algebras 193

Finally, by looking at the Jacobi identity,

[&, [Eα, Eβ]]+ [Eα, [Eβ,&]]+ [Eβ, [&, Eα]] = 0, (8.96)

we find that

[&, [Eα, Eβ]] = (α + β)[Eα, Eβ]. (8.97)

This means that [Eα, Eβ] is the eigenvector associated with the root (α + β),
provided that α + β �= 0. If α + β = 0 then, since the zero eigenvalues are
associated with Hi , we must have

[Eα, E−α] = f i
α,−α Hi

= αi H i . (8.98)

This shows how the Eα act as stepping operators, adding together solutions to
the eigenvalue equation. It also implies that if there is a zero root, then there
must be pairs of roots α,−α. In summary,

[Hi , Eα ] = αi Eα

[Eα, E−α] = αi Hi

What is the physical meaning of the root vectors? The eigenvalue equation is
an equation which tells us how many ways one generator of transformations
maps to itself, up to a scalar multiple under the action of the group. The
H are invariant sub-spaces of a symmetry group because they only change
the magnitude of a symmetry state, not its character. In other words, the
Cartan sub-algebra represents the number of simultaneous labels which can be
measured or associated with a symmetry constraint. Labels represent physical
properties like spin, momentum, energy, etc. The stepping operators for a given
representation of the group determine how many independent values of those
labels can exist based on symmetry constraints. This is the number of weights in
a stepping chain. In the case of rotations, the root/weight eigenvalues represent
the spin characteristics of particles. A system with one pair of weights (one
property: rotation about a fixed axis) in a dR = 2 representation can only be in
a spin up or spin down state because there are only two elements in the stepping
chain. A dR = 3 representation has three elements, so the particle can have spin
up down or zero etc.

The Chevalley normalization of generators is generally chosen so as to make
the magnitude of the longest root vectors equal to (α, α) = √αaαa = 2.
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8.5.9 Group vectors and Dirac notation

In quantum mechanics, Dirac introduced a notation for the eigenvectors of an
operator using bra and ket notation. Dirac’s notation was meant to emphasize
the role of eigenvectors as projection operators which span a vector space.
Dirac’s notation is convenient since it is fairly intuitive and is widely used in
the physics literature. An eigenvector is characterized by a number of labels,
i.e. the eigenvalues of the various operators which share it as an eigenvector.
If we label these eigenvalues α, β, . . . and so on, then we may designate the
eigenvectors using a field or eigenfunction

ψαi ,β j ,... (8.99)

or in Dirac notation as a ket:

|αi , β j , . . .〉. (8.100)

Notice that, in Dirac’s notation, the redundant symbol ψ is removed, which
helps to focus one’s attention on the relevant labels: the eigenvalues themselves.
The operators which have these eigenfunctions as simultaneous eigenvectors
then produce:

Ai ψαi ,β j ,... = αi ψαi ,β j ,...

B j ψαi ,β j ,... = β j ψαi ,β j ,... (i, j not summed), (8.101)

or, equivalently,

Ai |αi , β j , . . .〉 = αi |αi , β j , . . .〉
B j |αi , β j , . . .〉 = β j |αi , β j , . . .〉 (i, j not summed). (8.102)

In most physical problems we are interested in group spaces with a positive
definite metric, i.e. Hilbert spaces. In that case, the dual vectors are written as a
Hermitian conjugate:

ψ
†
αi ,β j ,...

(8.103)

or in Dirac notation as a bra:

〈α, β, . . . |. (8.104)

The length of a vector is then given by the inner product

〈αi , β j |αk, βl〉 = ψ†
αi ,β j

ψαk ,βl = δikδ jl × length. (8.105)

The eigenvectors with different eigenvalues are orthogonal and usually normal-
ized to unit length.

The existence of simultaneous eigenvalues depends on the existence of
commuting operators. Operators which do not commute, such as xi , p j and
group generators, T a, T b, can be assigned eigenvectors, but they are not all
linearly independent; they have a projection which is a particular group element:

〈x |p〉 = ei p x/h̄. (8.106)
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8.5 Lie groups and Lie algebras 195

8.5.10 Example: rotational eigenvalues in three dimensions

In this section, we take a first look at the rotation problem. We shall return
to this problem in chapter 11 in connection with angular momentum and
spin. The generators of three-dimensional rotations are those of SO(3), or
equivalently su(2) in the adjoint representation. The generators are already
listed in eqns. (8.80). We define

T 2 = T aT a

E± = T2 ∓ iT3

H = T1. (8.107)

In this new basis, the generators satisfy the relation

[H, E±] = ± E±. (8.108)

The stepping operators are Hermitian conjugates:

E†
+ = E−. (8.109)

The generator H labels a central generator, or invariant sub-space, and cor-
responds to the fact that we are considering a special axis of rotation. The
eigenvalues of the central generator H are called its weights and are labelled
 c

H | c〉 =  c| c〉. (8.110)

| c〉 is an eigenvector of H with eigenvalue  c. The value of the quadratic
form, T 2, is also interesting because it commutes with H and therefore has its
own eigenvalue when acting on H ’s eigenfunctions, which is independent of c.
It can be evaluated by expressing T 2 in terms of the generators in the new basis:

E+E− = T 2
2 + T 2

3 − i[T2, T3]

E−E+ = T 2
2 + T 2

3 + i[T2, T3], (8.111)

so that, rearranging and using the algebra relation,

T 2 = E−E+ + T 2
1 − i[T2, T3]

= E−E+ + T 2
1 − i(−iT1)

= E−E+ + H(H + 1), (8.112)

where we have identified T1 = H in the last line. By the analogous procedure
with ± labels reversed, we also find

T 2 = E+E− + H(H − 1). (8.113)
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196 8 Field transformations

These forms allow us to evaluate the eigenvalues of T 2 for two of the eigen-
functions in the full series. To understand this, we note that the effect of the E±
generators is to generate new solutions step-wise, i.e. starting with an arbitrary
eigenfunction | c〉 they generate new eigenfunctions with new eigenvalues.
This is easily confirmed from the commutation relation in eqn. (8.108), if
we consider the ‘new’ eigenvector E±| c〉 from | c〉 and try to calculate the
corresponding eigenvalue:

H E± | c〉 = (E±H + [H, T±]) | c〉
= (E±H ± E±) | c〉
= ( c ± 1) E± | c〉. (8.114)

We see that, given any initial eigenfunction of H , the action of E± is to produce
a new eigenfunction with a new eigenvalue, which differs by ±1 from the
original, up to a possible normalization constant which would cancel out of this
expression:

E± | c〉 ∝ | c ± 1〉. (8.115)

Now, the number of solutions cannot be infinite because the Schwarz (triangle)
inequality tells us that the eigenvalue of T 2 (whose value is not fixed by the
eigenvalue of H , since T 2 and T a commute) must be bigger than any of the
individual eigenvalues T a:〈

 c|E+E− + E−E+ + H 2| c
〉
> 〈 c|H 2| c〉, (8.116)

so the value of H acting on | c〉 must approach a maximum as it approaches
the value of T 2 acting on | c〉. Physically, the maximum value occurs when
all of the rotation is about the a = 1 axis corresponding to our chosen Cartan
sub-algebra generator, T1 = H .

In other words, there is a highest value,  max, and a lowest eigenvalue,  min.
Now eqns. (8.112) and (8.113) are written in such a way that the first terms
contain E±, ready to act on any eigenfunction, so, since there is a highest and
lowest eigenvalue, we must have

E+ | max〉 = 0

E− | min〉 = 0. (8.117)

Thus,

T 2| max〉 =  max( max + 1) | max〉, (8.118)

and

T 2| min〉 =  min( min − 1) | min〉. (8.119)
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8.5 Lie groups and Lie algebras 197

From these two points of reference, we deduce that

 max( max + 1) =  min( min − 1). (8.120)

This equation has two solutions,  min =  max + 1 (which cannot exist, since
there is no solution higher than  max by assumption), and

 max = − min, (8.121)

thus

T 2 =  max( max + 1) I. (8.122)

The result means that the value T 2 is fixed by the maximum value which H can
acquire. Strangely, the value is not  2

max (all rotation about the 1 axis), which
one would expect from the behaviour of the rotation group. This has important
implications for quantum mechanics, since it is the algebra which is important
for angular momentum or spin. It means that the total angular momentum can
never be all in one fixed direction. As  max → ∞ the difference becomes
negligible.

The constant of proportionality in eqn. (8.115) can now be determined from
the Hermitian property of the stepping operators as follows. The squared norm
of E+| c〉 may be written using eqn. (8.112)

|E+| c〉|2 = 〈 c|E−E+| c〉
= 〈 c|T 2 − H(H + 1)| c〉
=  max( max + 1)− c( c + 1)

= ( max − c)( max + c + 1). (8.123)

Thus,

E+| c〉 =
√
( max − c)( max + c + 1)| c + 1〉

E−| c〉 =
√
( max + c)( max − c + 1)| c − 1〉. (8.124)

Eqn. (8.121), taken together with eqn. (8.114), implies that the eigenvalues are
distributed symmetrically about  c = 0 and that they are separated by integer
steps. This means that the possible values are restricted to

 c = 0,±1

2
,±1,±3

2
,±2, . . . ,± max. (8.125)

There are clearly 2 max + 1 possible solutions. In the study of angular
momentum,  max, is called the spin up to dimensional factors (h̄). In group
theory, this is referred to as the highest weight of the representation. Clearly,
this single value characterizes a key property of the representation.
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198 8 Field transformations

What the above argument does not tell us is the value of  max. That is
determined by the dimension of the irreducible representation which gives rise
to rotations. In field theory the value of max depends, in practice, on the number
of spacetime indices on field variables. Since the matrices for rotation in three
spatial dimensions are fixed by the spacetime dimension itself, the only freedom
left in transformation properties under rotations is the number of spacetime
indices which can be operated on by a rotational transformation matrix. A
scalar (no indices) requires no rotations matrix, a vector (one index) requires
one, a rank 2-tensor requires two and so on. The number of independently
transforming components in the field becomes essentially blocks of 2 max + 1
and defines the spin of the fields.

8.6 Examples of discrete and continuous groups

Some groups are important because they arise in field theory with predictable
regularity; others are important because they demonstrate key principles with a
special clarity.

8.6.1 GL(N ,C): the general linear group

The group of all complex N × N , non-singular matrices forms a group. This
group has many sub-groups which are important in physics. Almost all physical
models can be expressed in terms of variables which transform as sub-groups of
this group.

(1) Matrix multiplication combines non-singular matrices into new non-
singular matrices.

(2) Matrix multiplication is associative.

(3) The identity is the unit matrix

I =




1 0 . . . 0
0 1 . . . 0

0
... 1 0

0 . . . 0 1


 . (8.126)

(4) Every non-singular matrix has an inverse, by definition.

The representation space of a collection of matrices is the vector space on which
the components of those matrices is defined. Since matrices normally multiply
vectors, mapping one vector, vA, onto another vector, v′A,

vA → v′A = UAB v
B, (8.127)
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8.6 Examples of discrete and continuous groups 199

it is normal to think of these matrices as acting on group vectors. In field
theory, these transformations are especially important since the group vectors
are multiplets of fields, e.g.

φ(x)A =



φ1(x)
φ2(x)
...

φdR (x)


 , (8.128)

where dR is the dimension of the representation, or the size of the dR × dR

matrices. Note: the dimension of a representation (the number of components
in a multiplet) is not necessarily the same as the dimension of the group itself.
For example: a three-dimensional vector (dR = 3) might be constrained,
by some additional considerations, to have only an axial symmetry (group
dimension dG = 1, a single angle of rotation); in that case one requires a 3× 3
representation of a one-dimensional group, since vectors in three dimensions
have three components.

8.6.2 U (N ): unitary matrices

U (N ) is the set of all unitary matrices of matrix dimension N . An N×N unitary
matrix satisfies

U † U = (U T)∗ U = I, (8.129)

where I is the N × N unit matrix, i.e. U † = U−1. When n = 1, the matrices
are single-component numbers. An N × N matrix contains N 2 components;
however, since the transpose matrix is related to the untransposed matrix by
eqn. (8.129), only half of the off-diagonal elements are independent of one
another. Moreover, the diagonal elements must be real in order to satisfy the
condition. This means that the number of independent real elements in a unitary
matrix is (N 2 − N )/2 complex plus N real means N 2 real numbers. This is
called the dimension of the group. U (N ) is non-Abelian for U > 1.

8.6.3 SU (N ): the special unitary group

The special unitary group is the sub-group of U (N )which consists of all unitary
matrices with unit determinant. Since the requirement of unit determinant is an
extra constraint on the all of the independent elements of the group (i.e. the
product of the eigenvalues), this reduces the number of independent elements
by one compared with U (N ). Thus the dimension of SU (N ) is N 2 − 1 real
components. SU (N ) is non-Abelian for N > 1. SU (N ) has several simple
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200 8 Field transformations

properties:

C2(Gadj) = N

dG = N 2 − 1

dF = N

C2(G f ) = N 2 − 1

2N
, (8.130)

where C2(G) is the quadratic Casimir invariant in representation G, dG is
the dimension of the group, and dF is the dimension of the fundamental
representation R → F .

8.6.4 SU (2)

The set of 2×2 unitary matrices with unit determinant has N 2−1 = 3 elements
for n = 2. Up to similarity transformations, these may be written in terms of
three real parameters (θ1, θ2, θ2):

g1 =
(

cos
(

1
2θ1

)
i sin

(
1
2θ1

)
i sin

(
1
2θ1

)
cos

(
1
2θ1

)
)

(8.131a)

g2 =
(

cos
(

1
2θ2

)
sin

(
1
2θ2

)
− sin

(
1
2θ2

)
cos

(
1
2θ2

)
)

(8.131b)

g3 =
(

ei 1
2 θ3 0
0 e−i 1

2 θ3

)
. (8.131c)

These matrices are the exponentiated Pauli matrices e
i
2σi . Using this basis,

any element of the group may be written as a product of one or more of these
matrices with some θi .

8.6.5 U (1): the set of numbers z : |z|2 = 1

The set of all complex numbers U = eiθ with unit modulus forms an Abelian
group under multiplication:

(1) eiθ1 eiθ2 = ei(θ1+θ2).

(2) (eiθ1 eiθ2) eiθ3 = eiθ1 (eiθ2 eiθ3).

(3) eiθ ei0 = eiθ .

(4) U−1 = U ∗ since eiθ e−iθ = ei0 = 1.
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8.6 Examples of discrete and continuous groups 201

The representation space of this group is the space of complex scalars #, with
constant modulus:

#∗#→ (U#)∗U# = #∗ U ∗U # = #∗#. (8.132)

This group is important in electromagnetism; it is this symmetry group of
complex phases which is connected to the existence of a conserved electrical
charge.

8.6.6 Z N : the Nth roots of unity

The N th roots of unity form a sub-group of U (1). These complex numbers may
be written in the form exp(2π i p

N ), for p = 0, . . . , N − 1. The group Z N is
special because it is not infinite. It has exactly N discrete elements. The group
has the topology of a circle, and the elements may be drawn as equi-distant
points on the circumference of the unit circle in the complex plane. Z N is a
modulo group. Its elements satisfy modulo N arithmetic by virtue of the multi-
valuedness of the complex exponential. The group axioms are thus satisfied as
follows:

(1) exp
(
2π i p

N

)
exp

(
2π i p′

N

)
= exp

(
2π i p+p′

N

)
= exp

(
2π i

[
p+p′

N + m
])

,

where N ,m, p are integers;

(2) follows trivially from U (1);

(3) follows trivially from U (1);

(4) the inverse exists because of the multi-valued property that

exp
(
−2π i

p

N

)
= exp

(
2π i

N − p

N

)
. (8.133)

Thus when p = N , one arrives back at the identity, equivalent to p = 0.

The representation space of this group is undefined. It can represent translations
or shifts along a circle for a complex scalar field. Z2 is sometimes thought of
as a reflection symmetry of a scalar field, i.e. Z2 = {1,−1} and φ → −φ. An
action which depends only on φ2 has this symmetry.

Usually Z N is discussed as an important sub-group of very many continuous
Lie groups. The presence of Z N as a sub-group of another group usually
signifies some multi-valuedness or redundancy in that group. For example,
the existence of a Z2 sub-group in the Lie group SU (2) accounts for the
double-valued nature of electron spin.
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202 8 Field transformations

8.6.7 O(N ): the orthogonal group

The orthogonal group consists of all matrices which satisfy

U T U = I (8.134)

under normal matrix multiplication. In other words, the transpose of each matrix
is the inverse matrix. All such matrices are real, and thus there are (N 2−N )/2+
n = N (N + 1)/2 real components in such a matrix. This is the dimension of the
group. The orthogonal group is non-Abelian for N > 2 and is trivial for n = 1.

The special orthogonal group is the sub-group of O(N ) which consists of
matrices with unit determinant. This reduces the dimension of the group by one,
giving N (N − 1)/2 independent components.

8.6.8 SO(3): the three-dimensional rotation group

This non-Abelian group has three independent components corresponding to
rotations about three-independent axes in a three-dimensional space. The group
elements may be parametrized by the rotation matrices gi about the given axis i:

Ux =

 1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1


 (8.135)

Uy =

 cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 (8.136)

Uz =

 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1


 . (8.137)

The representation space of this group is a three-dimensional Euclidean space
and the transformations rotate three-dimensional vectors about the origin, pre-
serving their lengths but not their directions. Notice that these matrices do not
commute; i.e. a rotation about the x axis followed by a rotation about the y axis,
is not the same as a rotation about the y axis followed by a rotation about the x
axis.

8.6.9 SO(2): the two-dimensional rotation group

This group has only one element, corresponding to rotations about a point in a
plane. Any element of SO(2) may be written in the form

U =
(

cos θ sin θ
− sin θ cos θ

)
. (8.138)
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8.7 Universal cover groups and centres 203

The representation space of this group is a two-dimensional Euclidean space,
and the transformation rotates two-component vectors about the origin. Notice
how the matrices parametrizing SO(3) are simply rotations of SO(2) embedded
in a three-dimensional framework.

8.7 Universal cover groups and centres

We know that groups can contain other groups, as sub-groups of the whole,
and therefore that some are larger than others. The universal cover group is
defined to be a simply connected group which contains an image of every point
in a given Lie group. If we consider an arbitrary Lie group, in general it will
have companion groups which are locally the same, but globally different. The
best known example of this is the pair SU (2) and SO(3), which are locally
isomorphic, but globally different. In fact SU (2) contains two images of SO(3)
or covers it twice, or contains two equivalent copies of it. Taking this a step
further, if three groups have the same local structure, then they will all be sub-
groups of the universal cover groups.

If we begin with a Lie algebra, it is possible to exponentiate the generators of
the algebra to form group elements:

& = θ A T A → G = ei&. (8.139)

The group formed by this exponentiation is not unique; it depends on the
particular representation of the algebra being exponentiated. For instance,
the 2 × 2 representation of SU (2) exponentiates to SU (2), while the 3 × 3
representation of SU (2) exponentiates to SO(3). Both of these groups are
locally isomorphic but differ in their centres. In the case of SU (2) and SO(3),
we can relate them by factorizing out the centre of the universal cover group,

SU (2)/Z2 = SO(3). (8.140)

From Schur’s lemma, we know that the centre of a group is only composed
of multiples of the identity matrix, and that, in order to satisfy the rules of group
multiplication, they must also have modulus one. It follows from these two facts
that any element of the centre of a group can be written

gc = exp(±2π i q/N ) I, q = 0, . . . , N − 1. (8.141)

These elements are the N th roots of unity for some N (in principle infinite, but
in practice usually finite). If we start off with some universal cover group then,
whose centre is Z N , there will be many locally isomorphic groups which can
be found by factoring out sub-groups of the centre. The largest thing one can
divide out is Z N itself, i.e. the whole centre. The group formed in this way is
called the adjoint group, and it is generated by the adjoint representation:

group

centre of group
= adjoint group. (8.142)
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204 8 Field transformations

Table 8.1. Some common Lie algebras and groups.

Algebra Centre Cover

AN Z N SU (N − 1)
BN Z2 SO(2N + 1)
CN Z2 Sp(2N )
DN Z4 (Nodd) SO(2N )

Z2 × Z2 (Neven)
E6 Z3 E6

G2, F4, E8 Z3

But it is not necessary to factor out the entire centre, one can also factor out a
sub-group of the full centre; this will also generate a locally isomorphic group.
For example, SU (8) has centre Z8. We can construct any of the following
locally isomorphic groups:

SU (8) SU (8)/Z8 SU (8)/Z4 SU (8)/Z2. (8.143)

Some well known Lie groups are summarized in table 8.1.

8.7.1 Centre of SU (N ) is Z N

SU (N ) is a simply connected group and functions as its own universal cover
group. As the set of N×N matrices is the fundamental, defining representation,
it is easy to calculate the elements of the centre. From Schur’s lemma, we know
that the centre must be a multiple of the identity:

gc = α IN . (8.144)

where IN is the N × N identity matrix. Now, SU (N ) matrices have unit
determinant, so

det IN = αN = 1. (8.145)

Thus, the solutions for α are the N th roots of unity, Z N .

8.7.2 Congruent algebras: N-ality

Since roots and weights of representations can be drawn as vectors in the Cartan
sub-space, different representations produce similar, but not identical, patterns.
Elements Eα of the algebra step through chains of solutions, creating a laced
lattice-work pattern. Representations which exponentiate to the same group
have patterns which are congruent to one another [124].
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8.7 Universal cover groups and centres 205

Congruence is a property of discrete sets. The correct terminology is
‘congruent to x modulo m’. The property is simplest to illustrate for integers. x
is said to be conjugate to y modulo m if y − x is an integer multiple of m:

y = x + km, (8.146)

for integer k,m. Congruence modulo m is an equivalence relation, and it sorts
numbers into classes or congruent sets. The patterns made by congruent sets
can be overlain consistently. The equivalence class, Ex , is the set of all integers
which can be found from x by adding integer multiples m to it:

Ex = {x + km | integer k}
= {. . . ,−2m + x,−m + x, x, x + m, x + 2m, . . .}. (8.147)

There are exactly m different congruence classes modulo m, and these partition
the integers; e.g. for m = 4, we can construct four classes:

E0 = {. . . ,−8,−4, 0, 4, 8, . . .}
E1 = {. . . ,−7,−3, 1, 5, 9, . . .}
E2 = {. . . ,−6,−2, 2, 6, 10, . . .}
E3 = {. . . ,−5,−1, 3, 7, 11, . . .}. (8.148)

Lie algebra representations can also be classified into congruence classes.
Historically, congruence classes of SU (N ) modulo N are referred to as N -ality
as a generalization of ‘triality’ for SU (3). Each congruence class has a label
q; q = 0 corresponds to no centre, or the adjoint congruence class. The well
known algebras contain the following values [56]:

q =
n∑

k=1

αk (mod n + 1) for An (8.149)

q = αn (mod 2) for Bn (8.150)

q = α1 + α3 + α5 (mod 2) for Cn (8.151)

q = α1 − α2 + α4 − α5 (mod 3) for E6 (8.152)

q = α4 + α6 + α7 (mod 2) for E7 (8.153)

q = 0 for all representations of E7, E8, F4,G2. (8.154)

In the special case of Dn , the congruence classes require classification by a
two-component vector:

q1 = (αn−1 + αn, 2α1 + α3 + · · ·
+ 2αn−2 + (n − 2)αn−1 + nαn + · · ·) (mod 2) odd n

q2 = (αn−1 + αn, 2α1 + 2α3 + · · ·
+ 2αn−3 + (n − 2)αn−1 + nαn) (mod 4) even n.

(8.155)
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206 8 Field transformations

The congruence is modulo the order of the centre. The algebra Dn requires a
two-dimensional label, since its centre is two-dimensional. E7, E8, F4, and G2

all have trivial centres, thus they all lie in a single class congruent to the adjoint.

8.7.3 Simple and semi-simple Lie algebras

A Lie algebra is simple if it has no proper invariant sub-algebras; i.e if only
one element (the identity) commutes with every other in the group. A simple
algebra is necessarily semi-simple. A semi-simple Lie algebra can be written in
block-diagonal form, as a direct sum of invariant sub-algebras, each of which is
a simple Lie algebra

A = A1 ⊕ A2 ⊕ A3 ⊕ · · · AN , (8.156)

i.e. it factorizes into block-diagonal form with simple blocks. A semi-simple
algebra has no Abelian invariant sub-algebras.

8.8 Summary

The existence of a symmetry in a physical system means that it is possible to re-
label parameters of a model without changing its form or substance. Identify the
symmetries of a physical system and one can distinguish between the freedom
a system has to change and the constraints which hold it invariant: symmetries
are thus at the heart of dynamics and of perspective.

Symmetries form groups, and can therefore be studied with the group theory.
Since a symmetry means that some quantity Rξ does not change, when we vary
the action with respect to a parameter ξ , conservation of Rξ is also linked to
the existence of the symmetry. All of the familiar conservation laws can be
connected to fundamental symmetries.

In the case of electromagnetism, Lorentz covariance was exposed just by
looking at the field equations and writing them in terms of (3+ 1) dimensional
vectors. The chapters which follow examine the transformations which change
the basic variables parametrizing the equations of motion, and the repercussions
such transformations have for covariance.
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9
Spacetime transformations

An important class of symmetries is that which refers to the geometrical dis-
position of a system. This includes translational invariance, rotational invariance
and boosts. Historically, covariant methods were inspired by the fact that the
speed of light in a vacuum is constant for all inertial observers. This follows
from Maxwell’s equations, and it led Einstein to the special theory of relativity
and covariance. The importance of covariance has since been applied to many
different areas in theoretical physics.

To discuss coordinate transformations we shall refer to figure 9.1, which
shows two coordinate systems moving with a relative velocity v = βc. The
constancy of the speed of light in any inertial frame tells us that the line element
(and the corresponding proper time) must be invariant for all inertial observers.
For a real constant ', this implies that

ds2 = '2ds ′2 = '2(−c2dt2 + dx · dx). (9.1)

This should not be confused with the non-constancy of the effective speed of
light in a material medium; our argument here concerns the vacuum only. This
property expresses the constancy, or x-independence, of c. The factor '2 is
of little interest here as long as it is constant: one may always re-scale the
coordinates to absorb it. Normally one is not interested in re-scaling measuring
rods when comparing coordinate systems, since it only make systems harder to
compare. However, we shall return to this point in section 9.7.

For particles which travel at the speed of light (massless particles), one has
ds2 = 0 always, or

dx
dt
= c. (9.2)

Now, since ds2 = 0, it is clearly true that '2(x) ds2 = 0, for any non-singular,
non-zero function '(x). Thus the value of c is preserved by a group of

207
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208 9 Spacetime transformations

S
S

relative velocity
v

′

Fig. 9.1. The schematic arrangement for discussing coordinate transformations. Co-
ordinate systems S(x) and S′(x ′) are in relative motion, with speed v = βc.

transformations which obey

ds ′2 = '2(x)ds2. (9.3)

This set of transformations forms a group called the conformal group.
If all particles moved at the speed of light, we would identify this group as

being the fundamental symmetry group for spacetime. However, for particles
not moving at c, the line element is non-zero and may be characterized by

dx
dt
= βc, (9.4)

for some constant β = v/c. Since we know that, in any frame, a free particle
moves in a straight line at constant velocity, we know that β must be a constant
and thus

ds ′2 = ds2 �= 0. (9.5)

If it were possible for an x-dependence to creep in, then one could transform
an inertial frame into a non-inertial frame. The group of transformations which
preserve the line element in this way is called the inhomogeneous Lorentz group,
or Poincaré group.
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9.1 Parity and time reversal 209

In the non-relativistic limit, coordinate invariances are described by the so-
called Galilean group. This group is no smaller than the Lorentz group, but
space and time are decoupled, and the speed of light does not play a role at
all. The non-relativistic limit assumes that c → ∞. Galilean transformations
lie closer to our intuition, but they are often more cumbersome since space and
time must often be handled separately.

9.1 Parity and time reversal

In an odd number of spatial dimensions (n = 2l+1), a parity, or space-reflection
transformation P has the following non-zero tensor components:

P0
0 = 1

P i
i = −1, (9.6)

where i is not summed in the last line. When this transformation acts on another
tensor object, it effects a change of sign on all space components. In other words,
each spatial coordinate undergoes xi → −xi . The transformation A → −A is
the discrete group Z2 = {1,−1}.

In an even number of spatial dimensions (n = 2l), this construction does not
act as a reflection, since the combination of an even number of reflections is not
a reflection at all. In group language, (Z2)

2n = {1}. It is easy to check that, in
two spatial dimensions, reflection in the x1 axis followed by reflection in the x2

axis is equivalent to a continuous rotation. To make a true reflection operator in
an even number of space dimensions, one of the spatial indices must be left out.
For example,

P0
0 = 1

P i
i = −1 (i = 1, . . . , n − 1)

P i
i = +1 (i = n). (9.7)

The time reversal transformation in any number of dimensions performs the
analogous function for time coordinates:

T 0
0 = −1

T i
i = 1. (9.8)

These transformations belong to the Lorentz group (and others), and are
sometimes referred to as large Lorentz transformations since they cannot be
formed by integration or repeated combination of infinitesimal transformations.
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210 9 Spacetime transformations

9.2 Translational invariance

A general translation in space, or in time, is a coordinate shift. A scalar field
transforms simply:

φ(x)→ φ(x +�x). (9.9)

The direction of the shift may be specified explicitly, by

φ(t, xi )→ φ(t, xi +�xi )

φ(t, xi )→ φ(t +�t, xi ). (9.10)

Invariance under such a constant shift of a coordinate is almost always a
prerequisite in physical problems found in textbooks. Translational invariance
is easily characterized by the coordinate dependence of Green functions. Since
the Green function is a two-point function, one can write it as a function of x
and x ′ or in terms of variables rotated by 45 degrees, 1√

2
(x− x ′) and 1√

2
(x+ x ′).

These are more conveniently defined in terms of a difference and an average
(mid-point) position:

x̃ = (x − x ′)

x = 1

2
(x + x ′). (9.11)

The first of these is invariant under coordinate translations, since

x − x ′ = (x + a)− (x ′ + a). (9.12)

The second equation is not, however. Thus, in a theory exhibiting translational
invariance, the two-point function must depend only on x̃ = x − x ′.

9.2.1 Group representations on coordinate space

Translations are usually written in an additive way,

xµ→ xµ + aµ, (9.13)

but, by embedding spacetime in one extra dimension, dR = (n+1)+1, one can
produce a group vector formulation of the translation group:(

xµ

1

)
→

(
1 aµ

0 1

) (
xµ′

1

)
. (9.14)

This has the form of a group vector multiplication. The final 1 in the column
vector is conserved and plays only a formal role. This form is common in
computer representations of translation, such as in computer graphics.
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9.2 Translational invariance 211

A representation of translations which is particularly important in quantum
mechanics is the differential coordinate representation. Consider an infinites-
imal translation aµ = εµ. This transformation can be obtained from an
exponentiated group element of the form

U (ε) = exp
(
iθ AT A

)
(9.15)

by writing

U (ε) = exp
(
iερ kρ

)
exp

(
iερ pρ/ χh

) = (1+ iερ pρ/ χh ), (9.16)

where

pµ = χh kµ = −iχh ∂µ. (9.17)

The action of the infinitesimal group element is thus

xµ→ U (ε) xµ = (1+ χh ε
ρ∂ρxµ) = xµ + ερ η µρ = xµ + εµ. (9.18)

The reason for writing the generator,

T A → pµ/ χh , (9.19)

in this form, is that pµ is clearly identifiable as a momentum operator which
satisfies

[x, p] = iχh . (9.20)

Thus, it is the momentum divided by a dimensionful scale (i.e. the wavenumber
kµ) which is the generator of translations. In fact, we already know this from
Fourier analysis.

The momentum operator closely resembles that from quantum mechanics.
The only difference is that the scale χh (with dimensions of action), which is
required to give pµ the dimensions of momentum, is not necessarily h̄. It is
arbitrary. The fact that h̄ is small is the physical content of quantum mechanics;
the remainder is group theory. What makes quantum mechanics special and
noticeable is the non-single-valued nature of the exponentiated group element.
The physical consequence of a small χh is that even a small translation will
cause the argument of the exponential to go through many revolutions of 2π . If
χh is large, then this will not happen. Physically this means that the oscillatory
nature of the group elements will be very visible in quantum mechanics, but
essentially invisible in classical mechanics. This is why a wavelike nature is
important in quantum mechanics.
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212 9 Spacetime transformations

9.2.2 Bloch’s theorem: group representations on field space

Bloch’s theorem, well known in solid state physics, is used to make predictions
about the form of wavefunctions in systems which have periodic potentials.
In metals, for instance, crystal lattices look like periodic arrays of potential
wells, in which electrons move. The presence of potentials means that the
eigenfunctions are not plane waves of the form

eik(x−x ′), (9.21)

for any x, x ′. Nevertheless, translational invariance by discrete vector jumps ai

is a property which must be satisfied by the eigenfunctions

φk(t, x+ a) = U (a) φk(t, x) = ei k·a φk(t, x). (9.22)

9.2.3 Spatial topology and boundary conditions

Fields which live on spacetimes with non-trivial topologies require boundary
conditions which reflect the spacetime topology. The simplest example of this
is the case of periodic boundary conditions:

φ(x) = α φ(x + L), (9.23)

for some number α. Periodic boundary conditions are used as a model for
homogeneous crystal lattices, where the periodicity is interpreted as translation
by a lattice cell; they are also used to simulate infinite systems with finite
ones, allowing the limit L → ∞ to be taken in a controlled manner. Periodic
boundary conditions are often the simplest to deal with.

The value of the constant α can be specified in a number of ways. Setting it
to unity implies a strict periodicity, which is usually over-restrictive. Although
it is pragmatic to specify a boundary condition on the field, it should be noted
that the field itself is not an observable. Only the probability P = (φ, φ) and
its associated operator P̂ are observables. In Schrödinger theory, for example,
P̂ = ψ∗(x)ψ(x), and one may have ψ(x + L) = eiθ(x)ψ(x) and still preserve
the periodicity of the probability.

In general, if the field φ(x) is a complex field or has some multiplet symmetry,
then it need only return to its original value up to a gauge transformation; thus
α = U (x). For a multiplet, one may write

#A(x + L) = U B
A (x) #B(x). (9.24)

The transformation U is the exponentiated phase factor belonging to the
group of symmetry transformations which leaves the action invariant. This is
sometimes referred to as a non-integrable phase. Note that, for a local gauge
transformation, one also has a change in the vector field:

Aµ(x + L) = βAµ(x). (9.25)
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9.2 Translational invariance 213

This kind of transformation is required in order to obtain a consistent energy–
momentum tensor for gauge symmetric theories (see section 11.5). The value of
β depends now on the type of couplings present. From the spacetime symmetry,
a real field, Aµ, has only a Z2 reflection symmetry, i.e. β = ±1, which
corresponds heuristically to ferromagnetic and anti-ferromagnetic boundary
conditions. Usually β = 1 to avoid multiple-valuedness.

In condensed matter physics, conduction electrons move in a periodic poten-
tial of crystallized valence ions. The potential they experience is thus periodic:

V (x) = V (x+ L), (9.26)

and it follows that, for plane wave eigenfunctions,

φk(t, x+ L) = U (L) φk(t, x) = ei k·L φk(t, x). (9.27)

This is a straightforward application of the scalar translation operator; the result
is known as Bloch’s theorem.

On toroidal spacetimes, i.e. those which have periodicities in several direc-
tions, the symmetries of the boundary conditions are linked in several directions.
This leads to boundary conditions called co-cycle conditions [126]. Such
conditions are responsible for flux quantization of magnetic fields in the Hall
effect [65, 85].

In order to define a self-consistent set of boundary conditions, it is convenient
to look at the so-called Wilson loops in the two directions of the torus, since they
may be constructed independently of the eigenfunctions of the Hamiltonian.
Normally this is presented in such a way that any constant part of the vector
potential would cancel out, giving no information about it. This is the co-cycle
condition, mentioned below. The Wilson line is defined by

W j (x) = P exp

{
ig

∫ 
x


x0

A j dx ′j

}
, (9.28)

j not summed, for some fixed point 
x0. It has an associated Wilson loop W j (L ′j )
around a cycle of length L ′j in the x j direction by

W j (x j + L ′j ) = W j (L
′
j )W j (x j ). (9.29)

The notation here means that the path-dependent Wilson line W j (
x) returns to
the same value multiplied by a phase W j (L ′j , 
x) on translation around a closed
curve from x j to x j + L ′j . The coordinate dependence of the phase usually
arises in the context of a uniform magnetic field passing through the torus. In
the presence of a constant magnetic field strength, the two directions of the torus
are closely linked, and thus one has

W1(u1 + L1, u2) = exp
{

iL1u2 + ic1L1

}
W1(u1, u2) (9.30)

W2(u1, u2 + L2) = exp
{

ic2L2

}
W2(u1, u2). (9.31)
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214 9 Spacetime transformations

At this stage, it is normal to demonstrate the quantization of flux by opening out
the torus into a rectangle and integrating around its edges:

W1(u2 + L2)W2(u1)W
−1
1 (u2)W

−1
2 (u1 + L1) = 1. (9.32)

This is known as the co-cycle condition, and has the effect of cancelling the
contributions to the c’s and thus flux quantization is found independently of
the values of ci due to the nature of the path. The most general consistency
requirement for the gauge field (Abelian or non-Abelian), which takes into
account the phases ci , has been constructed in ref. [18].

The results above imply that one is not free to choose, say, periodic boundary
conditions for bosons and anti-periodic boundary conditions for fermions in the
presence of a uniform field strength. All fields must satisfy the same consistency
requirements. Moreover, the spectrum may not depend on the constants, ci ,
which have no invariant values. One may understand this physically by noting
that a magnetic field causes particle excitations to move in circular Landau
orbits, around which the line integral of the constant vector potential is null. The
constant part of the vector potential has no invariant meaning in the presence of
a magnetic field.

In more complex spacetimes, such as spheres and other curved surfaces,
boundary conditions are often more restricted. The study of eigenfunctions
(spherical harmonics) on spheres shows that general phases are not possible
at identified points. Only the eigenvalues ±1 are consistent with a spherical
topology [17].

9.3 Rotational invariance: SO(n)

Rotations are clearly of special importance in physics. In n spatial dimensions,
the group of rotations is the group which preserves the Riemannian, positive
definite, inner product between vectors. In Cartesian coordinates this has the
well known form

x · y = xi yi . (9.33)

The rotation group is the group of orthogonal matrices with unit determinant
SO(n). Rotational invariance implies that the Green function only depends on
squared combinations of this type:

G(x, x ′) = G
(
(x1 − x ′1)

2 + (x2 − x2)
2 + · · · + (xn − x ′n)

2
)
. (9.34)

The exception here is the Dirac Green function.
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9.3 Rotational invariance: SO(n) 215

9.3.1 Group representations on coordinate space

Three-dimensional rotations are generated by infinitesimal matrices:

T 1 =

 0 0 0

0 0 −i
0 i 0




T 2 =

 0 0 i

0 0 0
−i 0 0




T 3 =

 0 −i 0

i 0 0
0 0 0


 (9.35)

which satisfy a Lie algebra

[Ti , Tj ] = iεi jk Tk . (9.36)

These exponentiate into the matrices for a three-dimensional rotation,
parametrized by three Euler angles,

Rx ≡ Ux =

 1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1


 (9.37)

Ry ≡ Uy =

 cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 (9.38)

Rz ≡ Uz =

 cos θ3 sin θ3 0
− sin θ3 sin θ3 0

0 0 1


 . (9.39)

The rotation group is most often studied in n = 3 dimensions, for obvious
reasons, though it is worth bearing in mind that its properties differ quite
markedly with n. For instance, in two dimensions it is only possible to have
rotation about a point. With only one angle of rotation, the resulting rotation
group, SO(2), is Abelian and is generated by the matrix

T1 =
(

0 i
−i 0

)
. (9.40)

This exponentiates into the group element

U =
(

cos θ sin θ
− sin θ cos θ

)
. (9.41)
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216 9 Spacetime transformations

A two-dimensional world can also be represented conveniently by adopting
complex coordinates on the Argand plane. In this representation, a vector is
simply a complex number z, and a rotation about the origin by an angle θ is
accomplished by multiplying:

z → eiθ z. (9.42)

9.3.2 Eigenfunctions: circular and spherical harmonics

The eigenfunctions of the rotation operators form a set of basis functions which
span representation space. The rotational degrees of freedom in quantum fields
can be expanded in terms of these eigenfunctions.

Eigenfunctions in n = 2 In two dimensions, there is only a single axis of
rotation to consider. Then the action of the rotation operator T1 has the form

−i∂φ |φ〉 =  |φ〉. (9.43)

This equation is trivially solved to give

|φ〉 = ei φ. (9.44)

In two spatial dimensions, there are no special restrictions on the value of  .
Notice that this means that the eigenfunctions are not necessarily single-valued
functions: under a complete rotation, they do not have to return to their original
value. They may differ by a phase:

|φ + 2π〉 = ei (φ+2π) = eiδ ei φ, (9.45)

where δ = 2 π . In higher dimensions δ must be unity because of extra
topological restrictions (see below).

Eigenfunctions in n = 3 The theory of matrix representations finds all of
the irreducible representations of the rotation algebra in n = 3 dimensions.
These are characterized by their highest weight, or spin, with integral and
half-integral values. There is another approach, however, which is to use a
differential representation of the operators. The advantage of this is that it is then
straightforward to find orthonormal basis functions which span the rotational
space.

A set of differential operators which satisfies the Lie algebra is easily
constructed, and has the form

T = r× i∇, (9.46)

or

Ti = iεi jk x j ∂k . (9.47)
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9.3 Rotational invariance: SO(n) 217

This has the form of an orbital angular momentum operator L = r×p, and
it is no coincidence that it re-surfaces also in chapter 11 in that context with
only a factor of h̄ to make the dimensions right. It is conventional to look for
the simultaneous eigenfunctions of the operators L1 and L2 by writing these
operators in spherical polar coordinates (with constant radius):

L1 = i
(
sinφ ∂θ + cot θ cosφ ∂φ

)
L2 = i

(− cosφ ∂θ + cot θ sinφ ∂φ
)

L3 = −i ∂φ, (9.48)

and

L2 = 1

sin θ
∂θ (sin θ ∂θ )+ 1

sin2 θ
∂2
φ. (9.49)

The eigenvectors and eigenvalues involve two angles, and may be defined by

L2 |φ, θ〉 = T 2|φ, θ〉
L3 |φ, θ〉 =  c|φ, θ〉. (9.50)

The solution to the second equation proceeds as in the two-dimensional case,
with only minor modifications due to the presence of the other coordinates. The
eigenfunctions are written as a direct product,

|φ, θ〉 = &(θ)#(φ), (9.51)

so that one may identify#(φ)with the solution to the two-dimensional problem,
giving

|φ, θ〉 = &(θ) ei cφ. (9.52)

The values of  c are not arbitrary in this case: the solution of the constraints
for the θ coordinate imposes extra restrictions, because of the topology of a
three-dimensional space. Suppose we consider a rotation through an angle of
2π in the φ direction in the positive and negative directions:

|φ + 2π〉 = ei c(φ+2π) = eiδ ei cφ,

|φ − 2π〉 = ei c(φ−2π) = e−iδ ei cφ. (9.53)

In two spatial dimensions, these two rotations are distinct, but in higher
dimensions they are not. This is easily seen by drawing the rotation as a circle
with an arrow on it (see figure 9.2). By flipping the circle about an axis in its
plane we can continuously deform the positive rotation into the negative one,
and vice versa. This is not possible in n = 2 dimensions. This means that they
are, in fact, different expressions of the same rotation. Thus,

eiδ = e−iδ = ±1. (9.54)
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218 9 Spacetime transformations

Fig. 9.2. Exchange of particles in two and three spatial dimensions. In the plane,
there is only one rotation about the centre of mass which exchanges identical particles.
Clockwise and anti-clockwise are inequivalent. In three dimensions or greater, one may
rotate this plane around another axis and deform clockwise into anti-clockwise.

These two values are connected with the existence of two types of particle:
bosons and fermions, or

 c = 0,±1

2
,±1, . . . , (9.55)

for integer m. Note that, in older texts, it was normal to demand the single-
valuedness of the wavefunction, rather than using the topological argument
leading to eqn. (9.54). If one does this, then only integer values of  c are
found, and there is an inconsistency with the solution of the group algebra.
This illustrates a danger in interpreting results based on coordinate systems
indiscriminately. The result here tells us that the eigenfunctions may be either
single-valued for integer  c, or double-valued for half-integral  c. In quantum
mechanics, it is normal to use the notation

T 2 = l(l + 1) (9.56)

 c = m. (9.57)

If we now use this result in the eigenvalue equation for L2, we obtain

1

sin θ

d

dθ

(
sin θ

d&

dθ

)
+

(
l(l + 1)− m2

sin2 θ

)
& = 0. (9.58)

Putting z = cos θ in this equation turns it into the associated Legendre equation,

d

dz

[
(1− z2)

dP

dz

]
+

[
l(l + 1)− m2

1− z2

]
P = 0, (9.59)
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9.4 Lorentz invariance 219

where P = &(cos θ). The solutions of the associated Legendre equation may
be found for integral and half-integral values of  c, though most books ignore
the half-integral solutions. They are rather complicated, and their form is not
specifically of interest here. They are detailed, for instance, in Gradshteyn and
Ryzhik [63]. Since the magnitude of L3 cannot exceed that of L2, by virtue of
the triangle (Schwartz) inequality,

m2 ≤ l(l + 1), (9.60)

or

−l ≤ m ≤ l. (9.61)

The rotational eigenfunctions are

|l,m〉 = Nlm Pm
l (cos θ) eimφ, (9.62)

with normalization factor

Nlm = (−1)m
√[

2l + 1

4π

(l − m)!

(l + m)!

]
. (9.63)

These harmonic eigenfunctions reflect the allowed boundary conditions for
systems on spherical spacetimes. They also reflect particle statistics under the
interchange of identical particles. The eigenvalues of the spherical harmonics
are ±1 in 3 + 1 dimensions, corresponding to (symmetrical) bosons and
(anti-symmetrical) fermions; in 2 + 1 dimensions, the Abelian rotation group
has arbitrary boundary conditions corresponding to the possibility of anyons, or
particles with ‘any’ statistics [83, 89].

9.4 Lorentz invariance

9.4.1 Physical basis

The Lorentz group is a non-compact Lie group which lies at the heart of
Einsteinian relativistic invariance. Lorentz transformations are coordinate
transformations which preserve the relativistic scalar product

xµyµ = −x0 y0 + xi yi , (9.64)

and therefore also the line element

ds2 = gµνdxµdxν. (9.65)

Lorentz transformations include, like the Galilean group, translations, rotations
and boosts, or changes of relative speed. Under a linear transformation of xµ,
we may write generally

xµ→ x ′µ = Uµ
νx
ν + aµ, (9.66)
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220 9 Spacetime transformations

where aµ is a constant translation and

Uµ
ν =

∂x ′µ

∂xν
(9.67)

is constant.

9.4.2 Lorentz boosts and rotations

A boost is a change of perspective from one observer to another in relative
motion to the first. The finite speed of light makes boosts special in Einsteinian
relativity. If we refer to figure 9.1 and consider the case of relative motion along
the x1 axis, such that the two frames S and S′ coincide at x0 = 0, the Lorentz
transformation relating the primed and unprimed coordinates may be written

x ′0 = γ (x0 − βx1) = x0 coshα − x1 sinhα

x ′1 = γ (x1 − βx0) = x1 coshα − x0 sinhα

x ′2 = x2

x ′3 = x3, (9.68)

where

γ = 1/
√

1− β2

β i = vi/c

β =
√
β iβi

α = tanh−1 β. (9.69)

The appearance of hyperbolic functions here, rather than, say, sines and cosines
means that there is no limit to the numerical values of the group elements.
The group is said to be non-compact. In matrix form, in (3 + 1) dimensional
spacetime we may write this:

L(B) =




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


 =




coshα − sinhα 0 0
− sinhα coshα 0 0

0 0 1 0
0 0 0 1




(9.70)

where the ‘rapidity’ α = tanh−1 β. This may be compared with the explicit form
of a rotation about the x1 axis:

L(R) =




1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


 . (9.71)
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9.4 Lorentz invariance 221

Notice that the non-trivial parts of these matrices do not overlap. This leads
to an important result, which we shall derive below, namely that rotations
and boosts are independent transformations which can be used to parametrize
general transformations.

The form of these matrix representations makes it clear that the n-dimensional
group of rotations, SO(n), is a sub-group with irreducible representations

Lµν(R) =
(

1 0
0 Ri j

)
, (9.72)

and similarly that boosts in a single direction also form a sub-group. General
boosts in multiple directions do not form a group, however.

The form of a general boost can be derived as a generalization of the formulae
in eqns. (9.68) on the basis of general covariance. We can write a general form
based on figure 9.1 and eqns. (9.68)

dx0′ = γ (dx0 − β i dxi )

dxi ′ = γ
(

c1 δ
i
j + c2

β iβ j

β2

)
dx j − γ β i dx0. (9.73)

The unknown coefficients label projection operators for longitudinal and trans-
verse parts with respect to the n-component velocity vector β i . By squaring the
above expressions and using the invariance of the line element

ds2 = −(dx0)2 + (dxi )2 = −(dx0′)2 + (dxi ′)2, (9.74)

giving

−(dx0′)2 = −γ 2
(
(dx0)2 − 2(β i dxi )dx0 + (β i dxi )

2
)
, (9.75)

and

(dx0′)2 =
(

c2
1 δ jk + (2c1c2 + c2

2)
β jβk

β2

)
dx j dxk

+ γ 2β2(dx0)2 − 2γ (c1 + c2)(β
i dxi )dx0, (9.76)

one compares the coefficients of similar terms with the untransformed ds2 to
obtain

c1 = 1

c2 = γ − 1. (9.77)

Thus, in 1+ n block form, a general boost may be written as

Lµν(B) =
(

γ −γβ i

−γβ i δi j + (γ − 1)βiβ j

β2

)
. (9.78)
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222 9 Spacetime transformations

9.4.3 The homogeneous Lorentz group: SO(1, n)

It is convenient to divide the formal discussion of the Lorentz group into two
parts. In the first instance, we shall set the inhomogeneous term, aµ, to zero. A
homogeneous coordinate transformation takes the form

xµ→ x ′µ = Lµνx
ν, (9.79)

where Lµν is a constant matrix. It does not include translations. After a
transformation of the line element, one has

ds ′2 = g′µν(x
′)dxµ′dxν ′

= gµν(x)L
µ
ρLνλdxρdxλ. (9.80)

The metric must compensate for this change by transforming like this:

gµν(x) = L ρ
µ L λ

ν g′ρλ(x
′). (9.81)

This follows from the above transformation property. We can see this in matrix
notation by considering the constant metric tensor ηµν = diag(−1, 1, 1, 1, . . .),
which must be invariant if the scalar product is to be preserved. In a Cartesian
basis, we have

xµyµ = ηµν xµyν = ηµν (Lx)µ(Ly)ν

xT η y = (Lx)T η (Ly)

= xTLT η Ly. (9.82)

Comparing the left and right hand sides, we have the matrix form of eqn. (9.81)
in a Cartesian basis:

η = LT η L . (9.83)

The matrices L form a group called the homogeneous Lorentz group. We
can now check the group properties of the transformation matrices L . The
existence of an associative combination rule is automatically satisfied since ma-
trix multiplication has these properties (any representation in terms of matrices
automatically belongs to the general linear group G(n, R)). Thus we must show
the existence of an inverse and thus an identity element. Acting on the left of
eqn. (9.83) with the metric

η LT η L = η2 = I = L−1 L , (9.84)

where I is the identity matrix belonging to GL(n, R). Thus, the inverse of L is

L−1 = η LT η. (9.85)

In components we have

(L−1)µν = ηµλLρληρν = L µ
ν . (9.86)

Since the transpose matrix is the inverse, we can write the Lorentz group as
SO(1, 3).
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9.4 Lorentz invariance 223

Dimension and structure of the group The symmetry in (n+1)2 components of
Lµν implies that not all of the components may be chosen independently. The
fact that only half of the off-diagonal components are independent means that
there are

dG = (n + 1)2 − (n + 1)

2
(9.87)

independent components in n+1 dimensions, given by the independent elements
of ω̃µν to be defined below. Another way of looking at this is that there are (n+
1)2 components in the matrix L ν

µ , but the number of constraints in eqn. (9.83)
limits this number. Eqn. (9.83) tells us that the transpose of the equation is
the same, thus the independent components of this equation are the diagonal
pieces plus half the off-diagonal pieces. This is turn means that the other half of
the off-diagonal equations represent the remaining freedom, or dimensionality
of the group. dG is the dimension of the inhomogeneous Lorentz group. The
components of

gµνLµαLνβ = gαβ

may be written out in 1+ n form, µ = (0, i) form as follows:

L0
0L0

0 g00 + Li
0L j

0 gi j = g00

L0
i L0

0 g00 + Lk
i Ll

0 gkl = gi0 = 0

L0
i L0

j g00 + Lk
i Ll

j gi j = gi j . (9.88)

This leads to the extraction of the following equations:

(L0
0)

2 = 1+ Li
0Li

0

L0
0L0

i = Lk
i Lk0

L0
i L j0 + Lki Lk j = δi j . (9.89)

These may also be presented in a schematic form in terms of a scalar S, a vector
V and an n × n matrix M :

Lµν =
(

S VT
i

V j Mi j

)
, (9.90)

giving

S2 = 1+ Vi Vi

SVT = VT M

I = MT M + VVT. (9.91)
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224 9 Spacetime transformations

It is clear from eqn. (9.90) how the n-dimensional group of rotations, SO(n),
is a sub-group of the homogeneous Lorentz group acting on only the spatial
components of spacetime vectors:

Lµν(R) =
(

1 0
0 Ri j

)
. (9.92)

Notice that it is sufficient to know that L 0
0 = 1 to be able to say that a Lorentz

transformation is a rotation, since the remaining equations then imply that

MT M = RT R = I, (9.93)

i.e. that the n-dimensional sub-matrix is orthogonal. The discussion of the
Lorentz group can, to a large extent, be simplified by breaking it down into
the product of a continuous, connected sub-group together with a few discrete
transformations. The elements of the group for which det L = +1 form a
sub-group which is known as the proper or restricted Lorentz group. From
the first line of eqn. (9.89) or (9.91), we have that L0

0 ≥ 1 or L0
0 ≤ −1.

The group elements with L0
0 ≥ 1 and det L = +1 form a sub-group called

the proper orthochronous Lorentz group, or the restricted Lorentz group. This
group is continuously connected, but, since there is no continuous change of
any parameter that will deform an object with det L = +1 into an object with
det L = −1 (since this would involve passing through det L = 0), this sub-group
is not connected to group elements with negative determinants. We can map
these disconnected sub-groups into one another, however, with the help of the
discrete or large Lorentz transformations of parity (space reflection) and time
reversal.

Group parametrization and generators The connected part of the homogeneous
Lorentz group may be investigated most easily by considering an infinitesimal
transformation in a representation which acts directly on spacetime tensors, i.e.
a transformation which lies very close to the identity and whose representation
indices A, B are spacetime indices µ, ν. This is the form which is usually
required, and the only form we have discussed so far, but it is not the only
representation of the group, as the discussion in the previous chapter should
convince us. We can write such an infinitesimal transformation, L(ε), in terms
of a symmetric part and an anti-symmetric part, without loss of generality:

L(ε) = I + ε(ω̃ + ω), (9.94)

where ω̃ is an anti-symmetric matrix, and I and ω together form the symmetric
part. ε is a vanishingly small (infinitesimal) number. Thus we write, with
indices,

L ρ
µ (ε) = δ ρµ + ε(ω̃ ρ

µ + ω ρ
µ ). (9.95)
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9.4 Lorentz invariance 225

Note that, for general utility, the notation commonly appearing in the literature
is used here, but beware that the notation is used somewhat confusingly. Some
words of explanation are provided below. Substituting this form into eqn. (9.81)
gives, to first order in ε,

gµν(x)L
µ
ρLνλ = gρλ + ε(ω̃ρλ + ωρλ + ω̃λρ + ωλρ)+ · · · + O(ε2).

(9.96)

Comparing the left and right hand sides of this equation, we find that

ω̃µν = −ω̃νµ
ωµν = −ωνµ = 0. (9.97)

Thus, the off-diagonal terms in L(ε) are anti-symmetric. This property survives
exponentiation and persists in finite group elements with one subtlety, which is
associated with the indefinite metric. We may therefore identify the structure of
a finite Lorentz transformation, L , in spacetime block form. Note that a Lorentz
transformation has one index up and one down, since it must map vectors to
vectors of the same type:

L ν
µ =

(
L 0

0 L i
0

L 0
j L j

i

)
. (9.98)

There are two independent (reducible) parts to this matrix representing boosts
µ, ν = 0, i and rotations µ, ν = i, j . Although the generator ω̃µν is purely
anti-symmetric, the 0, i components form a symmetric matrix under transpose
since the act of transposition involves use of the metric:

(
L i

0

)T = −L i
0 = L 0

i . (9.99)

The second, with purely spatial components, is anti-symmetric since the gen-
erator is anti-symmetric, and the metric leaves the signs of spatial indices
unchanged:

(
L j

i

)T
= −L i

j . (9.100)

Thus, the summary of these two may be written (with both indices down)

Lµν = −Lνµ. (9.101)
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226 9 Spacetime transformations

The matrix generators in a (3 + 1) dimensional representation for the Lorentz
group in (3+ 1) spacetime dimensions, T AB = T µν , are given explicitly by

T3+1
01 =




0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0




T3+1
02 =




0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0




T3+1
03 =




0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0




T3+1
12 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0




T3+1
23 =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0




T3+1
31 =




0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


 . (9.102)

Note that, because of the indefinite metric, only the spatial components of these
generators are Hermitian. This will lead us to reparametrize the components in
terms of positive definite group indices below. It is now conventional, if not a
little confusing, to write a general infinitesimal Lorentz transformation in the
form

UR = L R(ω) = IR + 1

2
iωµνT

µν

R , (9.103)

where IR and TR are the identity and generator matrices of a given representation
G R . In terms of their components A, B,

U A
B = L A

B(ω) = δA
B +

i

2
ωρσ [T ρσR ]A

B . (9.104)
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9.4 Lorentz invariance 227

The second term here corresponds to the second term in eqn. (9.95), but the
spacetime-specific indices µ in eqn. (9.95) have now been replaced by repre-
sentation indices A, B, anticipating a generalization to other representations.
A general finite element of the group in a representation G R is obtained by
exponentiation,

L A
B = exp

(
i

2
ωρσ

[
TR
ρσ
]A

B

)
(9.105)

Let us take a moment to understand this form, since it appears repeatedly in the
literature without satisfactory explanation. The ωµν which appears here is not
the same as εω̃µν a priori (but see the next point). In fact, it plays the role of
the group parameters θa in the previous chapter. Thus, in the language of the
previous chapter, one would write

U A
B = L A

B(ε) = δA
B +

i

2
θa[T a

R ]A
B

L A
B = exp

(
i

2
θa

[
TR

a
]A

B

)
. (9.106)

It is easy to see that the use of two indices is redundant notation, since most
of the elements of the generators are zeros. It is simply a convenient way to
count to the number of non-zero group dimensions dG in terms of spacetime
indicesµ, ν = 0, . . . , n+1 rather than positive definite a, b = 1, . . . , dG indices
of the group space. The factor of 1

2 in eqn. (9.105) accounts for the double
counting due to the anti-symmetry in the summation over all µ, ν indices. The
fact that two indices are used in this summation, rather than the usual one index
in T a , should not lead to confusion. To make contact with the usual notation for
generators, we may take the (3+ 1) dimensional case as an example. In (3+ 1)
dimensions, the homogeneous Lorentz group has dG = 6, and its complement
of generators may be written:

T a = {
T3+1

10, T3+1
20, T3+1

30, T3+1
12, T3+1

23, T3+1
31
}
, (9.107)

where a = 1, . . . , 6 and the group elements in eqn. (9.105) have the form

exp
(
iθaT a

)
. (9.108)

The first three T a are the generators of boosts (spacetime rotations), while the
latter three are the generators of spatial rotations. The anti-symmetric matrix of
parameters ωµν contains the components of the rapidity αi from eqn. (9.68) as
well as the angles θ i which characterize rotations. Eqn. (9.105) is general for
any representation of the Lorentz group in n+1 dimensions with an appropriate
set of matrix generators Tµν .
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228 9 Spacetime transformations

Lie algebra in 3 + 1 dimensions The generators above satisfy a Lie algebra
relation which can be written in several equivalent forms. In terms of the
two-index parametrization, one has

[TR
µν, TR

ρσ ] = i (ηνσTR
µρ + ηµσTR

νρ − ηµρTR
νσ − ηρνTR

µσ ) .

(9.109)

This result applies in any number of dimensions. To see this, it is necessary to
tie up a loose end from the discussion of the parameters ωµν and εω̃µν above.
While these two quantities play formally different roles, in the way they are
introduced above they are in fact equivalent to one another and can even be
defined to be equal. This is not in contradiction with what is stated above, where
pains were made to distinguish these two quantities formally. The resolution of
this point comes about by distinguishing carefully between which properties
are special for a specific representation and which properties are general for all
representations. Let us try to unravel this point.

The Lorentz transformation is defined in physics by the effect it has on
spacetime reference frames (see figure 9.1). If we take this as a starting
point, then we must begin by dealing with a representation in which the
transformations act on spacetime vectors and tensors. This is the representation
in which A, B → µν, and we can write an infinitesimal transformation as in
eqn. (9.95). The alternative form in eqn. (9.104) applies for any representation.
If we compare the two infinitesimal forms, it seems clear that ω̃µν plays the
role of a generator TAB , and in fact we can make this identification complete by
defining

εω̃µν =
i

2

[
ωρλT

ρλ

3+1

]µ
ν
. (9.110)

This is made clearer if we make the identification again, showing clearly the
representation specific indices:

εω̃A
B =

i

2

[
ωρλT

ρλ

3+1

]A

B
. (9.111)

This equation is easily satisfied by choosing[
T ρσ3+1

] ∼ ηρAησB . (9.112)

However, we must be careful about preserving the anti-symmetry of T3+1, so we
have [

T ρσ3+1

]A

B
= 2

i
× 1

2

(
ηρAησB − ηρBησ A

)
. (9.113)

Clearly, this equation can only be true when A, B representation indices belong
to the set of (3 + 1) spacetime indices, so this equation is only true in one
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9.4 Lorentz invariance 229

representation. Nevertheless, we can use this representation-specific result to
determine the algebra relation which is independent of representation as follows.
By writing [

T µν3+1

]A

B
= i

(
ηµAηνB − ηµBηνA

)
[
T ρσ3+1

]B

C
= i

(
ηρBησC − ηρCησ B

)
, (9.114)

it is straightforward to compute the commutator,

[T µνR , T ρσR ]A
C , (9.115)

in terms of η tensors. Each contraction over B leaves a new η with only
spacetime indices. The remaining η’s have mixed A, µ indices and occur in
pairs, which can be identified as generators by reversing eqn. (9.113). The result
with A,C indices suppressed is given by eqn. (9.109). In fact, the expression is
uniform in indices A,C and thus these ‘cancel’ out of the result; more correctly
they may be generalized to any representation.

The representations of the restricted homogeneous Lorentz group are the
solutions to eqn. (9.109). The finite-dimensional, irreducible representations can
be labelled by two discrete indices which can take values in the positive integers,
positive half-integers and zero. This may be seen by writing the generators in
a vector form, analogous to the electric and magnetic components of the field
strength Fµν in (3+ 1) dimensions:

J i ≡ T i
B =

1

2
εi jk T jk = (T 32, T 13, T 21)

K i ≡ T i
E/c = T 0i = (T 01, T 02, T 03). (9.116)

These satisfy the Lie algebra commutation rules

[T i
B, T j

B ] = iεi jk T k
B

[T i
E , TE

j ] = −iεi jk T k
E/c

2

[T i
E , T j

B ] = iεi jk T k
E . (9.117)

Also, as with electromagnetism, one can construct the invariants

T aT a = 1

2
TRµνT

µν

R = T 2
B − T 2

E/c
2

1

8
εµνρσT µνR T ρσR = −T i

E TBi/c. (9.118)

These quantities are Casimir invariants. They are proportional to the identity
element in any representation, and thus their values can be used to label the
representations. From this form of the generators we obtain an interesting
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230 9 Spacetime transformations

perspective on electromagnetism: its form is an inevitable expression of the
properties of the Lorentz group for vector fields. In other words, the constraints
of relativity balanced with the freedom in a vector field determine the form of
the action in terms of representations of the restricted group.

The structure of the group can be further unravelled and related to earlier
discussions of the Cartan–Weyl basis by forming the new Hermitian operators

Ei = 1

2
χh (TB + iTE/c)

Fi = 1

2
χh (TB − iTE/c) (9.119)

which satisfy the commutation rules

[Ei , E j ] = iχh εi jk Ek

[Fi , Fj ] = iχh εi jk Fk

[Ei , Fj ] = 0. (9.120)

The scale factor, χh , is included for generality. It is conventional to discuss
angular momentum directly in quantum mechanics texts, for which χh → h̄.
For pure rotation, we can take χh = 1. As a matter of principle, we choose
to write χh rather than h̄, since there is no reason to choose a special value
for this scale on the basis of group theory alone. The special value χh = h̄ is
the value which is measured for quantum mechanical systems. The restricted
Lorentz group algebra now has the form of two copies of the rotation algebra
su(2) in three spatial dimensions, and the highest weights of the representations
of these algebras will be the two labels which characterize the full representation
of the Lorentz group representations.

From the commutation rules (and referring to section 8.5.10), we see that the
algebra space may be spanned by a set of basis vectors ((2 max+1)(2 ′max+1)
of them). It is usual to use the notation

 c = χh (me,m f )

 max = χh (e, f ) (9.121)

in physics texts, where they are referred to as quantum numbers rather than
algebra eigenvalues. Also, the labels j1, j2 are often used for e, f , but, in the
interest of a consistent and unique notation, it is best not to confuse these with
the eigenvalues of the total angular momentum Ji which is slightly different.
In terms of these labels, the Lorentz group basis vectors may be written as
|e,me; f,m f 〉, where −e ≤ me ≤ e, − f ≤ m f ≤ f , and e,me, f,m f take
on integer or half-integer values. The Cartan–Weyl stepping operators are then,

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


9.4 Lorentz invariance 231

by direct transcription from section 8.5.10,

E±|e,me; f,m f 〉 = (E1 ± iE2)|e,me; f,m f 〉
= χh

√
(e ∓ me)(e ± me + 1) |e,me ± 1; f,m f 〉

E3|e,me; f,m f 〉 = χh me|e,me; f,m f 〉 (9.122)

and

F±|e,me; f,m f 〉 = (F1 ± iF2)|e,me; f,m f 〉
= χh

√
( f ∓ m f )( f ± m f + 1) |e,me; f,m f ± 1〉

F3|e,m j ; e,me〉 = χh m f |e,me; f,m f 〉. (9.123)

The algebra has factorized into two su(2) sub-algebras. Each irreducible repre-
sentation of this algebra may be labelled by a pair (e, f ), which corresponds to
boosts and rotations, from the factorization of the algebra into E and F parts.
The number of independent components in such an irreducible representation
is (2e + 1)(2 f + 1) since, for every e, f can run over all of its values, and
vice versa. The physical significance of these numbers lies in the extent to
which they may be used to construct field theories which describe a real physical
situations. Let us round off the discussion of representations by indicating how
these irreducible labels apply to physical fields.

9.4.4 Different representations of the Lorentz group in 3 + 1 dimensions

The explicit form of the Lorentz group generators given in eqns. (9.102) is
called the defining representation. It is also the form which applies to the
transformation of a spacetime vector. Using this explicit form, we can compute
the Casimir invariants for Ei and Fi to determine the values of e and f which
characterize that representation. It is a straightforward exercise to perform the
matrix multiplication and show that

E2 = Ei Ei = 1

4
χh

2(T 2
B − T 2

E/c
2) = 3

4
χh

2 I3+1, (9.124)

where I3+1 is the identity matrix for the defining representation. Now, this
value can be likened to the general form to determine the highest weight of
the representation e:

E2 = 3

4
χh

2 I3+1 = e(e + 1) χh
2 I3+1, (9.125)

whence we deduce that e = 1
2 . The same argument may be applied to F2, with

the same result. Thus, the defining representation is characterized by the pair of
numbers (e, f ) = ( 1

2 ,
1
2).
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232 9 Spacetime transformations

The Lorentz transformations have been discussed so far in terms of tensors,
but the independent components of a tensor are not always in an obvious form.
A vector, for instance, transforms as

Aµ→ Lµν Aν, (9.126)

but a rank 2-tensor transforms with two such Lorentz transformation matrices

Aµν → LµρLνσ Aρσ . (9.127)

The independent components of a rank 2-tensor might be either diagonal or
off-diagonal, and there might be redundant zeros or terms which are identical
by symmetry or anti-symmetry, but one could think of re-writing eqn. (9.127)
in terms of a single larger matrix acting on a new vector where only the
independent components were present, rather than two smaller matrices acting
on a tensor. Again, this has to do with a choice of representations. We just pick
out the components and re-write the transformations in a way which preserves
their content, but changes their form.

Suppose then we do this: we collect all of the independent components of any
tensor field into a column vector,

Aµνλ...ρσ ...→




a1

a2
...

aN


 , (9.128)

where N is the total number of independent components in the object being
acted upon, and is therefore the dimension of this representation. The array of
matrices L ν

µ (one for each index) can now be replaced by a single matrix L⊕
which will have as many independent components as the product of the L’s.
Often such a single matrix will be reducible into block-diagonal form, i.e. a
direct sum of irreducible representations.

The irreducible blocks of any (3+1) spacetime-dimensional Lorentz transfor-
mation of arbitrary representation dR are denoted D(e, f )(G R). A tensor trans-
formation of rank N might therefore decompose into a number of irreducible
blocks in equivalent-vector form:

L⊕A
B = D(e1, f1) ⊕ D(e2, f2) . . .⊕ D(eN , fN ). (9.129)

The decomposition of a product of transformations as a series of irreducible
representations

D(A) ⊗ D(B) =
∑
⊕

cM DM (9.130)

is called the Clebsch–Gordon series. The indices A, B run over 1, . . . , (2e +
1)(2 f + 1) for each irreducible block. For each value of e, we may take all the
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9.4 Lorentz invariance 233

Table 9.1. Spin/helicity properties of some representations of the Lorentz group in
(3+ 1) dimensions.

The number of degrees of freedom (D.F.) φ = (2e + 1)(2 f + 1). Note that the
electromagnetic field Fµν lacks the longitudinal mode ms = 0 of the massive vector
field Aµ.

Representation ‘Spin’ D.F. Description
(e, f ) ms = e + f φ

( 1
2 , 0)

1
2 2 Weyl 2-spinor

(0, 1
2)

1
2 2 Weyl 2-spinor

(0, 0) 0 1 trivial scalar

( 1
2 , 0)⊕ (0, 1

2) ± 1
2 4 Dirac 4-spinor

( 1
2 ,

1
2) 0,±1 4 4-vector Aµ

(1, 0)⊕ (0, 1) ±1 6 anti-symm. Fµν
(1, 1)⊕ (1, 0)⊕ (0, 1)⊕ (0, 0) 0,±1,±2 16 rank 2-tensor

values of f in turn, and vice versa. So which representation applies to which
field? We can look at this in two ways.

• We see that e, f are allowed by the general solution of the Lorentz
symmetry. The values are 0, 1

2 , 1, . . . . We then simply construct fields
which transform according to these representations and match them with
physical phenomena.

• We look at fields which we know about (φ, Aµ, gµν, . . .) and determine
what e, f these correspond to.

Some common values of ‘spin’ are listed in table 9.1. Counting the highest
weights of the blocks is not difficult, but to understand the difference between a
massless vector field and a massive vector field, for example (both with highest
spin weight 1), we must appreciate that these fields have quite different space-
time transformation properties. This is explained by the fact that there are two
ways in which a spin 1 field can be constructed from irreducible representations
of the Lorentz group, and they form inequivalent representations. Since we are
dealing with the homogeneous Lorentz group in a given frame, the spin is the
same as the total intrinsic angular momentum of the frame, and is defined by a
sum of the two vectors

Si ≡ Ji = Ei + Fi , (9.131)
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234 9 Spacetime transformations

with maximum helicity s given by e + f ; the range of allowed values follows
in integer steps from the rules of vector addition (see section 11.7.4). The
maximum value is when the vectors are parallel and the minimum value is when
they are anti-parallel. Thus

s = ±(e + f ),±(e + f − 1), . . . ,±|e − f |. (9.132)

The spin s is just the highest weight of the Lorentz representation. Of all
the representations which one might construct for physical models, we can
narrow down the possibilities by considering further symmetry properties. Most
physical fields do not change their properties under parity transformations
or spatial reflection. Under a spatial reflection, the generators Ei , Fi are
exchanged:

PEiP−1 = Fi

PFiP−1 = Ei . (9.133)

In order to be consistent with spatial reflections, the representations of parity-
invariant fields must be symmetrical in (e, f ). This means we can either make
irreducible representations of the form

(e, e) (9.134)

or symmetrized composite representations of the form

(e, f )⊕ ( f, e), (9.135)

such that exchanging e ↔ f leaves them invariant.

Helicity values for spin 1 For example, a spin 1 field can be made in two ways
which correspond to the massless and massive representations of the Poincaré
algebra. In the first case, a spin 1 field can be constructed with the irreducible
transformational properties of a vector field,(

1

2
,

1

2

)
. (9.136)

A field of this type would exist in nature with spin/helicities s = 0,±1. These
correspond to: (i) 2s+1 = 1, i.e. one longitudinal scalar component A0, and (ii)
2s+1 = 3, a left or right circularly polarized vector field. This characterizes the
massive Proca field, Aµ, which describes W and Z vector bosons in the electro-
weak theory. However, it is also possible to construct a field which transforms
as

(1, 0)⊕ (0, 1). (9.137)
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9.4 Lorentz invariance 235

The weight strings from this representation have only the values ms = ±1, the
left and right circular polarizations. There is no longitudinal zero component.
The values here apply to the photon field, Fµν . The symmetrization corre-
sponds to the anti-symmetry of the electromagnetic field strength tensor. The
anti-symmetry is also the key to understanding the difference between these two
representations.

One reason for looking at this example is that, at first glance, it seems
confusing. After all, the photon is also usually represented by a vector potential
Aµ, but here we are claiming that a vector formulation is quite different from
an anti-symmetric tensor formulation. There is a crucial difference between the
massive vector field and the massless vector field, however. The difference can
be expressed in several equivalent ways which all knit together to illuminate the
theme of representations nicely.

The physical photon field, Fµν , transforms like a tensor of rank 2. Because
of its anti-symmetry, it can also be written in terms of a massless 4-vector
potential, which transforms like a gauge-invariant vector field. Thus, the
massless vector field is associated with the anti-symmetric tensor form. The
massive Proca field only transforms like a vector field with no gauge invariance.
The gauge invariance is actually a direct manifestation of the difference in trans-
formation properties through a larger invariance group with a deep connection
to the Lorentz group. The true equation satisfied by the photon field is

∂µFµν = ( δµν − ∂µ∂ν)Aµ = 0, (9.138)

while the Proca field satisfies

(− + m2)Aµ = 0. (9.139)

This displays the difference between the fields. The photon field has a degree
of freedom which the Proca field does not; namely, its vector formulation is
invariant under

Aµ→ Aµ + (∂µs), (9.140)

for any scalar function s(x). The Proca field is not. Because of the gauge
symmetry, for the photon, no coordinate transformation is complete without an
associated, arbitrary gauge transformation. A general coordinate variation of
these fields illustrates this (see section 4.5.2).

Photon field δx Aµ = ενFνµ

Proca field δx Aµ = εν(∂ν Aµ).

The difference between these two results is a gauge term. This has the
consequence that the photon’s gauge field formulation behaves like an element
of the conformal group, owing to the spacetime-dependent function s(x). This
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236 9 Spacetime transformations

is very clearly illustrated in section 11.5. The gauge field Aµ must transform
like this if the tensor Fµν = ∂µAν − ∂ν Aµ which derives from it is to transform
like an element of the Lorentz group. The same is not true of the Proca field,
Aµ, which is simply a vector field without complication.

Appearances can therefore be deceptive. The spin 1 vector fields might
look the same, but the gauge invariance of the gauge field associates it with
an anti-symmetric second-rank tensor. The anti-symmetric property of the
photon tensor endows it with a property called transversality, which means
that the physical excitations of the field Ei , Bi are transverse to the direction
of propagation (i.e. to the direction of its momentum or wavenumber) ki . This
is not the case for the Proca field. It has components of its field in the direction
of motion, i.e. longitudinal components. The extra s = 0 mode in the helicity
values for the Proca field corresponds to a longitudinal mode.

For a massless field travelling in the x3 direction, kµ = (k, 0, 0, k). Transver-
sality means that

ki Fiµ = ∂ i Fiµ = 0, (9.141)

which is guaranteed by Maxwell’s equations away from sources. In gauge form,

ki Ai = 0, (9.142)

which can always be secured by a gauge transformation. For the massive vector
field, the lack of gauge invariance means that this condition cannot be secured.

9.4.5 Other spacetime dimensions

In a different number of spacetime dimensions n + 1, the whole of the above
(3 + 1) dimensional procedure for finding the irreducible representations must
be repeated, and the spin labels must be re-evaluated in the framework of a new
set of representations for the Lorentz group. This will not be pursued here.

9.4.6 Factorization of proper Lorentz transformations

From the discussion of the Lie algebra above, one sees that an arbitrary element
of the proper or restricted Lorentz group can be expressed as a product of a
rotation and a boost. This only applies to the restricted transformations, and
is only one possible way of parametrizing such a transformation. The result
follows from the fact that a general boost may be written as

L(B) =
(

γ −γβ i

−γβ i δi j + (γ − 1)βiβ j

β2

)
, (9.143)
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9.4 Lorentz invariance 237

and a rotation may be written

L(R) =
(

1 0
0 Ri j

)
. (9.144)

The result can be shown starting from a general Lorentz transformation as in
eqn. (9.98). Suppose we operate on this group element with an inverse boost (a
boost with β i →−β i :

L−1(B)L =
(

γ −γβ i

−γβ i δi j + (γ − 1)βiβ j

β2

)(
L 0

0 L i
0

L 0
j L j

i

)
, (9.145)

where we define the velocity to be

β i = −
(

Li
0

L0
0

)
. (9.146)

This makes

γ = L0
0, (9.147)

and it then follows from eqns. (9.89) that this product has the form

L−1(B)L =
(

1 0
0 M j

i

)
= L(R). (9.148)

This result is clearly a pure rotation, meaning that we can rearrange the formula
to express the original arbitrary proper Lorentz transformation as a product of a
boost and a rotation,

L = L(B)L(R). (9.149)

9.4.7 The inhomogeneous Lorentz group or Poincaré group in 3 + 1
dimensions

If the inhomogeneous translation term, aµ, is not set to zero in eqn. (9.66), one
is led to a richer and more complex group structure [137]. This is described by
the so-called inhomogeneous Lorentz group, or Poincaré group. It is a synthesis
of the physics of translations, from earlier in this chapter, and the fixed origin
behaviour of the homogeneous Lorentz group. The most general transformation
of this group can be written

x ′µ = Lµν xν + aµ, (9.150)

where aµ is an xµ-independent constant translation vector. These transfor-
mations cannot be represented by a dR = 4 representation by direct matrix
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238 9 Spacetime transformations

multiplication, but a dR = 5 representation is possible, by analogy with
eqn. (9.14), by embedding in one extra dimension:

U3+1+1xµ =
(

Lµν aµ
0 1

)(
xµ

1

)
= xµ + aµ. (9.151)

The generic infinitesimal Poincaré transformation may be written

U = 1+ i

2
ωµνT

µν

R + iερ kρR, (9.152)

for some scale χh with dimensions of action. Inspired by the differential
representation for the translation group, we find a differential form for the
homogeneous Lorentz group, which might be combined with the translation
group in a straightforward way. These are:

T µνdiff = −i(xµ∂ν − xν∂µ)

Ji = 1

2
εi jk T jk = − i

2
χh εi jk(x j∂k − xk∂ j )

Ki = T0i

pµ = χh kµ = −iχh ∂µ. (9.153)

An important difference between the inhomogeneous Lorentz group and the
homogeneous Lorentz group is that the total angular momentum generator, Ji ,
is no longer just the intrinsic angular momentum of a field, but it can include
orbital angular momentum about a point displaced from the origin. This means
that we have to be more careful than before in distinguishing spin s from
j = e + k by defining it only in an inertial rest frame with zero momentum.
It is easily verified that these representations satisfy the algebra relations. Using
these forms, it is a matter of simple algebra to evaluate the full algebraic content
of the Poincaré group:

[kµ, Tρσ ] = −i(ηµρkσ − ηµσ kρ), (9.154)

or equivalently

[k0, Ji ] = 0

[ki , Jl] = −iχh εilmkm . (9.155)

These relations are trivial statements about the transformation properties of k0

(scalar) and ki (vector) under rotations. Using the definitions above, we also find
that

[k0, Ki ] = iki

[ki , K j ] = −iχh ηi j k0. (9.156)

These relations show that a boost Ki affects k0, ki , but not k j for j �= i.
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9.4 Lorentz invariance 239

Massive fields It is a curious feature of the Poincaré group, which comes about
because it arises in connection with the finite speed of light, that the mass of
fields plays a role in their symmetry properties. Physically, massless fields are
bound to move at the speed of light so they have no rest frame about which to
define intrinsic properties, like spin, which depend on coordinate concepts. It
is therefore necessary to find another way to characterize intrinsic rotation. We
can expect mass to play a role since it is linked to the momentum, which is the
generator of translations.

The Poincaré group leaves invariant the relation

p2c2 + m2c4 = const, (9.157)

where pµ = (mc, pi ). This is, in fact, a Casimir invariant, pµ pµ, up
to dimensional factors. Recall from the discussion of translations that the
momentum may be written

pµ = χh kµ, (9.158)

where kµ is the wavenumber or reciprocal lattice vector. As in the case of the
other groups, we can label the field by invariant quantities. Here we have the
quadratic Casimir invariants

J 2 = j ( j + 1) χh
2

p2 = p2c2 + m2c4, (9.159)

which commute with the group generators and are thus independent of symme-
try basis:

[p2, pµ] = 0

[p2, Ji ] = 0

[p2, Ki ] = 0. (9.160)

A covariant rotation operator can be identified which will be useful for dis-
cussing intrinsic in chapter 11. It is called the Pauli–Lubanski vector, and it is
defined by

Wµ = 1

2
χh εµνλρT νλ pρ. (9.161)

The quadratic form, W 2, is Lorentz- and translation-invariant:

[W 2, pµ] = 0

[W 2, Tµν] = 0. (9.162)

W satisfies

Wµ pµ = 0 (9.163)
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240 9 Spacetime transformations

and

[Wµ,Wν] = iεµνρσW ρ pσ (9.164)

W 2 = −1

2
χh

2 T µνTµν p2 + χh
2 T µνT λ

ν pν pλ. (9.165)

If we consider Wµ in a rest frame where pi = 0, we have

Wµ
rest = −mc(0, J1, J2, J3)rest = −1

2
mc(0, S1, S2, S3), (9.166)

where Si may be thought of as the intrinsic (non-orbital) rotation of the field
(called spin of the representation), which is defined by

Si = Ji

∣∣∣
rest
. (9.167)

Thus, Wµ is clearly a 4-vector with the properties of intrinsic rotations in a rest
frame. Indeed, evaluating eqn. (9.164) in a rest frame, we find that

[Wi ,W j ] = −imc εi jk W k . (9.168)

Or setting Wi = −mc Ji , we recover the rotational algebra

[Ji , Jj ] = iχh εi jk J k . (9.169)

Thus the Poincaré-invariant quadratic form is

W 2
rest = m2c2 J 2 = m2c2 j ( j + 1) χh

2 IR. (9.170)

For classifying fields, we are interested in knowing which of the properties of
the field can be determined independently (or which simultaneous eigenvalues
of the symmetry operators exist). Since the rest mass m is fixed by observation,
we need only specify the 3-momentum, pi , to characterize linear motion. From
eqns. (9.155), we find that Ji and p j do not commute so they are not (non-
linearly) independent, but there is a rotation (or angular momentum) which does
commute with p j . It is called the helicity and is defined by

λ ≡ Ji p̂i , (9.171)

where p̂i is a unit vector in the direction of the spatial 3-momentum. The
commutator then becomes

[pi , Jj ]p j = iχh εi jk pk p j = 0. (9.172)

Thus, λ can be used to label the state of a field. A state vector is therefore
characterized by the labels (‘quantum numbers’ in quantum mechanics)

|&〉 ≡ |m, j, pi , λ〉, (9.173)
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9.4 Lorentz invariance 241

i.e. the mass, the linear momentum, the highest weight of the rotational
symmetry and the helicity. In a rest frame, the helicity becomes ill defined, so
one must choose an arbitrary component of the spin, usually m j as the limiting
value.

We would like to know how these states transform under a given Poincaré
transformation. Since the states, as constructed, are manifestly eigenstates of
the momentum, a translation simply incurs a phase

|&〉 → exp
(
ipµaµ

) |&〉. (9.174)

Homogeneous Lorentz transformations can be used to halt a moving state.
The state |m, j, pi , λ〉 can be obtained from |m, j, 0, si 〉 by a rotation into the
direction of pi followed by a boost exp(iθ i Ki ) to set the frame in motion. Thus

|m, j, pi , λ〉 = L |m, j, 0, si 〉. (9.175)

The sub-group which leaves the momentum pµ invariant is called the little group
and can be used to classify the intrinsic rotational properties of a field. For
massive fields in 3+1 dimensions, the little group is covered by SU (2), but this
is not the case for massless fields.

Massless fields For massless fields, something special happens as a result of
motion at the speed of light in a special direction. It is as though a field is
squashed into a plane, and the rotational behaviour becomes two-dimensional
and Abelian. The direction of motion decouples from the two orthogonal
directions. Consider a state of the field

&π 〉 = |m, s, π, λ〉, (9.176)

where the momentum πµ = π(1, 0, 0, 1) is in the x3 direction, and the Lorentz
energy condition becomes p2c2 = 0 or p0 = |pi |. This represents a ‘particle’
travelling in the x3 direction at the speed of light. The little group, which leaves
pµ invariant, may be found and is generated by

 1 = J1 + K1

 2 = J1 − K1

 3 = J3. (9.177)

Clearly, the x3 direction is privileged. These are the generators of the two-
dimensional Euclidean group of translations and rotations called I SO(2) or
E2. It is easily verified from the Poincaré group generators that the little group
generators commute with the momentum operator

[ i , pµ] |&π 〉 = 0. (9.178)
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242 9 Spacetime transformations

The commutation relations for  i are

[ 3, 1] = i 2

[ 3, 2] = −i 1

[ 1, 2] = 0. (9.179)

The last line signals the existence of an invariant sub-group. Indeed, one can
define a Cartan–Weyl form and identify an invariant sub-algebra H ,

E± =  1 ± i 2

H =  3, (9.180)

with Casimir invariant

C2 =  2
1 + 2

2

0 = [C2, i ]. (9.181)

The stepping operators satisfy

[H, E±] = ± E±, (9.182)

i.e.  c = ±1. This looks almost like the algebra for su(2), but there is
an important difference, namely the Casimir invariant.  3 does not occur in
the Casimir invariant since it would spoil its commutation properties (it has
decoupled). This means that the value of  c = m j is not restricted by the
Schwarz inequality, as in section 8.5.10, to less than± max = ± j . The stepping
operators still require the solutions for  c = m j to be spaced by integers, but
there is no upper or lower limit on the allowed values of the spin eigenvalues.
In order to make this agree, at least in notation, with the massive case, we label
physical states by  3 only, taking

 1|&π 〉 =  2|&π 〉 = 0. (9.183)

Thus, we may take the single value H =  3 =  c = m j = λ to be the angular
momentum in the direction x3, which is the helicity, since we have taken the
momentum to point in this direction. See section 11.7.5 for further discussion
on this point.

9.4.8 Curved spacetime: Killing’s equation

In a curved spacetime, the result of an infinitesimal translation from a point can
depend on the local curvature there, i.e. the translation is position-dependent.
Consider an infinitesimal inhomogeneous translation εµ(x), such that

xµ→ Lµνx
ν + εµ(x). (9.184)
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9.5 Galilean invariance 243

Then we have

∂x ′µ

∂xν
= Lµν + (∂νεµ), (9.185)

and

ds ′2 = gµν
(
Lµρ + (∂ρεµ)

)(
Lνσ + (∂σ εν)

)
dxρdxλ

= gµν
[
LµρLνλ + Lµρ(∂σ ε

ν)+ (∂ρεµ)Lνσ + · · · + O(ε2)
]

dxρdxλ.

(9.186)

The first term here vanishes, as above, owing to the anti-symmetry of ω ρ
µ .

Expanding the second term using eqn. (9.95), and remembering that both
ωµν and εµ(x) are infinitesimal so that εµωρσ is second-order and therefore
negligible, we have an additional term, which must vanish if we are to have
invariance of the line element:

∂µεν + ∂νεµ = 0. (9.187)

The covariant generalization of this is clearly

∇µεν + ∇νεµ = 0. (9.188)

This equation is known as Killing’s equation, and it is a constraint on the
allowed transformations, εµ(x), which preserve the line element, in a spacetime
which is curved. A vector, ξµ(x), which satisfies Killing’s equation is called
a Killing vector of the metric gµν . Since this equation is symmetrical, it has
1
2(n+1)2+(n+1) independent components. Since ξµ has only n+1 components,
the solution is over-determined. However, there are 1

2(n + 1)2 − (n + 1)
anti-symmetric components in Killing’s equation which are unaffected; thus
there must be

m = (n + 1)+ 1

2
(n + 1)2 − (n + 1) (9.189)

free parameters in the Killing vector, in the form:

∇µξν + ∇νξµ = 0

ξµ(x) = aµ + ωµνxν, (9.190)

where ωµν = −ωνµ. A manifold is said to be ‘maximally symmetric’ if it has the
maximum number of Killing vectors, i.e. if the line element is invariant under
the maximal number of transformations.

9.5 Galilean invariance

The relativity group which describes non-Einsteinian physics is the Galilean
group. Like the Poincaré group, it contains translations, rotations and boosts.
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244 9 Spacetime transformations

As a group, it is no smaller, and certainly no less complicated, than the Lorentz
group. In fact, it may be derived as the c →∞ limit of the Poincaré group. But
there is one conceptual simplification which makes Galilean transformations
closer to our everyday experience: the absence of a cosmic speed limit means
that arbitrary boosts of the Galilean transformations commute with one another.
This alters the algebra of the generators.

9.5.1 Physical basis

The Galilean group applies physically to objects moving at speeds much less
than the speed of light. For this reason, it cannot describe massless fields at
all. The care required in distinguishing massless from massive concepts in the
Poincaré algebra does not arise here for that simple reason. An infinitesimal
Galilean transformation involves spatial and temporal translations, now written
separately as

xi ′ = xi + δxi

t ′ = t + δt, (9.191)

rotations by θ i = 1
2ε

i jkω jk and boosts by incremental velocity δvi

x i ′ = xi − δvi t. (9.192)

This may be summarized by the standard infinitesimal transformation form

xi ′ =
(

1+ i

2
ωlm T lm

)i

j

x j

x i ′ = (1+ i&)i j x j , (9.193)

where the matrix

& ≡ kiδx
i − ω̃δt + θi T

i
B + δvi T i

E . (9.194)

The exponentiated translational part of this is clearly a plane wave:

U ∼ exp i(k · δx− ω̃δt). (9.195)

Galilean transformations preserve the Euclidean scalar product

x · y = xi yi . (9.196)

9.5.2 Retardation and boosts

Retardation is the name given to the delay experienced in observing the effect of
a phenomenon which happened at a finite distance from the source. The delay is
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9.5 Galilean invariance 245

caused by the finite speed of the disturbance. For example, the radiation at great
distances from an antenna is retarded by the finite speed of light. A disturbance
in a fluid caused at a distant point is only felt later because the disturbance
travels at the finite speed of sound in the fluid. The change in momentum felt by
a ballistic impulse in a solid or fluid travels at the speed of transport, i.e. the rate
of flow of the fluid or the speed of projectiles emanating from the source.

Retardation expresses causality, and it is important in many physical prob-
lems. In Galilean physics, it is less important than in Einsteinian physics
because cause and effect in a Galilean world (where v ( c) are often assumed
to be linked instantaneously. This is the Galilean approximation, which treats
the speed of light as effectively infinite. However, retardation transformations
become a useful tool in systems where the action is not invariant under boosts.
This is because they allow us to derive a covariant form by transforming a
non-covariant action. For example, the action for the Navier–Stokes equation
can be viewed as a retarded snapshot of a particle field in motion. It is a snapshot
because the action is not covariant with respect to boosts. We also derived a
retarded view of the electromagnetic field arising from a particle in motion in
section 7.3.4.

Retardation can be thought of as the opposite of a boost transformation. A
boost transformation is characterized by a change in position due to a finite
speed difference between two frames. In a frame x ′ moving with respect to a
frame x we have

xi (t)
′ = xi (t)+ vi t. (9.197)

Rather than changing the position variable, we can change the way we choose to
measure time taken for the moving frame to run into an event which happened
some distance from it:

tret = t − (x
′ − x)i

vi
. (9.198)

Whereas the idea of simultaneity makes this idea more complicated in the
Einsteinian theory, here the retarded time is quite straightforward for constant
velocity, vi , between the frames. If we transform a system into a new frame,
it is sometimes convenient to parametrize it in terms of a retarded time. To do
this, we need to express both coordinates and derivatives in terms of the new
quantity. Considering an infinitesimal retardation

tret = t − dxi

vi
, (9.199)

it is possible to find the transformation rule for the time derivative, using the
requirement that

dtret

dtret
= 1. (9.200)
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246 9 Spacetime transformations

It may be verified that

[
∂t + vi ∂i

] [
t − dx j

v j

]
= 1. (9.201)

Thus, one identifies

d

dtret
= ∂t + vi ∂ j . (9.202)

This retarded time derivative is sometimes called the substantive derivative. In
fluid dynamics books it is written

D

Dt
≡ d

dtret
. (9.203)

It is simply the retarded-time total derivative. Compare this procedure with the
form of the Navier–Stokes equation in section 7.5.1 and the field of a moving
charge in section 7.3.4.

9.5.3 Generator algebra

The generators TB and TE are essentially the same generators as those which
arise in the context of the Lorentz group in eqn. (9.116). The simplest way
to derive the Galilean group algebra at this stage is to consider the c → ∞
properties of the Poincaré group. The symbols TB and TE help to identify
the origins and the role of the generators within the framework of Lorentzian
symmetry, but they are cumbersome for more pedestrian work. Symbols for the
generators, which are in common usage are

J i = T i
B

N i = T i
E . (9.204)

These are subtly different from, but clearly related to, the symbols used for
rotations and boosts in the Poincaré algebra. The infinitesimal parameters, θa ,
of the group are

θa = {
δt, δxi , θ i , δvi

}
. (9.205)

In 3+ 1 dimensions, there are ten such parameters, as there are in the Poincaré
group. These are related to the symbols of the Lorentz group by

δvi = 1

2
ω0i

δxi = εi

δt = ε0/c, (9.206)
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9.6 Conformal invariance 247

and

H + mc2 = cp0 = χh c k0

H = χh ω̃ (= h̄ω̃). (9.207)

Note that the zero point is shifted so that the energy H does not include the rest
energy mc2 of the field in the Galilean theory. This is a definition which only
changes group elements by a phase and the action by an irrelevant constant.
The algebraic properties of the generators are the c →∞ limit of the Poincaré
algebra. They are summarized by the following commutators:

[ki , k j ] = 0

[Ni , N j ] = 0

[H, ki ] = 0

[H, Ji ] = 0

[H, Ni ] = iχh ki

[ki , Jl] = −iχh εilmkm

[ki , N j ] = im χh δi j

[Ji , Nl] = iεilm Nm

[Ji , Jj ] = iεi jk Jk, (9.208)

where p0/c → m is the mass, having neglected H/c = χh ω̃/c. The Casimir
invariants of the Galilean group are

J i Ji , k
i Ki , N i Ni . (9.209)

The energy condition is now the limit of the Poincaré Casimir invariant, which
is singular and asymmetrical:

pi pi

2m
= E (9.210)

(see section 13.5).

9.6 Conformal invariance

If we relax the condition that the line element ds2 must be preserved, and require
it only to transform isotropically (which preserves ds2 = 0), then we can allow
transformations of the form

ds2 = −dt2 + dx2 + dy2 + dz2

→ '2(x)
(−dt2 + dx2 + dy2 + dz2

)
, (9.211)
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248 9 Spacetime transformations

where '(x) is a non-singular, non-vanishing function of xµ. In the action, we
combine this with a similar transformation of the fields, e.g. in n+1 dimensions,

φ(x)→ '(1−n)/2φ(x). (9.212)

This transformation stretches spacetime into a new shape by deforming it with
the function '(x) equally in all directions. For this reason, the conformal
transformation preserves the angle between any two lines which meet at a vertex,
even though it might bend straight lines into curves or vice versa.

Conformal transformations are important in physics for several reasons. They
represent a deviation from systems of purely Markov processes. If a translation
in spacetime is accompanied by a change in the environment, then the state
of the system must depend on the history of changes which occurred in the
environment. This occurs, for instance, in the curvature of spacetime, where
parallel transport is sensitive to local curvature; it also occurs in gauge theories,
where a change in a field’s internal variables (gauge transformation) accompa-
nies translations in spacetime, and in non-equilibrium statistical physics where
the environment changes alongside dynamical processes, leading to conformal
distortions of the phase space. Conformal symmetry has many applications.

Because the conformal transformation is a scaling of the metric tensor, its
effect is different for different kinds of fields and their interactions. The number
of powers of the metric which occurs in the action (or, loosely speaking, the
number of spacetime indices on the fields) makes the invariance properties of the
action and the field equations quite different. Amongst all the fields, Maxwell’s
free equations (a massless vector field in) in 3 + 1 dimensions stand out for
their general conformal invariance. This leads to several useful properties of
Maxwell’s equations, which many authors unknowingly take for granted. Scalar
fields are somewhat different, and are conformally invariant in 1+1 dimensions,
in the massless case, in the absence of self-interactions. We shall consider these
two cases below.

Consider now an infinitesimal change of coordinates, as we did in the case of
Lorentz transformations:

xµ→  µνx
ν + εµ(x). (9.213)

The line element need not be invariant any longer; it may change by

ds2′ = '2(x) ds2. (9.214)

Following the same procedure as in eqn. (9.186), we obtain now a condition for
eqn. (9.214) to be true. To first order, we have:

'2(x)gµν = gµν + ∂µεν + ∂νεµ. (9.215)

Clearly, εµ and '(x) must be related in order to satisfy this condition. The
relationship is easily obtained by taking the trace of this equation, multiplying
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9.6 Conformal invariance 249

through by gµν . This gives, in n + 1 dimensions,

('2 − 1)(n + 1) = 2(∂λε
λ). (9.216)

Using this to replace '(x) in eqn. (9.215) gives us the equation analogous to
eqn. (9.187), but now for the full conformal symmetry:

∂µεν + ∂νεµ = 2

(n + 1)
(∂λε

λ)gµν. (9.217)

This is the Killing equation for the conformal symmetry. Its general solution in
n + 1 dimensions, for n > 1, is

εµ(x) = aµ + bxµ + ωµνxν + 2xµcνxν − cµx2, (9.218)

where ωµν = −ωνµ. In (1 + 1) dimensional Minkowski space, eqn. (9.217)
reduces to two equations

∂0ε0 = −∂1ε1

∂0ε1 = −∂1ε0. (9.219)

In two-dimensional Euclidean space, i.e. n = 1, followed by a Wick rotation to
a positive definite metric, this equation reduces simply to the Cauchy–Riemann
relations for εµ(x), which is solved by any analytic function in the complex
plane. After a Wick rotation, one has

∂0ε0 = ∂1ε1

∂0ε1 = −∂1ε0. (9.220)

To see that this is simply the Cauchy–Riemann relations,

d

dz∗
f (z) = 0, (9.221)

we make the identification

z = x0 + ix1

f (z) = ε0 + iε1 (9.222)

and note that

d

dz∗
= 1

2
(∂0 + i∂1) . (9.223)

This property of two-dimensional Euclidean space reflects the well known
property of analytic functions in the complex plane, namely that they all are
conformally invariant and solve Laplace’s equation:

∇2 f (xi ) = 4
d

dz

d

dz∗
f (z) = 0. (9.224)
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250 9 Spacetime transformations

It makes two-dimensional, conformal field theory very interesting. In particular
it is important for string theory and condensed matter physics of critical
phenomena, since the special analyticity allows one to obtain Green functions
and conservation laws in the vicinity of so-called fixed points.

9.6.1 Scalar fields in n + 1 dimensions

We begin by writing down the action, making the appearance of the metric
explicit:

S =
∫

dn+1x
√

g
1

c

{
1

2
(∂µφ)g

µν(∂νφ)+ V (φ)− Jφ

}
. (9.225)

Note the factor of the determinant of the metric in the volume measure: this will
also scale in the conformal transformation. We now let

gµν → '2(x)gµν

g → '2(n+1)(x) g

φ(x)→ '(1−n)/2(x)φ(x)

J → 'α(x)J , (9.226)

where α is presently unknown. It is also useful to define the ‘connection’ �µ =
'−1∂µ'. We now examine the variation of the action under this transformation:

δS =
∫

dn+1x
√

g'n+1 1

c

{
(∂µ'

(1−n)/2δφ)
gµν

'2
(∂ν'

(1−n)/2φ)

+ δV −'(1−n)/2+α J δφ
}
. (9.227)

Integrating by parts to separate δφ gives

δS =
∫

dn+1x
√

g 'n+1 1

c{
−(1+ n − 2)�µ '

(1−n)/2−2δφgµν(∂ν'
(1−n)/2φ)

− '(1−n)/2−2δφgµν(∂µ∂ν'
(1−n)/2φ)+ δV

}
. (9.228)

Notice how the extra terms involving �µ, which arise from derivatives acting
on ', are proportional to (1 + n − 2) = n − 1. These will clearly vanish
in n = 1 dimensions, and thus we see how n = 1 is special for the scalar
field. To fully express the action in terms of barred quantities, we now need
to commute the factors of ' through the remaining derivatives and cancel them
against the factors in the integration measure. Each time'(1−n)/2 passes through
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9.6 Conformal invariance 251

a derivative, we pick up a term containing 1
2(1 − n)�µ, thus, provided we have

α = −(n + 3)/2 and δV = 0, we may write

δS =
∫

dn+1x
√

g
1

c

{− φ − J
}
δφ + terms× (n − 1). (9.229)

Clearly, in 1 + 1 dimensions, this equation is conformally invariant, provided
the source J transforms in the correct way, and the potential V vanishes. The
invariant equation of motion is

− φ(x) = J . (9.230)

9.6.2 The Maxwell field in n + 1 dimensions

The conformal properties of the Maxwell action are quite different to those of
the scalar field, since the Maxwell action contains two powers of the inverse
metric, rather than one. Moreover, the vector source coupling JµAµ contains
a power of the inverse metric because of the indices on Aµ. Writing the action
with metric explicit, we have

S =
∫

dn+1x
√

g
1

c

{
1

4
Fµνg

µρgνλFρλ + Jµgµν Aν

}
. (9.231)

We now re-scale, as before, but with slightly different dimensional factors

gµν → '2(x)gµν

g → '2(n+1)(x) g

Aµ(x)→ '(3−n)/2(x)Aµ(x)

Jµ→ 'α Jµ, (9.232)

and vary the action to find the field equations:

δS =
∫

dn+1x
√

g'n+1 1

c

{
∂µ(δAν'

(3−n)/2)
gµρgνλ

'4
Fρλ

+ Jµgµν'(3−n)/2−2+αδAν
}
. (9.233)

Integrating by parts, we obtain

δS =
∫

dn+1x
1

c

√
g '(n−3)/2 δAν

{
(n − 3)�µgµρgνλFρλ

− ∂µFρλg
µρgνλ + Jµgµν'α−2

}
. (9.234)

On commuting the scale factor through the derivatives using

∂µFρλ = 1

2
(3− n)∂µ

[
�ρ Aλ − �λAρ

]+ ∂µFρλ, (9.235)
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252 9 Spacetime transformations

we see that we acquire further terms proportional to n − 3. Three dimensions
clearly has a special significance for Maxwell’s equations, so let us choose n = 3
now and use the notation ∂µ to denote the fact that the derivative is contracted
using the transformed metric gµν . This gives

δS =
∫

dn+1x
1

c

√
g
{
−∂µF

µν + J
ν
'α−2

}
δAν = 0. (9.236)

Notice that the invariance of the equations of motion, in the presence of a
current, depends on how the current itself scales. Suppose we couple to the
current arising from a scalar field which has the general form Jµ ∼ φ∗∂µφ,
then, from the previous section, this would scale by 'n−1. For n = 1, this
gives precisely α = n − 1 = 2. Note, however, that the matter field itself
is not conformally invariant in n = 3. As far as the electromagnetic sector
is concerned, however, n = 3 gives us the conformally invariant equation of
motion

∂µF
µν = J

ν
. (9.237)

The above treatment covers only two of the four Maxwell’s equations. The
others arise from the Bianchi identity,

εµνλρ∂µFλρ = 0. (9.238)

The important thing to notice about this equation is that it is independent of the
metric. All contractions are with the metric-independent, anti-symmetric tensor;
the other point is precisely that it is anti-symmetric. Moreover, the field scale
factor '3−n/2 is simply unity in n = 3, thus the remaining Maxwell equations
are trivially invariant.

In non-conformal dimensions, the boundary terms are also affected by the
scale factor, '. The conformal distortion changes the shape of a boundary,
which must be compensated for by the other terms. Since the dimension
in which gauge fields are invariant is different to the dimension in which
matter fields are invariant, no gauge theory can be conformally invariant in flat
spacetime. Conformally improved matter theories can be formulated in curved
spacetime, however, in any number of dimensions (see section 11.6.3).

9.7 Scale invariance

Conformal invariance is an exacting symmetry. If we relax the x-dependence of
'(x) and treat it as a constant, then there are further possibilities for invariance
of the action. Consider

S =
∫
(dx)

{
1

2
(∂µφ)(∂µφ)+

∑
l

1

l!
al φ

l

}
. (9.239)
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9.8 Breaking spacetime symmetry 253

Table 9.2. Scale-invariant potentials.

n = 1 n = 2 n = 3

All 1
6! gφ6 1

4!λφ
4

Let us scale

gµν → gµν '
2

φ(x)→ φ(x) '−α, (9.240)

where α is to be determined. Since the scale factors now commute with the
derivatives, we can secure the invariance of the action for certain l which satisfy,

'n+1'−2−2α = 1 = '−lα, (9.241)

which solves to give α = n+1
2 − 1, and hence,

l = n + 1

(n + 1)/2− 1
. (9.242)

For n = 3, l = 4 solves this; for n = 2, l = 6 solves this; and for n = 1, it is not
solved for any l since the field is dimensionless. We therefore have the globally
scale-invariant potentials in table 9.2.

9.8 Breaking spacetime symmetry

The breakdown of a symmetry means that a constraint on the uniformity of
a system is lost. This sometimes happens if systems develop structure. For
example, if a uniformly homogeneous system suddenly becomes lumpy, perhaps
because of a phase transition, then translational symmetry will be lost. If a
uniform external magnetic field is applied to a system, rotational invariance
is lost. When effects like these occur, one or more symmetry generators
are effectively lost, together with the effect on any associated eigenvalues
of the symmetry group. In a sense, the loss of a constraint opens up the
possibility of more freedom or more variety in the system. In the opposite
sense, it restricts the type of transformations which leave the system unchanged.
Symmetry breakdown is often associated with the lifting of degeneracy of group
eigenvalues, or quantum numbers.

There is another sense in which symmetry is said to be broken. Some
calculational procedures break symmetries in the sense that they invalidate the
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254 9 Spacetime transformations

assumptions of the original symmetry. For example, the imposition of periodic
boundary conditions on a field in a crystal lattice is sometimes said to break
Lorentz invariance,

ψ(x + L) = ψ(x). (9.243)

The existence of a topological property such as periodicity does not itself break
the Lorentz symmetry. If there is a loss of homogeneity, then translational
invariance would be lost, but eqn. (9.243) does not imply this in any way: it
is purely an identification of points in the system at which the wavefunction
should have a given value. The field still transforms faithfully as a spacetime
scalar. However, the condition in eqn. (9.243) does invalidate the assumptions
of Lorentz invariance because the periodicity length L is a constant and we know
that a boost in the direction of that periodicity would cause a length contraction.
In other words, the fact that the boundary conditions themselves are stated in a
way which is not covariant invalidates the underlying symmetry.

Another example is the imposition of a finite temperature scale β = 1/kT .
This is related to the last example because, in the Euclidean representation, a
finite temperature system is represented as being periodic in imaginary time
(see section 6.1.5). But whether we use imaginary time or not, the idea of
a constant temperature is also a non-covariant concept. If we start in a heat
bath and perform a boost, the temperature will appear to change because of
the Doppler shift. Radiation will be red- and blue-shifted in the direction of
travel, and thus it is only meaningful to measure a temperature at right angles to
the direction of travel. Again, the assumption of constant temperature does not
break any symmetry of spacetime, but the ignorance of the fact that temperature
is a function of the motion leads to a contradiction.

These last examples cannot be regarded as a breakdown of symmetry, because
they are not properties of the system which are lost, they are only a violation of
symmetry by the assumptions of a calculational procedure.

9.9 Example: Navier–Stokes equations

Consider the action for the velocity field:

S = τ
∫
(dx)

{
1

2
ρvi (Dtv

i )+ ρviv j (Dk
i jvk)+ µ

2
(∂iv

i )2 + Jiv
i

}
, (9.244)

where

Ji ≡ Fi + ∂i P, (9.245)
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9.9 Example: Navier–Stokes equations 255

and

Dt = ∂t + � = ∂t + 1

2

(
∂tρ

ρ

)
Dk

i j = δl
lδ

m
j ∂

k + �k
i j = δl

lδ
m
j ∂

k + viv j

v4
∂m(v

mvk), (9.246)

ρ
Dvi

Dt
+ (∂i P)− µ∇2vi = Fi , (9.247)

where P is the pressure and F is a generalized force. This might be the effect
of gravity or an electric field in the case of a charged fluid.

These connections result from the spacetime dependence of the coordinate
transformation. They imply that our transformation belongs to the conformal
group rather than the Galilean group, and thus we end up with connection terms

Dui

Dt
= (∂t + v j∂ j )v

i , (9.248)

where

∂µNµ = 0 (9.249)

and Nµ = (N , Nvi ).
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10
Kinematical and dynamical transformations

In addition to parameter symmetries, which express geometrical uniformity in
spacetime, some symmetries relate to uniformities in the more abstract space
of the dynamical variables themselves. These ‘internal’ symmetries can contain
group elements which depend on the spacetime parameters, so that there is a
cross-dependence on the internal and external parameters; they are intimately
connected to the concept of ‘charge’ (see also chapter 12).

Internal symmetries are not necessarily divorced from geometrical (parame-
ter) invariances, but they may be formulated independently of them. The link
between the two is forged by the spacetime properties of the action principle,
through interactions between fields which act as generators for the symmetries
(see, for instance, section 11.5).

10.1 Global or rigid symmetries

The simplest symmetries are global symmetries, whose properties are indepen-
dent of spacetime location. For example, the action

S =
∫
(dx)

{
1

2
(∂µφ)(∂µφ)+ 1

2
m2φ2

}
(10.1)

is invariant under the Z2 reflection symmetry φ(x) → −φ(x) at all spacetime
points. This symmetry would be broken by a term of the form

S =
∫
(dx)

{
1

2
(∂µφ)(∂µφ)+ 1

2
m2φ2 + 1

3!
αφ3

}
. (10.2)

The next most commonly identified symmetry is the U (1) phase symmetry,
which is exhibited by complex fields:

#→ eiθ#. (10.3)
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10.2 Local symmetries 257

The action

S =
∫
(dx)

{
1

2
(∂µ#∗)(∂µ#)+ 1

2
m2#∗#

}
(10.4)

is invariant under this transformation. This symmetry is related to the idea of
electric charge. One can say that charge is a book-keeping parameter for this
underlying symmetry, or vice versa.

Multi-component fields also possess global symmetries. For instance, the
model

S =
∫
(dx)

{
1

2
(∂µφA)(∂µφA)+ 1

2
m2φAφA

}
(10.5)

is invariant under the transformation

φA = U B
A φB, (10.6)

where

U B
A U C

B = δ C
A , (10.7)

or U TU = I . This is the group of orthogonal transformations O(N ), where
A, B = 1, . . . , N . Multi-level atom bound states can be represented in this way,
see, for instance, section 10.6.3. Multi-component symmetries of this kind are
form groups which are generally non-Abelian (see chapter 23 for further details
on the formulation of non-Abelian field theory).

The physical significance of global symmetries is not always clear a priori.
They represent global correlations of properties over the whole of spacetime
simultaneously, which apparently contradicts special relativity. Often the
analysis of global symmetries is only a prelude to studying local ones. Even
in section 10.6.3, the global symmetry appears only as a special case of a larger
local symmetry. One often finds connections between spacetime symmetries and
phase symmetries which make local symmetries more natural. This is especially
true in curved spacetime or inhomogeneous systems.

In practice, global symmetries are mainly used in non-relativistic, small
systems where simultaneity is not an issue, but there is a lingering suspicion
that global symmetries are only approximations to more complex local ones.

10.2 Local symmetries

A symmetry is called local if it involves transformations which depend on
coordinates. Allowing a phase transformation to depend on the coordinates is
sometimes referred to as ‘gauging the symmetry’. For example, the local version
of the complex U (1) symmetry is

#→ eiθ(x)φ

�µ(x)→ �µ − (∂µθ). (10.8)
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258 10 Kinematical and dynamical transformations

The action now needs to be modified in order to account for the fact that partial
derivatives do not commute with these transformations. The partial derivative is
exchanged for a covariant one, which includes the connection �µ(x),

Dµ = ∂µ + i�µ. (10.9)

S =
∫
(dx)

{
1

2
(Dµ#∗)(Dµ#)+ 1

2
m2#∗#

}
. (10.10)

The most important way in which abstract field symmetries connect with
spacetime properties is through the derivative operator, since this is the generator
of dynamical behaviour in continuous, holonomic systems.

10.3 Derivatives with a physical interpretation

Covariance with respect to local symmetries of the action may be made manifest
by re-writing the action in terms of an effective derivative. The physical
motivation for this procedure is that the ordinary partial derivative does not
have an invariant physical interpretation under local symmetry transformations.
By adding additional terms, called ‘connections’, to a partial derivative ∂µ, one
creates an ‘effective derivative’, Dµ, which does have an invariant meaning.
Although the definition of a new object, Dµ, is essentially a notational matter,
the notation is important because it assigns a unique interpretation to the new
derivative symbol, in any basis. For that reason, Dµ is called a covariant
derivative.

There are two related issues in defining derivatives which have a physical
interpretation. The first issue has to do with the physical assumption that mea-
surable quantities are associated with Hermitian operators (Hermitian operators
have real eigenvalues). The second has to do with form invariance under specific
transformations.

10.3.1 Hermiticity

According to the standard interpretation of quantum mechanics, physical quan-
tities are derived from Hermitian operators, since Hermitian operators have real
eigenvalues. Hermitian operators are self-adjoint with respect to the scalar
product:

(φ|O|φ) = (O†φ, φ) = (φ,Oφ), (10.11)

or formally

O† = O. (10.12)
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10.3 Derivatives with a physical interpretation 259

If the operator O is a derivative operator, it can be moved from the left hand side
of the inner product to the right hand side and back by partial integration. This
follows from the definition of the inner product. For example, in the case of the
Schrödinger field, we have

(ψ1, i∂µψ2) =
∫

dσψ†
1 (−i∂µ ψ2)

=
∫

dσ(−i∂µψ
†
1 ) ψ2

= −(i∂µψ1, ψ2). (10.13)

Partial integration moves the derivative fromψ2 toψ1 and changes the sign. This
sign change means that i∂µ is not a Hermitian operator. In order for a derivative
operator to be Hermitian, it must not change sign. Thus, a quadratic derivative,
∂2, would be Hermitian. For linear derivatives, we should symmetrize the left–
right nature of the derivative. Using arrow notation to show the direction in
which the derivative acts, we may write

i∂µ→ i

2
(
→
∂µ −

←
∂µ) ≡ i

2

↔
∂µ . (10.14)

Partial integration preserves the sign of
↔
∂µ.

A second important situation occurs when this straightforward partial integra-
tion is obstructed by a multiplying function. This is commonly the situation for
actions in curvilinear coordinates where the Jacobian in the volume measure is
a function of the coordinates themselves. The same thing occurs in momentum
space. To see this, we note that the volume measure in the inner product is

dσ = |J (x)|dnx, (10.15)

where J (x) is the Jacobian of the coordinates relative to a Cartesian basis.
Normally, J (x) = √

gi j (x), where gi j (x) is the spatial metric. If we now try to
integrate by parts with this volume measure, we pick up an extra term involving
the derivative of this function:∫

dσψ†
1 (−i∂µ ψ2) =

∫
dσ

(
−i∂µ − i

∂µ J

J

)
ψ

†
1 ψ2. (10.16)

This problem affects x derivatives in curved x coordinates and k derivatives in
Fourier transform space, on the ‘mass shell’. See table 10.1.

The partial derivatives in table 10.1 are clearly not Hermitian. The problem
now is the extra term owing to the coordinate-dependent measure. We can solve
this problem by introducing an extra term, called a ‘connection’, which makes
the derivative have the right properties under integration by parts. The crux
of the matter is to find a linear derivative operator which changes sign under
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260 10 Kinematical and dynamical transformations

Table 10.1. Derivatives and measures.

Derivative Measure

∂µ
√

gi j (x)dnx
∂
∂kµ

dnk
2ω(k)

integration by parts, but does not pick up any new terms. Then we are back
to the first example above, and further symmetrization is trivial. Consider the
spacetime derivative. The problem will be solved if we define a new derivative
by

Dµ = ∂µ + �µ, (10.17)

and demand that �µ be determined by requiring that Dµ only change sign under
partial integration:∫

dnxJ (x) φ1(Dµφ2) =
∫

dnxJ (x)(−Dµφ1)φ2. (10.18)

Substituting eqn. (10.17) into eqn. (10.18), we find that �µ must satisfy

−(∂µ J )+ M�µ = −M�µ, (10.19)

or

�µ = 1

2

∂µ J

J
. (10.20)

The new derivative Dµ can be used to construct symmetrical derivatives such as

D2 = DµDµ and
↔
Dµ, by analogy with the partial derivative.

10.3.2 Commutativity with transformations

The problem of additional terms arising due to the presence of functions of
the coordinates occurs not just with the integration measure but also with
transformations of the fields. Imagine a field theory involving the field variable
φ(x), a simple scalar field satisfying an equation of motion given by

− φ = −∂µ∂µφ = 0. (10.21)

We then consider the transformation

φ(x)→ φ(x)U (x), (10.22)
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10.3 Derivatives with a physical interpretation 261

where U (x) is an arbitrary function of x . This situation crops up quite often in
field theory, when U (x) is a phase transformation. The first thing we notice is
that our equation of motion (10.21) is neither covariant nor invariant under this
transformation, since

∂µφ→ (∂µφ(x))U (x)+ (∂µU (x))φ(x). (10.23)

Clearly eqn. (10.21) is only a special case of the equations of motion. Under
a transformation we will always pick up new terms, as in eqn. (10.23), since
the partial derivative does not commute with an arbitrary function U (x), so
U (x) can never be cancelled out of the equations. But, suppose we re-write
eqn. (10.23) as

(∂µφ(x)U (x)) = U (x)

(
∂µ + ∂µU

U

)
φ(x), (10.24)

and define a new derivative

Dµ = (∂µ + �µ), (10.25)

where �µ = U−1(∂µU ) = ∂µ ln U , then we have

∂µ(U (x)φ(x)) = U (x)Dµ(φ(x)). (10.26)

We can now try to make eqn. (10.21) covariant. We replace the partial derivative
by a covariant one, giving

−∂2φ(x) = −DµDµφ(x) = 0. (10.27)

The covariance can be checked by applying the transformation

−D2(U (x)φ(x)) = −U (x)∂2(φ(x)) = 0 (10.28)

so that the factor of U (x) can now be cancelled from both sides.
At this point, it almost looks as though we have achieved an invariance in

the form of the equations, but that is not so. To begin with, the derivative we
introduced only works for a specific function U (x), and that function is actually
buried in the definition of the new derivative, so all we have done is to re-write
the equation in a new notation. If we change the function, we must also change
the derivative. Also, if we add a source to the right hand side of the equations,
then this argument breaks down. In other words, while the equation is now
written in a more elegant way, it is neither covariant nor invariant since the
specific values of the terms must still change from case to case.

10.3.3 Form-invariant derivatives

To obtain invariance requires another idea – and this involves a physical
assumption. Instead of defining �µ = U−1(∂µU ), we say that �µ is itself a new
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262 10 Kinematical and dynamical transformations

physical field; in addition, we demand that the transformation law be extended
to include a transformation of the new field �µ. The new transformation rule is
then

φ(x)→ U (x)φ(x)

�µ→ �µ − ∂µ f

f
. (10.29)

�µ might be zero in some basis, but not always. Under this new assumption,
only the physical fields transform. The covariant derivative is form-invariant, as
are the equations of motion, since �µ absorbs the extra term which is picked up
by the partial differentiation.

Note how this last step is a physical assumption. Whereas everything
leading up to eqn. (10.28) has simply been a mathematical manipulation of
the formulation, the assumption that �µ is a new field, which transforms
separately, is a physical assumption. This makes symmetries of this type
dynamical symmetries, rather than coincidental kinematical symmetries, which
arise simply as a matter of fortuitous cancellations.

The covariant derivative crops up in several guises – most immediately in
connection with the interaction of matter with the electromagnetic field, and the
invariance of probabilities under arbitrary choice of quantum phase.

10.4 Charge conjugation

A charge conjugation transformation, for a field with sufficient internal symme-
try, is defined to be one which has the following properties on spin 0, 1

2 , and 1
fields:

C φ(x) C† = ηφ φ†(x)

C ψ(x) C† = ηψ ψT
(x)

C Aµ(x) C† = −Aµ. (10.30)

Under this transformation, the sign of the gauge field (and hence the sign of the
charge it represents) is reversed. It is clearly a discrete rather than a continuous
transformation. In the complex scalar case, the transformation simply exchanges
the conjugate pair of fields. This is easy to see in the formulation of the
complex scalar as a pair of real fields (see section 19.7), where the field,
Aµ, is accompanied by the anti-symmetric tensor εAB , which clearly changes
sign on interchange of scalar field components. In the Dirac spinor case, a
more complicated transformation is dictated by the Dirac matrices (see section
20.3.4).
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10.5 TCP invariance

The TCP theorem [87, 88, 105, 114] asserts that any local physical Lagrangian
must be invariant under the combined action of time reversal (T), parity (P)
and charge conjugation (C). More specifically, it claims that the effect of CP
should be the same as T. Interactions may be constructed which violate these
symmetries separately, but the TCP theorem requires the product of these
transformations

UTCP = UTUPUC (10.31)

to be conserved:

UTCP φ(x) U−1
TCP = ηcηtηp φ

†(−x)

UTCP ψ(x) U−1
TCP = −γ5ηcηtηp ψ

∗(−x)

UTCP Aµ(x) U−1
TCP = −ηcηtηp A†

µ(−x). (10.32)

A choice of phase such that ηcηtηp = 1 is natural. This transformation
has particularly interesting consequence in the case of a spin- 1

2 field. If one
considers a bi-linear term in the action, of the form

�L = ψ1(x) Oψ2(x), (10.33)

then the application of the transformation leads to

UTCP [ψ1(x) O(x)ψ2(x)] U−1
TCP = UTCP [ψ†

1γ
0 O(x)ψ2(x)] U−1

TCP

= [ψ1(−x)†γ5γ
0 O(x)γ5ψ2(−x)]

= −[ψ
†
1(−x)γ5 O(x)γ5ψ2(−x)]

= [ψ
†
1(−x)γ5 O(x)γ5ψ2(−x)]†.

(10.34)

In the last two lines, a minus sign appears first when commuting γ5 through γ 0,
then a second minus sign must be associated with commuting ψ1 and ψ2. Under
the combination of TCP, one also has scalar behaviour

γ5 O(x)γ5 = −O(−x). (10.35)

Regardless of what one chooses to view as fundamental, the invariance under
TCP and the anti-commutativity of the Dirac field go hand in hand

UTCP [ψ1(x) O(x)ψ2(x)] U−1
TCP = [ψ

†
1(−x)O(−x)ψ2(−x)]†. (10.36)

What is noteworthy about the TCP theorem is that it relates environmental,
spacetime symmetries (space and time reflection) to internal degrees of freedom
(charge reflection). This result follows from the locality and Hermiticity of the
action, but requires also a new result: the spin-statistics theorem, namely that
spin- 1

2 particles must anti-commute. This means that fermionic variables should
be represented by anti-commuting Grassman variables.
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264 10 Kinematical and dynamical transformations

10.6 Examples

The following examples show how symmetry requirements and covariance
determine the structure of the action under both internal and spacetime sym-
metries. The link between spacetime and internal symmetry, brought markedly
to bear in the TCP theorem, is also reflected through conformal symmetry and
transformation connections.

10.6.1 Gauge invariance: electromagnetism

The Schrödinger equation has the form(
− h̄2

2m
∂ i∂i + V

)
ψ = i∂tψ. (10.37)

The wavefunction ψ(x) is not a direct physical observable of this equation.
However, the probability

P = |ψ |2 (10.38)

is observable. As the modulus of a complex number, the probability is invariant
under phase transformations of the form

ψ(x)→ eiθ(x)ψ(x). (10.39)

One expects that the Schrödinger action should be invariant under this symmetry
too. It should be clear from the discussion in section 10.3 that this is not
the case as long as the phase θ(x) is x-dependent; to make the Schrödinger
equation invariant, we must introduce a new field, Aµ. By appealing to the
phenomenology of the Aharonov–Bohm effect, one can identify Aµ with the
electromagnetic vector potential.

From eqn. (2.44), one may assume the following form for the covariant
derivative:

−ih̄∂µ→−ih̄ Dµ = −ih̄

(
∂µ − i

e

h̄
Aµ

)
, (10.40)

since it only differs from a completely general expression by some constants c, h̄
and e. In explicit terms, we have chosen �µ = −i e

h̄c Aµ. The total gauge or phase
transformation is now a combination of eqns. (10.37) and (10.39), and to secure
invariance of the equation, we must perform both transformations together.

Applying the phase transformation and demanding that Dµ commute with the
phase leads to

Dµ(e
iθ(x)ψ(x)) = eiθ(x)

((
∂µ − i

e

h̄
(Aµ + ∂µs)

)
+ i(∂µθ)

)
ψ(x),

= eiθ(x)Dµ(ψ(x)) (10.41)
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where Dµ = ∂µ − i e
h̄ Aµ, and the last line follows provided we take

i(∂µθ)− i
e

h̄
(∂µs) = 0. (10.42)

Both θ(x) and s(x) are completely arbitrary scalar fields, so this relation merely
identifies them to be the same arbitrary quantity. We may therefore write the
combined phase and gauge transformations in the final form

ψ(x)→ ψ ′(x) = ei e
h̄ s(x)ψ(x)

Aµ(x)→ A′µ(x) = Aµ(x)+ (∂µs(x)), (10.43)

and Schrödinger’s equation in gauge-invariant form is(
− h̄2

2m
Di Di + V

)
ψ(x) = ih̄ Dtψ, (10.44)

where Dt = cD0. In terms of the covariant derivative, we can write the field
strength tensor as a commutator:

[Dµ, Dν] = −2i
e

h̄
Fµν. (10.45)

This may be compared with eqn. (10.58) in the following section.

10.6.2 Lorentz invariance: gravity

In the presence of a non-trivial metric gµν , i.e. in the curved spacetime of a
gravitational field, or in a curvilinear coordinate system, the Lorentz transfor-
mation is not merely a passive kinematic transformation, it has the appearance
of a dynamical transformation. This change of character is accompanied by the
need for a transforming connection, like the ones above, only now using a more
complex rule, fit for general tensor fields.

The Lorentz-covariant derivative is usually written ∇µ, so that covariance is
obtained by substituting partial derivatives in the following manner:

∂µ→ ∇µ. (10.46)

With Lorentz transformations there is a subtlety, since we are interested in many
different representations of the Lorentz group, i.e. in tensors of different rank.
For scalar fields, there is no problem for Lorentz transformations. A scalar field
does not transform under a Lorentz transformation, so the partial derivative is
Hermitian. In other words,

∇µφ(x) = ∂µφ(x). (10.47)
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266 10 Kinematical and dynamical transformations

For a vector field, however, the story is different. Now the problem is that
vectors transform according to the rules of tensor transformations and the partial
derivative of a vector field does not commute with Lorentz transformations
themselves. To fix this, a connection is required.1 As before, we look for a
connection which makes the derivative commute with the transformation law.
Consider the vector field Vµ. Let us transform it from one set of coordinates,
ξα, ξβ , to another, xµ, xν . According to the rules of tensor transformation, we
have

V ′
µ(ξ) =

∂ξβ

∂xµ
Vβ(x)

= (
x
∂µ ξ

β) Vβ(x)

= L β
µ Vβ(x). (10.48)

Let us now introduce a derivative ∇µ with the property that

∇(LV ) = L(∇′V ), (10.49)

i.e. such that the derivative ∇µ is form-invariant, but transforms dynamically
under a coordinate transformation. Let us write

∇µ = ∂µ + �µ?, (10.50)

where the question mark is to be determined. At this stage, it is not clear just
how the indices will be arranged on �, since there are several possibilities when
acting on a vector field. Let us evaluate

∇µV ′
ν(x) = ∇µ

(
L β
ν Vβ

)
= ∇µ

(
(

x
∂ν ξ

β(x))Vβ

)

= (∂µ + �µ)
(
(

x
∂ν ξ

β(x))Vβ

)
= (∂µ∂νξβ)Vβ(x)+ (∂νξβ)(∂µVβ)+ �µ(∂νξβ)Vβ. (10.51)

From the assumed form of the transformation, we expect this to be

L β
ν (∇′µVβ) = (

x
∂µ ξ

β)(∂µ + �′µ)Vβ. (10.52)

Comparing eqn. (10.51) and eqn. (10.52), we see that

(
x
∂µ ξ

β)�µ→ (
x
∂µ ξ

β)�′µ − (∂µ∂νξβ). (10.53)

1 There are two ways to derive the connection for Lorentz transformations, one is to look at
the Hermitian nature of the derivatives; the other is to demand that the derivative of a tensor
always be a tensor. Either way, one arrives at the same answer, for essentially the same reason.
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Multiplying through by (
ξ

∂α xν) and using the chain-rule, we see that the
transformation of � must be

�→ �′ − (
ξ

∂α xν)(
x
∂µ

x
∂ν ξ

β). (10.54)

This also shows us that there must be three indices on �, so that the correct
formulation of the vector-covariant derivative is

∇µ Vν = ∂µVν − �λµν Vλ, (10.55)

with transformation rule

�βαµ→ �′βαµ − (
ξ

∂α xν)(
x
∂µ

x
∂ν ξ

β). (10.56)

Thus, demanding commutativity with a dynamical transformation, once again
requires the introduction of a corrective term, or connection.

What turns a coordinate transformation into a dynamical transformation is
the spacetime dependence of the metric. It makes the coordinate transformation
into a spacetime-dependent quantity also, changing its status from a passive
kinematical property to an active dynamical one. The non-linearity which is
implied by having coordinates which depend on other coordinates is what leads
Einstein’s theory of gravity to use the concept of intrinsic curvature.

The above procedure can be generalized to any tensor field. Extra terms will
be picked up for each index, since there is a coordinate transformation term
for each index of a tensor. The sign of the correction depends on whether
indices are raised or lowered, because of the mutually reciprocal nature of the
transformations in these cases. To summarize, we have spacetime-covariant
derivatives defined as follows:

∇µφ(x) = ∂µφ(x)
∇µAν = ∂µAν − �λµν Aλ
∇µAν = ∂µAν + �νµλAλ

∇µT µσλ = ∂µT µσλ + �µρνT νσλ + �σρνT µνλ − �κT µσκ . (10.57)

Note that we can express the curvature as a commutator of covariant derivatives:

[∇µ,∇ν]ξσ = −Rλσµνξλ. (10.58)

This may be compared with eqn. (10.45).

10.6.3 The two-level atom in a strong radiation field

It was first realized by Jaynes and Cummings that a semi-classical model of a
two-level atom could reproduce the essential features of the quantum theoretical
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268 10 Kinematical and dynamical transformations

problem [79]. The two-level system has a broad repertoire of applications in
physics, from spin models to the micromaser [91]. It is related to a class of
Dicke models [37, 57], and, in the so-called rotating wave approximation, it
becomes the Jaynes–Cummings model [79] which may be solved exactly. A
Hamiltonian analysis of symmetries in this Jaynes–Cummings model is given in
ref. [7].

The symmetry techniques and principles of covariant field theory can be
applied to the two-level atom to solve the full model and eliminate the need
for the so-called rotating wave approximation. Consider the phenomenological
two-level system described by the action

S =
∫
(dx)

[
− h̄2

2m
(∂ iψA)

∗(∂iψA)− ψ∗AVAB(t)ψB

+ ih̄

2
(ψ∗Dtψ − (Dtψ)

∗ψ)

]
, (10.59)

where A, B = 1, 2 characterizes the two levels, ih̄ Dt = ih̄∂t + i�(t) in
matrix notation, and � = �AB is an off-diagonal anti-symmetrical matrix.
At frequencies which are small compared with the light-size of the atom, an
atom may be considered electrically neutral. The distribution of charge within
the atoms is not required here. In this approximation the leading interaction
is a resonant dipole transition. The connection �AB plays an analogous role
to the electromagnetic vector potential in electrodynamics, but it possesses no
dynamics of its own. Rather, it works as a constraint variable, or auxiliary
Lagrange multiplier field. There is no electromagnetic vector potential in the
action, since the field is electrically neutral in this formulation. �AB refers not
to the U (1) phase symmetry but to the two-level symmetry. Variation of the
action with respect to �(t) provides us with the conserved current.

δS

δ�AB
= i

2
(ψ∗AψB − ψ∗BψA), (10.60)

which represents the amplitude for stimulated transition between the levels. The
current generated by this connection is conserved only on average, since we are
not taking into account any back-reaction. The conservation law corresponds
merely to

∂t

(
δS

δ�AB

)
∝ sin

(
2
∫

X (t)

)
, (10.61)

where X (t) will be defined later. The potential VAB(t) is time-dependent, and
comprises the effect of the level splitting as well as a perturbation mediated
by the radiation field. A ‘connection’ �21 = −�12 is introduced since the
diagonalization procedure requires a time-dependent unitary transformation,
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and thus general covariance demands that this will transform in a different basis.
The physics of the model depends on the initial value of this ‘connection’, and
this is the key to the trivial solubility of the Jaynes–Cummings model.

In matrix form we may write the action for the matter fields

S =
∫
(dx) ψ∗AOABψB (10.62)

where

O =
[
− h̄2∇2

2m − V1 − ih̄
2 h̄ Dt J (t)+ i�12

J (t)− i�12 − h̄2∇2

2m − V2 − ih̄
2

↔
Dt

]
. (10.63)

The level potentials may be regarded as constants in the effective theory. They
are given by V1 = E1 and V2 = E2 − h̄'R where h̄'R is the interaction
energy imparted by the photon during the transition, i.e. the continuous radiation
pressure on the atom. In the effective theory, we must add this by hand, since we
have separated the levels into independent fields which are electrically neutral;
it would follow automatically in a complete microscopic theory. The quantum
content of this model is now that this recoil energy is a quantized unit of h̄',
the energy of a photon at the frequency of the source. Also, the amplitude of
the source, J , would be quantized and proportional to the number of photons
on the field. If one switches off the source (which models the photon’s electric
field), this radiation energy does not automatically go to zero, so this form is
applicable mainly to continuous operation (stimulation). The origin of the recoil
is clear, however: it is the electromagnetic force’s interaction with the electron,
transmitted to the nucleus by binding forces. What we are approximating is
clearly a JµAµ term for the electron, with neutralizing background charge.

It is now desirable to perform a unitary transformation on the action ψ →
Uψ , O→ UOU−1, which diagonalizes the operator O. Clearly, the connection
�AB will transform under this procedure by

�→ � + ih̄

2

(
U (∂tU

−1)− (∂tU )U
−1
)

(10.64)

since a time-dependent transformation is required to effect the diagonalization.

For notational simplicity we define L̂ = − h̄2∇2

2m − i
2 h̄

↔
Dt , so that the secular

equation for the action is:

(L̂ − E1 − λ)(L̂ − E2 + h̄'− λ)− (J 2 + �2
12) = 0. (10.65)

Note that since J
↔
∂t J = 0 there are no operator difficulties with this equation.

The eigenvalues are thus

λ± = L̂ − E12 + h̄'±
√

1

4
(Ẽ21 − h̄')2 + J 2 + �2

12 (10.66)
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270 10 Kinematical and dynamical transformations

≡ L̂ − E12 + h̄'±
√

h̄2ω̃2 + J 2 + �2
12 (10.67)

≡ L̂ − E12 + h̄'± h̄ωR, (10.68)

where E12 = 1
2(E1 + E2) and Ẽ21 = (E2 − E1). For notational simplicity

we define ω̃ and ωR. One may now confirm this procedure by looking for the
eigenvectors and constructing U−1 as the matrix of these eigenvectors. This may
be written in the form

U−1 =
(

cos θ − sin θ
sin θ cos θ

)
, (10.69)

where

cos θ = h̄(ω̃ + ωR)√
h̄2(ω̃ + ωR)2 + J 2 + �2

12

(10.70)

sin θ =
√

J 2 + �2
12√

h̄2(ω̃ + ωR)2 + J 2 + �2
12

. (10.71)

The change in the connection �(t) is thus off-diagonal and anti-symmetric, as
required by the gauge symmetry conservation law:

U∂tU
−1 =

(
0 ∂tθ

−∂tθ 0

)
. (10.72)

The time derivative of θ(t) may be written in one of two forms, which must
agree

(∂tθ) = ∂t cos θ

− sin θ
= ∂t sin θ

cos θ
. (10.73)

This provides a consistency condition, which may be verified, and leads to the
proof of the identities

ωR∂tωR = J ∂t J + � ∂t � (10.74)

and √
J 2 + �2(∂t + )

√
J 2 + �2 + (ω̃ + ωR)(∂t + )(ω̃ + ωR) = 0

(10.75)

for arbitrary J (t) and �(t), where

 = −1

2

∂t
(
(ω̃ + ωR)

2 + J 2 + �2
)

(ω̃ + ωR)2 + J 2 + �2
. (10.76)
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These relations are suggestive of a conformal nature to the transformation and,
with a little manipulation using the identities, one evaluates

�12/h̄ = (∂tθ) = (J ∂t J + � ∂t �)

ωR

√
J 2 + �2

[
1− (ω̃ + ωR)(ω̃ + 2ωR)

(ω̃ + ωR)2 + J 2 + �2

]
.

(10.77)

This quantity vanishes when J 2 + �2 is constant with respect to time. Owing
to the various identities, the result presented here can be expressed in many
equivalent forms. In particular, it is zero when ω̃ = 0. The equations of motion
for the transformed fields are now[

L̂ − E12 + h̄ωR i∂tθ

−i∂tθ L̂ − E12 − h̄ωR

](
ψ+
ψ−

)
= 0. (10.78)

In this basis, the centre of mass motion of the neutral atoms factorizes from
the wavefunction, since a neutral atom in an electromagnetic field is free on
average. The two equations in the matrix above may therefore be unravelled by
introducing a ‘gauge transformation’, or ‘integrating factor’,

ψ±(x) = e±i
∫ t

0 X (t ′)dt ′ ψ(x), (10.79)

where the free wavefunction in n = 3 dimensions is

ψ(x) =
∫

dω

(2π)

dnk
(2π)n

ei(k·x−ωt)δ (χ) (10.80)

is a general linear combination of plane waves satisfying the dispersion relation
for centre of mass motion

χ = h̄2k2

2m
+ h̄('− ω)− E12 = 0. (10.81)

The latter is enforced by the delta function. This curious mixture of continuous
(ω) and discontinuous (') belies the effective nature of the model and the
fact that its validity is only for a continuous operation (an eternally sinusoidal
radiation source which never starts or stops). The relevance of the model is thus
limited by this. Substituting this form, we identify X (t) as the integrating factor
for the uncoupled differential equations. The complete solution is therefore

ψ±(x) = e∓i
∫ t

0 (ωR+i∂t θ)dt ′ ψ(x). (10.82)

Notice that this result is an exact solution, in the sense of being in a closed form.
In the language of a gauge theory this result is gauge-dependent. This is because
our original theory was not invariant under time-dependent transformations.
The covariant procedure we have applied is simply a method to transform the
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272 10 Kinematical and dynamical transformations

equations into an appealing form; it does not imply invariance of the results
under a wide class of sources.

That this system undergoes transitions in time may be seen by constructing
wavefunctions which satisfy the boundary conditions where the probability of
being in one definite state of the system is zero at t = 0. To this end we write
(1 = 1

2(ψ+ + ψ−) and (0 = 1
2i(ψ+ − ψ−). In order to proceed beyond this

point, it becomes necessary to specify the initial value of �12. This choice carries
with it physical consequences; the model is not invariant under this choice.
The obvious first choice is to set this to zero. This would correspond to not
making the rotating wave approximation in the usual two-level atom, with a
cosine perturbation. Focusing on the state (0 which was unoccupied at t = 0
for �12 = 0,

(0 = sin

(∫ t

0
dt ′

[√
ω̃2 + h̄−2 J 2

0 cos2('t ′)

− iω̃
J0' sin('t ′)

2h̄ωR

[
ω̃ + J 2

0 cos2('t ′)
h̄2(ω̃ + ωR)

]−1
])
ψ(x). (10.83)

We are interested in the period, and the amplitude of this quantity, whose
squared norm may be interpreted as the probability of finding the system in
the prepared state, given that it was not there at t = 0. Although the integral
is then difficult to perform exactly, it is possible to express it in terms of
Jacobian elliptic integrals, logarithms and trig functions. Nevertheless it is clear
that ω̃ = 1

2(Ẽ21/h̄ − ') is the decisive variable. When h̄ω̃ ( J0 is small,
the first term is J0 cos('t) and the second term is small. This is resonance,
although the form of the solution is perhaps unexpected. The form of the
wavefunction guarantees a normalized result which is regular at ω̃ = 0, and one

has (0 ∼ sin
(∫ t

0 dt ′ J0
h̄ cos('t ′)

)
, which may be compared with the standard

result of the Jaynes–Cummings model (0 ∼ sin(J0t/h̄). In the quantum case
the amplitude of the radiation source, J0, is quantized as an integral number, N',
of photons of frequency '. Here we see modulation of the rate of oscillation by
the photon frequency (or equivalently the level spacing). In a typical system, the
photon frequency is several tens of orders of magnitude larger than the coupling
strength J0 ( h̄' ∼ Ẽ12 and thus there is an extremely rapid modulation of
the wavefunction. This results in an almost chaotic collapse–revival behaviour
with no discernible pattern, far from the calm sinusoidal Rabi oscillations of the
Jaynes–Cummings model. If h̄ω̃ ∼ J0, the second term is of order unity, and
then, defining the normalized resonant amplitude

A = J0√
h̄2ω̃2 + J 2

0

, (10.84)
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10.7 Global symmetry breaking 273

one has

(0 ∼ sin

(
J0'

A
E ('t, A)− A

∫
d('t)

sin('t)√
1− A2 sin2('t)

)
ψ(x).

(10.85)

The Jacobian elliptical integral E(α, β) is a doubly periodic function, so one
could expect qualitatively different behaviour away from resonance. On the
other hand, far from resonance, h̄ω̃ * J0, the leading term of the connection
becomes (0 ∼ sin (ω̃t) ψ(x) ∼ sin ('t) ψ(x), and the effect of the level
spacing is washed out.

One can also consider other values for the connection. Comparing �12 to
the off-diagonal sources γ µDµ, predicted on the basis of unitarity in effective
non-equilibrium field theory [13], one obtains an indication that, if the initial
connection is in phase with the time derivative of the perturbation, then one
can effectively ‘re-sum’ the decay processes using the connection. This is a
back-reaction effect of the time-dependent perturbation, or a renormalization
in the language of ref. [13]. If one chooses �12 = J0 sin('t), this has the
effect of making the off-diagonal terms in the action not merely cosines but
a complex conjugate pair J0 exp(±i't). This corresponds to the result one
obtains from making the rotating wave approximation near resonance. This
initial configuration is extremely special. With this choice, one has exactly

(0 = sin

(∫ t

0
dt ′

[√
ω̃2 + h̄−2 J 2

0

])
ψ(x). (10.86)

The stability of the solution is noteworthy, and the diagonalizing transformation
is rendered trivial. The connection ∂tθ is now zero under the diagonalizing
transformation. Thus, the above result is exact, and it is the standard result of
the approximated Jaynes–Cummings model. This indicates that the validity of
the Jaynes–Cummings model does not depend directly on its approximation, but
rather on the implicit choice of a connection.

10.7 Global symmetry breaking2

The dynamical properties of certain interacting fields lead to solution surfaces
whose stable minima favour field configurations, which are ordered, over
random ones. Such fields are said to display the phenomenon of spontaneous
ordering, or spontaneous symmetry breaking. This is a phenomenon in which
the average behaviour of the field, in spite of all its fluctuations, is locked into
a sub-set of its potential behaviour, with less symmetry. A classic example of

2 h̄ = c = µ0 = ε0 = 1 in this section.
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274 10 Kinematical and dynamical transformations

this is the alignment of spin in ferromagnetism, in which rotational symmetry is
broken into a linear alignment.

Spontaneous symmetry breaking can be discussed entirely within the frame-
work of classical field theory, but it should be noted that its dependence on
interactions raises the problem of negative energies and probabilities, which is
only fully resolved in the quantum theory of fields.

When a continuous global symmetry is broken (i.e. when its average state
does not express the full global symmetry), one sees the appearance of massless
modes associated with each suppressed symmetric degree of freedom. These
massless modes are called Nambu–Goldstone bosons [59, 60, 99, 100]. To see
how they arise, consider the action

S =
∫
(dx)

{
1

2
(∂µφA)(∂µφA)+ 1

2
m2φAφA + λ

4!
(φAφA)

2

}
. (10.87)

The interaction potential V (φ) = 1
2 m2φ2 + λ

4!φ
4 has a minimum at

ieh̄c2 ∂V (φ)

∂φA
= m2φA + λ

6
φA(φBφB) = 0. (10.88)

This would therefore be the equilibrium value for the average field. Note that
a non-zero value for 〈φ〉, within a bounded potential λ > 0, is possible only
if m2 < 0. Suppose one now considers the effect of fluctuations, or virtual
processes, in the field. Following the procedure of chapter 6, one may split the
field into an average (constant) part 〈φ〉 and a fluctuating (quickly varying) part
ϕ,

φA = 〈φ〉A + ϕA. (10.89)

Expressed in terms of these parts, the terms of the action become:

(∂µφA)(∂µφA)→ (∂µϕ)(∂µϕ)

1

2
m2φAφA → 1

2
(〈φ〉A〈φ〉A + 2〈φ〉AϕA + ϕAϕA)

(φAφA)
2 → (〈φ〉A〈φ〉A)+ 4(〈φ〉A〈φ〉A)(〈φ〉BϕB)

+ 2(ϕAϕA)(〈φ〉B〈φ〉B)+ 4(ϕA〈φ〉A)(ϕB〈φ〉B)

+ 4(〈φ〉AϕA)(ϕBϕB)+ (ϕAϕA)
2. (10.90)

To quadratic order, the action therefore takes the form

S =
∫
(dx)

{
1

2
(∂µϕ)(∂µϕ)+ 1

2
ϕA

(
m2 + λ

6
〈φ〉2

)
ϕA

+λ
6
ϕA(〈φ〉A〈φ〉B)ϕB + · · ·

}
. (10.91)
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10.7 Global symmetry breaking 275

If the action is evaluated at the minimum of the potential, substituting for
the minimum 〈φ〉A, the quadratic masslike terms do not vanish, nor is any
asymmetry created. The action is still invariant under rotations in A, B space,
with a different mass matrix λ/3〈φ〉A〈φ〉B . However, if one postulates that it is
favourable to select a particular combination for 〈φ〉A, e.g. let A, B = 1, 2 and
〈φ〉1 = 0, 〈φ〉2 = 〈φ〉, thus breaking the symmetry between degenerate choices,
then the quadratic terms become:

1

2
ϕ1

(
m2 + λ

6
〈φ〉2

)
ϕ1 + 1

2
ϕ2

(
m2 + λ

2
〈φ〉2

)
ϕ2. (10.92)

The first of these terms, evaluated at the minimum, vanishes, meaning that ϕ1

is a massless excitation at the equilibrium solution. It is a Nambu–Goldstone
boson, which results from the selection of a special direction. The rotational
A, B symmetry of the fluctuating field ϕA is still present, but the direction of the
average field is now chosen at all points.

In this two-dimensional rotational example, the special direction was chosen
by hand, using the ad hoc assumption that the scalar field would have an
energetically favoured ordered state. Clearly, one could have chosen any
direction (linear combination of φA from the rotational invariance), and the
result would be the same, due to the original symmetry. Since these are all
equivalent, it takes only the energetic selection of any one of them to lead to an
ordering, and thus spontaneous symmetry breaking. In the parametrization

# = 1√
2
ρ eiθ (10.93)

the symmetry properties of the action become even more transparent. The action
is now:

S =
∫
(dx)

[
1

2
(∂µρ)(∂µρ)+ 1

2
m2ρ2 + λ

4!
ρ4

]
. (10.94)

This, assuming a stable average state ρ → 〈ρ〉 + ρ, gives, to quadratic order:

S =
∫
(dx)

{
ρ

[
− + m2 + λ

2
〈ρ〉2

]
ρ + 〈ρ〉2 θ(− )θ + · · ·

}
(10.95)

The radial θ excitation is clearly massless. This parametrization has presented
several technical challenges in the quantum theory however, so we shall not
pursue it in detail.

The foregoing argument can be generalized to any continuous global group,
either Abelian or non-Abelian. Suppose that the action

S =
∫
(dx)

{
T (∂µφA)− V (φA)

}
(10.96)
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276 10 Kinematical and dynamical transformations

is invariant under a symmetry group G, of dimension dG ; then, if it is
energetically favourable for the field to develop a stable average 〈φ〉A with
restricted behaviour, such that

φi → 〈φ〉i + ϕi (10.97)

for a sub-set of the components i ∈ A, there must a minimum in the potential,
such that

∂V

∂φi

∣∣∣∣∣
φ=〈φ〉

= 0. (10.98)

The field there splits into two parts:

φA →
{ 〈φ〉i + ϕi ∈ H
φi ∈ G/H

. (10.99)

The first part has a stable average and small fluctuations around this value.
The remainder of the components are unconstrained fluctuations, which are
orthogonal in the group theoretical sense from the others. For the components
with non-zero averages, one may expand the potential around the minimum:

V (φA) = V (φA)

∣∣∣
φA=〈φ〉A

+ ∂2V

∂ϕA∂ϕB

∣∣∣
φA=〈φ〉A

ϕAϕB + · · · . (10.100)

The form and value of the potential are unchanged by a group transformation G,
since the action is invariant under G. Moreover, by assumption of a minimum,
one must have

MAB = ∂2V

∂ϕi∂ϕ j

∣∣∣
φA=〈φ〉A

≥ 0. (10.101)

To determine whether any of the components of this have to be zero, one uses the
assumption that the average state is invariant under the sub-group H . Invariance
under H means that

V (UH 〈φ〉) = V (〈φ〉)+ ∂
2V (〈φ〉)
∂ϕi∂ϕ j

δH 〈φ〉iδH 〈φ〉 j + · · · ; (10.102)

thus, δH 〈φ〉i = 0 and M2
i j is arbitrary, since the transformation itself is null-

potent at 〈φ〉. However, if one transforms the average state by an element which
does not belong to the restricted group H , then δG〈φ〉 �= 0, and

V (UG〈φ〉) = V (〈φ〉)+ ∂
2V (〈φ〉)
∂ϕA∂ϕB

δG〈φ〉AδG〈φ〉B + · · · . (10.103)
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10.7 Global symmetry breaking 277

Thus, for any A, B which do not belong to i, j , the mass terms M2
AB = 0 for

invariance of the potential. These are the massless modes. There are clearly
dimG/H = dG − dH of these massless elements, which correspond to all of the
fluctuations which are not constrained by the average state.

This argument does not depend on whether the group is Abelian or non-
Abelian (except that the coset dimension G/H does not apply to groups like
U (1)), only on the fact that a stable average emerges, picking out a special
direction in group space. Since even a single group generator, corresponding to
a single component of the field, generates a sub-group, the average field lies in
a group of its own (the factor group). If the group H is an Abelian sub-group,
such as Z N , (generated by the Cartan sub-algebra of the full Lie algebra), then
the resulting factor group shares the same algebra as the full group, only the
centre of the group is broken. This changes the dimension of the representation,
but does not change the universal cover group for the symmetry. If H is not an
Abelian sub-group, then the basic algebra of the symmetry must also change.

The Nambu–Goldstone mechanism is a relative suppression of certain fluc-
tuations, rather than a breakdown of fundamental symmetry. For example, in
a crystal, with an Rn symmetry, the crystal lattice breaks up translations into
Rn/Z N , leading to massless vector fields, which are phonons.

It is not clear from the above that the choice of symmetry breaking potential
is actually feasible: it has not been shown that the fluctuations around the
average state are small enough to sustain the average value that was assumed.
This requires a more lengthy calculation, using the generating functionals of
chapter 6. Moreover, unless the result of the calculation can be determined
entirely by quadratic terms, one is forced to use quantum field theory to
calculate the expectation values, since there are questions of negative energies
and probabilities which are only resolved by operator ordering in the second
quantization. General theorems exist which prohibit the existence of Goldstone
bosons, due to infra-red divergences, and thus global symmetry breaking in less
than three spatial dimensions cannot occur by this mechanism [27, 97].

The occurrence of spontaneous symmetry breaking assumes that it will be
possible to find a system in which the effective mass squared in the action is less
than zero. Clearly no such fundamental fields exist: they would be tachyonic.
However, composite systems, or systems influenced by external forces, can have
effective mass-squared terms which have this property. This is exploited in
heuristic studies of phase transitions, where one often writes the mass term as:

m2(T ) =
(

T − Tc

Tc

)
m2

0 (10.104)

which gives rise to a second-order phase transition at critical temperature Tc

(n > 2), i.e. a change from an ordered average state at low temperature to a
disordered state above the critical temperature.
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278 10 Kinematical and dynamical transformations

10.8 Local symmetry breaking3

The predominance of gauge theories in real physical models leads one to ask
whether symmetry breaking phenomena could occur in local gauge theories.
Here one finds a subtly different mechanism, originally pointed out by Anderson
[3], inspired by an observation of Schwinger [117], and rediscovered in the
context of non-Abelian field theory by Higgs [68, 69, 70]. It is called the
Anderson–Higgs mechanism, or simply the Higgs mechanism.

The action for this model is that of a complex scalar field coupled to the
electromagnetic field. It is sometimes used as a simple Landau–Ginsburg
model of super-conductivity (see section 12.6). It is also referred to as scalar
electrodynamics. A straightforward non-Abelian generalization is used in
connection with the Standard Model; this is discussed in many other references
[136]. The action in complex form is written

S =
∫
(dx)

{
(Dµ#)†(Dµ#)+ m2#†#+ λ

3!
(#†#)2 + · · ·

+1

4
FµνFµν

}
. (10.105)

Here we have only written a #4 interaction explicitly, with coupling constant λ.
Other interactions are also possible depending on the criteria for the model. In
the quantum theory, restrictions about renormalizability exclude higher powers
of the field in 3 + 1 dimensions. In 2 + 1 dimensions one may add a term
8g
6! (#

†#)3. Odd powers of the fields are precluded by the fact that the action
must be real. The covariant derivative is usually written Dµ = ∂µ + ieAµ. The
conserved current generated by the gauge field Aµ is therefore

δSφ
δAµ

= Jµ = ie(#†(Dµ#)− (Dµ#)†#). (10.106)

The action clearly has a basic U (1) symmetry. An alternative form of the action
is obtained by re-writing the complex field in terms of two real component fields
φA, where A = 1, 2, as follows:

#(x) = 1√
2
(φ1 + iφ2). (10.107)

The covariant derivative acting on the fields can then be expanded in real and
imaginary parts to give

DµφA = ∂µφA − eεABφB Aµ. (10.108)

3 h̄ = c = µ0 = ε0 = 1 in this section.
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10.8 Local symmetry breaking 279

The action then takes the more complicated form

S =
∫
(dx)

{
1

2
(∂µφA)(∂µφA)− e(∂µφA)εAB AµφB

+ 1

2
e2εABεACφBφC AµAµ + λ

4!
(φAφA)

2 + 1

4
FµνFµν

}
.

(10.109)

Expressed in this language, the conserved current becomes

Jµ = e εAB (φA DµφB). (10.110)

This shows the anti-symmetry of the current with respect to the field components
in this O(2) formulation.

Suppose, as before, that one component of the scalar field develops a constant
non-zero expectation value φ1 → 〈φ〉 + ϕ1; the action can be expanded around
this solution. Once again, this must be justified by an energy calculation to show
that such a configuration is energetically favourable; is non-trivial and will not
be discussed here. It is interesting to compare what happens in the presence of
the Maxwell field with the case in the previous section. The part of the action,
which is quadratic in ϕ1, φ2, Aµ is the dynamical part of the fluctuations. It is
given by

S(2) =
∫
(dx)

{
1

2
ϕ1

[
− + m2 + λ

2
〈φ〉2

]
ϕ1

+ 1

2
φ2

[
− + m2 + λ

6
〈φ〉2 + e2〈φ〉2

]
φ2

+ 2eϕ1 Aµ(∂µ〈φ〉)+ 1

2
Aµ

[− + e2〈φ〉2] Aµ
}

(10.111)

This may be diagonalized with the help of the procedure analogous to
eqn. (A.11) in Appendix A. The identity

1

2
φ2 Aφ2 + Bφ2 = 1

2
(φ + B A−1)A(φ2 + A−1 B)− 1

2
B A−1 B

(10.112)

with

A =
[
− + m2 + λ

6
〈φ〉2 + e2〈φ〉2

]
B = −2eϕ1 Aµ(∂µ〈φ〉) (10.113)
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results in an action of the form

S(2) =
∫
(dx)

{
1

2
ϕ1

[
− + m2 + λ

2
〈φ〉2

]
ϕ1

+ 1

2
Aµ

[
(− + e2〈φ〉2)gµν + G∂µ∂ν

]
Aν

}
(10.114)

where G is a gauge-dependent term. The details of this action are less interesting
than its general characteristics. Unlike the case of the global symmetry,
there is only one remaining scalar field component. The component which
corresponds to the Goldstone boson, disappears in the variable transformations
and re-appears as a mass for the vector field. The lack of a Goldstone
boson is also interesting, since it circumvents the problems associated with
Goldstone bosons in lower dimensions n < 3 [27, 97]. Although it is only
an idealized effective theory, this local symmetry breaking mechanism indicates
that symmetry breaking is indeed possible when one relaxes the rigidity of a
global group.

The transmutation of the massless scalar excitation into a mass for the vector
field can be seen even more transparently in the unitary gauge. The unitary
gauge is effected by the parametrization

# = 1√
2
ρ eiθ (10.115)

Bµ = Aµ + 1

e
∂µθ (10.116)

so that the action becomes

S =
∫

dV

{
1

4
FµνFµν + 1

2
(∂µρ)(∂µρ)+ 1

2
e2ρ2 BµBµ

+1

2
m2ρ2 + λ

4!
ρ4

}
(10.117)

What looks like a gauge transformation by a phase θ is now a dynamical
absorption of the Goldstone boson. This is sometimes stated by saying that
the Goldstone boson is ‘eaten up’ by the gauge field, as if the photon were some
elementary particular Pacman. A more field theoretical description is to say
that the Goldstone mode modulates the fluctuations of the electromagnetic field,
making them move in a wavefront. This wavefront impedes the fluctuations
by an amount that depends upon the gauge coupling constant e. The result
is an effective mass for the gauge fluctuations, or a gap in their spectrum of
excitations. However one states it, the Goldstone field ceases to be a separate
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excitation due to the coupling: its modulation of the vector field’s zero point
energy breaks the gauge invariance of the fluctuations and it re-appears, with a
new status, as the extra mode of the vector field.

It cannot be emphasized enough that the assumption that there exists a stable
average state of lower symmetry than the fluctuations of the theory is ad hoc, and
its consistency has to be proven. Even today, this remains one of the toughest
challenges for quantum field theory.

10.9 Dynamical symmetry breaking mechanisms

The Nambu–Goldstone or Anderson–Higgs models of symmetry breaking can-
not be fundamental theories, because they do not explain how the mass-squared
terms, in their Lagrangians, can become negative. As such, they must be
regarded as effective actions for deeper theories. Moreover, their apparent
reliance on the existence of an arbitrary scalar field has been controversial, since,
in spite of the best efforts of particle physicists, no one has to date observed a
Higgs scalar particle. The introduction of a scalar field is not the only way in
which gauge symmetries can be broken, however. At least two other possibilities
exist. Both rely on quantum dynamical calculations, but can be mentioned
here.

One such mechanism was suggested in connection with field theories on
topologically non-trivial spacetimes (e.g. the torus), based on an idea by
Ford [52], that non-trivial average states, such as vortices could occur around
topological singularities in spacetime. The main idea is that a gauge field Aµ→
〈Aµ〉 + Aµ (either Abelian or non-Abelian) can acquire a non-zero expectation
value around a hole in spacetime. In simply connected spacetimes (without
holes), such constant vector field configurations are gauge-equivalent to zero
and thus have no invariant meaning. However, around a topological singularity,
such transformations are restricted by the cohomology of the manifold. One
example is that of a periodic crystal, which has the same boundary conditions as
the surface of a torus, and is therefore relevant in solid state physics.

In the Abelian theory, the phenomenon is a purely classical, statistical effect,
though for non-Abelian symmetries the non-linearity makes it the domain of
quantum field theory. It is equivalent to there being a constant magnetic flux
through the centre of the hole. In some theories, such expectation values might
occur spontaneously, by the dynamics of the model (without having to assume
a negative mass squared ad hoc). In the Abelian case, this results only in a
phase. However, it was later explored in the context of non-Abelian symmetries
by Hosotani [72] and Toms [129] and developed further in refs. [17, 19, 20, 21,
32, 33]. Such models are of particular interest in connection with grand unified
theories, such as Kaluza–Klein and string theory, where extra dimensions are
involved. Topological singularities also occur in lower dimensions in the form
of vortices and the Aharonov–Bohm effect.
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282 10 Kinematical and dynamical transformations

The second mechanism is the Coleman and Weinberg mechanism [28], which
is a purely quantum effect for massless fields, whereby a non-trivial average
state can be created truly spontaneously, by the non-linearities of massless scalar
electrodynamics. Quantum fluctuations themselves lead to the attainment of an
ordered state. It is believed that this mechanism leads to a first-order phase
transition [66, 86], rather than the second-order transitions from the Goldstone
and Higgs models.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


11
Position and momentum

Field theory is ripe with objects referred to colloquially as coordinates and
momenta. These conjugate pairs play a special role in the dynamical formulation
but do not necessarily imply any dimensional relationship to actual positions or
momenta.

11.1 Position, energy and momentum

In classical particle mechanics, point particles have a definite position in space
at a particular time described by a dynamical trajectory x(t). The momentum
p(t) = m dx(t)

dt . In addition, one has the energy of the particle, p2

2m + V , as a
book-keeping parameter for the history of the particle’s momentum transactions.

In the theory of fields, there is no a priori notion of particles: no variable
in the theory represents discrete objects with deterministic trajectories; instead
there is a continuous field covering the whole of space and changing in time. The
position x is a coordinate parameter, not a dynamical variable. As Schwinger
puts it, the coordinates in field theory play the role of an abstract measurement
apparatus [119], a ruler or measuring rod which labels the stage on which the
field evolves. Table 11.1 summarizes the correspondence.

The quantum theory is constructed by replacing the classical measures of
position, momentum and energy with operators satisfying certain commutation
relations:

[x,p] = ih̄ (11.1)

and

[t, E] = −ih̄. (11.2)

These operators have to act on something, and indeed they act on the fields,
but the momentum and energy are represented by the operators themselves
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284 11 Position and momentum

Table 11.1. Dynamical variables.

Canonical Particle Field
position mechanics theory

Parameter space t x, t
Dynamical variable x(t) φ(x, t)

independently of the nature of the fields. Let us see why this must be so. The
obvious solution to the commutators above is to represent t and x by algebraic
variables and E and p as differential operators:

pi = −ih̄∂i

E = ih̄∂t . (11.3)

If we check the dimensions of these operator expressions, we find that h̄∂i has
the dimensions of momentum and that h̄∂t has the dimensions of energy. In
other words, even though these operators have no meaning until they act on
some field, like this

piψ = −ih̄∂iψ

Eψ = ih̄∂tψ, (11.4)

it is the operator, or its eigenvalues, which represent the momentum and energy.
The field itself is merely a carrier of the information, which the operator extracts.
In this way, it is possible for the classical analogues of energy and momentum,
by assumption, to be represented by the same operators for all the fields. Thus
the dimensions of these quantities are correct regardless of the dimensions of
the field.

The expectation values of these operators are related to the components of the
energy–momentum tensor (see section 11.3),

pi c = −
∫

dσ 0θ0i = 〈pi c〉

E p =
∫

dσ 0θ00 = 〈HD〉 . (11.5)

HD is the differential Hamiltonian operator, which through the equations of
motion is related to ih̄∂t . The relationship does not work for the Klein–Gordon
field, because it is quadratic in time derivatives. Because of their relationship
with classical concepts of energy and momentum, E p and Pi may also be
considered as mechanical energy and momenta.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core
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Table 11.2. Canonical pairs for the fields.

Field ‘X ’ ‘P’

Klein–Gordon φ h̄2c2∂0φ

Dirac ψ ψ†

Schrödinger ψ ih̄ψ∗

Maxwell Aµ D0i

Separate from these manifestations of mechanical transport are a number of
other conjugate pairs. The field q itself is a basic variable in field theory, whose
canonical conjugate ∂0q is often referred to as a conjugate momentum; see
table 11.2. That these quantities do not have the dimensions of position and
momentum should be obvious from these expressions; thus, it should be clear
that they are in no way connected with the mechanical quantities known from the
classical theory. In classical electrodynamics there is also a notion of ‘hidden’
momentum which results from self-interactions [71] in the field.

11.2 Particles and position

The word particle is dogged by semantic confusion in the quantum theory of
matter. The classical meaning of a particle, namely a localized pointlike object
with mass and definite position, no longer has a primary significance in many
problems. The quantum theory of fields is often credited with re-discovering
the particle concept, since it identifies countable, discrete objects with a number
operator in Fock space. The objects which are counted by this operator are
really quanta, not particles in the classical sense. They are free, delocalized,
plane wave objects with infinite extent. This is no problem for physics. In fact,
it is possible to speak of momentum and energy transfer, without discussing
the nature of the objects which carry these labels. However, it is sometimes
important to discuss localizability.

In spite of their conceptual demotion, it is clear that pointlike particle events
are measured by detectors on a regular basis and thus have a practical signifi-
cance. Accordingly, one is interested in determining how sharply it is possible
to localize a particle in space, i.e. how sharp a peak can the wavefunction, and
hence the probability, develop? Does this depend on the nature of the field, for
instance, the other quantum numbers, such as mass and spin? This question
was asked originally by Wigner and collaborators in the 1940s and answered for
general mass and spin [6, 101].

The localizability of different types of particle depends on the existence of a
Hermitian position operator which can measure it. This is related to the issue
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286 11 Position and momentum

of physical derivatives in section 10.3. Finding such an operator is simple in
the case of the non-relativistic Schrödinger field, but is less trivial for relativistic
fields. In particular, massless fields, such as the photon, which travel at the speed
of light, seem unlikely candidates for localization since they can never be halted
in one place.

11.2.1 Schrödinger field

The Schrödinger field has a scalar product

(ψ,ψ) =
∫

dnx ψ∗(x)ψ(x)

=
∫

dnk
(2π)n

ψ∗(k)ψ(k). (11.6)

Its wavefunctions automatically have positive energy, and thus the position
operator may be written

(ψ, x̂ψ) =
∫

dnx ψ∗(x)x̂ψ(x)

=
∫

dnk
(2π)n

ψ∗(k)
(

i
∂

∂k

)
ψ(k). (11.7)

This is manifestly Hermitian. If one translates one of these wavefunctions a
distance a from the other, then, using

ψ(a) = eik·aψ(0), (11.8)

one has

(ψ(a), ψ(0)) =
∫

dnx ψ∗(0)ψ(0) ≡ δ(a)

=
∫

dnx eik·a. (11.9)

This is an identity. It shows that the Schrödinger wavefunction can be localized
with delta-function precision. Point particles exist.

11.2.2 Klein–Gordon field

The Klein–Gordon field does not automatically have only positive energy
solutions, so we must restrict the discussion to the set of solutions which have
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11.2 Particles and position 287

strictly positive energy. The scalar product on this positive energy manifold is

(φ(+), φ(+)) =
∫

dnx (φ(+)∗
↔
∂0 φ

(+)),

=
∫
(dk) φ(+)∗(k)φ(+)(k) θ(−k0)δ(p

2c2 + m2c4)

=
∫
(dk)
2|p0|e

−ik·a|φ(+)0 |2. (11.10)

A translation by a such that φ(+)(a) = eik·aφ0(k) makes the states orthogonal;

(φ(+)(a), φ(+)(0)) = δn(a)

=
∫
(dk)e−ik·a

=
∫
(dk)
2|p0|e

−ik·a|φ(+)0 |2. (11.11)

For the last two lines to agree, we must have

φ
(+)
0 (k) =

√
2|p0|, (11.12)

and thus the extent of the field about the point a is given by

φ(+)(x− a) =
∫

(dk)√
2|p0|

e−ik·(x−a), (11.13)

which is not a delta function, and thus the Klein–Gordon particles do not exist
in the same sense that Schrödinger particles do. There exist only approximately
localizable concentrations of the field. The result of this integral in n dimensions
can be expressed in terms of Bessel functions. For instance, in n = 3,

φ(+)(a) ∼
(m

r

) 5
4

H (1)
5
4
(imr) (11.14)

where r = |x−a|. This lack of sharpness is reflected in the nature of the position
operator x̂ acting on these states:

(φ(+)(a), x̂φ(+)(a)) =
∫
(dk)
2|p0|φ

∗(k) x̂ φ(k). (11.15)

Clearly, the partial derivative ∂
∂k is not a Hermitian operator owing to the factors

of p0 in the measure. It is easy to show (see section 10.3) that the addition of
the connection term,

x̂ = i
∂

∂k
+ i

2

k

p2
0

, (11.16)

is what is required to make this operator Hermitian.
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288 11 Position and momentum

11.2.3 Dirac field

The Dirac field also has both positive and negative energy states, and particle
wavefunctions must be restricted to positive energies. It shares with the Klein–
Gordon field the inability to produce sharp delta-function-like configurations
of the field. The expression for the position operator is extremely complicated
for the spin- 1

2 particles, owing to the constraints imposed by the γ -matrices.
Although the procedure is the same, in principle, as for the Klein–Gordon field,
the details are aggravated by the complexity of the field equations for the Dirac
field.

The scalar product for localizable solutions is now, by analogy with
eqn. (11.11),

(ψ(+), ψ(+)) =
∫

(dk)
(2p0)2

|ψ |2, (11.17)

since there is no time derivative in the scalar product. Restricting to positive
energies is also more complex, owing to the matrix nature of the equation. The
normalized positive energy solutions include factors of

N =
√

E

E + mc2
=

√
−p0

(−p0 + mc)
, (11.18)

giving

(ψ(+), x̂ψ(+)) =
∫

(dk)
(2p0)2

u† N x̂ Nu. (11.19)

A suitable Hermitian operator for the position

x̂ = N

(
−i
∂

∂k
+ �

)
N (11.20)

must now take into account all of these factors of the momentum.

11.2.4 Spin s fields in 3+ 1 dimensions

The generalization to any half-integral and integral massive spin fields can be
accomplished using Dirac’s construction for spin 1

2 . It is only sketched here. A
spin-s field may be written as a direct product of 2s spin- 1

2 blocks. Following
Wigner et al. [6, 101], the wavefunction may be written in momentum space as

ψ(k)α (11.21)

where α = 1, . . . , 2s represents the components of 2s four-component spin
blocks (in total 2s × 4 components). The sub-spinors satisfy block-diagonal
equations of motion:

(γ µα pµ + mc)ψα = 0. (11.22)
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11.3 The energy–momentum tensor θµν 289

The γ -matrices all satisfy the Clifford algebra relation (see chapter 20),{
γ µα , γ

ν
α

} = −2gµν. (11.23)

The scalar product for localizable positive energy solutions may thus be found
by analogy with eqn. (11.17):

(ψ1, ψ2) =
∫
(dp)ψ1 γ

0
1 . . . γ

0
2s ψ2

=
∫
(dp)

( |mc|
p0

)2s+1

γ
†
1 γ2, (11.24)

since, in the product over blocks, each normalization factor is multiplied in turn.
Wigner et al. drop the factors of the mass arbitrarily in their definitions, since
these contribute only dimensional factors. It is the factors of p0 which affect the
localizability of the fields. The localizable wavefunction is thus of the form

|ψ |2 ∼ p2s+1
0 . (11.25)

The normalization of the positive energy spinors is

∑
ξ

|u|2 =
(

p0 + mc

2p0

)2s

. (11.26)

Combining the factors of momentum, one arrives at a normalization factor of

N =
(

p0

p0 + mc

)s

×
√

p2s+1
0 (11.27)

and a Hermitian position operator of the form

(ψ, x̂ψ) =
∫

(dp)

2p2s+1
0

(
u N

(
−i
∂

∂k
+ �

)
N u

)
. (11.28)

Notice that the extra factors of the momentum lead to a greater de-localization.
This expression contains the expressions for spin 0 and spin 1

2 as special cases.
For massless fields, the above expressions hold for spin 0 and spin 1

2 , but break
down for spin 1, i.e. the photon.

11.3 The energy–momentum tensor θµν

Translational invariance of the action implies the conservation of momentum.
Time-translation invariance implies the conservation of energy. Generally,
invariance of one variable implies the conservation of its conjugate variable.
In this section, we see how symmetry under translations of coordinates leads to
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290 11 Position and momentum

the definition of energy, momentum and shear stress in a mechanical system of
fields.

In looking at dynamical variations of the action, we have been considering
changes in the function φ(x). Now consider variations in the field which occur
because we choose to translate or transform the coordinates xµ, i.e.

δxφ(x) = (∂µφ(x))δxµ, (11.29)

where we use δx to distinguish a coordinate variation and

δxµ = x ′µ − xµ. (11.30)

The variation of the action under such a change is given by

δS =
∫
(dx ′)L(x ′)−

∫
(dx)L(x), (11.31)

which is manifestly zero, in the absence of boundaries, since the first term
is simply a re-labelling of the second. We shall consider the action of an
infinitesimal change δxµ and investigate what this tells us about the system.
Since we are not making a dynamical variation, we can expect to find quantities
which are constant with respect to dynamics.

To calculate eqn. (11.31), we expand the first term formally about x :

L(x ′) = L(x)+ δL(1) + · · ·
= L(x)+ (∂µL)δxµ + O((δx)2). (11.32)

The volume element transforms with the Jacobian

(dx ′) = det

(
∂x ′µ

∂xν

)
(dx), (11.33)

thus, we require the determinant of

x
∂ν x ′µ = δµν + (∂νδxν). (11.34)

This would be quite difficult to compute generally, but fortunately we only
require the result to first order in δxµ. Writing out the infinite-dimensional
matrix explicitly, it is easy to see that all the terms which can contribute to first
order lie on the diagonal:

 1+ ∂1δx1 ∂1δx2 . . .

∂2δx1 1+ ∂2δx2 . . .
...

...


 . (11.35)
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11.3 The energy–momentum tensor θµν 291

Now, the determinant is the product of all the terms along the diagonal, plus
some other terms involving off-diagonal elements which do not contribute to
first order; thus, it is easy to see that we must have

det(
x
∂ν x ′µ) = 1+ ∂µδxµ + O((δx)2). (11.36)

Using this result in eqn. (11.34), we obtain, to first order,

δS =
∫
(dx)

{
δL(1) + (∂µδxµ)L

}
. (11.37)

Let us now use this result to consider the total variation of the action under a
combined dynamical and coordinate variation. In principle, we should proceed
from here for each Lagrangian we encounter. To make things more concrete,
let us make the canonical assumption that we have a Lagrangian density which
depends on some generic field q(x) and its derivative ∂µq(x). This assumption
leads to correct results in nearly all cases of interest – it fails for gauge theories,
because the definition of the velocity is not gauge-covariant, but we can return
to that problem later. We take

L = L
(
q(x), (∂µq(x)), xµ

)
. (11.38)

Normally, in a conservative system, xµ does not appear explicitly, but we
can include this for generality. Let us denote a functional variation by δq as
previously, and the total variation of q(x) by

δTq = δq + (∂µq)δxµ. (11.39)

The total variation of the action is now

δTS =
∫
(dx)

{
δL
δq
δq + δL

δ(∂µq)
δ(∂µq)+ (∂µL)δxµ + (∂µδxµ)L

}
,

(11.40)

where the first two terms originate from the functional variation in eqn. (4.21)
and the second two arise from the coordinate change in eqn. (11.32). We
now make the usual observation that the δ variation commutes with the partial
derivative (see eqn. (4.19)), and thus we may integrate by parts in the second
and fourth terms of this expression to give

δTS =
∫
(dx)

{(
δL
δq
− ∂µ δL

δ(∂µq)

)
δq

}

+
∫
(dx)

{
∂µ

[
δL

δ(∂µq)
δq + Lδxµ

]}
. (11.41)

One identifies the first line as being that which gives rise to the Euler–Lagrange
field equations. This term vanishes by virtue of the field equations, for any
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292 11 Position and momentum

classically acceptable path. The remaining surface term can be compared with
eqn. (4.62) and represents a generator for the combined transformation. We
recognize the canonical momentum !µ from eqn. (4.66). To display this term
in its full glory, let us add and subtract

δL
δ(∂µq)

(∂νq)δx
ν (11.42)

to the surface term, giving

δTS = 1

c

∫
dσµ

{
!µ(δq + (∂νq)δxν)− θµνδxν

}
= 1

c

∫
dσµ

{
!µδTq − θµνδxν

}
, (11.43)

where we have defined

θµν = δL
δ(∂µq)

(∂νq)− Lgµν. (11.44)

This quantity is called the energy–momentum tensor. Its µ, ν = 0, 0 component
is the total energy density or Hamiltonian density of the system. Its µ, ν =
0, i components are the momentum components. In fact, if we expand out the
surface term in eqn. (11.43) we have terms of the form

!δq − Hδt + pδx+ · · · . (11.45)

This shows how elegantly the action principle generates all of the dynamical
entities of our covariant system and their respective conjugates (the delta objects
can be thought of as the conjugates to each of the dynamical generators).
Another way of expressing this is to say

• ! is the generator of q translations,

• H is the generator of t translations,

• p is the generator of x translations,

and so on. That these differential operators are the generators of causal changes
can be understood from method 2 of the example in section 7.1. A single partial
derivative has a complementary Green function which satisfies

∂x G(x, x ′) = δ(x, x ′). (11.46)

This Green function is simply the Heaviside step function θ(t − t ′) from
Appendix A, eqn. (A.2). What this is saying is that a derivative picks out a
direction for causal change in the system. In other words, the response of the
system to a source is channelled into a change in the coordinates and vice versa.
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11.3 The energy–momentum tensor θµν 293

11.3.1 Example: classical particle mechanics

To illustrate the energy–momentum tensor in the simplest of cases, we return to
the classical system, with the Lagrangian given by eqn. (4.5). This Lagrangian
has no µν indices, so our dogged Lorentz-covariant formalism is strictly wasted,
but we may take µ to stand for the time t or position i and use the general
expression. Recognizing that the metric for classical particles is δµν rather than
gµν , we have

θt t = ∂L

∂q̇i
q̇i − Lδt t

= pi q̇
i − L

= 1

2
mq̇2 + V (q)

= H. (11.47)

The off-diagonal spacetime components give the momentum,

θti = ∂L

∂q̇ j

∂q j

∂qi
= p jδ

j
i = pi = mq̇i , (11.48)

and

θi i = −L , (11.49)

which has no special interpretation. The off-diagonal i j components vanish in
this case.

The analogous analysis can be carried out for relativistic point particles.
Using the action in eqn. (4.32), one finds that

θττ = ∂L

∂ t x
(∂t x)+ L

= ∂L

∂τx
(∂τx)+ L

= mu2 − 1

2
mu2 + V ′

= 1

2
mu2 + V, (11.50)

where u = dx/dτ is the velocity, or

θt t = 1

2
mv2 + V . (11.51)

11.3.2 Example: the complex scalar field

The application of eqn. (11.44) for the action

S =
∫
(dx)

{
h̄2c2(∂µφA)

∗(∂µφA)+ m2c4φ∗AφA + V (φ)
}
, (11.52)
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294 11 Position and momentum

gives us the following components for the energy–momentum tensor:

θ00 = ∂L
∂(∂0φA)

(∂0φA)+ ∂L
∂(∂0φ∗A)

(∂0φ
∗
A)− Lg00

= h̄2c2
[
(∂0φ

∗
A)(∂0φA)+ (∂iφ

∗
A)(∂iφA)

]+ m2c4 + V (φ).

(11.53)

Thus, the last line defines the Hamiltonian density H, and the Hamiltonian is
given by

H =
∫

dσH. (11.54)

The off-diagonal spacetime components define a momentum:

θ0i = θi0 = ∂L
∂(∂0φ)A

(∂iφ)A + ∂L
∂(∂0φ∗A)

(∂iφ
∗
A)

= h̄2c2
{
(∂0φ

∗
A)(∂iφA)+ (∂0φA)(∂iφ

∗
A)
}
. (11.55)

Taking the integral over all space enables us to integrate by parts and write this
in a form which turns out to have the interpretation of the expectation value
(inner product) of the field momentum (see chapter 9):∫

dσθ0i = −h̄2c2
∫

dσ
(
φ∗∂i∂0φ − (∂0φ

∗)∂iφ
)

= −(φ, pi cφ), (11.56)

where p = −ih̄∂i . The diagonal space components are given by

θi i = ∂L
∂(∂ iφA)

(∂iφA)+ ∂L
∂(∂ iφ∗A)

(∂iφ
∗
A)− L

= 2h̄2c(∂iφ
∗)(∂iφ)− L, (11.57)

where i is not summed. Similarly, the off-diagonal ‘stress’ components are given
by

θi j = ∂L
∂(∂ iφA)

(∂ jφA)+ ∂L
∂(∂ iφA)

(∂ jφA)

= h̄2c2
{
(∂iφ

∗
A)(∂ jφA)+ (∂ jφ

∗
A)(∂iφA)

}
= h̄−1c(φA, pi p jφA). (11.58)

From eqn. (11.57), we see that the trace over spatial components in n + 1
dimensions is ∑

i

θi i = H− 2m2c4φ2
A − 2V (φ)+ (n − 1)L, (11.59)
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11.3 The energy–momentum tensor θµν 295

so that the full trace gives

θµµ = gµνθνµ = −2m2c4φ2
A − 2V (φ)+ (n − 1)L. (11.60)

Note that this vanishes in 1+ 1 dimensions for zero mass and potential.

11.3.3 Example: conservation

We can also verify the energy–momentum conservation law, when the fields
satisfy the equations of motion. We return to this issue in section 11.8.1. For the
simplest example of a scalar field with action,

S =
∫
(dx)

{
1

2
(∂µφ)(∂µφ)+ 1

2
m2φ2

}
. (11.61)

Using eqn. (11.44), we obtain the energy–momentum tensor

θµν = 1

2
(∂µφ)(∂νφ)− 1

2
mφ2. (11.62)

The spacetime divergence of this is

∂µθµν = −(− φ + m2φ)(∂νφ) = 0. (11.63)

The right hand side vanishes as a result of the equations of motion, and thus the
conservation law is upheld.

It is interesting to consider what happens if we add a potential V (x) to the
action. This procedure is standard practice in quantum mechanics, for instance.
This can be done by shifting the mass in the action by m2 → m2 + V (x). The
result of this is the following expression:

∂µθµν = ( φ − (m2 + V (x))φ)(∂νφ)+ (∂νV )φ2

= (∂νV (x))φ2. (11.64)

The first term vanishes again by virtue of the equations of motion. The
spacetime-dependent potential does not vanish, however. Conservation of
energy is only assured if there are no spacetime-dependent potentials. This
illustrates an important point, which is discussed more generally in section
11.8.1.

The reason that the conservation of energy is violated here is that a static
potential of this kind is not physical. All real potentials change in response to
an interaction with another field. By making a potential static, we are claiming
that the form of V (x) remains unchanged no matter what we scatter off it. It is
an immovable barrier. Conservation is violated because, in a physical system,
we would take into account terms in the action which allow V (x) to change in
response to the momentum imparted by φ. See also exercise 1, at the end of this
chapter.
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296 11 Position and momentum

11.4 Spacetime invariance and symmetry on indices

For reasons which should become apparent in section 11.6.1, the energy–
momentum tensor, properly defined under maximal symmetry, is symmetrical
under interchange of its indices. This reflects the symmetry of the metric tensor
under interchange of indices. If the Lorentz symmetry is broken, however (for
instance, in the non-relativistic limit), then this property ceases to apply. In a
relativistic field theory, a non-symmetrical tensor may be considered simply
incorrect; in the non-relativistic limit, only the spatial part of the tensor is
symmetrical.

11.5 θµν for gauge theories

Consider the Maxwell action

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ

}
. (11.65)

A direct application of the formula in eqn. (11.44) gives an energy–momentum
tensor which is not gauge-invariant:

θµν = ∂L
∂(∂µAα)

(∂ν Aα)− 1

4µ0
Fρσ Fρσ gµν. (11.66)

The explicit appearance of Aµ in this result shows that this definition cannot
be physical for the Maxwell field. The reason for this lack of gauge invariance
can be traced to an inaccurate assumption about the nature of a translation, or
conformal transformation of the gauge field [44, 76]; it is related to the gauge
invariance of the theory. The expression for θµν in eqn. (11.44) relies on the
assumption in eqn. (11.29) that the expression for the variation in the field by
change of coordinates is given by

δx Aµ = (∂αAµ)δx
α. (11.67)

It is clear that this translation is not invariant with respect to gauge transforma-
tions, but this seems to be wrong. After all, potential differences are observable
as electric and magnetic fields between two points, and observable quantities
should be gauge-invariant. In terms of this quantity, the energy–momentum
tensor can be written as

θµνδx
ν = ∂L

∂(∂µAα)
(δx Aα)− 1

4µ0
Fρσ Fρσ gµνδx

ν. (11.68)

Suppose now that we use this as a more fundamental definition of θµν . Our
problem is then to find a more appropriate definition of δx Aµ, which leads to a
gauge-invariant answer. The source of the problem is the implicit assumption
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11.5 θµν for gauge theories 297

that the field at one point in spacetime should have the same phase as the field
at another point. In other words, under a translation of coordinates, we should
expect the field to transform like a vector only up to a gauge transformation.
Generalizing the transformation rule for the vector potential to account for this
simple observation cures the problem entirely. The correct definition of this
variation was derived in section 4.5.2.

The correct (gauge-invariant) transformation is now found by noting that we
may write

δx Aµ = (∂ν A′µ(x))ε
ν + (x ′

∂µ ε
ν)Aν

= ενFνµ + ∂µ(εν Aν). (11.69)

This last term has the form of a gauge-invariant translation plus a term which
can be interpreted as a gauge transformation ∂µs (where s = εν Aν). Thus
we may now re-define the variation δx Aµ to include a simultaneous gauge
transformation, leading to the gauge-invariant expression

δx Aµ(x) ≡ δx Aµ − ∂µs = ενFνµ, (11.70)

where εµ = δxµ. The most general description of the translation εµ, in 3 + 1
dimensions is a 15-parameter solution to Killing’s equation for the conformal
symmetry [76],

∂µεν + ∂νεµ − 1

2
gµν∂γ ε

γ = 0, (11.71)

with solution

εµ(x) = aµ + bxµ + ωµνxν + 2xµcνxν − cµx2, (11.72)

where ωµν = −ωνµ. This explains why the conformal variation in the tensor Tµν
gives the correct result for gauge theories: the extra freedom can accommodate
x-dependent scalings of the fields, or gauge transformations.

The anti-symmetry of Fµν will now guarantee the gauge invariance of
θµν . Using this expression in eqn. (11.43) for the energy–momentum tensor
(recalling εµ = δxµ) gives

θ ′µν =
δL

δ(∂µAα)
F α
ν − Lgµν

= 2
δL
δFµα

F α
ν − Lgµν

= µ−1
0 FµαF α

ν −
1

4µ0
Fρσ Fρσ gµν. (11.73)

This result is manifestly gauge-invariant and can be checked against the tradi-
tional expressions obtained from Maxwell’s equations for the energy density and
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298 11 Position and momentum

the momentum flux. It also agrees with the Einstein energy–momentum tensor
Tµν .

The components in 3+ 1 dimensions evaluate to:

θ00 = µ−1
0

(
F0i F i

0 − Lg00
)

= Ei Ei

c2µ0
+ 1

2µ0

(
Bi Bi − Ei Ei

c2

)

= 1

2µ0

(
E2

c2
+ B2

)

= 1

2
(E · D+ B ·H), (11.74)

which has the interpretation of an energy or Hamiltonian density. The spacetime
off-diagonal components are given by

θ0 j = θ j0 = µ−1
0 F0i F i

j

= µ−1
0 εi jk Ei Bk/c

= −(E×H)k
c

, (11.75)

which has the interpretation of a ‘momentum’ density for the field. This
quantity is also known as Poynting’s vector divided by the speed of light. The
conservation law is

∂µθµ0 = −1

c
∂tH+ ∂i (H× E)i = 1

c
∂µSµ = 0, (11.76)

which may be compared with eqns. (2.70) and (2.73). Notice finally that

δS

δx0
= −

∫
dσθ00, (11.77)

and thus that

δS

δt
= −H, (11.78)

which is the energy density or Hamiltonian. We shall have use for this relation
in chapter 14.

11.6 Another energy–momentum tensor Tµν

11.6.1 Variational definition

Using the action principle and the Lorentz invariance of the action, we have
viewed the energy–momentum tensor θµν as a generator for translations in space
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11.6 Another energy–momentum tensor Tµν 299

and time. There is another quantity which we can construct which behaves as
an energy–momentum tensor: it arises naturally in Einstein’s field equations
of general relativity as a source term for matter. This tensor is defined by the
variation of the action with respect to the metric tensor:

Tµν = 2√
g

δS

δgµν
. (11.79)

Clearly, this definition assumes that the action is covariant with respect to the
metric gµν , so we should not expect this to work infallibly for non-relativistic
actions.

The connection between Tµν and θµν is rather subtle and has to do with con-
formal transformations. Conformal transformations (see section 9.6) are related
to re-scalings of the metric tensor, and they form a super-group, which contains
and extends the Lorentz transformation group; thus Tµν admits more freedom
than θµν . As it turns out, this extra freedom enables it to be covariant even
for local gauge theories, where fields are re-defined by spacetime-dependent
functions. The naive application of Lorentz invariance for scalar fields in section
11.3 does not automatically lead to invariance in this way; but it can be fixed, as
we shall see in the next section. The upshot of this is that, with the exception of
the Maxwell field and the Yang–Mills field, these two tensors are the same.

To evaluate eqn. (11.79), we write the action with the metric made explicit,
and write the variation:

δS =
∫

dn+1x
√

g

(
1√
g

δg

δgµν
L+ δL

δgµν

)
, (11.80)

where we recall that g = −det gµν . To evaluate the first term, we note that

δg

δgµν
= −δdet gµν

δgµν
, (11.81)

and use the identity

ln detgµν = Tr ln gµν. (11.82)

Varying this latter result gives

δ ln(detgµν) = Trδ ln gµν, (11.83)

or

δ(detgµν)

detgµν
= δgµν

gµν
. (11.84)

Using this result, together with eqn. (11.81), in eqn. (11.80), we obtain

Tµν = 2
∂L
∂gµν

− gµνL. (11.85)
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300 11 Position and momentum

This definition is tantalizingly close to that for the Lorentz symmetry variation,
except for the replacement of the first term. In many cases, the two definitions
give the same result, but this is not the case for the gauge field, where Tµν
gives the correct answer, but a naive application of θµν does not. The clue as
to their relationship is to consider how the metric transforms under a change of
coordinates (see chapter 25). Relating a general action gµν to a locally inertial
frame ηµν , one has

gµν = V α
µ V β

ν ηαβ, (11.86)

where the vielbein V α
µ = ∂ ′µxα, so that

gµν(∂µφ)(∂νφ) = ηαβV µ
αV ν

β(∂µφ)(∂νφ). (11.87)

In terms of these quantities, one has

Tµν = 2√
g

δS

δgµν
= Vαµ

det V

δS

δV µ
α

. (11.88)

Thus, one sees that variation with respect to a vector, as in the case of θµν
will only work if the vector transforms fully covariantly under every symmetry.
Given that the maximal required symmetry is the conformal symmetry, one may
regard Tµν as the correct definition of the energy–momentum tensor.

11.6.2 The trace of the energy–momentum tensor Tµν

The conformal invariance of the field equations is reflected in the trace of the
energy–momentum tensor Tµν , which we shall meet in the next chapter. Its
trace vanishes for actions which are conformally invariant. To see this, we note
that, in a conformally invariant theory,

δS

δ'
= 0. (11.89)

If we express this in terms of the individual partial transformations, we have

δS

δ'
= δS

δgµν
δgµν

δ'
+ δS

δφ

δφ

δ'
= 0. (11.90)

Assuming that the transformation is invertible, and that the field equations are
satisfied,

δS

δφ
= 0, (11.91)

we have

1

2
√

g Tµν
δgµν

δ'
= 0. (11.92)
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11.6 Another energy–momentum tensor Tµν 301

Since δgµν

δ'
must be proportional to gµν , we have simply that

Tµνg
µν = Tr Tµν = 0. (11.93)

A similar argument applies to the tensor θµν , since the two tensors (when defined
correctly) agree. In the absence of conformal invariance, one may expand the
trace in the following way:

T µµ = βiLi , (11.94)

where Li are terms in the Lagrangian of i th order in the fields. β i is then called
the beta function for this term. It occurs in renormalization group and scaling
theory.

11.6.3 The conformally improved Tµν

The uncertainty in the definition of the energy–momentum tensors θµν and Tµν
is usually understood as the freedom to change boundary conditions by adding
total derivatives, i.e. surface terms, to the action. However, another explanation
is forthcoming: such boundary terms are generators of symmetries, and one
would therefore be justified in suspecting that symmetry covariance plays a
role in the correctness of the definition. It has emerged that covariance, with
respect to the conformal symmetry, frequently plays a role in elucidating a
sensible definition of this tensor. While this symmetry might seem excessive
in many physical systems, where one would not expect to see such a symmetry,
its structure encompasses a generality which ensures that all possible terms are
generated, before any limit is taken.

In the case of the energy–momentum tensor, the conformal symmetry mo-
tivates improvements not only for gauge theories, but also with regard to
scaling anomalies. The tracelessness of the energy–momentum tensor for a
massless field is only guaranteed in the presence of conformal symmetry, but
such a symmetry usually demands a specific spacetime dimensionality. What is
interesting is that a fully covariant, curved spacetime formulation of Tµν leads
to an invariant definition, which ensures a vanishing T µµ in the massless limit
[23, 26, 119].

The freedom to add total derivatives means that one may write

Tµν → Tµν + ∇ρ∇σmµνρσ , (11.95)

where mµνρσ is a function of the metric tensor, and is symmetrical on µ, ν and
ρ, σ indices; additionally it satisfies:

mµνρσ + mρνσµ + mσνµρ = 0. (11.96)
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302 11 Position and momentum

These are also the symmetry properties of the Riemann tensor (see eqn. (25.24)).
This combination ensures that the additional terms are conserved:

∇µ�Tµν = ∇µ∇ρ∇σmµνρσ = 0. (11.97)

The properties of the Riemann tensor imply that the following additional
invariant term may be added to the action:

�S =
∫
(dx) ξ mµνρσ Rµνρσ . (11.98)

For spin-0 fields, the only invariant combination of correct dimension is

mµνρσ =
(

gµνgρσ − 1

2
gρνgµσ − 1

2
gρµgνσ

)
φ2, (11.99)

which gives the term

�S =
∫

1

2
ξ Rφ2, (11.100)

where R is the scalar curvature (see chapter 25). Thus, the modified action,
which must be temporarily interpreted in curved spacetime, is

S =
∫
(dx)

{
1

2
(∇µφ)(∇µφ)+ 1

2
(m2 + ξ R)φ2

}
, (11.101)

where (dx) = √gdn+1x . Varying this action with respect to the metric leads to

Tµν = (∇µφ)(∇νφ) − 1

2
gµν

[
(∇λφ)(∇λφ)+ m2φ2

]
+ ξ(∇µ∇ν − gµν )φ2. (11.102)

Notice that the terms proportional to ξ do not vanish, even in the limit R → 0,
i.e. ∇µ → ∂µ. The resulting additional piece is a classic (n + 1) dimensional,
transverse (conserved) vector displacement. Indeed, it has the conformally
invariant form of the Maxwell action, stripped of its fields. The trace of this
tensor may now be computed, giving:

T µµ =
[

1− n

2
+ 2ξn

]
(∇µφ)(∇νφ)− 1

2
(n + 1)m2φ2. (11.103)

One now sees that it is possible to choose ξ such that it vanishes in the massless
limit; i.e.

T µµ = −
1

2
(n + 1)m2φ2, (11.104)

where

ξ = n − 1

4n
. (11.105)

This value of ξ is referred to as conformal coupling. In 3+ 1 dimensions, it has
the value of 1

6 , which is often assumed explicitly.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


11.7 Angular momentum and spin 303

11.7 Angular momentum and spin1

The topic of angular momentum in quantum mechanics is one of the clas-
sic demonstrations of the direct relevance of group theory to the nature of
microscopic observables. Whereas linear momentum more closely resembles
its Abelian classical limit, the microscopic behaviour of rotation at the level
of particles within a field is quite unexpected. The existence of intrinsic,
half-integral spin S, readily predicted by representation theory of the rotation
group in 3 + 1 dimensions, has no analogue in a single-valued differential
representation of the orbital angular momentum L.

11.7.1 Algebra of orbital motion in 3+ 1 dimensions

The dynamical commutation relations of quantum mechanics fix the algebra
of angular momentum operators. It is perhaps unsurprising, at this stage,
that the canonical commutation relations for position and momentum actually
correspond to the Lie algebra for the rotation group. The orbital angular
momentum of a body is defined by

L = r× p. (11.106)

In component notation in n-dimensional Euclidean space, one writes

Li = εi jk x j pk . (11.107)

The commutation relations for position and momentum

[xi , p j ] = iχh δ
i j (11.108)

then imply that (see section 11.9)

[Li , L j ] = iχh εi jk Lk . (11.109)

This is a Lie algebra. Comparing it with eqn. (8.47) we see the correspondence
between the generators and the angular momentum components,

T a ↔ La/ χh

fabc = −εabc, (11.110)

with the group space a, b, c ↔ i, j, k corresponding to the Euclidean spatial
basis vectors. What this shows, however, is that the group theoretical description
of rotation translates directly into the operators of the dynamical theory, with a

1 A full understanding of this section requires a familiarity with Lorentz and Poincaré symmetry
from section 9.4.
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304 11 Position and momentum

dimensionful scale χh , which in quantum mechanics is χh = h̄. This happens,
as discussed in section 8.1.3, because we are representing the dynamical
variables (fields or wavefunctions) as tensors which live on the representation
space of the group (spacetime) by a mapping which is adjoint (the group space
and representation space are the same).

11.7.2 The nature of angular momentum in n + 1 dimensions

In spite of its commonality, the nature of rotation is surprisingly non-intuitive,
perhaps because many of its everyday features are taken for granted. The
freedom for rotation is intimately linked to the dimension of spacetime. This
much is clear from intuition, but, as we have seen, the physics of dynamical
systems depends on the group properties of the transformations, which result
in rotations. Thus, to gain a true intuition for rotation, one must look to the
properties of the rotation group in n + 1 dimensions.

In one dimension, there are not enough degrees of freedom to admit rotations.
In 2 + 1 dimensions, there is only room for one axis of rotation. Then we have
an Abelian group U (1) with continuous eigenvalues exp(iθ). These ‘circular
harmonics’ or eigenfunctions span this continuum. The topology of this space
gives boundary conditions which can lead to any statistics under rotation. i.e.
anyons.

In 3 + 1 dimensions, the rank 2-tensor components of the symmetry group
generators behave like two separate 3-vectors, those arising in the timelike
components T 0i and those arising in the spacelike components 1

2ε
i jk Ti j ; indeed,

the electric and magnetic components of the electromagnetic field are related
to the electric and magnetic components of the Lorentz group generators.
Physically, we know that rotations and coils are associated with magnetic fields,
so this ought not be surprising. The rotation group in 3 + 1 dimensions is
the non-Abelian SO(3), and the maximal Abelian sub-group (the centre) has
eigenvalues ±1. These form a Z2 sub-group and reflect the topology of the
group, giving rise to two possible behaviours under rotation: symmetrical and
anti-symmetrical boundary conditions corresponding in turn to Bose–Einstein
and Fermi–Dirac statistics.

In higher dimensions, angular momentum has a tensor character and is
characterized by n-dimensional spherical harmonics [130].

11.7.3 Covariant description in 3+ 1 dimensions

The angular momentum of a body at position r, about an origin, with momentum
p, is defined by

J = L+ S = (r× p)+ S. (11.111)
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11.7 Angular momentum and spin 305

The first term, constructed from the cross-product of the position and linear
momentum, is the contribution to the orbital angular momentum. The second
term, S, is the spin, or intrinsic angular momentum, of the body. The total
angular momentum is a conserved quantity and may be derived from the energy–
momentum tensor in the following way. Suppose we have a conserved energy–
momentum tensor θµν , which is symmetrical in its indices (Lorentz-invariant),
then

∂µθ
µν = 0. (11.112)

We can construct the new axial tensor,

Lµνλ = xν θλ
µ − xλ θνµ, (11.113)

which is also conserved, since

∂µLµνλ = θλν − θνλ = 0. (11.114)

Comparing eqn. (11.113) with eqn. (11.111), we see that Lµνλ is a generalized
vector product, since the components of r×p are of the form L1 = r2 p3−r3 p2,
or Li = εi jkr j pk . We may then identify the angular momentum 2-tensor as the
anti-symmetrical matrix

Jµν =
∫

dσ L0µν = −J νµ, (11.115)

which is related to the generators of homogeneous Lorentz transformations
(generalized rotations on spacetime) by

Jµν
∣∣∣

pi=0
= χh T µν3+1; (11.116)

see eqn. (9.95). The i j components of Jµν are simply the components of r× p.
The i0 components are related to boosts. Clearly, this matrix is conserved,

∂µ Jµν = 0. (11.117)

Since the coordinates xµ appear explicitly in the definition of Jµν , it is not
invariant under translations of the origin. Under the translation xµ → xµ + aµ,
the components transform into

Jµν → Jµν + (aµ pν + aµ pµ) . (11.118)

(see eqn. (11.5)). This can be compared with the properties of eqn. (9.153).
To isolate the part of Tµν which is intrinsic to the field (i.e. is independent of
position), we may either evaluate in a rest frame pi = 0 or define, in 3 + 1
dimensions, the dual tensor

Sµν = 1

2
εµνρλ J λρ = S∗µν. (11.119)
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306 11 Position and momentum

The anti-symmetry of the Levi-Cevita tensor ensures that the extra terms in
eqn. (11.118) cancel. We may therefore think of this as being the generator
of the intrinsic angular momentum of the field or spin. This dual tensor is
rather formal though and not very useful in practice. Rather, we consider the
Pauli–Lubanski vector as introduced in eqn. (9.161). We define a spin 4-vector
by

−1

2
mc Sµ ≡ χh Wµ = 1

2
εµνρλ J νρ pλ, (11.120)

so that, in a rest frame,

χh Wµ
rest = −

1

2
mc(0, Si ), (11.121)

where Si is the intrinsic spin angular momentum, which is defined by

Si = J i
∣∣∣

pi=0
= χh TB i = 1

2
χh εi jk T jk

R , (11.122)

with eigenvalues s(s + 1) χh
2 and ms χh , where s = e + f .

11.7.4 Intrinsic spin of tensor fields in 3+ 1 dimensions

Tensor fields are classified by their intrinsic spin in 3 + 1 dimensions. We
speak of fields with intrinsic spin 0, 1

2 , 1,
3
2 , 2, . . . . These labels usually refer

to 3 + 1 dimensions, and may differ in other number of dimensions since they
involve counting the number of independent components in the tensors, which
differs since the representation space is spacetime for the Lorentz symmetry.
The number depends on the dimension and transformation properties of the
matrix representation, which defines a rotation of the field. The homogeneous
(translation independent) Lorentz group classifies these properties of the field in
3+ 1 dimensions,

Field Spin

φ(x) 0

ψα(x)
1
2

Aµ 1

(µα
3
2

gµν 2

where µ, ν = 0, 1, 2, 3. Although fields are classified by their spin properties,
this is not enough to be able to determine the rotational modes of the field. The
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11.7 Angular momentum and spin 307

mass also plays a role. This is perhaps most noticeable for the spin-1 field Aµ.
In the massless case, it has helicities λ = ±1, whereas in the massive case it can
take on the additional value of zero. The reason for the difference follows from
a difference in the true spacetime symmetry of the field in the two cases. We
shall explore this below.

From section 9.4.3 we recall that the irreducible representations of the Lorentz
group determine the highest weight or spin s ≡ e + f of a field. If we set
the generators of boosts to zero by taking ω0i T 0i = 0 in eqn. (9.95), then we
obtain the pure spatial rotations of section 8.5.10. Then the generators of the
Lorentz group Ei and Fi become identical, and we may define the spin of a
representation by the operator

Si = Ei + Fi = χh TB i . (11.123)

The Casimir operator for the defining (vector field) representation is then

S2 = χ2
h T 2

B = χ2
h




0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 . (11.124)

This shows that the rotational 3-vector part of the defining representation forms
an irreducible module, leaving an empty scalar component in the time direction.
One might expect this; after all, spatial rotations ought not to involve timelike
components. If we ignore the time component, then we easily identify the spin
of the vector field as follows. From section 8.5.10 we know that in representation
GR, the Casimir operator is proportional to the identity matrix with value

S2 = Si Si = s(s + 1)χ2
h IR, (11.125)

and s = e + f . Comparing this with eqn. (11.124) we have s(s + 1) = 2, thus
s = 1 for the vector field. We say that a vector field has spin 1.

Although the vector transformation leads us to a value for the highest weight
spin, this does not necessarily tell us about the intermediate values, because
there are two ways to put together a spin-1 representation. One of these applies
to the massless (transverse) field and the other to the massive Proca field, which
was discussed in section 9.4.4. As another example, we take a rank 2-tensor
field. This transforms like

Gµν → L ρ
µ L σ

ν Gρσ . (11.126)

In other words, two vector transformations are required to transform this, one
for each index. The product of two such matrices has an equivalent vector form
with irreducible blocks:
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(1, 1)︸ ︷︷ ︸ ⊕ (1, 0)⊕ (0, 1)︸ ︷︷ ︸ ⊕ (0, 0)︸ ︷︷ ︸.

traceless + anti-symmetric + trace
symmetric

This is another way of writing the result which was found in section 3.76 using
more pedestrian arguments. The first has (2e + 1)(2 f + 1) = 9 (e = f = 1)
spin e+ f = 2 components; the second two blocks are six spin-1 parts; and the
last term is a single scalar component, giving 16 components in all, which is the
number of components in the second-rank tensor.

Another way to look at this is to compare the number of spatial components
in fields with 2s + 1. For scalar fields (spin 0), 2s + 1 gives one component. A
4-vector field has one scalar component and 2s+1 = 3 spatial components (spin
1). A spin-2 field has nine spatial components: one scalar (spin-0) component,
three vector (spin-1) components and 2s+ 1 = 5 remaining spin-2 components.
This is reflected in the way that the representations of the Lorentz transformation
matrices reduce into diagonal blocks for spins 0, 1 and 2. See ref. [132] for a
discussion of spin-2 fields and covariance.

It is coincidental for 3 + 1 dimensions that spin-0 particles have no Lorentz
indices, spin-1 particles have one Lorentz index and spin-2 particles have two
Lorentz indices.

What is the physical meaning of the spin label? The spin is the highest weight
of the representation which characterizes rotational invariance of the system.
Since the string of values produced by the stepping operators moves in integer
steps, it tells us how many distinct ways, m + m ′, a system can spin in an
‘equivalent’ fashion. In this case, equivalent means about the same axis.

11.7.5 Helicity versus spin

Helicity is defined by

λ = Ji p̂i . (11.127)

Spin s and helicity λ are clearly related quite closely, but they are subtly
different. It is not uncommon to refer loosely to helicity as spin in the literature
since that is often the relevant quantity to consider. The differences in rotation
algebras, as applied to physical states are summarized in table 11.3. Because
the value of the helicity is not determined by an upper limit on the total
angular momentum, it is conventional to use the component of the spin of the
irreducible representation for the Lorentz group which lies along the direction
of the direction of travel. Clearly these two definitions are not the same thing. In
the massless case, the labels for the helicity are the same as those which would
occur for m j in the rest frame of the massive case.

From eqn. (11.127) we see that the helicity is rotationally invariant for
massive fields and generally Lorentz-invariant for massless p0 = 0 fields.
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11.7 Angular momentum and spin 309

Table 11.3. Spin and helicity.

Casimir  c = m j

Massive j ( j + 1) 0,± 1
2 ,±1, . . . ,± j

Massless 0 0,± 1
2 ,±1, . . . ,∞

It transforms like a pseudo-scalar, since Ji is a pseudo-vector. Thus, the
sign of helicity changes under parity transformations, and a massless particle
which takes part in parity conserving interactions must have both helicity states
±λ, i.e. we must represent it by a (reducible) symmetrized pair of irreducible
representations: ( + 0

0 −
)

or

(
0 +
− 0

)
. (11.128)

The former is the case for the massless Dirac field (λ = ± 1
2 ), while the

latter is true for the photon field Fµν (λ = ±1), where the states correspond
to left and right circularly polarized radiation. Note that, whereas a massive
particle could have λ = 0,±1, representing left transverse, right transverse
and longitudinal angular momentum, a massless (purely transverse) field cannot
have a longitudinal mode, so λ = 0 is absent. This can be derived more
rigorously from representation theory.

In refs. [45, 55], the authors study massless fields with general spin and show
that higher spins do not necessarily have to be strictly conserved; only the Dirac-
traceless part of the divergence has to vanish.

11.7.6 Fractional spin in 2+ 1 dimensions

The Poincaré group in 2 + 1 dimensions shares many features of the group
in 3 + 1 dimensions, but also conceals many subtleties [9, 58, 77]. These
have specific implications for angular momentum and spin. In two spatial
dimensions, rotations form an Abelian group SO(2) ∼ U (1), whose generators
can, in principle, take on eigenvalues which are unrestricted by the constraints
of spherical harmonics. This leads to continuous phases [89, 138], particle
statistics and the concept of fractional spin. It turns out, however, that there is a
close relationship between vector (gauge) fields and spin in 2 + 1 dimensions,
and that fractional values of spin can only be realized in the context of a gauge
field coupling. This is an involved topic, with a considerable literature, which
we shall not delve into here.
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11.8 Work, force and transport in open systems

The notion of interaction and force in field theory is unlike the classical
picture of particles bumping into one another and transferring momentum. Two
fields interact in the manner of two waves passing through one another: by
interference, or amplitude modulation. Two fields are said to interact if there is
a term in the action in which some power of one field multiplies some power of
another. For example,

Sint =
∫
(dx)

{
φ2 AµAµ

}
. (11.129)

Since the fields multiply, they modulate one another’s behaviour or perturb
one another. There is no explicit notion of a force here, and precisely what
momentum is transferred is rather unclear in the classical picture; nevertheless,
there is an interaction. This can lead to scattering of one field off another, for
instance.

The source terms in the previous section have the form of an interaction,
in which the coupling is linear, and thus they exert what is referred to as a
generalized force on the field concerned. The word generalized is used because
J does not have the dimensions of force – what is important is that the source
has an influence on the behaviour of the field.

Moreover, if we place all such interaction terms on the right hand side of
the equations of motion, it is clear that interactions also behave as sources for
the fields (or currents, if you prefer that name). In eqn. (11.129), the coupling
between φ and Aµ will lead to a term in the equations of motion for φ and for
Aµ, thus it acts as a source for both fields.

We can express this in other words: an interaction can be thought of as a
source which transfers some ‘current’ from one field to another. But be wary
that what we are calling heuristically ‘current’ might be different in each case
and have different dimensions.

A term in which a field multiplies itself, φn , is called a self-interaction. In
this case the field is its own source. Self-interactions lead to the scattering of
a field off itself. The classical notion of a force was described in terms of the
energy–momentum tensor in section 11.3.

11.8.1 The generalized force Fν = ∂µT µν

There is a simple proof which shows that the tensor Tµν is conserved, provided
one has Lorentz invariance and the classical equations of motion are satisfied.
Consider the total dynamical variation of the action

δS =
∫

δS

δgµν
δgµν +

∫
δS

δq
δq = 0. (11.130)
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11.8 Work, force and transport in open systems 311

Since the equations of motion are satisfied, the second term vanishes identically,
leaving

δS = 1

2
√

g
∫
(dx)Tµνδg

µν. (11.131)

For simplicity, we shall assume that the metric gµν is independent of x , so that
the variation may be written (see eqn. (4.88))

δS =
∫
(dx)Tµν

[
gµλ(∂νε

λ)+ gλν(∂µε
λ)
] = 0. (11.132)

Integrating by parts, we obtain

δS =
∫
(dx)

[−2∂µT µν
]
εν = 0. (11.133)

Since εµ(x) is arbitrary, this implies that

∂µT µν = 0, (11.134)

and hence T µν is conserved. From this argument, it would seem that T µν

must always be conserved in every physical system, and yet one could imagine
constructing a physical model in which energy was allowed to leak away. The
assumption of Lorentz invariance and the use of the equations of motion provide
a catch, however. While it is true that the energy–momentum tensor is conserved
in any complete physical system, it does not follow that energy or momentum
is conserved in every part of a system individually. If we imagine taking
two partial systems and coupling them together, then those two systems can
exchange energy. In fact, energy will only be conserved if the systems are in
perfect balance: if, on the other hand, one system does work on the other, then
energy flows from one system to the other. No energy escapes the total system,
however.

Physical systems which are coupled to other systems, about which we have
no knowledge, are called open systems. This is a matter of definition. Given
any closed system, we can make an open system by isolating a piece of it and
ignoring the rest. Clearly a description of a piece of a system is an incomplete
description of the total system, so it appears that energy is not conserved in the
small piece. In order to see conservation, we need to know about the whole
system. This situation has a direct analogue in field theory. Systems are placed
in contact with one another by interactions, often through currents or sources.
For instance, Dirac matter and radiation couple through a term which looks like
JµAµ. If we look at only the Dirac field, the energy–momentum tensor is not
conserved. If we look at only the radiation field, the energy–momentum tensor
is not conserved, but the sum of the two parts is. The reason is that we have to
be ‘on shell’ – i.e., we have to satisfy the equations of motion.
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Consider the following example. The (incomplete) action for the interaction
between the Dirac field and the Maxwell field is

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ

}
, (11.135)

where Jµ = ψγµψ . Now, computing the energy–momentum tensor for this
action, we obtain

∂µT µν = Fµν Jµ. (11.136)

This is not zero because we are assuming that the current Jµ is not zero. But
this is not a consistent assumption in the action, because we have not added
any dynamics for the Dirac field, only the coupling JµAµ. Consider the field
equation for ψ from eqn. (11.135). Varying with respect to ψ ,

δS

δψ
= ieγ µAµψ = 0. (11.137)

This means that either Aµ = 0 or ψ = 0, but both of these assumptions make
the right hand side of eqn. (11.136) zero! So, in fact, the energy–momentum
tensor is conserved, as long as we obey the equations of motion given by the
variation of the action.

The ‘paradox’ here is that we did not include a piece in the action for the
Dirac field, but that we were sort of just assuming that it was there. This is a
classic example of writing down an incomplete (open) system. The full action,

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ + ψ(γ µ∂µ + m)ψ

}
, (11.138)

has a conserved energy–momentum tensor, for more interesting solutions than
ψ = 0.

From this discussion, we can imagine the imbalance of energy–momentum
on a partial system as resulting in an external force on this system, just as in
Newton’s second law. Suppose we define the generalized external force by

Fν =
∫

dσ ∂µT µν. (11.139)

The spatial components are

Fi =
∫

dσ ∂0T 0i = ∂t Pi = dp
dt
, (11.140)

which is just Newton’s second law. Compare the above discussion with
eqn. (2.73) for the Poynting vector.

An important lesson to learn from this is that a source is not only a generator
for the field (see section 14.2) but also a model for what we do not know about
an external system. This is part of the essence of source theory as proposed by
Schwinger. For another manifestation of this, see section 11.3.3.
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11.8 Work, force and transport in open systems 313

11.8.2 Work and power

In chapter 5 we related the imaginary part of the Feynman Green function to
the instantaneous rate at which work is done by the field. We now return to this
problem and use the energy–momentum tensor to provide a new perspective on
the problem.

In section 6.1.4 we assumed that the variation of the action with time,
evaluated at the equations of motion, was the energy of the system. It is now
possible to justify this; in fact, it should already be clear from eqn. (11.78). We
can go one step further, however, and relate the power loss to the notion of an
open system. If a system is open (if it is coupled to sources), it does work, w.
The rate at which it does work is given by

dw

dt
=

∫
dσ ∂µT µ0. (11.141)

This has the dimensions of energy per unit time. It is clearly related to the
variation of the action itself, evaluated at value of the field which satisfies the
field equations, since

�w = −
∫

dσdt ∂µT µ0 = −δS

δt

∣∣∣∣∣
field eqns

. (11.142)

The electromagnetic field is the proto-typical example here. If we consider the
open part of the action (the source coupling),

SJ =
∫
(dx) JµAµ, (11.143)

then, using

Aµ =
∫
(dx) Dµν(x, x ′)J ν(x ′), (11.144)

we have

δS[AJ ] = δ
∫
(dx) JµδAµ

=
∫
(dx)(dx ′)Jµ(x)Dµν(x, x ′)δ J ν(x ′)

=
∫
(dx)(∂µT µ0)δt

= �wδt. (11.145)

The Green function we choose here plays an important role in the discussion,
as noted in section 6.1.4. There are two Green functions which can be used
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in eqn. (11.144) as the inverse of the Maxwell operator: the retarded Green
function and the Feynman Green function. The key expression here is

W = 1

2

∫
(dx)(dx ′)Jµ(x)Dµν(x, x ′)J ν(x ′). (11.146)

Since the integral is spacetime symmetrical, only the symmetrical part of the
Green function contributes to the integral. This immediately excludes the
retarded Green function

11.8.3 Hydrodynamic flow and entropy

Hydrodynamics is not usually regarded as field theory, but it is from hydro-
dynamics (fluid mechanics) that we derive notions of macroscopic transport.
All transport phenomena and thermodynamic properties are based on the idea
of flow. The equations of hydrodynamics are the Navier–Stokes equations.
These are non-linear vector equations with highly complex properties, and their
complete treatment is outside the scope of this book. In their linearized form,
however, they may be solved in the usual way of a classical field theory, using
the methods of this book. We study hydrodynamics here in order to forge a
link between field theory and thermodynamics. This is an important connection,
which is crying out to be a part of the treatment of the energy–momentum tensor.
We should be clear, however, that this is a phenomenological addition to the field
theory for statistically large systems.

A fluid is represented as a velocity field, Uµ(x), such that each point in a
system is moving with a specified velocity. The considerations in this section do
not depend on the specific nature of the field, only that the field is composed of
matter which is flowing with the velocity vector Uµ. Our discussion of flow will
be partly inspired by the treatment in ref. [134], and it applies even to relativistic
flows. As we shall see, the result differs from the non-relativistic case only by a
single term. A stationary field (fluid) with maximal spherical symmetry, in flat
spacetime, has an energy–momentum tensor given by

T00 = H
T0i = Ti0 = 0

Ti j = Pδi j . (11.147)

In order to make this system flow, we may perform a position-dependent boost
which places the observer in relative motion with the fluid. Following a boost,
the energy–momentum tensor has the form

T µν = Pgµν + (P +H)UµU ν/c2. (11.148)

The terms have the dimensions of energy density. P is the pressure exerted by
the fluid (clearly a thermodynamical average variable, which summarizes the

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


11.8 Work, force and transport in open systems 315

microscopic thermal motion of the field). H is the internal energy density of the
field. Let us consider the generalized thermodynamic force Fµ = ∂νT µν . In a
closed thermodynamic system, we know that the energy–momentum tensor is
conserved:

Fµ = ∂νT µν = 0, (11.149)

and that the matter density N (x) in the field is conserved,

∂µNµ = 0, (11.150)

where Nµ = N (x)Uµ. If we think of the field as a plasma of particles, then
N (x) is the number of particles per unit volume, or number density. Due to its
special form, we may write

∂µNµ = (∂µN )Uµ + (∂µUµ), (11.151)

which provides a hint that the velocity boost acts like a local scaling or
conformal transformation on space

−c2dt2 + dxi dxi →−c2dt2 +'2(U )dxi dxi . (11.152)

The average rate of work done by the field is zero in an ideal, closed system:

dw

dt
=

∫
dσ UνFν

=
∫

dσ
[
Uµ∂µP − ∂µ ((P +H)Uµ)

]
= 0. (11.153)

Now, noting the identity

N∂µ

(
P +H

N

)
= ∂(P +H)−

(
∂µN

N

)
(P +H), (11.154)

we may write

dw

dt
=

∫
dσ Uµ

[
∂µP − N

(
P +H

N

)]
. (11.155)

Then, integrating by parts, assuming that Uµ is zero on the boundary of the
system, and using the identity in eqn. (11.151)

dw

dt
= −

∫
dσ NUµ

[
P∂µ

(
1

N

)
+ ∂µ

(H
N

)]

= −
∫

dσ NUµ
[
P∂µV + ∂µH

]
, (11.156)
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316 11 Position and momentum

where V is the volume per particle and H is the internal energy. This expression
can be compared with

T dS = PdV + dH. (11.157)

Eqn. (11.156) may be interpreted as a rate of entropy production due to the
hydrodynamic flow of the field, i.e. it is the rate at which energy becomes
unavailable to do work, as a result of energy diffusing out over the system
uniformly or as a result of internal losses. We are presently assuming this to
be zero, in virtue of the conservation law, but this can change if the system
contains hidden degrees of freedom (sources/sinks), such as friction or viscosity,
which convert mechanical energy into heat in a non-useful form. Combining
eqn. (11.156) and eqn. (11.157) we have

−
∫

dσNUµ(∂µS)T =
∫

dσUν∂µT µν = 0. (11.158)

From this, it is useful to define a covariant entropy density vector Sµ, which
symbolizes the rate of loss of energy in the hydrodynamic flow. In order to
express the right hand side of eqn. (11.158) in terms of gradients of the field and
the temperature, we integrate by parts and define. Let

c(∂µSµ) = ∂µ
(

Uν
T

)
T µν, (11.159)

where

Sµ = N SUµ − UνT µν

T
. (11.160)

The zeroth component, cS0 = N S, is the entropy density, so we may interpret
Sµ as a spacetime entropy vector. Let us now assume that hidden losses can
cause the conservation law to be violated. Then we have the rate of entropy
generation given by

c(∂µSµ) =
[
− 1

T
(∂νUµ)+ 1

T 2
(∂νT )Uµ

]
T µν. (11.161)

We shall assume that the temperature is independent of time, since the simple
arguments used to address statistical issues at the classical level do not take into
account time-dependent changes properly: the fluctuation model introduced in
section 6.1.5 gives rise only to instantaneous changes or steady state flows. If
we return to the co-moving frame in which the fluid is stationary, we have

Ui = ∂µU 0 = ∂t T = 0, (11.162)
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and thus

(∂µSµ) = −
[
− 1

c2T
(∂tUi )+ 1

T 2
(∂i T )

]
T 0i

+ 1

2T
(∂iU j + ∂ jUi )T

i j . (11.163)

Note the single term which vanishes in the non-relativistic limit c →∞. This is
the only sign of the Lorentz covariance of our formulation. Also, we have used
the symmetry of T i j to write ∂iU j in an i j-symmetric form.

So far, these equations admit no losses: the conservation law cannot be
violated: energy cannot be dissipated. To introduce, phenomenologically,
an expression of dissipation, we need so-called constitutive relations which
represent average ‘frictional forces’ in the system. These relations provide a
linear relationship between gradients of the field and temperature and the rate of
entropy generation, or energy stirring. The following well known forms are used
in elementary thermodynamics to define the thermal conductivity κ in terms of
the heat flux Qi and the temperature gradient; similarly the viscosity η in terms
of the pressure P:

Qi = −κ dT

dxi

Pi j = −η∂Ui

∂x j
. (11.164)

The relations we choose to implement these must make the rate of entropy
generation non-negative if they are to make thermodynamical sense. It may
be checked that the following definitions fulfil this requirement in n spatial
dimensions:

T 0i = −κ (∂i T + T ∂tUi/c
2
)

T i j = −η
(
∂iU j + ∂ jUi − 2

n
(∂kU k)δi j

)
− ζ(∂kU k)δi j , (11.165)

where κ is the thermal conductivity, η is the shear viscosity and ζ is the bulk
viscosity. The first term in this last equation may be compared with eqn. (9.217).
This makes use of the definition of shear σi j for a vector field Vi as a conformal
deformation

�i j = ∂i Vj + ∂ j Vi − 2

n
(∂k V k)δi j . (11.166)

This is a measure of the non-invariance of the system to conformal, or shearing
transformations. Substituting these constitutive equations into eqn. (11.163),
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318 11 Position and momentum

one obtains

c∂µSµ = κ

T 2
(∂i T + T ∂0Ui/c)(∂

i T + T ∂0U i/c)

= η

2T

(
∂iU j + ∂ jUi

) (
∂ iU j + ∂ jU i

)
=

(
ζ + 4

n
ζ

)
1

T
(∂kU k)2. (11.167)

11.8.4 Thermodynamical energy conservation

The thermodynamical energy equations supplement the conservation laws for
mechanical energy, but they are of a different character. These energy equations
are average properties for bulk materials. They summarize collective micro-
scopic conservation on a macroscopic scale.

∂µT µν = H + T dS + PdV + dF (11.168)

S = k ln' (11.169)

T dS = kT
d'

'
= 1

β

d'

'
. (11.170)

11.8.5 Kubo formulae for transport coefficients

In section 6.1.6, a general scheme for computing transport coefficients was
presented, but only the conductivity tensor was given as an example. Armed
with a knowledge of the energy–momentum tensor, entropy and the dissipative
processes leading to viscosity, we are now in a position to catalogue the most
important expressions for these transport coefficients. The construction of the
coefficients is based on the general scheme outlined in section 6.1.6. In order to
compute these coefficients, we make use of the assumption of linear dissipation,
which means that we consider only first-order gradients of thermodynamic
averages. This assumes a slow rate of dissipation, or a linear relation of the
form

〈variable〉 = k∇µ〈source〉, (11.171)

where ∇µ represents some spacetime gradient. This is the so-called constitutive
relation. The expectation values of the variables may be derived from the
generating functional W in eqn. (6.7) by adding source terms, or variables
conjugate to the ones we wish to find correlations between. The precise meaning
of the sources is not important in the linear theory we are using, since the source
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Table 11.4. Conductivity tensor.

Component Response Measure

σ00/c2 induced density charge compressibility
σ0i/c density current –
σi i induced current linear conductivity
σi j induced current transverse (Hall) conductivity

cancels out of the transport formulae completely (see eqn. (6.66)). Also, there is
a symmetry between the variables and their conjugates. If we add source terms

S → S +
∫
(dx)(J · A + JµAµ + Jµν Aµν), (11.172)

then the J ’s are sources for the A’s, but conversely the A’s are also sources for
the J ’s.

We begin therefore by looking at the constitutive relations for the transport
coefficients, in turn. The generalization of the conductivity derived in eqn. (6.75)
for the spacetime current is

Jµ = σµν∂t Aν. (11.173)

Although derivable directly from Ohm’s law, this expresses a general dissipative
relationship between any current Jµ and source Aµ, so we would expect this
construction to work equally well for any kind of current, be it charged or not.
From eqn. (11.171) and eqn. (6.66) we have the Fourier space expression for the
spacetime conductivity tensor in terms of the Feynman correlation functions

σµν(ω) = lim
k→0

i

h̄ω

∫
(dx)e−ik(x−x ′)〈Jµ(x)Jν(x ′)〉, (11.174)

or in terms of the retarded functions. In general the products with Feynman
boundary conditions are often easier to calculate, since there are theorems for
their factorization.

σµν(ω)

∣∣∣
β
≡ lim

k→0

(1− e−h̄βω)

h̄ω

∫
(dx)e−ik(x−x ′)〈Jµ(x)Jν(x ′)〉. (11.175)

The D.C. conductivity is given by the ω → 0 limit of this expression. The
components of this tensor are shown in table 11.4: The constitutive relations for
the viscosities are given in eqn. (11.165). From eqn. (6.67) we have

〈Tµν(x)〉 = δW

δ Jµν(x)
(11.176)
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and

δ〈Tµν(x)〉
δ J ρσ (x ′)

= i

h̄
〈Tµν(x)Tρσ (x ′)〉

= i

h̄
〈Tµρ(x)Tνσ (x ′)〉, (11.177)

where the last line is a consequence of the connectivity of Feynman averaging.
Note that this relation does not depend on our ability to express W [Jµν] in a
quadratic form analogous to eqn. (6.35). The product on the right hand side
can be evaluated by expressing Tµν in terms of the field. The symmetry of the
energy–momentum tensor implies that

Jµν = J νµ, (11.178)

and, if the source coupling is to have dimensions of action, Jµν must be
dimensionless. The only object one can construct is therefore

Jµν = gµν. (11.179)

Thus, the source term is the trace of the energy–momentum tensor, which
vanishes when the action is conformally invariant. To express eqn. (11.165)
in momentum space, we note that Fourier transform of the velocity is the phase
velocity of the waves,

U i (x) = γ dxi

dt
= γ

∫
dnk

(2π)n
eikµxµ

ω

ki

= γ
∫

dnk

(2π)n
eikµxµ

ωki

k2
. (11.180)

The derivative is given by

∂ jU
i = iγ

∫
dnk

(2π)n
eikµxµ

ωki k j

k2
. (11.181)

Thus, eqn. (11.165) becomes

〈Ti j 〉 = −
(
ζ + 4

n
η

)
iγωgi j − η iγω

ki k j

k2
. (11.182)

Comparing this with eqn. (11.176), we have, for the spatial components,

−
(
ζ + 4

n
η

)
gi j glm − ηki k j

k2
glm =

1

h̄ω

∫
(dx) e−ik(x−x ′)〈Til(x)T

i
m(x

′)〉. (11.183)
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Contracting both sides with gi j glm leaves(
ζ(ω)+ 4− n

n
η(ω)

)
=

lim
k→0

− 1

n2h̄ω

∫
(dx)e−ik(x−x ′)〈Ti j (x)T

i j (x ′)〉. (11.184)

The two viscosities cannot be separated in this relation, but η can be related to
the diffusion coefficient, which can be calculated separately. Assuming causal
(retarded relation between field and source), at finite temperature we may use
eqn. (6.74) to write(

ζ(ω)+ 4− n

n
η(ω)

) ∣∣∣
β
≡

lim
k→0

−(1− e−h̄ωβ)

n2h̄ω

∫
(dx)e−ik(x−x ′)〈Ti j (x)T

i j (x ′)〉. (11.185)

The temperature conduction coefficient κ is obtained from eqn. (11.165).
Following the same procedure as before, we obtain

i

h̄

∫
(dx)e−ikµ(x−x ′)µ〈T 0i (x)T 0 j (x ′)

= −g0 jκ(∂ i T + T ∂tU
i/c2)〉

= −ig0 jκ(ki T − T γω2ki/k2). (11.186)

Rearranging, we get

κ(ω) = lim
k→0

−g0 j ki (1− e−h̄ωβ)

h̄
(
k2 − γω2/c2

) ∫ (dx)e−ikµ(x−x ′)µ〈T 0i (x)T 0 j (x ′).

(11.187)

To summarize, we note a list of properties with their relevant fluctuations and
conjugate sources. See table 11.5.

11.9 Example: Radiation pressure

The fact that the radiation field carries momentum means that light striking a
material surface will exert a pressure equal to the change in momentum of the
light there. For a perfectly absorbative surface, the pressure will simply be equal
to the momentum striking the surface. At a perfectly reflective (elastic) surface,
the change in momentum is twice the momentum of the incident radiation in
that the light undergoes a complete change of direction. Standard expressions
for the radiation pressure are for reflective surfaces.
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Table 11.5. Fluctuation generators.

Property Fluctuation Source

Electromagnetic radiation Aµ Jµ

Electric current Ji Ai

Compressibility N0 A0

Temperature current T T 0i (heat Q)

The pressure (kinetic energy density) in a relativistic field is thus

Pi = −2T0i = pi c/σ (11.188)

with the factor of two coming from a total reversal in momentum, and σ being
the volume of the uniform system outside the surface. Using the arguments of
kinetic theory, where the kinetic energy density of a gas with average velocity
〈v〉 is isotropic in all directions,

1

2
m〈v2〉 = 1

2
m(v2

x + v2
y + v2

z ) ∼
3

2
mv2

x , (11.189)

we write

Pi ∼ 1

3
〈P〉. (11.190)

Thus, the pressure of diffuse radiation on a planar reflective surface is

Pi = −2

3
T0i . (11.191)

Using eqn. (7.88), we may evaluate this, giving:

Pi = −2

3

(E×H)i
c

= 2

3
ε0 E2. (11.192)

Exercises

Although this is not primarily a study book, it is helpful to phrase a few
outstanding points as problems, to be demonstrated by the reader.

(1) In the action in eqn. (11.61), add a kinetic term for the potential V (x)

�S =
∫
(dx)

1

2
(∂µV )(∂µV ). (11.193)
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11.9 Example: Radiation pressure 323

Vary the total action with respect to φ(x) to obtain the equation of motion
for the field. Then vary the action with respect to V (x) and show that this
leads to the equations

− φ + (m2 + V )φ = 0

− V + 1

2
φ2 = 0.

Next show that the addition of this extra field leads to an extra term in the
energy–momentum tensor, so that

θµν = 1

2
(∂µφ)(∂νφ)+ 1

2
(∂µV )(∂νV )− 1

2
(m2 + V )φ2. (11.194)

Using the two equations of motion derived above, show that

∂µθµν = 0 (11.195)

so that energy conservation is now restored. This problem demonstrates
that energy conservation can always be restored if one considers all of the
dynamical pieces in a physical system. It also serves as a reminder that
fixed potentials such as V (x) are only a convenient approximation to real
physics.

(2) Using the explicit form of a Lorentz boost transformation, show that a
fluid velocity field has an energy–momentum tensor of the form,

T µν = Pgµν + (P +H)UµU ν/c2. (11.196)

Start with the following expressions for a spherically symmetrical fluid at
rest:

T00 = H
T0i = Ti0 = 0

Ti j = Pδi j . (11.197)

(3) Consider a matter current Nµ = (N , Nv) = N (x)Uµ(x). Show that the
conservation equation ∂µNµ = 0 may be written

∂µNµ = [∂t + £v] , (11.198)

where £D = U i∂i + (∂iU i ). This is called the Lie derivative. Compare
this with the derivatives found in section 10.3 and the discussion found in
section 9.6. See also ref. [111] for more details of this interpretation.
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(4) By writing the orbital angular momentum operator in the form Li =
εi jk x j pk and the quantum mechanical commutation relations [xi , p j ] =
ih̄δi j in the form εi jk x j pk = ih̄, show that

L iεilm = [xl, pm] = ih̄ δlm, (11.199)

and thence

εilm Li Ll = ih̄Lm . (11.200)

Hence show that the angular momentum components satisfy the algebra
relation

[Li , L j ] = ih̄ εi jk Lk . (11.201)

Show that this is the Lie algebra for so(3) and determine the dimension-
less generators T a and structure constants fabc in terms of Li and h̄.
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12
Charge and current

The idea of charge intuitively relates to that of fields and forces. Charge is
that quality or attribute of matter which determines how it will respond to a
particular kind of force. It is thus a label which distinguishes forces from one
another. The familiar charges are: electric charge, which occurs in Maxwell’s
equations; the mass, which occurs both in the laws of gravitation and inertia; the
colour charge, which attaches to the strong force; and a variety of other labels,
such as strangeness, charm, intrinsic spin, chirality, and so on. These attributes
are referred to collectively as ‘quantum numbers’, though a better name might
be ‘group numbers’.

Charge plays the role of a quantity conjugate to the forces which it labels.
Like all variables which are conjugate to a parameter (energy, momentum etc.)
charge is a book-keeping parameter which keeps track of a closure or conserva-
tion principle. It is a currency for the property it represents. This indicates that
the existence of charge ought to be related to a symmetry or conservation law,
and indeed this turns out to be the case. An important application of symmetry
transformations is the identification of conserved ‘charges’, and vice versa.

12.1 Conserved current and Noether’s theorem

As seen in section 11.3, the spacetime variation of the action reveals a structure
which leads to conservation equations in a closed system. The conservation
equations have the generic form

∂tρ + 
∇ · J = ∂µ Jµ = 0, (12.1)

for some ‘current’ Jµ. These are continuity conditions, which follow from the
action principle (section 2.2.1). One can derive several different, but equally
valid, continuity equations from the action principle by varying the action with
respect to appropriate parameters. This is the essence of what is known as
Noether’s theorem.
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326 12 Charge and current

In practice, one identifies the conservation law ∂µ Jµ = 0 for current Jµ by
varying the action with respect to a parameter, conjugate to its charge. This
leads to two terms upon integration by parts: a main term, which vanishes (either
with the help of the field equations, or by straightforward cancellation), and a
surface term, which must vanish independently for stationary action δS = 0.
The surface term can be written in the form

δS =
∫
(dx)(∂µ Jµ)δλ = 0 (12.2)

for some Jµ; then we say that we have discovered a conservation law for the
current Jµ and parameter λ.

This is most easily illustrated with the aid of examples. As a first example, we
shall use this method to prove that the electric current is conserved for a scalar
field. We shall set c = h̄ = 1 for simplicity here. The gauged action for a
complex scalar field is

S =
∫
(dx)

{
h̄2c2(Dµφ)∗(Dµφ)+ m2c4φ∗φ

}
. (12.3)

Consider now a gauge transformation in which φ → eiesφ, and vary the action
with respect to δs(x):

δS =
∫
(dx)h̄2c2

{
(Dµ(−ieδs)e−iesφ)∗(Dµeiesφ)

+(Dµe−iesφ)(Dµ(ieδs)eiesφ)
}
. (12.4)

Now using the property (10.41) of the gauge-covariant derivative that the phase
commutes through it, we have

δS =
∫
(dx)

{
(Dµ(−ieδs)φ)∗(Dµφ)+ (Dµφ)(Dµ(ieδs)φ)

}
. (12.5)

We now integrate by parts to remove the derivative from δs and use the equations
of motion (−D2 + m2)φ = 0 and −(D∗2 + m2)φ∗ = 0, which leaves only the
surface (total derivative) term

δS =
∫
(dx)δs(∂µ J ν), (12.6)

where

Jµ = ieh̄2c2(φ∗(Dµφ)− (Dµφ)∗φ). (12.7)

Eqn. (12.2) can be written

1

c

∫
dσµ Jµ = const. (12.8)
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12.1 Conserved current and Noether’s theorem 327

In other words, this quantity is a constant of the motion. Choosing the canonical
spacelike hyper-surface for σ , eqn. (12.8) has the interpretation

1

c

∫
dσ J0 =

∫
dx1 . . . dxnρ = Q, (12.9)

where ρ is the charge density and Q is therefore the total charge. In other words,
Noether’s theorem tells us that the total charge is conserved by the dynamical
evolution of the field.

As a second example, let us consider dynamical variations of the field δφ.
Anticipating the discussion of the energy–momentum tensor, we can write
eqn. (11.43) in the form

δS =
∫
(dx)(∂µ Jµ) = 0, (12.10)

where we have defined the ‘current’ as

Jµδλ ∼ !µδq − θµνδxν. (12.11)

This is composed of a piece expressed in terms of the canonical field variables,
implying that canonical momentum is conserved for field dynamics,

∂µ!µ = 0, (12.12)

and there is another piece for the mechanical energy–momentum tensor, the
parameter is the spacetime displacement δxµ. This argument is usually used to
infer that the canonical momentum and the energy–momentum tensor,

∂µθµν = 0, (12.13)

are conserved; i.e. the conservation of mechanical energy and momentum.
If the action is complete, each variation of the action leads to a form which

can be interpreted as a conservation law. If the action is incomplete, so that
conservation cannot be maintained with the number of degrees of freedom
given, then this equation appears as a constraint which restricts the system. In a
conservative system, the meaning of this equation is that ‘what goes in goes out’
of any region of space. Put another way, in a conservative system, the essence
of the field cannot simply disappear, it must move around by flowing from one
place to another.

Given a conservation law, we can interpret it as a law of conservation of an
abstract charge. Integrating the conservation law over spacetime,∫

(dx) ∂µ Jµ =
∫

dσµ Jµ = const. (12.14)
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328 12 Charge and current

Table 12.1. Conjugates and generators.

Q v

Translation pi xi

Time development −H t
Electric phase e θ = ∫

Aµdxµ

Non-Abelian phase gT a θa = ∫
Aa
µdxµ

If we choose dσµ, i.e. µ = 0, to be a spacelike hyper-surface (i.e. a surface of
covariantly constant time), then this defines the total charge of the system:

Q(t) =
∫

dσρ(x) =
∫

dnx ρ(x). (12.15)

Combining eqns. (12.14) and (12.15), we can write∫
dnx ∂µ Jµ = −∂t

∫
dσρ +

∫
dσ i Ji = 0. (12.16)

The integral over Ji vanishes since the system is closed, i.e. no current flows in
or out of the total system. Thus we have (actually by assumption of closure)

dQ(t)

dt
= 0. (12.17)

This equation is well known in many forms. For the conservation of electric
charge, it expresses the basic assumption of electromagnetism that charge is
conserved. In mechanics, we have the equation for conservation of momentum

dpi

dt
= d

dt

∫
dσ θ i

0 = 0. (12.18)

The conserved charge is formally the generator of the symmetry which leads to
the conservation rule, i.e. it is the conjugate variable in the group transformation.
In a group transformation, we always have an object of the form:

eiQv, (12.19)

where Q is the generator of the symmetry and v is the conjugate variable which
parametrizes the symmetry (see table 12.1). Noether’s theorem is an expression
of symmetry. It tells us that – if there is a symmetry under variations of a
parameter in the action – then there is a divergenceless current associated with
that symmetry and a corresponding conserved charge. The formal statement is:
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12.2 Electric current Jµ for point charges 329

The invariance of the Lagrangian under a one-parameter family
of transformations implies the existence of a divergenceless current

and associated conserved ‘charge’.

Noether’s theorem is not the only approach to finding conserved currents, but
it is the most well known and widely used [2]. The physical importance of
conservation laws for dynamics is that

A local excess of a conserved quantity cannot simply
disappear –it can only relax by spreading slowly

over the entire system.

12.2 Electric current Jµ for point charges

Electric current is the rate of flow of charge

I = dQ

dt
. (12.20)

Current density (current per unit area, in three spatial dimensions) is a vector,
proportional to the velocity v of charges and their density ρ:

J i = ρev
i . (12.21)

By adding a zeroth component J 0 = ρc, we may write the spacetime-covariant
form of the current as

Jµ = ρeβ
µ, (12.22)

where βµ = (c, v). For a point particle at position x0(t), we may write the
charge density using a delta function. The n-dimensional spatial delta function
has the dimensions of density and the charge of the particle is q. The current per
unit area J i is simply q multiplied by the velocity of the charge:

J 0/c = ρ(x) = q δn(x− xp(t))

J i = ρ(x)dxi (t)

dt
. (12.23)

Relativistically, it is useful to express the current in terms of the velocity vectors
βµ and Uµ. For a general charge distribution the expressions are

Jµ(x) = ρcβµ

= ρcγ−1Uµ. (12.24)
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330 12 Charge and current

Table 12.2. Currents for various fields.

Field Current

Point charges, velocity v J 0 = eρc
J = eρv

Schrödinger field J 0 = eψ∗ψ
J = i eh̄

2m (ψ
∗(Dψ)− (Dψ)∗ψ)

Klein–Gordon field Jµ = ieh̄c2(φ∗(Dµφ)− (Dµ)∗φ)
Dirac field Jµ = iecψγµψ

Thus, for a point particle,

Jµ = qcβµ δn(x− xp(t))

= qc
∫

dt δn+1(x − x p(t))β
µ

= q
∫

dτ δn+1(x − x p(τ ))U
µ. (12.25)

12.3 Electric current for fields

The form of the electric current in terms of field variables is different for each
of the field types, but in each case we may define the current by

Jµ = δSM

δAµ
(12.26)

where SM is the action for matter fields, including their gauge-invariant coupling
to the Maxwell field Aµ, but not including the Maxwell action (eqn. (21.1))
itself. The action must be one consisting of complex fields, since the gauge
symmetry demands invariance under arbitrary complex phase transformations.
A single-component, non-complex field does not give rise to an electric current.
The current density for quanta with charge e may be summarized in terms of
the major fields as seen in table 12.2. The action principle displays the form of
these currents in a straightforward way and also clarifies the interpretation of the
source as a current. For example, consider the complex Klein–Gordon field in
the presence of a source:

S = SM + SJ =
∫
(dx)

{
h̄2c2(Dµφ)∗(Dµφ)− JµAµ

}
, (12.27)
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12.3 Electric current for fields 331

where terms independent of Aµ have been omitted for simplicity. Using
eqn. (12.26), and assuming that Jµ is independent of Aµ, one obtains

δSM

δAµ
= ieh̄c2

[
φ∗(Dµφ)− (Dµφ)∗φ

] = Jµ. (12.28)

Note carefully here: although the left and right hand sides are numerically equal,
they are not formally identical, since Jµ was assumed to be independent of Aµ
under the variation, whereas the left hand side is explicitly dependent on Aµ
through the covariant derivative. Sometimes these are confused in the literature
leading to the following error.

It is often stated that the coupling for the electromagnetic field to matter can
be expressed in the form:

SM = SM[Aµ = 0]+
∫
(dx)JµAµ. (12.29)

In other words, the total action can be written as a sum of a matter action
(omitting Aµ, or with partial derivatives instead of covariant derivatives), plus
a linear source term (which is supposed to make up for the gauge parts in the
covariant derivatives) plus the Maxwell action. This is incorrect because, for any
matter action which has quadratic derivatives (all fields except the Dirac field),
one cannot write the original action as the current multiplying the current, just
as

x2 �=
(

d

dx
x2

)
x . (12.30)

In our case,

δS

δAµ
Aµ �= S. (12.31)

The Dirac field does not suffer from this problem. Given the action plus source
term,

S = SM + SJ =
∫
(dx)

{
−1

2
ih̄cψ(γ µ

→
Dµ −γ µ

←
Dµ

†

)ψ

}
, (12.32)

the variation of the action equals

δSM

δAµ
= iqcψγµψ = Jµ. (12.33)

In this unique instance the source and current are formally and numerically
identical, and we may write

SM = SM[Aµ = 0]+ JµAµ. (12.34)
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332 12 Charge and current

12.4 Requirements for a conserved probability

According to quantum theory, the probability of finding a particle at a position
x at time t is derived from an invariant product of the fields. Probabilities must
be conserved if we are to have a particle theory which makes sense. For the
Schrödinger wavefunction, this is simply ψ∗ψ , but this is only true because this
combination happens to be a conserved density N (x) for the Schrödinger action.

In order to establish a probability interpretation for other fields, one may use
Noether’s theorem. In fact, we have already done this. A conserved current is
known from the previous section: namely the electric current, but there seems to
be no good reason to require the existence of electric charge in order to be able to
speak of probabilities. We would therefore like to abstract the invariant structure
of the conserved quantity without referring specifically to electric charge – after
all, particles may have several charges, nuclear, electromagnetic etc – any one
of these should do for counting particle probabilities.

Rather than looking at local gauge transformations, we therefore turn to
global phase transformations1 and remove the reference in the argument of the
phase exponential to the electric charge. Consider first the Schrödinger field,
described by the action

S =
∫

dσdt

{
− h̄2

2m
(∂ iψ)†(∂iψ)− Vψ∗ψ + i

2
(ψ∗∂tψ − ψ∂tψ

∗)
}
.

(12.35)

The variation of the action with respect to constant δs under a phase transforma-
tion ψ → eisψ is given by

δS =
∫
(dx)

{
− h̄2

2m

[−iδs(∂ iψ∗)(∂iψ)+ (∂ iψ∗)iδs(∂iψ)
]

+ i
[−iδsψ∗∂tψ + iδsψ∗∂tψ

] }
. (12.36)

Note that the variation δs need not vanish simply because it is independent of x ,
(see comment at end of section). Integrating by parts and using the equation of
motion,

− h̄2

2m
∇2ψ + V = i

∂ψ

∂t
, (12.37)

we obtain the expression for the continuity equation:

δS =
∫
(dx)δs

(
∂t J t + ∂i J i

) = 0, (12.38)

1 Global gauge transformations are also called rigid since they are fixed over all space.
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12.4 Requirements for a conserved probability 333

where

J t = ψ∗ψ = ρ
J i = ih̄2

2m

[
ψ∗(∂ iψ)− (∂ iψ∗)ψ

]
, (12.39)

which can be compared to the current conservation equation eqn. (12.1). ρ is the
probability density and J i is the probability current. The conserved probability,
by Noether’s theorem, is therefore

P =
∫

dσψ∗(x)ψ(x), (12.40)

and this can be used to define the notion of an inner product between two
wavefunctions, given by the overlap integral

(ψ1, ψ2) =
∫

dσψ∗1 (x)ψ2(x). (12.41)

Thus we see how the notion of an invariance of the action leads to the
identification of a conserved probability for the Schrödinger field.

Consider next the Klein–Gordon field. Here we are effectively doing the same
thing as before in eqn. (12.4), but keeping s independent of x and setting Dµ→
∂µ and e → 1:

S =
∫
(dx)h̄2c2

{
(∂µe−isφ∗)(∂µeisφ)

}
δS =

∫
(dx)h̄2c2

[
(∂µφ∗(−iδs)e−is)(∂µφeis)+ c.c.

]
=

∫
(dx)δs(∂µ Jµ), (12.42)

where

Jµ = −ih̄2c2(φ∗∂µφ − φ∂µφ∗). (12.43)

The conserved ‘charge’ of this symmetry can now be used as the definition of
the inner product between fields:

(φ1, φ2) = ih̄c
∫

dσσ (φ∗1∂σφ2 − (∂σφ1)
∗φ2), (12.44)

or, in non-covariant form,

(φ1, φ2) = ih̄c
∫

dσ(φ∗1∂0φ2 − (∂0φ1)
∗φ2). (12.45)

This is now our notion of probability.
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334 12 Charge and current

Here we have shown that a conserved probability can be attributed to any
complex field as a result of symmetry under rigid (global) phase transformations.
One should be somewhat wary of the physical meaning of rigid gauge transfor-
mations, since this implies a notion of correlation over arbitrary distances and
times (a fact which apparently contradicts the finite speed of communication
imposed by relativity). Global transformations should probably be regarded as
an idealized case. In general, one requires the notion of a charge and associated
gauge field, but not necessarily the electromagnetic gauge field. An additional
point is: does it make physical sense to vary an object which does not depend on
any dynamical variables x, t? How should it vary without any explicit freedom
to do so? These points could make one view rigid (global) gauge transformations
with a certain skepticism.

12.5 Real fields

A cursory glance at the expressions for the electric current show that Jµ vanishes
for real fields. Formally this is because the gauge (phase) symmetry cannot exist
for real fields, since the phase is always fixed at zero. Consequently, there is no
conserved current for real fields (though the energy–momentum tensor is still
conserved). In the second-quantized theory of real fields (which includes the
photon field), this has the additional effect that the number of particles with a
given momentum is not conserved.

The problem is usually resolved in the second-quantized theory by distin-
guishing between excitations of the field (particles) with positive energy and
those with negative energy. Since the relativistic energy equation E2 = p2c2 +
m2c4 admits both possibilities. We do this by writing the real field as a sum of
two parts:

φ = φ(+) + φ(−), (12.46)

where φ(+)∗ = φ(−). φ(+) is a complex quantity, but the sum φ(+) + φ(−) is
clearly real. What this means is that it is possible to define a conserved current
and therefore an inner product on the manifold of positive energy solutions φ(+),

(φ
(+)
1 , φ

(+)
2 ) = ih̄c

∫
dσµ(φ(+)∗1 ∂µφ

(+)
2 − (∂µφ(+)1 )∗φ(+)2 ), (12.47)

and another on the manifold of negative energy solutions φ(−). Thus there is
local conservation of probability (though charge still does not make any sense)
of particles and anti-particles separately.
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12.6 Super-conductivity 335

12.6 Super-conductivity

Consider a charged particle in a uniform electric field Ei . The force on the
particle leads to an acceleration:

q Ei = mẍi . (12.48)

Assuming that the particle starts initially from rest, and is free of other
influences, at time t it has the velocity

ẋ i (t) = q

m

∫ t

0
Ei dt ′. (12.49)

This movement of charge represents a current (charge multiplied by velocity).
If one considers N such identical charges, then the current is

J i (t) = Nqẋi = Nq2

m

∫ t

0
Ei dt ′. (12.50)

Assuming, for simplicity, that the electric field is constant, at time t one has

J i (t) = Nq2t

m
Ei

≡ σ Ei . (12.51)

The last line is Ohm’s law, V = I R, re-written in terms of the current density
J i and the reciprocal resistance, or conductivity σ = 1/R. This shows that a
free charge has an ohmic conductivity which is proportional to time. It tends to
infinity. Free charges are super-conducting.

The classical theory of ohmic resistance assumes that charges are scattered
by the lattice through which they pass. After a mean free time of τ , which is a
constant for a given material under a given set of thermodynamical conditions,
the conductivity is σ = Nq2τ/m. This relation assumes hidden dissipation,
and thus can never emerge naturally from a fundamental formulation, without
modelling the effect of collisions as a transport problem. Fundamentally, all
charges super-conduct, unless they are scattered by some impedance. The
methods of linear response theory may be used for this.

If one chooses a gauge in which the electric field may be written

Ei = −∂t Ai , (12.52)

then substitution into eqn. (12.50) gives

J i = − Ai , (12.53)

where  = Nq2/m. This is known as London’s equation, and was originally
written down as a phenomenological description of super-conductivity.
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336 12 Charge and current

The classical model of super-conductivity seems naive in a modern, quantum
age. However, the quantum version is scarcely more sophisticated. As noted
in ref. [135], the appearance of super-conductivity is a result only of symmetry
properties of super-conducting materials at low temperature, not of the detailed
mechanism which gives rise to those symmetry properties.

Super-conductivity arises because of an ordered state of the field in which the
inhomogeneities of scattering centres of the super-conducting material become
invisible to the average state. Consider such a state in a scalar field. The super-
conducting state is one of great uniformity, characterized by

∂µ〈φ(x)〉 = 〈A0〉 = 0. (12.54)

The average value of the field is thus locked in a special gauge. In this state, the
average value of the current is given by

〈Ji 〉 = 〈ieh̄c2(φ∗(Dµφ)− (Dµ)∗φ)〉. (12.55)

The time derivative of this is:

∂t〈Ji 〉 = −e2c2∂t〈Ai 〉
= e2c2〈Ei 〉. (12.56)

This is the same equation found for the classical case above. For constant
external electric field, it leads to a current which increases linearly with time,
i.e. it becomes infinite for infinite time. This corresponds to infinite conductivity.
Observe that the result applies to statistical averages of the fields, in the same
way that spontaneous symmetry breaking applies to statistical averages of the
field, not individual fluctuations (see section 10.7). The individual fluctuations
about the ground state continue to probe all aspects of the theory, but these are
only jitterings about an energetically favourable super-conducting mean field.
The details of how the uniform state becomes energetically favourable require,
of course, a microscopic theory for their explanation. This is given by the
BCS theory of super-conductivity [5] for conventional super-conductors. More
recently, unusual materials have given rise to super-conductivity at unusually
high temperatures, where an alternative explanation is required.

12.7 Duality, point charges and monopoles

In covariant notation, Maxwell’s equations are written in the form

∂µFµν = −µ0 J ν

εµνρσ ∂
νFρσ = 0. (12.57)

If one defines the dual F∗ of a tensor F by one-half its product with the anti-
symmetric tensor, one may write

F∗µν =
1

2
εµνρσ Fρσ , (12.58)
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and Maxwell’s equations become

∂µFµν = −µ0 J ν

∂µF∗µν = 0. (12.59)

The similarity between these two equations has prompted some to speculate as
to whether a dual current, Jµm , could not exist:

∂µFµν = −µ0 J ν

∂µF∗µν = −µ0 J νm . (12.60)

This would imply an equation of the form

∇ · B = (∂i Bi ) = µ0ρm (12.61)

and the existence of magnetic monopoles. The right hand side of these equations
is usually thought of as a source term, or forcing term, for the differential terms
on the left hand side. The existence of pointlike singularities is an interesting
issue, since it touches the limits of the smooth differential formalism used to
express the theory of electromagnetism and drives home the reasoning behind
the model of pointlike charges which physicists have adopted.

Consider a Coulomb field surrounding a point. Up to a factor of 4πε0, the
electric field has the vectorial form

Ei = xi

|x|m , (12.62)

in n dimensions. When n = 3 we have m = 3 for the Coulomb field, i.e. a 1/r2

force law. The derivative of this field is

∂i E j = ∂i

(
x j√
(xk xk)

)

=
(
δi j − m

xi x j

xk xk

)
. (12.63)

From this, we have that


∇ · E = ∂ i Ei = (n − m)

|x|m ,

( 
∇ × E)k = εi jk ∂i E j = 0. (12.64)

The last result follows entirely from the symmetry on the indices: the product
of a symmetric matrix and an anti-symmetric matrix is zero. What we see is
that, in n > 2 dimensions, we can find a solution n = m where the field
satisfies the equation of motion identically, except at the singularity xi = 0,
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338 12 Charge and current

where the solution does not exist. In other words, a field can exist without a
source, everywhere except at the singular point.

In fact, this is an illusion of the differential formulation of Maxwell’s
equations; it highlights a conceptual difficulty. The core difficulty is that the
equations are really non-local, in the sense that they relate a field at one point to
a source at another. This requires an integration over the intermediate points to
be well defined differentially. The differential form of Maxwell’s equations is
really a shorthand for the integral procedure.

At the singular point, the derivative does not exist, and Maxwell’s equation
becomes meaningless. We can assign a formal meaning to the differential form
and do slightly better, as it turns out, by using the potential Aµ, since this can
be regularized choosing variables in which the singularity disappears. In that
way we can assign a formal meaning to the field around a point and justify
the introduction of a source for the field surrounding the singularity using an
integral formulation. The formulation we are looking for is in terms of Green
functions. Green functions are, in a sense, a regularization scheme for defining
the meaning of an ambiguous, irregular (infinite) expression. This is also the
first in a long litany of cases where it is necessary to regularize, or re-formulate
infinite, badly defined expressions in the physics of fields, which result from
assumptions about pointlike structure and Green functions.

In terms of the vector potential Aµ, choosing the so-called Coulomb gauge
∂i Ai = 0, we have

Ei/c = −∂0 Ai − ∂i A0, (12.65)

so that the divergence of the electric field is

∂i Ei = −∇2φ = ρ. (12.66)

Note that we set ε0 = 1 for the purpose of this schematic. The charge density
for a point particle with charge q at the origin is written as

ρ = qδ3(x)

= qδ(x)δ(y)δ(z)

= q

4πr2
δ(r). (12.67)

Thus, in polar coordinates, about the origin,

−∇2 φ(r) = qδ(r)

4πε0r
. (12.68)

The Green function G(x, x ′) is defined as the object which satisfies the equation

−∇2 G(x, x ′) = δ(x − x ′). (12.69)
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12.7 Duality, point charges and monopoles 339

If we compare this definition to the Poisson equation for the potential φ(x) in
eqn. (12.68), we see that G(x, x ′) can interpreted as the scalar potential for a
delta-function source at x = x ′, with unit charge. Without repeating the content
of chapter 5, we can simply note the steps in understanding the singularity at the
origin. In the case of the Coulomb potential in three dimensions, the answer is
well known:

φ(r) = 1

4πr
. (12.70)

We can use this to verify the consistency of the Green function definition of
the field, in lieu of a more proper treatment later. By multiplying the Poisson
equation by the Green function, one has∫

d3x′ (−∇2φ(x))G(x, x ′) =
∫

d3x′ ρ(x ′)G(x, x ′). (12.71)

Integrating by parts, and using the definition of G(x, x ′),

φ(x) =
∫

d3x′ ρ(x ′)G(x, x ′). (12.72)

Substituting the polar coordinate forms for φ(r) and using the fact that G(r, r ′)
is just φ(r − r ′) in this instance, we have

φ(r) = 1

4πr
=

∫
1

4π(r − r ′)
δ(r ′)
4πr ′2

4πr ′2dr. (12.73)

This equation is self-consistent and avoids the singular nature of the r ′ integra-

tion by virtue of cancellations with the integration measure
∫

d3x′ = 4πr ′2dr .
We note that both the potential and the field are still singular at the origin.
What we have achieved here, however, is to show that the singularity is
related to a delta-function source (well defined under integration). Without
the delta-function source ρ, the only consistent solution is φ = const. in the
equation above. Thus we do, in fact, need the source to explain the central
Coulomb field.

In fact, the singular structure noted here is a general feature of central fields,
or conservative fields, whose curl vanishes. A non-vanishing curl, incidentally,
indicates the presence of a magnetic field, and thus requires a source for the
magnetism, or a magnetic monopole.

The argument for magnetic monopoles is based on the symmetry of the
differential formulation of Maxwell’s equations. We should pay attention to
the singular nature of pointlike sources when considering this point. If we view
everything in terms of singularities, then a magnetic monopole exists trivially:
it is the Lorentz boost of a point charge, i.e. a string of current. The existence
of other monopoles can be inferred from other topological singularities in the
spacetime occupied by the field.
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13
The non-relativistic limit

In some branches of physics, such as condensed matter and quantum optics, one
deals exclusively with non-relativistic models. However, there are occasionally
advantages to using a relativistic formulation in quantum theory; by embedding
a theory in a larger framework, one often obtains new insights. It is therefore
useful to be able to take the non-relativistic limit of generally covariant theories,
both as an indication of how large or small relativistic effects are and as a cultural
bridge between covariant physics and non-relativistic quantum theory.

13.1 Particles and anti-particles

There is no unified theory of particles and anti-particles in the non-relativistic
field theory. Formally there are two separate theories. When we take the
non-relativistic limit of a relativistic theory, it splits into two disjoint theories:
one for particles, with only positive definite energies, and one for anti-particles,
with only negative definite energies. Thus, a non-relativistic theory cannot
describe the interaction between matter and anti-matter.

The Green functions and fields reflect this feature. The positive frequency
Wightman function goes into the positive energy particle theory, while the nega-
tive frequency Wightman function goes into the negative energy anti-particle
theory. The objects which one then refers to as the Wightman functions
of the non-relativistic field theory are asymmetrical. In normal Schrödinger
field theory for matter, one says that the zero temperature negative frequency
Wightman function is zero.1

1 At finite temperature it must have a contribution from the heat bath for consistency.
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13.2 Klein–Gordon field 341

13.2 Klein–Gordon field

13.2.1 The free scalar field

We begin by considering the Klein–Gordon action for a real scalar field, since
this is the simplest of the cases and can be treated at the level of the action. It also
reveals several subtleties in the way quantities are defined and the names various
quantities go by. In particular, we must recall that relativistic theories have an
indefinite metric, while non-relativistic theories can be thought of as having a
Euclidean, definite metric. Since one is often interested in the non-relativistic
limit in connection with atomic systems, we illustrate the emergence of atomic
levels by taking a two-component scalar field, in which the components have
different potential energy in the centre of mass frame of the field. This is
incorporated by adopting an effective mass m A = m + E A/c2.

Consider the action:

S =
∫
(dx)

{
1

2
h̄2c2(∂µφA)(∂µφA)+ 1

2
m2

Ac4φAφA

}
. (13.1)

The variation of our action, with respect to the atomic variables, leads to

δS =
∫
(dx)δφA(−h̄2c2 + m2

Ac4)φA + h̄2c
∫

dσµx (φA∂µφA). (13.2)

The vanishing of the first term leads to the field equation

h̄2c2

(
− + m2

Ac2

h̄2

)
φA(x) = 0. (13.3)

The second (surface) term in this expression shows that any conserved proba-
bility must transform like an object of the form φA∂µφA. In fact, the real scalar
field has no conserved current from which to derive a notion of locally conserved
probability, but we may note the following. Any complex scalar field ϕ has a
conserved current, which allows one to define the inner product

(ϕA, ϕB) = ih̄c
∫

dσµx (ϕ
∗
A∂µϕB − (∂µϕ∗A)ϕB), (13.4)

where dσµx is the volume element on a spacelike hyper-surface through space-
time. This result is central even to the real scalar field, since a real scalar field
does have a well defined probability density in the non-relativistic limit. To see
this, we observe that the real scalar field φ(x) may be decomposed into positive
and negative frequency parts:

φ(x) = φ(+)(x)+ φ(−)(x), (13.5)

where φ(+)(x) is the positive frequency part of the field, φ(−)(x) is the negative
frequency part of the field and φ(+)(x) = (φ(−)(x))∗. Since the Schrödinger
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342 13 The non-relativistic limit

equation has no physical negative energy solutions, one must discard the
negative frequency half of the spectrum when reducing the Klein–Gordon field
to a Schrödinger field. This leads to well known expressions for the probability
density. Starting with the probability

p = 2ih̄c
∫

dσx(φ∂0φ) (13.6)

and letting

φ(+)(x) = ψ(x)√
2mc2

, φ(−)(x) = ψ∗(x)√
2mc2

, (13.7)

one obtains

p = ih̄

2mc

∫
dσx(ψ + ψ∗)∂0(ψ + ψ∗). (13.8)

Assuming only that φ(x) may be expanded in a complete set of plane waves
exp(ik · x− ωt), satisfying the free wave equation h̄2ω2 = h̄2k2c2 + m2c4,
then in the non-relativistic limit h̄2k2 ( m2c4, we may make the effective
replacement ih̄∂0 → mc to lowest order. Thus we have

p =
∫

dσxψ
∗(x)ψ(x), (13.9)

which is the familiar result for non-relativistic particles. It is easy to check that
p is a dimensionless quantity using our conventions.

This observation prompts us to define the invariant inner product of two fields
φA and φB by

(φA, φB) = ih̄c
∫

dσx
1

2
(φ∗A∂0φB − (∂0φ

∗
A)φB). (13.10)

The complex conjugate symbol is only a reminder here of how to take the non-
relativistic limit, since φA is real. This product vanishes unless A �= B, thus it
must represent an amplitude to make a transition from φ1 to φ2 or vice versa.
The non-relativistic limit of this expression is

(φA, φB)→ 1

2

∫
dσx

[
ψ∗AψB + ψ∗BψA

]
. (13.11)

Since ψ(x) is the field theoretical destruction operator and ψ∗(x) is the creation
operator, this is now manifestly a transition matrix, annihilating a lower state
and creating an upper state or vice versa. The apparent A, B symmetry of
eqn. (13.11) is a feature only of the lowest order term. Higher order corrections
to this expression are proportional to E1 − E2, the energy difference between
the two field levels, owing to the presence of ∂0.
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13.2 Klein–Gordon field 343

Using the interaction term P , we may compute the non-relativistic limit of the
action in eqn. (13.1). This procedure is unambiguous only up to re-definitions
of the origin for the arbitrary energy scale. Equivalently, we are free to define
the mass used to scale the fields in any convenient way. The simplest procedure
is to re-scale the fields by the true atomic mass, as in eqn. (13.7). In addition, we
note that the non-relativistic energy operator ih̄∂t is related to the non-relativistic
energy operator ih̄∂̃t by a shift with respect to the rest energy of particles:

ih̄∂t = mc2 + ih̄∂̃t . (13.12)

This is because the non-relativistic Hamiltonian does not include the rest energy
of particles, its zero point is shifted so as to begin just about the rest energy.
Integrating the kinetic term by parts so that (∂µφ)2 → φ(− )φ and substituting
eqn. (13.7) into eqn. (13.1) gives

S =
∫

dσx dt
1

2
(ψ + ψ∗)A

{
h̄2∂̃2

t

2mc2
− ih̄∂̃t + E2

A

2mc2

+E A − h̄2

2m
∇2

}
(ψ + ψ∗)A. (13.13)

If we use the fact that ψA(x) is composed of only positive plane wave frequen-
cies, it follows that terms involving ψ2 or (ψ∗)2 vanish since they involve delta
functions imposing a non-satisfiable condition on the energy δ(mc2+h̄ω̃), where
both m and ω̃ are greater than zero. This assumption ceases to be true only if
there is an explicit time dependence in the action, indicating a non-equilibrium
scenario, or if the mass of the atoms goes to zero (in which case the NR limit is
unphysical). We are therefore left with

SNR = lim
c→∞

∫
dσx dt

{
i

2

(
ψ∗A(∂̃tψA)− (∂̃tψ

∗
A)ψA

)
− ψ∗A HψA

}
,

(13.14)

where the differential operator HA is defined by

HA = −∇
2

2m
+ E A + 1

2mc2
(E2

A + ∂̃2
t ), (13.15)

and we have re-defined the action by a sign in passing to a Euclideanized non-
relativistic metric. It is now clear that, in the NR limit c → ∞, the final two
terms in HA become negligible, leading to the field equation

HAψA(x) = ih̄∂̃tψA(x), (13.16)

which is the Schrödinger equation of a particle of mass m moving in a constant
potential of energy E A with a dipole interaction. The fact that it is possible to

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


344 13 The non-relativistic limit

identify what is manifestly the Hamiltonian H in such an easy way is a special
property of theories which are linear in the time derivative.

The direct use of the action (a non-physical quantity) in this way requires
some care, so it is useful to confirm the above derivation with an approach
based on the field equations, which are physical. As an additional spice, we
also choose to scale the two components of the field by a factor involving the
effective mass m A rather than the true atomic mass m. The two fields are then
scaled differently. This illustrates another viewpoint, namely of the particles
as two species with a truly different mass, as would be natural in particle
physics. We show that the resulting field equations have the same form in the
non-relativistic limit, up to a shift in the arbitrary zero point energy.

Starting from eqn. (13.3), we define new pseudo-canonical variables by

PA =
√
ωA

2

(
φA + i

ωA
φ̇A

)

Q A = 1√
2ωA

(
φA − i

ωA
φ̇A

)
, (13.17)

where h̄ωA → m Ac2 in the non-relativistic limit, and the time dependence of
the fields is of the form of a plane wave exp(−iωAt), for ωA > 0. This is the
same assumption that was made earlier. We note that, owing to this assumption,
the field PA(x) becomes large compared with Q A(x) in this limit. Substituting
this transformation into the field equation (13.3) and neglecting Q, one obtains

ih̄∂t PA = − h̄2

2m A
∇2 PA + 1

2
m Ac2 PA. (13.18)

These terms have a natural physical interpretation: the first term on the right
hand side is the particle kinetic term for the excited and unexcited atoms in our
system. The second term is the energy offset of the two levels in the atomic
system.

Our new point of view now leads to a free particle kinetic term with a mass
m A, rather than the true atomic mass m. There is no contradiction here, since
E A is small compared to mc2, so we can always expand the reciprocal mass to
first order. Expanding these reciprocal masses m A we obtain

m−1
A = m−1 + O

(
E A

m2c2
→ 0

)
(13.19)

showing that a consistent NR limit requires us to drop the A-dependent pieces.
Eqn. (13.18) may then be compared with eqn. (13.16). It differs only by a

shift in the energy. A shift by the average energy level 1
2(E1 + E2) makes these

equations identical.
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13.2.2 Non-relativistic limit of GF(x, x ′)

As we have already indicated, the non-relativistic theory contains only positive
energy solutions. We also noted in section 5.5 that the Schrödinger Green
function GNR(x, x ′) satisfied purely retarded boundary conditions. There was
no Feynman Green function for the non-relativistic field. Formally, this is a
direct result of the lack of negative energy solutions to the Schrödinger equation
(or anti-particles, in the language of quantum field theory). We shall now show
that object, which we refer to as the Feynman Green function, becomes the
non-relativistic retarded Green function in the limit c →∞. The same argument
applies to the relativistic retarded function, and it is clear from eqn. (5.74) that
the reason is the vanishing of the negative frequency Wightman function in the
non-relativistic limit.

We begin with eqn. (5.95) and reinstate c and h̄:

GF(x, x ′) = c
∫

dn+1k

(2π)n+1

c

2h̄ωk

eik�x

h̄2c[
1

(ch̄k0 + h̄ωk − iε)
− 1

(ch̄k0 − h̄ωk + iε)

]
. (13.20)

In order to compare the relativistic and non-relativistic Green functions, we have
to re-scale the relativistic function by the rest energy, as in eqn. (13.7), since the
two objects have different dimensions. Let

2mc2 GF(x, x ′)→ GF,NR, (13.21)

so that the dimensions of GF,NR are the same as those for GNR:(
− h̄2

2m
+ 1

2
mc2

)
GF,NR = δ(x, x′)δ(t, t ′) = cδ(x, x ′);(

− h̄2

2m
∇2 − ih̄∂t

)
GNR = δ(x, x′)δ(t, t ′). (13.22)

Next, we must express the relativistic energy h̄ω in terms of the non-relativistic
energy h̄ω̃ and examine the definition of ωk with c reinstated,

ck0 = −ω = −
(
ω̃ + mc2

h̄

)

h̄ωk =
√

h̄2c2k2 + m2c4. (13.23)

The change of k0 → −ω/c, both in the integral limits and the measure, means
that we effectively replace dk0 → dω̃/c. In the non-relativistic limit of large c,
the square-root in the preceding equation can be expanded using the binomial
theorem,

h̄ωk = mc2 + h̄2k2

2m
+ O

(
1

c2

)
. (13.24)
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346 13 The non-relativistic limit

Substituting these results into eqn. (13.20), we have for the partial fractions

1

ch̄k0 + h̄ωk − iε
= 1

h̄2k2

2m − h̄ω̃ − iε

1

ch̄k0 − h̄ωk + iε
= 1

− h̄2k2

2m − h̄ω̃ − 2mc2 + iε
, (13.25)

while the pre-factor becomes

dω̃
2mc2

2h̄ωk
=

(
1+ h̄2k2

2m2c2
+ O

(
1

c4

))−1

. (13.26)

Taking the limit c →∞ in these expressions causes the second partial fraction
in eqn. (13.25) to vanish. This is what removes the negative energy solutions
from the non-relativistic theory. The remainder may now be written as

GF,NR(x, x ′) =
∫

dnk
(2π)n

dω̃

2π

(
h̄2k2

2m
− ω̃ − iε

)−1

. (13.27)

We see that this is precisely the expression obtained in eqn. (5.140). It has poles
in the lower half-plane for positive frequencies. It is therefore a retarded Green
function and satisfies a Kramers–Kronig relation.

13.3 Dirac field

The non-relativistic limit of the Dirac equation is more subtle than that for scalar
particles since the fields are spinors and the γ -matrices imply a constraint on
the components of the spinors. There are several derivations of this limit in
the literature, all of them at the level of the field equations. Here we base our
approach, as usual, on the action and avoid introducing specific solutions or
making assumptions about their normalization.

13.3.1 The free Dirac field

The Dirac action may be written

SD =
∫
(dx)ψ

(
−1

2
ih̄c(γ µ

→
∂µ −γ µ

←
∂µ

†

)+ mc2

)
ψ. (13.28)

We begin by re-writing this in terms of the two-component spinors χ (see
chapter 20) and with non-symmetrical derivatives for simplicity. The latter
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13.3 Dirac field 347

choice is of no consequence and only aids notational simplicity:

SD =
∫
(dx)ψ†γ 0(−ih̄cγ µ∂µ + mc2)ψ

=
∫
(dx)(χ†

1χ
†
2 )

( −ih̄∂t − mc2 −ih̄cσ i∂i

−ih̄cσ i∂i −ih̄∂t + mc2

)(
χ1

χ2

)
.

(13.29)

This block matrix can be diagonalized by a unitary transformation. The
eigenvalue equation is

(−ih̄∂t − mc2 − λ)(−ih̄∂t + mc2 − λ)+ h̄2c2σ iσ j∂i∂ j = 0. (13.30)

Noting that

σ iσ j∂i∂ j = ∂ i∂i + iεi jk∂i∂ jσk, (13.31)

the eigenvalues may be written as

λ± = −ih̄∂t ±
√

m2c4 − h̄2c2(∂ i∂i + iεi jk∂i∂ jσk). (13.32)

Thus, the action takes on a block-diagonal form

SD =
∫
(dx)ψ

†
γ 0(−ih̄cγ µ∂µ + mc2)ψ

=
∫
(dx)(χ†

1 χ
†
2 )

(
λ+ 0
0 λ−

)(
χ1

χ2

)
. (13.33)

In the non-relativistic limit, c → ∞, we may expand the square-root in the
eigenvalues

λ± = −ih̄∂t ± mc2

(
1− h̄2(∂ i∂i + iεi jk∂i∂ jσk)

2m2c2
+ O(c−4)+ · · ·

)
.

(13.34)

The final step is to re-define the energy operator by the rest energy of the field,
for consistency with the non-relativistic definitions:

λ± = −ih̄∂̃t − mc2 ± mc2

(
1− h̄2∇2

2m2c2
+ O(c−4)+ · · ·

)
. (13.35)

Thus, in the limit, c → ∞, the two eigenvalues, corresponding to positive and
negative energy, give

λ+ = −ih̄∂̃t − h̄2∇2

2m
λ− = ∞. (13.36)
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348 13 The non-relativistic limit

Apart from an infinite contribution to the zero point energy which may be re-
defined (renormalized) away, and making an overall change of sign as in the
Klein–Gordon case, the non-relativistic action is

SD →
∫
(dx)

{
χ†

(
ih̄∂̃t + h̄2∇2

2m

)
χ

}
. (13.37)

13.3.2 The Dirac Green function

The non-relativistic limit of the Dirac Green function may be inferred quite
straightforwardly from the Green function for the scalar field. The Dirac Green
function S(x, x ′) satisfies the relation

(−ih̄cγ µ∂µ + mc2)S(x, x ′) = cδ(x, x ′). (13.38)

We also know that the squared operator in this equation leads to a Klein–Gordon
operator, thus

(ih̄cγ µ∂µ + mc2)S(x, x ′) = G(x, x ′), (13.39)

so operating on eqn. (13.38) with this conjugate operator leaves us with

(−h̄2c2 + m2c4)G(x, x ′) = cδ(x, x ′). (13.40)

Both sides of this equation are proportional to a spinor identity matrix, which
therefore cancels, leaving a scalar equation. Since we know the limiting
properties of G(x, x ′) from section 13.2.2, we may take the limit by introducing
unity in the form 2mc2/2mc2, such that 2mc2G(x, x ′) = GNR(x, x ′) and the
operator in front is divided by 2mc2. After re-defining the energy operator, as in
eqn. (13.12), the limit of c →∞ causes the quadratic time derivative to vanish,
leaving (

− h̄2

2m
∇2 − ih̄∂̃t

)
GNR(x, x ′) = δ(x, x′)δ(t, t ′). (13.41)

This is the scalar Schrödinger Green function relation. To get the Green
function for the two-component spinors found in the preceding section, it may
be multiplied by a two-component identity matrix.

13.3.3 Spinor electrodynamics

The interaction between electrons and radiation complicates the simple proce-
dure outlined in the previous section. The minimal coupling to radiation via the
gauge potential Aµ(x) involves x-dependence, which means that the derivatives
do not automatically commute with the diagonalization procedure. We must
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13.3 Dirac field 349

therefore modify the discussion to account for this, in particular taking more
care with time reversal invariance. In addition, we must consider the reaction
of the electronic matter to the presence of an electromagnetic field. This leads
to a polarization of the field, or effective refractive index (see section 21.2 for a
simple discussion of classical polarization). The action for electrodynamics is
thus

SQED =
∫
(dx)

{
ψ

(
−1

2
ih̄c(γ µ

→
Dµ −γ µ

←
Dµ

†

)+ mc2

)
ψ + 1

4µ0
FµνGµν

}
,

(13.42)

where Gµν is the covariant displacement field, defined in eqn. (21.62). We
proceed once again by re-writing this in terms of the two-component spinors
χ . We consider the matter and radiation terms separately. The matter action is
given by

SD =
∫
(dx)ψ†γ 0(−ih̄cγ µDµ + mc2)ψ

=
∫
(dx)(χ†

1χ
†
2 )

(
−i h̄

2

↔
Dt −mc2 −ih̄cσ i Di

−ih̄cσ i Di −i h̄
2

↔
Dt +mc2

)(
χ1

χ2

)
.

(13.43)

In electrodynamics, the covariant derivative is Dµ = ∂µ + i e
h̄ Aµ, from which it

follows that

[Dµ, Dν] = i
e

h̄
Fµν. (13.44)

The block matrix in eqn. (13.43) can be diagonalized by a unitary transforma-
tion. The symmetrized eigenvalue equation is(

−i
h̄

2

↔
Dt −mc2 − λ

)(
−i

h̄

2

↔
Dt +mc2 − λ

)
+ h̄2c2σ iσ j Di D j = 0,

(13.45)

or

λ2 + 2ih̄λDt + h̄2c2 σ iσ j Di D j − h̄2 D2
t − m2c4 − i

h̄

2

↔
(∂tλ)= 0,

(13.46)

where the last term arises from the fact that the eigenvalues themselves depend
on x due to the gauge field. It is important that this eigenvalue equation be
time-symmetrical, as indicated by the arrows. We may write this in the form

λ = −i
h̄

2

↔
Dt ±

√
m2c4 − h̄2c2σ iσ j Di D j + i

h̄

2

↔
(∂tλ) (13.47)
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350 13 The non-relativistic limit

and we now have an implicit equation for the positive and negative energy roots
of the operator λ. The fact that the derivative term ∂tλ is a factor of c2 smaller
than the other terms in the square-root means that this contribution will always
be smaller than the others. In the strict non-relativistic limit c → ∞ it is
completely negligible. Since the square-root contains operators, we represent
it by its binomial expansion

(1+ x)n = 1+ nx + n(n − 1)

2
x2 + · · · , (13.48)

after extracting an overall factor of mc2, thus:

λ = −i
h̄

2

↔
Dt ±

[
mc2 − h̄2σ iσ j Di D j

2m
− h̄4

(
σ iσ j Di D j

)2

8m3c2

+i
h̄

4mc2

↔
(∂tλ) + · · ·

]
. (13.49)

The final term, ∂t , can be evaluated to first order by iterating this expression.
Symmetrizing over time derivatives, the first order derivative of eqn. (13.49) is

↔
(∂tλ)

(1)

= ∓ h̄2

2m
σ iσ j (Di

↔
∂t D j )

= ∓ ieh̄

2m
σ iσ j (Di E j − Ei D j ) (13.50)

since we may add and subtract ∂i At with impunity. To go to next order, we must
substitute this result back into eqn. (13.49) and take the time derivative again.
This gives a further correction

↔
(∂tλ)

(2)

= ∓i
h̄

4mc2
∂t

[
ih̄

4mc2

(
ieh̄

2m
σ iσ j (Di E j − Ei D j )

)]
(13.51)

Noting the energy shift −ih̄∂t → −ih̄∂̃t − mc2 and taking the positive square-
root, we obtain the non-relativistic limit for the positive half of the solutions:

SD →
∫
(dx)

{
χ†

(
ih̄ D̃t + h̄2 Di Di

2m
− eh̄ Biσi

2m

− eh̄2

8m2c2
σ iσ j (Di E j − Ei D j )

− h̄4

8m3c2

(
(Di Di )− e

h̄
(σ i Bi )

)2

−i
eh̄3

32m3c4
σ iσ j

↔
∂t (Di E j − Ei D j )+ · · ·

)
χ

}
, (13.52)
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13.3 Dirac field 351

where Bk = 1
2εi jk Fjk and the overall sign has been changed to conform to the

usual conventions. The negative root in eqn. (13.47) gives a similar result for
anti-particles. The fifth term contains ∂ i Ei , which is called the Darwin term.
It corresponds to a correction to the point charge interaction due to the fact
that Dirac ‘particles’ are spread out over a region with radius of the order
of the Compton wavelength h̄/mc. In older texts, this is referred to as the
Zitterbewegung, since, if one insists on a particle interpretation, it is necessary to
imagine the particles jittering around their average position in a kind of random
walk. The σ i Bi term is a Zeeman splitting term due to the interaction of the
magnetic field with particle trajectories.

Note that our diagonalization of the Dirac action leads to no coupling between
the positive and negative energy solutions. One might expect that interactions
with Aµ which couple indiscriminately with both positive and negative energy
parts of the field would lead to an implicit coupling between positive and
negative energy parts. This is not the case classically, however, since the vector
potential Aµ leads to no non-linearities with respect to ψ .

Radiative corrections (fluctuation corrections) in the relativistic fields give
rise to back-reaction terms both in the fermion sector and in the electromagnetic
sector. The effect of photon Dµν exchange leads to an effective quartic
interaction

S! =
∫
(dx)(dx ′) (ψ(x ′)γ µψ(x ′)) Dµν(x, x ′) (ψ(x)γ νψ(x)). (13.53)

The photon propagator is clearly a non-local and gauge-dependent quantity.
Non-locality is a feature of the full theory, and reflects the fact that the finite
speed of light disallows an instantaneous response in the field during collisions
(there is an intrinsic non-elasticity in relativistic particle scattering). Working to
a limited order in 1/c makes the effective Lagrangian effectively local, however,
since the non-local derivative expansion is truncated. The gauge dependence of
the Lagrangian is more subtle. In order to obtain a physically meaningful result,
one requires an effective Lagrangian which produces gauge-fixing independent
results. This does not necessarily mean that the Lagrangian needs to be
gauge-independent, however. The reason is that the Lagrangian is no longer
covariant with respect to the necessary symmetries to make this apparent.

Gauge invariance is related to a conformal/Lorentz symmetry of the relativis-
tic gauge field, so one would expect a loss of Lorentz invariance to result in
a breakdown of invariance under choice of gauge-fixing condition. In fact, a
non-relativistic effective Lagrangian is not unique: its form is indeed gauge-
dependent. Physical results cannot be gauge-dependent, however, provided one
works to consistent order in the expansion of the original covariant theory. Thus,
the gauge condition independence of the theory will be secured by working
to consistent order in the smallness parameters, regardless of the actual gauge
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352 13 The non-relativistic limit

chosen. Propagators and Lagrangian are gauge-dependent, but in just the right
way to provide total gauge independence.

Turning to the photon sector, we seek to account for the effects of vacuum and
medium polarization in leading order kinetic terms for the photon. To obtain the
non-relativistic limit of the radiation terms, it is advantageous to have a model of
the dielectric medium in which photons propagate. Nevertheless, some progress
can be made on the basis of a generic linear response. We therefore use linear
response theory and assume a constitutive relation for the polarization of the
form

Gµν = Fµν +
∫
(dx) χ(x, x ′)Fµν. (13.54)

The second term is a correction to the local field, which is proportional to the
field itself. Perhaps surprisingly, this relation plays a role even in the vacuum,
since quantum field theory predicts that the field ψ may be polarized by the
back-reaction of field fluctuations in Aµ. Since the susceptibility χ(x, x ′)
depends on the dynamics of the non-relativistic matter field, one expects this
polarization to break the Lorentz invariance of the radiation term. This occurs
because, at non-relativistic speeds, the interaction between matter and radiation
splits into electric and magnetic parts which behave quite differently. From
classical polarization theory, we find that the momentum space expression for
the susceptibility takes the general form

χ(ω) ∼ Ne2ω2/ε0m

ω2
0 − iγω + ω2

. (13.55)

In an electron plasma, where there are no atoms which introduce interactions
over and above the ones we are considering above, the natural frequency
of oscillations can only be ω0 ∼ mc2/h̄. These are the only scales from
which to construct a frequency. The significance of this value arises from the
correlations of the fields on the order of the Compton wavelength which lead
to an elastic property of the field. This is related to the Casimir effect and to
the Zitterbewegung mentioned earlier. It is sufficient to note that such a system
has an ultra-violet resonance, where ω0 * ω in the non-relativistic limit. This
means that χ(ω) can be expanded in powers of ω/ω0. From the equations of
motion, h̄ω ∼ h̄2k2/2m; thus, the expansion is in powers of the quantity

ω

ω0
∼ h̄k2/2m

h̄(mc2/h̄)
= h̄k2

m2c2
. (13.56)

It follows that the action for the radiation may be written in the generic form

SM =
∫
(dx)

{
CE

2
A0

[
∇2

(−h̄∇2

m2c2
+ · · ·

)
A0

]

+ CB

2
Ai

[
(−∇2 gi j + ∂i∂ j )

(−h̄∇2

m2c2
+ · · ·

)]
A j

}
. (13.57)
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13.4 Thermal and Euclidean Green functions 353

This form expresses only the symmetries of the field and dimensional scales of
the system. In order to evaluate the constants CE and CB in this expression, it
would necessary to be much more specific about the nature of the polarization.
For a plasma in a vacuum, the constants are equal to unity in the classical
approximation. The same form for the action would apply in the case of
electrons in an ambient polarizable medium, below resonance. Again, to
determine the constants in that case, one would have to introduce a model for
the ambient matter or input effective values for the constants by hand.

13.4 Thermal and Euclidean Green functions

There are two common formulations of thermal Green functions. At thermal
equilibrium, where time is an irrelevant variable on average, one can rotate to a
Euclidean, imaginary time formulation, as in eqn. (6.46), where the imaginary
part of time places the role of an inverse temperature β. Alternatively one can
use a real-time formulation as in eqn. (6.61).

The non-relativistic limit of Euclideanized field theory is essentially no
different from the limit in Minkowski spacetime, except that there is no direct
concept of retarded or advanced boundary conditions in terms of poles in the
propagator. There is nevertheless still a duplicity in the solutions with positive
and negative, imaginary energy. This duplicity disappears in the non-relativistic
limit, as before, since half of the spectrum is suppressed. The relativistic,
Euclidean Green function, closely related to the zero-temperature Feynman
Green function, is given by

Gβ(x, x ′) =
∫

dω

2π

dnk
(2π)n

eik(x−x ′)

p2
βc2 + m2c4

, (13.58)

where the zeroth component of the momentum is given by the Matsubara
frequencies p0

β = 2nπ/β h̄c:

2mc2 Gβ(x, x ′) =
∫

dω

2π

dnk
(2π)n

eik(x−x ′)

p2
β

2m + 1
2 mc2

. (13.59)

Shifting the energy ip0
β → mc2 + i p̃0

β leaves us with

GNRβ(x, x ′) =
∫

dω

2π

dnk
(2π)n

eik(x−x ′)

p2

2m − ih̄ω̃
, (13.60)

which is the Green function for the Euclidean action

S =
∫
(dx)χ†

[
h̄2∇2

2m
+ h̄∂̃τ

]
χ. (13.61)
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354 13 The non-relativistic limit

In the real-time formulation, in which we retain the auxiliary time dependence,
the thermal character of the Green functions is secured through the momentum
space boundary condition in eqn. (6.54), known in quantum theory as the Kubo–
Martin–Schwinger relation. Considering the boundary terms in eqn. (6.61) and
following the procedure in section 13.2.2, one has

2mc2 2π i f (k)θ(k0)δ(p
2c2 + m2c4)→

2mc2 2π i f (k)θ(k0)
δ(p0c − h̄ω̃k)

2h̄ωk
. (13.62)

In the large c limit, h̄ωk → mc2, thus the c →∞ limit of this term is simply

2π i f (ω̃k), (13.63)

where h̄ωk = mc2 + h̄ω̃k .
Intimately connected to this form is the Kubo–Martin–Schwinger (KMS)

relation. We looked at this relation in section 6.1.5, and used it to derive the form
of the relativistic Green functions. Notice that the zero-temperature, negative
frequency parts of the Wightman functions do not contribute to the derivation
of this relation in eqn. (6.56). For this reason, the form of the relationship in
eqn. (6.54) is unchanged,

−G(+)(ω̃) = eβω̃G(−)(ω̃). (13.64)

This use of the non-relativistic energy in both the relativistic and non-relativistic
cases is important and leads to a subtlety in the Euclidean formulation. From
the simplistic viewpoint of a Euclidean imaginary-time theory, the meaning of a
thermal distribution is different in the relativistic and non-relativistic cases. The
Boltzmann factor changes from

e−β(h̄ω̃+mc2)→ e−βh̄ω̃. (13.65)

This change is reflected also in a change in the time dependence of wave modes,

e+i(ω̃+mc2/h̄)τ → e+iω̃τ . (13.66)

The shift is necessary to reflect the change in dynamical constraints posed
by the equations of motion. However, the Boltzmann condition applies (by
convention) to the non-relativistic energy. It is this energy scale which defines
the temperature we know.

Another way of looking at the change in the Boltzmann distribution is from
the viewpoint of fluctuations. Thermal fluctuations give rise to the Boltzmann
factor, and these must have a special causal symmetry: emission followed
by absorption. These processes are mediated by the Green functions, which
reflect the equations of motion and are therefore unambiguously defined. As we
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13.4 Thermal and Euclidean Green functions 355

take the non-relativistic limit, the meaning of the thermal distribution changes
character subtly. The positive frequency/energy condition changes from being
θ(ω) = θ(ω̃+mc2/h̄) to θ(ω̃) owing to the re-definition of the zero point energy.
Looking back at eqn. (6.56), we derived the Bose–Einstein distribution using the
fact that

θ(−ω)eβω = 0. (13.67)

But one could equally choose the zero point energy elsewhere and write

θ(−(ω +�ω))eβ ′(ω+�ω) = 0. (13.68)

As long as the Green functions are free of interactions which couple the energy
scale to a third party, we can re-label the energy freely by shifting the variable
of integration in eqn. (5.64). In an interacting theory, the meaning of such a
re-labelling is less clear.

In a system which is already in thermal equilibrium, one might argue that the
interactions are not relevant. Interactions are only important in the approach to
equilibrium and to the final temperature. With a new definition of the energy, a
temperature has the same role as before, but the temperature scale β ′ is modified.

This might seem slightly paradoxical, but the meaning it clear. The KMS
condition expressed by eqn. (6.54) simply indicates that the fluctuations medi-
ated by given Green functions should be in thermal balance. The same condition
may be applied to any virtual process, based on any equilibrium value or zero
point energy. If we change the Green functions, we change the condition and the
physics underpinning it. In each case, one obtains an equilibrium distribution
of the same general form, but the meaning depends on the original Green
functions. In order to end up with equivalent temperature scales, one must use
equivalent energy scales. Relativistic energies and non-relativistic energies are
not equivalent, and neither are the thermal distributions obtained from these.
In the non-relativistic case, thermal fluctuations comprise kinetic fluctuations in
particle motion. In the relativistic case, the energy of the particles themselves is
included.

Two thermal distributions

eh̄βω = eh̄(β+�β)(ω+�β) (13.69)

are equivalent if

β +�β
β

= ω

ω +�ω. (13.70)

These two viewpoints are related by a renormalization of the energy or chemical
potential; the reason why such a renormalization is required is precisely because
of the change in energy conventions which affects the Euclidean formulation.
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356 13 The non-relativistic limit

13.5 Energy conservation

The speed of light is built into the covariant notation of the conservation law

∂µθ
µν = 0. (13.71)

We must therefore ascertain whether the conservation law is altered by the limit
c →∞. From eqns. (11.5) and (11.44), one may write

∂µθ
µν = 1

c
∂tθ

0µ + ∂iθ
iµ

= ∂tθ
tµ + ∂iθ

iµ. (13.72)

It is apparent from eqn. (11.5) that, as c →∞,

θ0i →∞
θi0 → 0. (13.73)

Splitting µ into space and time components, we have, for the time component,

∂µθ
µ0 = 1

c
∂µθ

µt

= 1

c

[
∂t θ

t t + ∂iθ
i t
]

= 1

c
[∂t H ] = 0. (13.74)

Because of the limit, this equation is ambiguous, but the result is sensible if we
interpret the contents of the brackets as being zero. For the space components
one has

∂tθ
ti + ∂ jθ

j i = 0

∂t p + ∂ jσ
j i = 0, (13.75)

where σi j is the stress tensor. Thus, energy conservation is preserved but it
becomes divided into two separate statements, one about the time independence
of the total Hamiltonian, and another expressing Newton’s law that the rate of
change of momentum is equal to the applied force.

13.6 Residual curvature and constraints

The non-relativistic limit does not always commute with the limit of zero
curvature, nor with that of dimensional reduction, such as projection in order
to determine the effective dynamics on a lower-dimensional constraint surface
[15]. Such a reduction is performed by derivative expansion, in which every
derivative seeks out orders of the curvature of the embedded surface. Since the
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13.6 Residual curvature and constraints 357

non-relativistic limit is also an expansion in terms of small derivatives, there is
an obvious connection between these. In particular, the shape of a constraint
surface can have specific implications for the consistency of the non-relativistic
limit [29, 30, 80, 94, 95]. Caution should be always exercised in taking limits,
to avoid premature loss of information.
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14
Unified kinematics and dynamics

This chapter sews together some of the threads from the earlier chapters to
show the relationships between apparently disparate dynamical descriptions of
physics.

14.1 Classical Hamiltonian particle dynamics

The traditional formulation Schrödinger quantum mechanics builds on a Ham-
iltonian formulation of dynamical systems, in which the dynamics describe not
only particle coordinates q but also their momenta p. The interesting feature
of the Hamiltonian formulation, in classical mechanics, is that one deals only
with quantities which have a direct physical interpretation. The disadvantage
with the Hamiltonian approach in field theory is its lack of manifest covariance
under Lorentz transformations: time is singled out explicitly in the formulation.1

Some important features of the Hamiltonian formulation are summarized here
in order to provide an alternative view to dynamics with some different insights.

The Hamiltonian formulation begins with the definition of the momentum pi

conjugate to the particle coordinate qi . This quantity is introduced since it is
expected to have a particular physical importance. Ironically, one begins with
the Lagrangian, which is unphysical and is to be eliminated from the discus-
sion. The Lagrangian is generally considered to be a function of the particle
coordinates qi and their time derivatives or velocities q̇ i . The momentum is then
conveniently defined from the Lagrangian,

pi = ∂L

∂ q̇i
. (14.1)

1 Actually, time is singled out in a special way even in the fully covariant Lagrangian
formulation, since time plays a fundamentally different role from space as far as the dynamics
are concerned. The main objection which is often raised against the Hamiltonian formulation
is the fact that the derivation of covariant results is somewhat clumsy.
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14.1 Classical Hamiltonian particle dynamics 359

This is not the only way in which one could define a momentum, but it is
convenient to use a definition which refers only to the abstract quantities L and
q̇i in cases where the Lagrangian and its basic variables are known, but other
physical quantities are harder to identify. This extends the use of the formalism
to encompass objects which one would not normally think of as positions and
momenta. The total time derivative of the Lagrangian is

dL(q, q̇, t)

dt
= ∂L

∂qi
q̇i + ∂L

∂ q̇i
q̈ + ∂L

∂t
, (14.2)

which may be written

d

dt

{
q̇i
∂L

∂q̇i
− L

}
. (14.3)

Now, if the Lagrangian is not explicitly time-dependent, ∂L
∂t = 0, then the

quantity in the curly braces must be constant with respect to time, so, using
eqn. (14.1), we may define the Hamiltonian H by

H = const. = pq̇ − L . (14.4)

Notice that this definition involves time derivatives. When we consider the
relativistic case, timelike quantities are often accompanied by a sign from the
metric tensor, so the form of the Hamiltonian above should not be treated as
sacred.

14.1.1 Hamilton’s equations of motion

The equations of motion in terms of the new variables may be obtained in the
usual way from the action principle, but now treating qi and pi as independent
variables. Using the Lagrangian directly to obtain the action gives us

S =
∫

dt {pq̇ − L} . (14.5)

However, from earlier discussions about symmetrical derivatives, we know that
the correct action is symmetrized about the derivatives. Thus, the action is given
by

S =
∫

dt

{
1

2
(pq̇ − q ṗ)− L

}
. (14.6)

Varying this action with fixed end-points, one obtains (integrating the pq̇ term
by parts)

δS

δq(t)
= − ṗ − ∂H

∂q
= 0

δS

δp(t)
= q̇ − ∂H

∂p
. (14.7)
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360 14 Unified kinematics and dynamics

Hence, Hamilton’s two equations of motion result:

ṗ = −∂H

∂q
(14.8)

q̇ = ∂H

∂p
. (14.9)

Notice that this is a pair of equations. This is a result of our insistence on
introducing an extra variable (the momentum) into the formulation.

14.1.2 Symmetry and conservation

One nice feature of the Hamiltonian formulation is that invariances of the
equations of motion are all identifiable as a generalized translational invariance.
If the action is independent of a given coordinate

∂L

∂qn
= 0, (14.10)

then

∂L

∂q̇n
= pn = const.; (14.11)

i.e. the momentum associated with that coordinate is constant, or is conserved.
The coordinate qn is then called an ignorable coordinate.

14.1.3 Symplectic transformations

We started originally with an action principle, which treated only q(t) as a dy-
namical variable, and later introduced (artificially) the independent momentum
variable p.2 The fact that we now have twice the number of dynamical variables
seems unnecessary. This intuition is further borne out by the observation that, if
we make the substitution

q →−p (14.12)

p → q (14.13)

in eqn. (14.9), then we end up with an identical set of equations, with only
the roles of the two equations switched. This transformation represents an

2 In many textbooks, the Lagrangian formulation is presented as a function of coordinates q and
velocities q̇. Here we have bypassed this discussion by working directly with variations of the
action, where it is possible to integrate by parts and perform functional variations. This makes
the usual classical Lagrangian formalism redundant.
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14.1 Classical Hamiltonian particle dynamics 361

invariance of the Hamilton equations of motion, and hints that the positions
and momenta are really just two sides of the same coin.

Based on the above, one is motivated to look for a more general linear
transformation in which p and q are interchanged. In doing so, one must be
a little cautious, since positions and momenta clearly have different engineering
dimensions. Let us therefore introduce the quantities p̂ and q̂ , which are
re-scaled by a constant ' with dimensions of mass per unit time in order that
they have the same dimensions:

p̂ = p/
√
'

q̂ = q
√
'. (14.14)

The product of q̂ and p̂ is independent of this scale, and this implies that the
form of the equations of motion is unchanged:

˙̂p = −∂H

∂q̂
(14.15a)

˙̂q = ∂H

∂ p̂
. (14.15b)

Let us consider, then, general linear combinations of q and p and look for all
those combinations which leave the equations of motion invariant. In matrix
form, we may write such a transformation as(

q̂ ′

p̂′

)
=

(
a b
c d

)(
q̂
p̂

)
. (14.16)

The derivatives associated with the new coordinates are

∂

∂q̂ ′
= 1

2

(
1

a

∂

∂q̂
+ 1

b

∂

∂ p̂

)
∂

∂ p̂′
= 1

2

(
1

c

∂

∂q̂
+ 1

d

∂

∂ p̂

)
. (14.17)

We may now substitute these transformed coordinates into the Hamilton equa-
tions of motion (14.15) and determine the values of a, b, c, d for which the
equations of motion are preserved. From eqn. (14.15b), one obtains

a ˙̂q + b ˙̂p = 1

2

(
1

c

∂H

∂q
+ 1

d

∂H

∂p

)
. (14.18)

This equation is a linear combination of the original equation in (14.15) provided
that we identify

2ad = 1

2bc = −1. (14.19)
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362 14 Unified kinematics and dynamics

Substitution into eqn. (14.15a) confirms this. The determinant of the transfor-
mation matrix is therefore

ad − bc = 1 (14.20)

and we may write, in full generality:

U =
(

a b
c d

)
= 1√

2

(
eiθ ieiφ

ie−iφ e−iθ .

)
(14.21)

This is the most general transformation of p̂, q̂ pairs which leaves the equations
of motion invariant. The set of transformations, which leaves the Poisson
bracket invariant, forms a group known as the symplectic group sp(2,C). If
we generalize the above discussion by adding indices to the coordinates and
momenta i = 1, . . . , n, then the group becomes sp(2n,C).

Since we have now shown that p and q play virtually identical roles in the
dynamical equations, there is no longer any real need to distinguish them with
separate symbols. In symplectic notation, many authors write both coordinates
and momenta as Qi , where i = 1, . . . , 2n grouping both together as generalized
coordinates.

14.1.4 Poisson brackets

Having identified a symmetry group of the equations of motion which is general
(i.e. which follows entirely from the definition of the conjugate momentum in
terms of the Lagrangian), the next step is to ask which quantities are invariant
under this symmetry group. A quantity of particular interest is the so-called
Poisson bracket.

If we apply the group transformation to the derivative operators,(
D̂+
D̂−

)
≡ U (θ, φ)

(
∂
∂q̂
∂
∂ p̂

)
, (14.22)

then it is a straightforward algebraic matter to show that, for any two functions
of the dynamical variables A, B, the Poisson bracket, defined by

(D+X) (D−Y )− (D−X) (D+Y ) ≡ [X, Y ] p̂q̂ , (14.23)

is independent of θ and φ and is given in all bases by

[X, Y ]pq =
∂X

∂q

∂Y

∂p
− ∂Y

∂q

∂X

∂p
. (14.24)

Notice, in particular that, owing to the product of pq in the denominators, this
bracket is even independent of the re-scaling by ' in eqn. (14.14).

We shall return to the Poisson bracket to demonstrate its importance to the
variational formalism and dynamics after a closer look at symmetry transforma-
tions.
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14.1 Classical Hamiltonian particle dynamics 363

14.1.5 General canonical transformations

The linear combinations of p, q described in the previous section form a
symmetry which has its origins in the linear formulation of the Hamiltonian
method. Symplectic symmetry is not the only symmetry which might leave the
equations of motion invariant, however. More generally, we might expect the
coordinates and momenta to be changed into quite different functions of the
dynamical variables:

q → q ′(p, q, t)
p → p′(p, q, t). (14.25)

Changes of variable fit this general description, as does the time development of
p and q. We might, for example, wish to change from a Cartesian description
of physics to a polar coordinate basis, which better reflects the symmetries of
the problem. Any such change which preserves the form of the field equations
is called a canonical transformation.

It turns out that one can effect general infinitesimal transformations of
coordinates by simply adding total derivatives to the Lagrangian. This is closely
related to the discussion of continuity in section 4.1.4. Consider the following
addition

L → L + dF

dt
, (14.26)

for some arbitrary function F(q, p, t). Normally, one ignores total derivatives
in the Lagrangian, for the reasons mentioned in section 4.4.2. This is because
the action is varied, with the end-points of the variation fixed. However, if
one relaxes this requirement and allows the end-points to vary about dynamical
variables which obey the equations of motion, then these total derivatives (often
referred to as surface terms in field theory), have a special and profound
significance. Our programme and its notation are the following.

• We add the total time derivative of a function F(q, p, t) to the Lagrangian
so that

S → S +
∫

dt
dF

dt

= S + F
∣∣∣t2
t1
. (14.27)

• We vary the action and the additional term and define the quantity Gξ ,
which will play a central role in transformation theory, by

δξ F ≡ Gξ , (14.28)

so that

δS → δS + G. (14.29)
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364 14 Unified kinematics and dynamics

• We may optionally absorb the change in the variation of the action G into
the generalized coordinates by making a transformation, which we write
formally as

q → q + δq = q + Rξ δξ. (14.30)

Rξ is called the auxiliary function of the transformation, and is related to
Gξ , which is called the generator of the transformation. This transforms
the coordinates and momenta by an infinitesimal amount.

Let us now illustrate the procedure in practice. The variation of the action
may be written

δS = δ
∫

dt (pq̇ − H)+
∫

dt δ Ḟ,

=
∫

dt

((
− ṗ − ∂H

∂q

)
δq + ∂Ġ

∂q
δq + ∂Ġ

∂q
δq

)
. (14.31)

In the last line we have expanded the infinitesimal change δF = G in terms
of its components along q and p. This can always be done, regardless of what
general change G represents. We can now invoke the modified action principle
and obtain the equations of motion:

δS

δq
= 0 = − ṗ − δH

δq
+ δĠ
δq

= −( ṗ + δ ṗ)− δH

δq

δS

δp
= 0 = q̇ − δH

δp
+ δĠ
δp

= (q̇ + δq̇)− δH

δp
, (14.32)

where we have identified

δ ṗ = −∂Ġ

∂q

δq̇ = ∂Ġ

∂p
, (14.33)

or, on integrating,

δp = −∂G

∂q
= R p

a δξ
a

δq = ∂G

∂p
= Rq

a δξ
a. (14.34)

Notice that G is infinitesimal, by definition, so we may always write it in terms
of a set of infinitesimal parameters δξ , but ξ need not include q, p now since the
q, p dependence was already removed to infinitesimal order in eqn. (14.31).3

It is now possible to see why G is referred to as the generator of infinitesimal
canonical transformations.

3 The expressions are not incorrect for p, q variations, but they become trivial cases.
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14.1 Classical Hamiltonian particle dynamics 365

14.1.6 Variations of dynamical variables and Poisson brackets

One of the most important observations about variational dynamics, as far as the
extension to quantum field theory is concerned, is that variational changes in any
dynamical variable can be expressed in terms of the invariant Poisson bracket
between that variable and the generator of the variation:

δX (p, q, t) = [X,Gξ ]pq (14.35)

To see this, it is sufficient to use eqns. (14.34) in the differential expansion of
the function:

δX = ∂X

∂qi
δqi + ∂X

∂pi
δpi . (14.36)

Substituting for δqi and δpi gives eqn. (14.35). These relations are exemplified
as follows.

• Generator of time translations: Gt = −Hδt ;

δX = [X, H ]δt . (14.37)

Noting that the change in X is the dynamical evolution of the function,
but that the numerical value of t is unaltered owing to linearity and the
infinitesimal nature of the change, we have that

δX = −
(

dX

dt
− ∂X

∂t

)
dt = [X, H ]δt. (14.38)

Thus, we arrive at the equation of motion for the dynamical variable X :

dX

dt
= [X, H ]+ ∂X

∂t
. (14.39)

This result has the following corollaries:

q̇ = [q, H ]

ṗ = [p, H ]

1 = [H, t]. (14.40)

The first two equations are simply a thinly concealed version of the
Hamilton equations (14.9). The third, which is most easily obtained from
eqn. (14.37), is an expression of the time independence of the Hamilton-
ian. An object which commutes with the Hamiltonian is conserved.
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366 14 Unified kinematics and dynamics

• Generator of coordinate translations: Gq = pδq.

It is interesting to note that, if we consider the variation in the coordinate
q with respect to the generator for q itself, the result is an identity which
summarizes the completeness of our dynamical system:

δq = [q,Gq]pq

δq = [q, p]pqδq

⇒ 1 = [q, p]pq . (14.41)

In Lorentz-covariant notation, one may write

[xµ, pν] = δµν, (14.42)

where pµ = (−H/c,p). This result pervades almost all of dynamics
arising from Lagrangian/Hamiltonian systems. In the quantum theory it
is supplanted by commutation relations, which have the same significance
as the Poisson bracket, though they are not directly related.

14.1.7 Derivation of generators from the action

Starting from the correctly symmetrized action in eqn. (14.6), the generator of
infinitesimal canonical transformations for a variable ξ is obtained from the
surface contribution to the variation, with respect to ξ .4 For example,

δq S =
∫

dt

(
− ṗ − ∂H

∂q

)
δq + 1

2
pδq

= 0+ 1

2
Gq, (14.43)

where we have used the field equation to set the value of the integral in the first
line to zero, and we identify

Gq = pδq. (14.44)

Similarly,

δp S =
∫

dt

(
q̇ − ∂H

∂p

)
δp − 1

2
qδp

= 1

2
G p, (14.45)

4 The constants of proportionality are rather inconsistent in this Hamiltonian formulation. If
one begins with the action defined in terms of the Lagrangian, the general rule is: for actions
which are linear in the time derivatives, the surface contribution is one-half the corresponding
generator; for actions which are quadratic in the time derivatives, the generator is all of the
surface contribution.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


14.1 Classical Hamiltonian particle dynamics 367

hence

G p = −qδp. (14.46)

For time variations,

δt S = −Hδt

= Gt . (14.47)

The generators are identified, with numerical values determined by convention.
The factors of one-half are introduced here in order to eliminate irrelevant
constants from the Poisson bracket. This is of no consequence, as mentioned
in the next section; it is mainly for aesthetic purposes.

Suppose we write the action in the form

S =
∫
{pdq − Hdt} , (14.48)

where we have cancelled an infinitesimal time differential in the first term. It is
now straightforward to see that

∂S

∂t
+ H = 0. (14.49)

This is the Hamilton–Jacobi equation of classical mechanics. From the action
principle, one may see that this results from boundary activity, by applying a
general boundary disturbance F :

S → S +
∫
(dx) ∂µF. (14.50)

δF = G is the generator of infinitesimal canonical transformations, and

∂G

∂q
=

∫
dσµ Ra

µδξa. (14.51)

Notice from eqn. (11.43) that∫
dσµGµ =

∫
dσµ(!µδq − θµνδxν), (14.52)

which is to be compared with

δS = pδq − Hdt. (14.53)

Moreover, from this we have the Hamilton–Jacobi equation (see eqn. (11.78)),

δS

δx0
= −1

c

∫
dσµ θµ0 = −H

c
(14.54)

or
δS

δt
+ H = 0. (14.55)
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368 14 Unified kinematics and dynamics

14.1.8 Conjugate variables and dynamical completeness

The commutator functions we have evaluated above are summarized by

[qA, pB]pq = δAB

[t, H ]pq = 1. (14.56)

These equations are a formal expression of the completeness of the set of
variables we have chosen to parametrize the dynamical equations. Not every
variational equation necessarily has coordinates and momenta, but every set of
conservative dynamical equations has pairs of conjugate variables which play
the roles of p and q. If one is in possession of a complete set of such variables
(i.e. a set which spans all of phase space), then an arbitrary state of the dynamical
system can be represented in terms of those variables, and it can be characterized
as being canonical.

Ignorable coordinates imply that the dimension of phase space is effectively
reduced, so there is no contradiction in the presence of symmetries.

Given the definition of the Poisson bracket in eqn. (14.24), the value of
[q, p]pq = 1 is unique. But we could easily have defined the derivative
differently up to a constant, so that we had obtained

[qA, pB]′pq = α δAB . (14.57)

What is important is not the value of the right hand side of this expression, but
the fact that it is constant for all conjugate pairs. In any closed, conservative sys-
tem, the Hamiltonian time relation is also constant, but again the normalization
could easily be altered by an arbitrary constant. These are features which are
basic to the geometry of phase space, and they carry over to the quantum theory
for commutators. There it is natural to choose a different value for the constant
and a different but equivalent definition of completeness.

14.1.9 The Jacobi identity and group algebra

The anti-symmetrical property of the Poisson bracket alone is responsible for
the canonical group structure which it generates and the completeness argument
above. This may be seen from an algebraic identity known as the Jacobi identity.
Suppose that we use the bracket [A, B] to represent any object which has the
property

[A, B] = −[B, A]. (14.58)

The Poisson bracket and the commutator both have this property. It may be seen,
by writing out the combinations explicitly, that

[A, [B,C]]+ [B, [C, A]]+ [C, [A, B]] = 0. (14.59)
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14.2 Classical Lagrangian field dynamics 369

This result does not depend on whether A, B,C commute. This equation is
known as the Jacobi identity. It is closely related to the Bianchi identity in
eqn. (2.27).

Any objects which satisfy this identity also satisfy a Lie algebra. This is easily
seen if we identify a symbol

TA(B) ≡ [A, B]. (14.60)

Then, re-writing eqn. (14.59) so that all the C elements are to the right,

[A, [B,C]]− [B, [A,C]]− [[A, B],C] = 0, (14.61)

we have

TATB(C)− TB TA(C) = T[A,B](C), (14.62)

or

[TA, TB] = T[A,B](C). (14.63)

14.2 Classical Lagrangian field dynamics

14.2.1 Spacetime continuum

In the traditional classical mechanics, one parametrizes a system by the coordi-
nates and momenta of pointlike particles. In order to discuss continuous matter
or elementary systems, we move to field theory and allow a smooth dependence
on the x coordinate.

In field theory, one no longer speaks of discrete objects with positions or
trajectories (world-lines) q(t) or x(τ ). Rather x, t take on the roles of a ruler or
measuring rod, which is positioned and oriented by the elements of the Galilean
or Lorentz symmetry groups. Schwinger expresses this by saying that space and
time play the role of an abstract measurement apparatus [119], which means
that x is no longer q(t), the position of an existing particle. It is simply a point
along some ruler, or coordinate system, which is used to measure position. The
position might be occupied by a particle or by something else; then again, it
might not be.

14.2.2 Poisson brackets of fields

The Poisson bracket is not really usable in field theory, but it is instructive to
examine its definition as an invariant object. We begin with the relativistic scalar
field as the prototype.

The Poisson bracket of two functions X and Y may be written in one of two
ways. Since the dynamical variables in continuum field theory are now φA(x)
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370 14 Unified kinematics and dynamics

and !A(x), one obvious definition is the direct transcription of the classical
particle result for the canonical field variables, with only an additional integral
over all space owing to the functional dependence on x. By analogy with Poisson
brackets in particle mechanics, the bracketed quantities are evaluated at equal
times.

[X, Y ]φ! =
∫

dσx

(
∂X

∂φA(x)

∂Y

∂!A(x)
− ∂Y

∂φA(x)

∂X

∂!A(x)

)
. (14.64)

With this definition we have

[φ(x),!(x ′)]φ!
∣∣∣
t=t ′

= δ(x, x′)∫
dσ [φ(x),!(x ′)]φ!

∣∣∣
t=t ′

= 1; (14.65)

thus, the familiar structure is reproduced. It should be noted, however, that
the interpretation of these results is totally different to that for classical particle
mechanics. Classically, qA(t) is the position of the Ath particle as a function
of time. φA(x) on the other hand refers to the Ath species of scalar field
(representing some unknown particle symmetry, or different discrete states,
but there is no inference about localized particles at a definite position and
particular time). To think of φ(x),!(x) as an infinite-dimensional phase space
(independent variables at every new value of x) is not a directly useful concept.
The above form conceals a number of additional subtleties, which are best
resolved by abandoning the Hamiltonian variables in favour of a pure description
in terms of the field and its Green functions.

It is now possible to define the Poisson bracket using the fields and Green
functions, ignoring the Hamiltonian idea of conjugate momentum. In this
language, we may write the invariant Poisson bracket in terms of a directional
functional derivative, for any two functions X and Y .

[X, Y ]φ ≡ DX Y −DY X, (14.66)

where

DX Y ≡
∫
(dx)

δY

δA(x)
lim
ξ→0

δXφ
A(x), (14.67)

and

δXφA(x) =
∫
(dx ′)Gr

AB(x, x ′)δX B(x
′). (14.68)

Since we are looking at Lorentz-invariant quantities, there are several possible
choices of causal boundary conditions, and we must define the causal nature of
the variations. The natural approach is to use a retarded variation by introducing
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14.2 Classical Lagrangian field dynamics 371

the retarded Green function explicitly in order to connect the source δX B to the
response δXφ. In terms of the small parameter ξ , we may write δX B = X ,Bξ , or

δXφA(x) =
∫
(dx ′)Gr

AB(x, x ′)X ,Bξ. (14.69)

Using this in eqn. (14.66), we obtain, in condensed notation,

[X, Y ]φ = X ,A G AB
r Y,B − Y,A G AB

r X ,B, (14.70)

or, in uncondensed notation,

[X, Y ]φ =
∫
(dx)(dx ′)

(
δX

δA(x)
G AB

r (x, x ′)
δY

δB(x ′)

− δY

δA(x)
G AB

r (x ′, x)
δX

δB(x ′)

)
. (14.71)

Now, using eqns. (5.74) and (5.71), we note that

2 G̃ AB(x, x ′) = G AB
r (x, x ′)− G B A

r (x ′, x), (14.72)

so, re-labelling indices in the second term of eqn. (14.71), we have (condensed)

[X, Y ]φ = 2Y,AG̃ AB X ,B (14.73)

or (uncondensed)

[X, Y ]φ = 2
∫
(dx)(dx ′)

δY

δφA(x)
(x)G̃ AB(x, x ′)

δX

δφB(x ′)
. (14.74)

The connection between this expression and the operational definition in terms
of Hamiltonian variables in eqn. (14.64) is not entirely obvious from this
expression, but we hand-wave the reasonableness of the new expression by
stretching formalism. From eqn. (5.73), one can write formally

G̃ AB(x, x ′)
∣∣∣
t=t ′

= δABδ(x, x′)
1

∂0
(14.75)

and thus, hand-wavingly, at equal times,

δ

δφA
G̃ AB

δ

δφA
∼ δ

δφA

δ

δ(∂0φA)
∼ δ

δφA

δ

δ!A
. (14.76)

Although we have diverged from a covariant expression in eqn. (14.74) by
singling out a spacelike hyper-surface in eqn. (14.76), this occurs in a natural
way as a result of the retarded boundary conditions implicit in the causal
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372 14 Unified kinematics and dynamics

variations. Manifest covariance of notation cannot alter the fact that time plays
a special role in dynamical systems. Clearly, one has

[φ(x),!(x ′)]φ
∣∣∣
t=t ′

=
∫
(dy)(dy′)

δφ(x)

δφA(y)
G̃ AB(y, y′)

δ(∂0φ(x ′))
δφB(y′)

=
∫
(dy)(dy′)

δφ(x)

δφA(y)
− ∂̃0G AB(y, y′)

δφ(x ′)
δφB(y′)

= δ(x, x). (14.77)

The Poisson bracket is only unique if the variables are observable, i.e. if they
are invariant quantities.

14.3 Classical statistical mechanics

Statistical mechanics provides a natural point of departure from particle me-
chanics. Although tethered to classical particle notions in the form of canonical
Hamiltonian relations, it seeks to take the limit N → ∞ of infinite numbers
of discrete particles. It thereby moves towards a continuum representation of
matter, which is a step towards field theory. To understand field theory fully,
it is necessary to acknowledge a few of its roots in statistical mechanics. By
definition, statistical mechanics is about many-particle systems.

14.3.1 Ensembles and ergodicity

An ensemble is formally a collection of ‘identical’ systems. The systems in
an ensemble are identical in the sense that they contain the same dynamical
variables and properties, not in the sense that each system is an exact image
of every other with identical values for all its variables (that would be a
useless concept). The concept of ensembles is useful for discussing the random
or (more correctly) unpredictable development of systems under sufficiently
similar conditions. An ensemble is a model for the possible ways in which one
system might develop, taking into account a random or unpredictable element.
If one takes a snapshot of systems in an ensemble at any time, the outcome could
have happened in any of the systems, and may indeed happen in the future in
any or all of them if they were allowed to run for a sufficient period of time.
Ensembles are used to discuss the process of averaging over possible outcomes.

The ergodic hypothesis claims that the time average of a system is the same as
an ensemble average in the limit of large times and large numbers of ensembles.
In the limit of infinite time and ensembles, this hypothesis can be proven. The
implication is that it does not matter how we choose to define the average
properties of a complex (statistical) system, the same results will always be
obtained. The ergodic hypothesis is therefore compatible with the continuum
hypothesis, but can be expected to fail when one deals with measurably finite
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14.3 Classical statistical mechanics 373

times or countably finite ensembles. Much of statistical mechanics and much of
quantum theory assumes the truth of this hypothesis.

14.3.2 Expectation values and correlations

Macroscopic observables are the expectation values of variables, averaged over
time, or over many similar particle systems (an ensemble). The expectation
value of a dynamical variable X (q, p) is defined by the ensemble average. For
N particles in a fixed volume V , one has

〈X〉pq = X(t) =
∫

dN q dN p ρ(q, p, t) X (q, p, t)∫
dN q dN p ρ(q, p, t)

, (14.78)

where ρ is the density of states in phase space in the fixed volume V . This is
sometimes written

〈X〉pq = Tr(ρ X) (14.79)

The integral in eqn. (14.78) is interpreted as an ensemble average because it
integrates over every possible position and momentum for the particles. All
possible outcomes are taken into account because the integral averages over all
possible outcomes for the system, which is like averaging over a number of
systems in which one (by the rules of chance) expects every possibility to occur
randomly.

Suppose one defines the generating or partition functional Z pq[J (t)] by

Z pq[J (t)] =
∫

dN q dN p ρ(q, p, t) e−
∫

JX X dt ′, (14.80)

and the ‘transformation function’ by

Wpq[J (t)] = − ln Z pq[X (t)], (14.81)

then the average value of X can be expressed as a functional derivative in the
following way:

〈X (t)〉 = −δW [J (t)]

δ J (t)
. (14.82)

Similarly, the correlation function is

〈X (t)X (t ′)〉 = δ2W [J (t)]

δ J (t)δ J (t ′)
. (14.83)

Notice how this is essentially the Feynman Green function, providing a link
between statistical physics and mechanics through this symmetrical Green
function.
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374 14 Unified kinematics and dynamics

14.3.3 Liouville’s theorem

An important theorem in statistical mechanics clarifies the definition of time
evolution in many-particle systems, where it is impractical to follow the trajec-
tory of every particle. This theorem applies to closed, conservative systems.

A given point in phase space represents a specific state of a many-particle
system. The density ρ of points in phase space can itself be thought of as a
dynamical variable which deforms with time in such a way that the number
of points in an infinitesimal volume element is constant. The overall density
of points is constant in time since the number of particles is constant and the
volume is a constant, by assumption:

dρ

dt
= 0, (14.84)

or, equivalently,

∂ρ

∂t
+ [ρ, H ]pq = 0. (14.85)

This last form is an expression of how the local density at a fixed point (q, p) in
phase space (a fixed state) varies in time. When a dynamical system is in static
equilibrium, the density of states at any point must be a constant, thus

[ρ, H ]pq = 0. (14.86)

In a classical Hamiltonian time development, regions of phase space tend to
spread out, distributing themselves over the whole of phase space (this is the
essence of ergodicity); Liouville’s theorem tells us that they do so in such a way
as to occupy the same total volume when the system is in statistical equilibrium.

Another way of looking at this is in terms of the distribution function for the
field. If the number of states does not change, as is the case for a free field, then

d

dt
f (p, x) = 0. (14.87)

By the chain-rule we may write[
∂

∂t
+

(
∂xi

∂t

)
∂i +

(
∂pi

∂t

)
∂

∂pi

]
f (p, x) = 0. (14.88)

The rate of change of momentum is just the force. In a charged particle field
(plasma) this is the Lorentz force Fi = q Ei + εi jkv

j Bk .

14.3.4 Averaged dynamical variations

Since the expectation value is a simple product-weighted average, Liouville’s
theorem tells us that the time variation of expectation values is simply the
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14.4 Quantum mechanics 375

expectation value of the time variation, i.e. these two operations commute
because the time derivative of ρ is zero:

d

dt
〈X〉pq = d

dt
Tr(ρ X)

= Tr
dρ

dt
X + Trρ

dX

dt

= Trρ
dX

dt

=
〈

dX

dt

〉
pq

. (14.89)

This may also be written as

d

dt
〈X〉pq =

〈
∂X

∂t
+ [X, H ]

〉
pq

, (14.90)

or, more generally for variations, as

〈δξ X〉pq = 〈[X,Gξ ]〉pq . (14.91)

Again, the similarity to the mechanical theory is striking.

14.4 Quantum mechanics

The discovery of de Broglie waves in electron diffraction experiments by
Davisson and Germer (1927) and Thomson (1928) effectively undermined
the status of particle coordinates as a fundamental dynamical variable in the
quantum theory. The wavelike nature of light and matter cannot be reconciled
with discrete labels qA(t) at the microscopic level. A probabilistic element was
necessary to explain quantum mechanics. This is true even of single particles; it
is not merely a continuum feature in the limit of large numbers of particles, such
as one encounters in statistical mechanics. Instead it was necessary to find a new,
more fundamental, description of matter in which both the wavelike properties
and impulsive particle properties could be unified. Such a description is only
possible by a more careful study of the role played by invariance groups.

Because of the cumbersome nature of the Poisson bracket for continuum
theory, continuum theories are not generally described with Poisson algebras.
Instead, an equivalent algebra arises naturally from the de Broglie relation
pµ = h̄kµ: namely commutator algebras. The important properties one wishes
to preserve are the anti-symmetry of the conjugate pair algebra, which leads to
the canonical invariances.

In classical mechanics, q(t) does not transform like a vector under the action
of symmetry groups, dynamical or otherwise. A more direct route to the
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376 14 Unified kinematics and dynamics

development of the system is obtained by introducing an eigenvector basis in
group space which does transform like a vector and which employs operators to
extract the dynamical information.

14.4.1 Non-relativistic quantum mechanics in terms of groups and operators

Schrödinger’s formulation of quantum mechanics is postulated by starting with
the Galilean energy conservation relation

E = p2

2m
+ V (14.92)

and making the operator replacements E → ih̄∂t and p → −ih̄∇. The
solution of this equation, together with the interpretation of the wavefunction
and a specification of boundary conditions, is quantum mechanics. It is
interesting nonetheless to examine quantum mechanics as a dynamical system
in order to identify its relationship to classical mechanics. The main physical
assumptions of quantum mechanics are the de Broglie relation pµ = h̄kµ
and the interpretation of the wavefunction as a probability amplitude for a
given measurement. The remainder is a purely group theoretical framework
for exploiting the underlying symmetries and structure.

From a group theoretical viewpoint, quantum mechanics is simpler than
classical mechanics, and has a more natural formulation. The use of Poisson
brackets to describe field theory is not practical, however. Such a formulation
would require intimate knowledge of Green functions and boundary conditions,
and would involve complicated functional equations. To some degree, this is
the territory of quantum field theory, which is beyond the scope of this work. In
the usual approach, canonical invariances are made possible by the introduction
of a vector space description of the dynamics. It is based upon the algebra of
observables and the method of eigenvalues.

The wavefunction or field Since a particle position cannot be a wave (a particle
is by definition a localized object), and neither can its momentum, it is postulated
that the wavelike nature of quantum propagation is embodied in a function
of state for the particle system called the wavefunction and that all physical
properties (called observables) can be extracted from this function by Hermitian
operators. The wavefunction ψ(x, t) is postulated to be a vector in an abstract
multi-dimensional Hilbert space, whose magnitude and direction contains all the
information about the particle, in much the same way that phase space plays the
same role for classical particle trajectories.

The fact that the wavefunction is a vector is very convenient from the point
of view of the dynamics (see section 8.1.3), since it means that the generators of
invariance groups can operate directly on them by multiplication. This leads to a
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14.4 Quantum mechanics 377

Table 14.1. Dynamical formulations.

Classical Schrödinger Heisenberg

q(t) x̂ψ(x, t) x̂(t)ψ(x)

p(t) p̂ψ(x, t) p̂(t)ψ(x)

closer connection with the group theory that explains so much of the dynamics.
It means that any change in the system, characterized by a group transformation
U , can be expressed in the operational form

ψ ′ = U ψ. (14.93)

This is much simpler than the pair of equations in (14.34). It is, in fact, more
closely related to eqn. (14.35) because of the group structure in eqn. (14.63), as
we shall see below.

Operator-valued position and momentum q(t) and p(t) may be effectively
supplanted as the dynamical variables by the wavefunction. To represent
the position and momentum of particles, one makes a correspondence with
operators according to one of two equivalent prescriptions (table 14.1). The
choice depends on whether one wishes to place the time development of the
system in the definition of the operators, or whether it should be placed in
the wavefunction, along with all the other dynamical parameters. These two
descriptions are equivalent to one another in virtue of the group combination
law. We shall mainly use the Schrödinger representation here since this is more
in tune with the group theoretical ideology of symmetries and generators.

As explained in section 11.1, it is the operators themselves, for dimensional
reasons, which are the positions and momenta, not the operators multiplying
the fields. The observable values which correspond to the classical quantities
are extracted from this function by considering the eigenvalues of the operators.
Since the wavefunction ψ(x) can always be written as a linear combination
of the complete set of eigenvectors E(x) belonging to any operator on Hilbert
space, with constants λa ,

ψ(x) =
∑

a

λa Ea(x), (14.94)

there is always a well defined eigenvalue problem which can convert a Hermitian
operator into a real eigenvalue.
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378 14 Unified kinematics and dynamics

Commutation relations Since the field Poisson bracket is unhelpful, we look for
a representation of position and momentum which distills the important property
in eqn. (14.57) from the classical canonical theory and injects it into the quantum
theory. One sees that, on choosing the following algebraic representation of the
underlying Galilean symmetry group for the wavefunction5

ψ(x) =
∑

k

akei(k·x−ωt), (14.95)

a simple representation of the operators x̂ and p̂ may be constructed from

x̂ = x

p̂ = −ih̄∇. (14.96)

These operators live on the vector space of the Galilean group (i.e. real space),
so it is natural to use their operator property directly in forming a canonical
algebra. They are complete, as may be verified by computing the straightforward
commutator

[x̂, p̂] = x̂p̂− p̂x̂ = ih̄. (14.97)

This clearly satisfies eqn. (14.57). Thus, with this representation of position
and momentum, based directly on the underlying symmetry of spacetime, there
is no need to introduce an abstract phase space in order to construct a set
of vectors spanning the dynamics. The representations of the Galilean group
suffice. The only contribution from empirical quantum theory is the expression
of the wavenumber k and the frequency ω in terms of the de Broglie relation. In
fact, this cancels from eqn. (14.97).

Dirac notation: bases In Dirac notation, Hilbert space vectors are usually
written using angle brackets (|x〉, |ψ〉). To avoid confusing this notation with
that for expectation values, used earlier, we shall use another fairly common
notation, |x), |ψ), here. The components of such a vector are defined with
respect to a particular basis. Adjoint vectors are written (x |, (ψ |, and so on.

The scalar product of two such vectors is independent of the basis, and is
written

(ψ1|ψ2) =
∫

dσψ†
1 (x)ψ2(x)

=
∫
(dp)ψ†

1 (p)ψ2(p). (14.98)

In Dirac notation one considers the functional dependence of wavefunctions to
be the basis in which they are defined. Thus, ψ(x) is likened to the components

5 Note that the representations of the Galilean group are simply the Fourier expansion.
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14.4 Quantum mechanics 379

Table 14.2. Matrix elements and operator bases.

Ô (x ′|Ô|x) (p′|Ô|p)
p̂ −ih̄∇ δ (x, x′) p δ(p,p′)
x̂ xδ(x, x′) −ih̄ ∂

∂pδ(p,p
′)

of the general function ψ in an x basis. Similarly, the Fourier transform ψ(p)
is thought of as the components of ψ in a p basis. As in regular geometry, the
components of a vector are obtained by taking the scalar product of the vector
with a basis vector. In Dirac notation, the wavefunction and its Fourier transform
are therefore written as

ψ(x) = (x |ψ)
ψ(p) = (p|ψ), (14.99)

as a projection of the vector onto the basis vectors. The basis vectors |x) and
|p) form a complete set of eigenstates of their respective operators, satisfying
the completeness relation

(x, x′) = δ(x, x′). (14.100)

Similarly, a matrix, or operator is also defined by an outer product according to
what basis, or type of variable, it operates on. The identity operator in a basis x
is

Î =
∫

dσx |x)(x |, (14.101)

and similarly, in an arbitrary basis ξ , one has

Î =
∫

dσξ |ξ)(ξ |. (14.102)

See table 14.2. This makes the scalar product basis-independent:

(ψ1|ψ2) =
∫

dσx (ψ1|x)(x |ψ2), (14.103)

as well as the expectation value of Ô with respect to the state |ψ):

(ψ |Ô|ψ) =
∫

dσx dσx ′ (ψ |x ′)(x ′|Ô|x)(x |ψ), (14.104)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


380 14 Unified kinematics and dynamics

Transformation function The scalar product (ψ1|ψ2) represents an overlap of
one state of the system with another; thus, the implication is that transitions
or transformations from one state to another can take place between these two
states. (ψ2(x2)|ψ1(x1)) is often called the transformation function. It represents
the probability amplitude of a transition from ψ1(x1) to ψ2(x2). The quantity

A = (ψ ′|Ô|ψ) (14.105)

is not an expectation value, since it refers to two separate states; rather, it is to be
interpreted as another transition amplitude, perturbed by the operation Ô , since

Ô|ψ) = |ψ ′′). (14.106)

Thus

A = (ψ ′|ψ ′′), (14.107)

which is just another transition function. The transformation function plays
a central role in Schwinger’s action principle for quantum mechanics, and is
closely related to the path integral formulation.

Operator variations and unitary transformations In order to define a variational
theory of quantum mechanics, meaning must be assigned to the variation of
an operator. An operator has no meaning without a set of vectors on which
to operate, so the notion of an operator variation must be tied to changes in
the states on which it operates. States change when they are multiplied by the
elements of a transformation group U :

|ψ)→ U |ψ). (14.108)

Similarly, the adjoint transforms by

(ψ | → (ψ |U †. (14.109)

The invariance of the scalar product (ψ |ψ) implies that U must be a unitary
transformation, satisfying

U † = U−1. (14.110)

Consider an infinitesimal unitary transformation with generator G such that U =
exp(−iG/h̄).

|ψ)→ e−iG/h̄|ψ) = (1− iG/h̄)|ψ). (14.111)

The change in an expectation value due to an operator variation X̂ → X̂ + δ X̂ ,

(ψ |X̂ + δ X̂ |ψ) = (ψ |eiG/h̄ X̂e−i/h̄G |ψ)
= (ψ |(1+ iG/h̄)X̂(1− iG/h̄)|ψ), (14.112)
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14.4 Quantum mechanics 381

or, equating δ X̂ to the first infinitesimal order on the right hand side,

δ X̂ = 1

ih̄
[X̂ ,G]. (14.113)

Eqn. (14.113) may be taken as the definition of operator variations, affected
by unitary transformations. It can be compared with eqn. (14.35) for the
canonical variations. It is this definition which permits an action principle to
be constructed for quantum mechanics. From eqn. (14.113), one can define the
expectation value

ih̄ 〈δX〉 = 〈ξ |[X,G]|ξ〉, (14.114)

and, by a now familiar argument for the time variation Gt = −Hδt ,

d

dt
〈X〉 =

〈
∂X

∂t
+ 1

ih̄
[X, H ]

〉
, (14.115)

where the expectation value is interpreted with respect to a basis ξ in Hilbert
space:

〈. . .〉 =
∫

dξ (ξ | . . . |ξ). (14.116)

This relation can be compared with eqn. (14.90) from classical statistical
mechanics.

It is straightforward to verify Hamilton’s equations for the operators by taking

Ĥ = − h̄2

2m
∇2 + V, (14.117)

so that

˙̂p = 1

ih̄
[p̂, Ĥ ] = −∇ Ĥ

˙̂q = 1

ih̄
[q̂, Ĥ ] = ih̄

[
−∇

2

2m
x̂

]
= −ih̄

∇
m
= p̂

m
= ∂ Ĥ

∂p̂
. (14.118)

The last step here is formal, since the derivation with respect to an operator
is really a distribution or Green function, which includes a specification of
boundary conditions. In this case, the only possibility is for causal, retarded,
boundary conditions, and thus the expression is unambiguous.

Statistical interpretation By comparing quantum expectation values, or scalar
products, with statistical mechanics, it is possible to see that the states referred
to in quantum mechanics must have a probabilistic interpretation. This follows
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382 14 Unified kinematics and dynamics

directly from the canonical structure and from the analogy between the quantum
state function and the density operator in eqn. (14.78).

If it were not already clear from phenomenology, it should now be clear from
eqn. (14.37) that the quantum theory has the form of a statistical theory. Thus,
the wavefunction can be regarded as a probabilistic object, and the waves which
give rise to quantum interference are ‘probability waves’.

The basis-independence of the quantum expectation value is analogous to the
ergodicity property of classical mechanics: it implies that it is not important
what variable one chooses to average over. A ‘dynamically complete’ average
will lead to the same result.

The formalism of quantum theory makes no statements about wave–particle
duality and no confusion arises with regard to this concept. Quantum mechanics
must be regarded as a straightforward generalization of classical canonical
mechanics, which admits a greater freedom of expression in terms of group
theory and invariances.

Classical correspondence Although sometimes stated misleadingly, the corre-
spondence between the Poisson bracket in classical mechanics and the commu-
tator in quantum mechanics is not such that one recovers the Poisson bracket
formulation from the classical limit of the commutator. They are completely
independent, since they refer to different spaces. While the commutator function
exists in the classical limit h̄ → 0, the wavefunction does not, since k → ∞
and ω→∞. Thus, the basis vectors cease to exist.

The true correspondence with classical physics is through expectation values
of quantum operators, since these are independent of the operator basis. The
classical theory is through the equations(

ψ

∣∣∣− h̄2

2m
∇2 + V = ih̄

∂

∂t

∣∣∣ψ)
→ p2

2m
+ V = E, (14.119)

and 〈
dp̂
dt

〉
= d〈p̂〉

dt

= −i

h̄
〈[p̂, H ]〉

= −i

h̄
(p̂V (x)− V (x)p̂)

= −i

h̄
(−ih̄∇V (x))

= −∇V (x)), (14.120)

which is Newton’s law.
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14.4 Quantum mechanics 383

14.4.2 Quantum mechanical action principle

Schwinger has shown that the complete unitary, dynamical structure of quantum
mechanics can be derived from a quantum action principle, based on operator
variations. The quantum action principle is directly analogous to its classical
counterpart. We shall return to this quantum action principle in chapter 15
since it plays a central role in modern quantum field theory. For now, the
action principle will not be proven; instead we summarize the main results. The
algebraic similarities to the classical action principle are quite remarkable.

The central object in the quantum theory is the transformation function or
transition amplitude (ψ |ψ ′). The quantum action principle states that the action
is a generating functional, which induces changes in the transformation function,

δ(ψ(t2)|ψ(t1)) = 1

ih̄
(ψ(t2)|δ Ŝ12|ψ(t1)), (14.121)

where Ŝ is the action operator, which is constructed from the classical action by
replacing each dynamical object by its operator counterpart:

Ŝ12 =
∫ t2

t1

dt

(
1

2
(p̂ ˙̂q− q̂ ˙̂p)− Ĥ

)
. (14.122)

In this simple case, the ordering of the operators is unambiguous. The
variation in the action contains contributions only from within the time values
corresponding to the end-points of the transformation function for causality.

If one now introduces the identity I = |x)× (x | into the transformation func-
tion and substitutes the real-space representations of the operators, eqn. (14.121)
becomes

δ(ψ(t2)|ψ(t1)) =
1

ih̄
δ

∫ t2

t1

(dx)ψ†(x)

[
1

2
(−ih̄∇ẋ+ ih̄ẋ∇)+ h̄2

2m
∇2 − V

]
ψ(x),

(14.123)

which is equal to

δ(ψ(t2)|ψ(t1)) =

1

ih̄
δ

∫ t2

t1

(dx) ψ†(x)

[
− ih̄

2

(→
∂t −

←
∂t

)
+ h̄2

2m
∇2 − V

]
ψ(x). (14.124)

δ refers only to the contents of the square brackets. This expression may
be compared with the action for the Schrödinger field in eqn. (17.4). For
the purposes of computing the variation, the form in eqn. (14.122) is most
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384 14 Unified kinematics and dynamics

convenient. In fact, it is easy to see that – given that the variation of an operator
is well defined – the results are exactly analogous to the classical case.

If the end-points of the variation satisfy fixed boundary conditions, then

δ(ψ(t2)|ψ(t1)) = 0, (14.125)

since the field is constrained to admit no unitary transformations there, thus
the right hand side of eqn. (14.121) is also zero. This, in turn, implies that the
variation of the action operator vanishes, and this leads to the operator equations
of motion, analogous to Hamilton’s equations:

δx̂ Ŝ =
∫

dt

(
−˙̂p− ∂ Ĥ

∂x

)
δx, (14.126)

whence

˙̂p = −∂ Ĥ

∂x
. (14.127)

Similarly, the variation with respect to the momentum operator leads to

˙̂x = ∂ Ĥ

∂p
, (14.128)

whose consistency was verified in eqns. (14.118). This tells us that quantum
mechanics, with commutators in place of Poisson brackets and differential
operators acting on a Hilbert space, forms a well defined Hamiltonian system.
Eqn. (14.124) shows that this is compatible with Schrödinger field theory. The
final piece of the puzzle is to generalize the variations of the action to include
non-fixed end-points, in a way analogous to that in section 14.1.7. Then, using
the equations of motion to set the bulk terms to zero, one has

δ(ψ(t2)|ψ(t1)) = 1

ih̄
(ψ(t2)|G2 − G1|ψ(t1)), (14.129)

which shows that the extended variation merely induces an infinitesimal unitary
transformation at the end-points of the variation. This variation is in accord with
eqn. (14.113), and one may verify that

δx̂ = 1

ih̄
[x̂,Gx]

= 1

ih̄
[x̂, p̂δx̂], (14.130)

which immediately gives the fundamental commutation relations

[x̂, p̂] = ih̄. (14.131)
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14.4 Quantum mechanics 385

This final piece of the puzzle verifies that the operator variational principle
is self-consistent for quantum mechanics. In fact, it can be generalized to
other operators too, as we shall see in chapter 15, when we consider the fully
quantized theory of fields.

14.4.3 Relativistic quantum mechanics

A Lorentz-invariant theory of quantum mechanics may be obtained by repeating
the previous construction for the non-relativistic theory, replacing the non-
relativistic energy relation in eqn. (14.92) with

E2 = p2c2 + m2c4. (14.132)

One writes

(−Ê2 + p̂2c2 + m2c4)φ(x) = 0, (14.133)

where Ê = ih̄∂t and p̂ = −ih̄∇, and we call the field φ(x) to distinguish it from
the non-relativistic field. This leads us directly to the Klein–Gordon equation

(−h̄2c2 + m2c4)φ = 0. (14.134)

However, all is not straightforward. The interpretation of this equation is full of
subtleties, which leads inexorably to a full quantum field theory. To begin with
its quadratic nature implies that it has solutions of both arbitrarily large positive
and negative energy (see section 5.1.3). This further implies that the conserved
quantities normally used to define probability measures can also be negative; this
is difficult to interpret. Ultimately, the assumptions of quantum field theory save
the relativistic formulation. Leaning on these, relativistic quantum mechanics
survives as an approximation to the more complete quantum field theory under
conditions of ‘sufficient stability’.6

State vectors and wavefunctions In non-relativistic quantum mechanics it was
easy to choose state vectors satisfying the Schrödinger equation because of the
simple form of the conserved quantities arising from the linear time derivative
(see eqn. (12.39)). The structural symmetry of the natural inner product:

(ψ1, ψ2) =
∫

dσ ψ†
1ψ2, (14.135)

means that the state vectors |ψ1) and the adjoint (ψ1| were simply Hermitian
conjugates of one another. In the case of the Klein–Gordon equation, matters
are more complicated. The corresponding invariant inner product is

(φ1, φ2) = −ih̄c2
∫

dσ φ∗1
↔
∂0 φ2 (14.136)

6 To make this woolly statement precise, one needs to address issues in the language of quantum
field theory or renormalization group, which we shall only touch on in chapter 15.
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386 14 Unified kinematics and dynamics

the symmetry of which is made less obvious by the time derivative, and one is
now faced with both positive and negative energy solutions. These two sets of
solutions decouple, however. If one splits the field into its positive and negative
energy parts,

φ(x) = φ(+)(x)+ φ(−)(x), (14.137)

then one has, for a real scalar field,

(φ(x), φ(x)) = (φ(+)(x), φ(+)(x))+ (φ(−)(x), φ(−)(x))
= 0; (14.138)

i.e.

(φ(+)(x), φ(+)(x)) = −(φ(−)(x), φ(−)(x))
(φ(+)(x), φ(−)(x)) = 0. (14.139)

or, more generally,

(φA, φB) = −(φB, φA)
∗. (14.140)

By analogy with the non-relativistic case, we wish to view this scalar product
as the definition of a vector space with vectors |φ) and adjoint vectors (φ|, such
that

(φ1|φ2) = (φ1, φ2), (14.141)

i.e. the inner product on the vector space is identified with the conserved quantity
for the field. The φA satisfy the Klein–Gordon equation:

φ(x) =
∫

dn+1k

(2π)n+1
eikxφ(k)δ(p2c2 + m2c4)

=
∫

dnk

(2π)n
1

2k0c2h̄2 eikx(φ(p0,p)+ φ(−p0,p))

=
∫

dVkeikx(φ(+)(p)+ φ(−)(p)). (14.142)

What makes the relativistic situation different is the fact that the energy
constraint surface is quadratic in k0. The volume measure on momentum space
is constrained by this energy relation. This is the so-called mass shell. On the
manifold of only positive energy solutions, the volume measure is

Vk =
∫

dn+1k

(2π)n+1
δ(p2c2 + m2c4)θ(k0)

=
∫

dnk

(2π)n
1

2k0c2h̄2

dVk = dnk

(2π)n
1

2k0c2h̄2 . (14.143)
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14.4 Quantum mechanics 387

Thus, if we examine complete sets of position and momentum eigenfunctions
on this constraint manifold, we find that the normalization of momentum
eigenfunctions is dictated by this constraint:

(x, x′) ≡ δ(x, x′)
=

∫
dnk

(2π)n
eik̂·(x−x′)

= 2k0h̄2c2
∫

dVkeik̂·(x−x′). (14.144)

From this expression, it follows that

(k̂|x) =
√

2k0h̄2c2 eik̂·(x) (14.145)

(k̂|k̂′) =
∫

dσ(k̂|x)(x|k̂′) = 2k0h̄2c2 δ(k̂− k̂′). (14.146)

Thus the one-particle positive energy wavefunction is

ψ ≡ φ1(x) = (x, φ) =
∫

dVk(x|k̂)(k̂|φ)

= N
∫

dVk

√
2k0h̄2c2 eik̂·x. (14.147)

Compare this with the re-scaling in eqn. (13.7). It is normalized such that

(ψ,ψ) = (φ1|φ1) = 1

= N 2
∫

dVkdVk′φ
∗
1(k) (2k0h̄2c2) φ1(k)δ(k̂− k̂′)

= N 2
∫

dn+1k

(2π)n+1
|φ1(k)|2. (14.148)

The normalization factor, N , is fixed, at least in principle, by this relation,
perhaps through box normalization. This inner product is unambiguously
positive, owing to the restriction to only positive energies. An example is the
one-particle wavefunction in 3+ 1 dimensions:

ψ = φ1(x) = N
∫

d3k

(2π)3
eik̂·x√

2k0h̄2c2

= const.
(m

x

) 5
4

H (1)
5
4
(imx), (14.149)

where H (1)
5
4
(x) is a Hankel (Bessel) function. What is significant here is that

the one-particle wavefunction is not localized like a delta function. Indeed, it
would be impossible to construct a delta function from purely positive energy
functions. Rather, it extends in space, decaying over a distance of order h̄/mc2.
See also section 11.2.
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388 14 Unified kinematics and dynamics

14.5 Canonically complete theories

The operational view of classical, statistical and quantum mechanics, which
has been lain out above, could seem sterile from a physical perspective. In
presenting it as a formal system of canonical equations, one eschews phe-
nomenology entirely and uses only elementary notions based on symmetry. That
such an approach is possible is surely an important insight. Mechanics should
be regarded for what it is: a description of dynamics in terms of algebraic rules
determined from necessary symmetries. Given the mathematical structure, more
physical or philosophical discussions can follow of their own accord.

The Hamiltonian dynamical formulation can, for the most part, be circum-
vented completely by direct use of the action formalism in chapter 4. Again, we
use a version of the action principle in which we allow infinitesimal canonical
changes at the end-points of dynamical variations.

The quantum theory, being linear, is essentially a theory of small disturbances.
The imprint left on the action by variation with respect to some variable is that
variable’s conjugate quantity. The conjugate quantity is said to be the generator
of the variation of disturbance. If one varies the action with respect to a set of
parameters ξ i , and the action is invariant under changes of these parameters, the
variation must be zero. Manipulating the symbols in the action and separating
out the variation δξ to first order, one can write the infinitesimal variation in the
form

δξ S =
∫

dσµ G iδξ
i = 0, (14.150)

where dσµ represents a spacelike hyper-surface. The quantity Gi is the
generator of the symmetry in ξ i . It is also called the variable conjugate to ξ i .
Notice that an external source Jext, such that

S → S +
∫
(dx) Jextφ (14.151)

acts as a generator for the field, throughout the spacetime volume

δS → 0+
∫
(dx) Jextδφ, (14.152)

since the dynamical variation of the regular action vanishes. This observation
has prompted Schwinger to develop the quantum theory of fields almost entirely
with the aid of ‘sources’ or generators for the different dynamical and symmet-
rical entities [119] (see table 14.3).

In this chapter, we have compared the way in which classical and quantum
mechanics are derivable from action principles and obey canonical completeness
relations, in the form of Poisson brackets or commutators. This is no accident.
Since the action principle always generates a conjugate momentum, as exhibited
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14.5 Canonically complete theories 389

Table 14.3. Some canonical transformations.

Ti δξ i Symmetry

∫
dσµθµν δxν Lorentz invariance∫
dσµTµν δxν conformal invariance

p δx translational invariance
H δt time translation invariance
! δq, δφ, δψ spacetime/canonical
Jext δφ, δψ field canonical/unitary

by eqns. (4.62) and (4.66), one could define a canonical theory to be one which
follows from an action principle. Thus, the action principle is always a good
starting point for constructing a dynamical model of nature. To complete our
picture of dynamics, it is necessary to resolve some of the problems which haunt
the fringes of the classical relativistic theory. To do this, one must extend the
dynamical content of the theory even more to allow the fields themselves to
form a dynamical basis. As we saw in section 14.2.2, this was impractical using
the Poisson bracket, so instead one looks for a commutator relation to generate
infinitesimal variations. This completes the consistency of the formalism for
relativistic fields.
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15
Epilogue: quantum field theory

Where does this description of matter and radiation need to go next? The answer
is that it needs to include interactions between different physical fields and
between different excitations in the same field.

In order to pursue this course, one needs to extend the simple linear response
analysis of classical field theory to a non-linear response analysis. In the
presence of interactions, linear response is only a first-order approximation to
the response of the field to a source. Interactions turn the fields themselves into
sources (sources for the fields themselves and others to scatter from). Non-linear
response theory requires quantum field theory, because the products of fields,
which arise in interactions, bring up the issue of the ordering of fields, which
only the second quantization can resolve. It means the possibility of creation and
annihilation of particle pairs and negative probabilities, which the anti-particle
concept and the vacuum concept repair the consistency.

An area which has not been touched upon in this book is that of Grassman
variables [136], which describe fermionic interactions. These arose fleetingly in
connection with TCP invariance (see section 10.5). In interacting theories, one
needs to account for their anti-commuting properties.

A full discussion of quantum field theory, and all of its computational
algorithms, is far beyond the scope of this book. The purpose of this chapter
is only to indicate briefly how the quantum theory of fields leads to more of
the same. As usual, the most pleasing way to derive corrections to the classical
theory within a dynamically complete framework is, of course, through an action
principle. Schwinger’s generalization of the action principle, for quantum field
theory, provides the most economical and elegant transition from the classical
to the quantum universe. It leads, amongst other things, to the so-called
effective action for quantum field theory. This effective action demonstrates,
most forcibly, the way in which quantum field theory completes the cause–effect
response theory we have used in previous chapters.
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15.2 Quantum action principle 391

15.1 Classical loose ends

In classical physics, few problems may be described by single-particle equa-
tions. In many-particle theories, one normally invokes the continuum hypothesis
and turns to effective equations in order to study bulk quantities. The same
strategy is more difficult in the quantum theory, since an effective theory of the
quantum nature is less obvious. Quantum field theory is a theory of multiple
quanta, or discrete excitations within a field. More than that, it is a theory of
multiple identical quanta. This is helpful in overcoming some of the problems
with classical field theory.

Quantum mechanics deals primarily with one-particle systems. In quantum
mechanics, many-particle systems must be handled as discrete N -body prob-
lems. Identical particles must be handled by cumbersome Slater determinants,
or explicit symmetrization. In quantum field theory one replaces this with a
continuum theory of field operators, subject to algebraic constraints.

It is this last point which leads one to modify quantum mechanics. Instead of
trying to symmetrize over wavefunctions for identical particles, one uses the nor-
malization properties of the wavefunction to generate the required multiplicity.
The identical nature of the particles then follows, subject to certain restrictions
on the spacetime symmetries of the fields. In particular, it is necessary to specify
the topology of the field with respect to interchanges of particles. The Pauli
principle, in particular, places a strong constraint on the spacetime properties of
the field.

Finally, the existence of negative energy states requires additional assump-
tions to avoid the problem of decay. The anti-particle concept and the vacuum
concept (the existence of a lowest possible state) have a formal expression in
quantum field theory, but have to be put in by hand in a classical theory.

15.2 Quantum action principle

Schwinger has introduced an action principle for quantum mechanics [115, 120]
which turns out to be equivalent to path integral formulations [47]. In quantum
field theory one is interested in computing transition or scattering amplitudes of
the form

〈s2|s1〉, (15.1)

where the states denoted by s1 and s2 are assumed to be complete at each
arbitrary time, so that

〈s1|s2〉 =
∫
〈s1, t1|α, t〉 dα 〈α, t |s2, t2〉. (15.2)

Schwinger’s quantum action principle states that

δ〈s2|s1〉 = i

h̄
〈s2|δS12|s1〉 (15.3)
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Fig. 15.1. Overlap between classical and quantum and statistical theories.

where S is the action operator, obtained by replacing the classical fields φ by
field operators φ. The form of the action is otherwise the same as in the classical
theory (which is the great bonus of this formulation). Specifically,

S12 =
∫ σ2

σ1

(dx) L. (15.4)

Since operators do not necessarily commute, one must adopt a specific operator-
ordering prescription which makes the action self-adjoint

S† = S. (15.5)

The action should also be symmetrical with respect to time reversals, as in the
classical theory. Central to quantum field theory is the idea of ‘unitarity’. This
ensures the reversibility of physical laws and the conservation of energy. In view
of the property expressed by eqn. (15.2), successive variations of the amplitude
with respect to a source,

S → S −
∫
(dx) Jφ, (15.6)
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15.2 Quantum action principle 393

lead automatically to a time ordering of the operators:

δ

δ J (x)
〈s2|s1〉 = i

h̄
〈s2|φ(x)|s1〉

=
∫

i

h̄
〈s2|α, x〉dα〈α, x |φ(x)|s1〉

δ2

δ J (x ′)δ J (x)
〈s2|s1〉 = δ

δ J (x ′)
〈s2|x〉 i

h̄
〈x |φ(x)|s1〉

=
∫ (

i

h̄

)2

〈s2|φ(x ′)|α, x〉dα〈α, x |φ(x)|s1〉

=
(

i

h̄

)2

〈s2|Tφ(x ′)φ(x)|s1〉, (15.7)

where the T represents time ordering of the field operators. The classical
limit of the action principle is taken by letting h̄ → 0, from which we obtain
δS = 0. Thus, only the operator equations of motion survive. The amplitude
is suppressed, and thus so are the states. This makes the operator nature of the
equations of motion unimportant.

15.2.1 Operator variations

The objects of variation, the fields, are now operators in this formulation, so we
need to know what the variation of an operator means. As usual, this can be
derived from the differential generating structure of the action principle.

It is useful to distinguish between two kinds of variation: variations which
lead to unitary transformations of the field on a spacelike hyper-surface, and
variations which are dynamical, or are orthogonal to, such a hyper-surface.
Suppose we consider an infinitesimal change in the state |s1〉, with generator
G,

|s2〉 → |s2〉 + δ|s2〉 = (1− iG)|s2〉, (15.8)

where G is a generator of infinitesimal unitary transformations U = eiG , such
that

U †U = 1. (15.9)

Note that the transformation is the first term in an expansion of e−iG . Then we
have

δ|a〉 = −iG|a〉
δ〈a| = 〈a|iG. (15.10)
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394 15 Epilogue: quantum field theory

So if F is any unitary operator, then the change in its value under this unitary
variation can be thought of as being due to the change in the states, as a result
of the unitary generator G:

〈a|F ′|b〉 = 〈a′|(1+ iG)F(1− iG)|b′〉 + · · · , (15.11)

which is the first terms in the infinitesimal expansion of

〈a|F ′|b〉 = 〈a′|eiG Fe−iG |b′〉. (15.12)

Eqn. (15.11) can be likened to what one would expect to be the definition of
variation in the operator

〈a|F ′|b〉 = 〈a′|F + δF |b′〉, (15.13)

in order to define the infinitesimal variation of an operator,

δF = −i [F,G] . (15.14)

15.2.2 Example: operator equations of motion

The same result can also be obtained from Hamilton’s equations for dynamical
changes. Consider variations in time. The generator of time translations is the
Hamiltonian

δt F =
(
∂F

∂t
− dF

dt

)
δt, (15.15)

since

δF = F(t + δt)− F(t). (15.16)

(The numerical value of t is not affected by the operator transformation.) Hence,
using our definition, we obtain

dF

dt
= ∂F

∂t
− i[F, H ], (15.17)

which is the time development equation for the operator F .

15.3 Path integral formulation

Feynman’s famous path integral formulation of quantum field theory can be
thought of as an integral solution to the differential Schwinger action principle
in eqn. (15.3). To see this, consider supplementing the action S with a source
term [22, 125, 128]

S → S −
∫
(dx) Jφ. (15.18)
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15.3 Path integral formulation 395

The operator equations of motion are now

δS

δφ
= J ≡ E[φ], (15.19)

and we define E[φ] as the operator one obtains from the first functional
derivative of the action operator. From the Schwinger action principle, we have,

δn

δ J n
〈0|0〉 =

(−i

h̄

)n

〈0|Tφ(x1) · · ·φ(xn)|0〉
∣∣∣∣∣

J=0

, (15.20)

where the T indicates time ordering implicit in the action integral. This may be
summarized (including causal operator ordering) by

〈0|0〉J =
〈
0

∣∣∣∣T exp

(
− i

h̄

∫
dVt Jφ

)∣∣∣∣ 0

〉
J

. (15.21)

We may now use this to write the operator E[φ] in terms of functional
derivatives with respect to the source,

E[δJ ]〈0|0〉J = J 〈0|0〉J . (15.22)

This is a functional differential equation for the amplitude 〈0|0〉J . We can
attempt to solve it by substituting a trial solution

〈0|0〉J =
∫

dφF[φ] exp

(−i

h̄

∫
dVt Jφ

)
. (15.23)

Substituting in, and using J = ih̄ δ
δφ
,

0 =
∫

dφ {E[δJ ]− J } F[φ] exp

(
i
∫

dVt Jφ

)

=
∫

dφ
{

E[δJ ] exp

(−i

h̄

∫
dVt Jφ

)

− ih̄F[φ]
δ

δφ
exp

(
− i

h̄

∫
dVt Jφ

)}
. (15.24)

Integrating by parts with respect, moving the derivative δ
δφ

, yields

0 =
∫

dφ

{
E[φ]F[φ]+ ih̄

δF

δφ

}
T exp

(
i
∫

dVt Jφ

)

−i

[
F[φ]T exp

(
i
∫

dVt Jφ

)]+∞
−∞
. (15.25)
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396 15 Epilogue: quantum field theory

Assuming that the surface term vanishes independently gives

E[φ]F[φ] = −ih̄
δF

δφ
, (15.26)

and thus

F[φ] = C exp

(
i

h̄
S[φ]

)
. (15.27)

Thus, the transformation function for vacua, in the presence of a source, may be
taken to be

〈0|0〉J =
∫

dφ exp

(
i

h̄
(S[φ]−

∫
dVt Jφ)

)
. (15.28)

15.4 Postscript

For all of its limitations, classical covariant field theory is a remarkable stepping
stone, both sturdy and refined, building on the core principles of symmetry and
causality. Its second quantized extension has proven to be the most successful
strategy devised for understanding fundamental physical law. These days,
classical field theory tends to merit only an honourable mention, as a foundation
for other more enticing topics, yet the theoretical toolbox of covariant classical
field theory underpins fundamental physics with a purity, elegance and unity
which are virtually unparalleled in science. By dwelling on the classical
aspects of the subject, this book scratches the surface of this pivotal subject
and celebrates more than a century of fascinating discovery.
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16
Gallery of definitions

16.1 Units

SI units are used throughout this book unless otherwise stated. Most books on
modern field theory choose natural units in which h̄ = c = ε0 = µ0 = 1. With
this choice of units, very many simplifications occur, and the full beauty of the
covariant formulation is apparent. The disadvantage, however, is that it distances
field theory from the day to day business of applying it to the measurable world.
Many assumptions are invalidated when forced to bow to the standard SI system
of measurements. The definitions in this guide are chosen, with some care, to
make the dimensions of familiar objects appear as intuitive as possible.

Some old units, still encountered, include electrostatic units, rather than
coulombs; ergs rather than joules; and gauss rather than tesla, or webers per
square metre:

Old SI

1 e.s.u. 1
3 × 10−9 C

1 erg 10−7 J

1 eV 1.6× 10−19 J

1 Å 10−10 m

1 G 10−4 Wb m−2

1 γ 10−5 G

399
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400 16 Gallery of definitions

16.2 Constants

Planck’s constant h̄ = 1.055× 10−34 J s
speed of light in a vacuum c = 2.998× 108 m s−1

electron rest mass me = 9.1× 10−31 kg
proton rest mass mp = 1.67× 10−27 kg
Boltzmann’s constant kB = 1.38× 10−23 J K−1

Compton wavelength h̄/mc

structure constant α = e2

4πε0h̄c = 1
137.3

classical electron radius r0 = e2

4πε0mc2 = 2.2× 10−15 m

Bohr radius a0 = 4πε0h̄2

e2me
= 0.5292 Å

electron plasma frequency ωp =
√

Ne2

ε0me
s−1

ωp ∼ 56
√

N rad s−1

cyclotron frequency ωc = ωB = eB
m s−1

16.3 Engineering dimensions

In n spatial dimensions plus one time dimension, we have the following
engineering dimensions for key quantities (note that square brackets denote the
engineering dimension of a quantity):

velocity (of light) [c] LT−1

Planck’s constant [h̄] ML2T−1

electric charge [e] L(n+1)/2T−2

gravitational constant G M−1L3T−2

permittivity [ε0] M−1LT−2

permeability [µ0] MT4L−3

structure constant [α] Ln−3

The dynamical variables have dimensions:

Schrödinger field [ψ] L−n/2

Dirac field [ψ] L−n/2

Klein–Gordon [φ] L−n/2T
1
2 [h̄]−

1
2

= L−(n+2)/2T−
1
2 M− 1

2

Maxwell [Aµ] L1−nT[h̄] = MTL−(n−1)/2

electric current density Jµ = δS
δAµ [e]L1−nT−1

particle number density N L−n
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16.3 Engineering dimensions 401

The plasma distributions are defined from the fact that their integral over a phase
space variable gives the number density:

N (x) =
∫

dv fv(v, x) (16.1)

=
∫

dnp f p(p, x) (16.2)

and so on. One is generally interested in the distribution as a function of velocity
v, the momentum p or the wavenumber k. In common units, where h̄ = c = 1,
the above may be simplified by setting L = T = M−1. Notice that all coupling
constants scale with spacetime dimension.

The constants ε0 and µ0 are redundant scales; it is not possible to identify the
dimensions of the fields and couplings between matter and radiation uniquely.
Dimensional analysis of the action, allows one to determine only two combina-
tions: [

eAµ
] = MLT−1[

e2

ε0

]
= LnMT−2. (16.3)

These may be determined by identifying JµAµ as an energy density and from
Maxwell’s equations, respectively. If we assume that ε0 and µ0 do not change
their engineering dimensions with the dimension of space n, then we can
identify the scaling relations [

Aµ
] ∼ L−

n
2

[e] ∼ L
n
2 , (16.4)

where ∼ means ‘scales like’. The former relation is demanded by the dimen-
sions of the action; the latter is demanded by the dimensions of the coupling
between matter and radiation, since the product eAµ must be independent of the
dimension of spacetime. Although the dimensions of e, Aµ, ε0 and µ0 are not
absolutely defined, a solution is provided in the relations above.

From the above, one determines that the cyclotron frequency is independent
of the spacetime dimension [

eB

m

]
= T−1, (16.5)

and that the structure constant α has dimensions[
e2

4πε0h̄c

]
= Ln−3. (16.6)
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402 16 Gallery of definitions

The so-called plasma frequency is defined only for a given plasma charge
density ρ, since [

e2

ε0m

]
= LnT−2. (16.7)

Thus, ω2
p = eρN

ε0m = eN
ε0m .

The Hall conductivity is a purely two-dimensional quantity. The dimensional
equation J = σH E can be verified for n = 2 and σH = e2/h̄, but it is noted
that each of the quantities scales in a way which requires an additional scale for
n �= 2.

16.4 Orders of magnitude

16.4.1 Sizes

Planck length Lp

√
Gh̄/c3 = 1.6× 10−35 m

Planck time Tp = Lp/c
√

Gh̄/c5 = 5.3× 10−44 s
Planck mass Mp

√
h̄c/G = 2.1× 10−8 kg

Planck energy Ep = Mpc2 1.8× 109 J = 1.2× 1019 GeV
Hall conductance in n = 2 σH = e2/h̄
Landau length at kBT l = e2/(4πε0kBT ) = 1.67× 10−5/T m
Debye length h =

√
εK T/Ne2 = 69×√T/N m

The Landau length is that length at which the electrostatic energy of electrons
balances their thermal energy.

16.4.2 Densities and pressure

number density (‘particles’ per unit volume) N (x) or ρN

number current N 0 = Nc, N i = Nvi . Nµ or JN µ

mass density current J m
µ = m Nµ

charge density current J e
µ = eNµ

charge density or other sources Jµ

interstellar gas 106 m−3

ionosphere 108–1012 m−3

solar corona 1013 m−3

solar atmosphere 1018 m−3

laboratory plasma 1018–1024 m−3

mean density of Earth 5520 kg m−3

mean density of Jupiter/Saturn 1340/705 kg m−3

solar wind particle number density 3–20 cm−3

magneto-pause number density 105–106 m−3
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16.4 Orders of magnitude 403

Pressure is denoted by P and has the dimensions of energy density or force
per unit area.

16.4.3 Temperatures

interstellar gas 102 K
Earth ionosphere 104 K
solar corona 106 K
solar atmosphere 104 K
laboratory plasma 106 K
super-conducting transition 0–100 K
Bose–Einstein condensation µK–nK

16.4.4 Energies

first ionization energies ∼ 10 eV
Van der Waals binding energy 2 keV
covalent binding energy 20 keV
hydrogen bond binding energy 20 keV
plasma energies, solar wind 1–100 keV
Planck energy Ep = Mpc2 1.8× 109 J = 1.2× 1019 GeV

Lorentz energy–momentum tensor θµν
conformal energy–momentum tensor Tµν

16.4.5 Wavelengths

radio waves > 10−2 m
microwaves 10−2 m
infra-red (heat) 10−3–10−6 m
visible light 10−6–10−7 m
ultra-violet 10−7–10−9 m
X-rays 10−9–10−13 m
gamma rays < 1011 m

thermal de Broglie wavelength λ =
√

h̄2

2mkBT

hydrogen atom at 273 K 2.9× 10−11 m
hydrogen atom at 1 K 4.9× 10−10 m
electron at 273 K 1.27× 10−9 m
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404 16 Gallery of definitions

16.4.6 Velocities

speed of light in vacuum c 2.9× 108 m s−1

solar wind 300–800 km s−1

phase velocity ω
ki
= vi

ph(k)

group velocity ∂ω
∂ki
= vi

g(k)

energy transport velocity T0i
T00
= vi

en

16.4.7 Electric fields

geo-electric field at surface (fine weather) 100 V m−1

geo-electric field at surface (stormy weather) 1000 V m−1

auroral field 10−3–10−2 V m−1

16.4.8 Magnetic fields

intense laboratory field H H ∼ 106 A m−1 [102]
highest coercive field H in minerals H ∼ 106 A m−1 [102]
geo-magnetic field H ∼ 10 A m−1 [102]
geo-magnetic field B0 = 1.88× 10−5 tesla
vertical geo-magnetic field Bv = B0 tan δ, δ = declination from north
Earth dipole moment 7.95× 1022 A m−2

16.4.9 Currents

atmospheric current from ionosphere to ground 10−12 A m−2 [50]
auroral current aligned with field 10−7 A m−2

ionospheric dynamo 500 000 A (eastward)

16.5 Summation convention

Einstein’s summation convention is used throughout this book. This means that
repeated indices are summed over implicitly:∑

A

φAφA → φAφA, (16.8)

and ∑
µ

AµAµ→ AµAµ. (16.9)

In other words, summation signs are omitted for brevity.
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16.6 Symbols and signs 405

16.6 Symbols and signs

16.6.1 Basis notation

gµν the spacetime metric with signature −+++ · · ·
ηµν the constant Minkowski spacetime metric

with value diag(−1, 1, 1, 1, . . .)

g = −detgµν the unsigned determinant of the metric
which appears in volume measures

µ, ν, λ, ρ . . . Greek indices are spacetime-covariant and
run from 0, . . . , n in n + 1 dimensions

i, j, k = 1, . . . , n Latin indices refer to spatial dimensions

∂t shorthand for ∂
∂t etc.

A, B = 1, . . . , dR upper case Latin indices are the components
of a group multiplet for non-spacetime
groups, e.g. charge, colour,
in a general representation G R

a, b = 1, . . . , dG lower case Latin indices are group
indices which belong to the adjoint
representation Gadj

σ signifies space

dσ = dx1 . . . dxn the spatial volume element

dσµ volume element for a spacelike hyper-surface

∂σ derivative normal to a spacelike hyper-surface
has the canonical interpretation ∂0

U ν
µ or U B

A matrix element of a transformation group

Some books make the abbreviation, (∂µφ)2, when – in fact – they mean
(∂µφ)(∂

µφ). In this text (∂µφ)2 means only (∂µφ)(∂µφ) which differs by
a factor of the metric. Note that, because of the choice of metric above,
(∂iφ)

2 = (∂ iφ)(∂iφ) = (∂iφ)(∂iφ).
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406 16 Gallery of definitions

16.6.2 Volume elements

dVx invariant volume element in (n + 1) dimensional
spacetime; dVx = dx0dx1dx2 . . . dxn√g

dVt = 1
c dVx the volume element which appears in

in most dynamical contexts, such as
the action

(dx) = dVt alternative notation for dVt

dσµ the volume element on spacelike hyper-surface
with a unit normal nµ parallel to dσµ

dσ ≡ (dx) an abbreviation for dσ 0, the ‘canonical’ spacelike

hyper-surface; dσ = dx1 . . . dxn
√−detgi j

The volume element appearing in the action, and in most transformations, is
(dx), which differs from the spacetime volume element by a factor of 1/c. This
is because the action has dimensions of energy × time. Had the action been
defined with an extra factor of c one could have avoided this blemish, but that is
not traditionally the case. In natural units, h̄ = c = 1, this problem is concealed.

16.6.3 Symmetrical and anti-symmetrical combinations

A bar (like a mean value) is used for objects which are symmetrical, e.g.

x = 1

2
(x1 + x2), (16.10)

whereas a tilde is used to signify anti-symmetry:

x̃ = (x1 − x2). (16.11)

Similarly, tensor parts T i j and T̃i j are, by assumption, symmetrical and anti-
symmetrical parts.

16.6.4 Derivatives

Field theory abounds with derivatives. Since we often have use for more
symbols than are available, some definitions depend on context.
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16.6 Symbols and signs 407

d
dxµ the total derivative (this object is seldom used)

∂
∂xµ = ∂µ the partial derivative acting on x , e.g.

x
∂µ G(x, x ′)

Dµ a generic derivative; it commonly denotes the gauge-
covariant derivative Dµ = ∂µ − ieAµ

∇µ the Lorentz-covariant derivative, which includes the ‘affine
connection’ ∇µ is the same as ∂µ when acting on scalar fields,
but for a vector field ∇µAν = ∂µAν + �λµν Aλ

∇2 = ∇ i∇i the spatial Laplacian

= ∇µ∇µ the d’Alambertian operator; in Cartesian coordinates,
= − 1

c2
∂2

∂t2 + ∂2
i , but generally = 1√

g∂µ
(√

ggµν∂ν
)

∂̂µ a partial derivative in which the speed of light is replaced by
an effective speed of light; also used for higher-dimensional
indices in Kaluza–Klein theory.

16.6.5 Momenta

pi the kinetic momentum also denoted p;
the generalization of mass × velocity in classical mechanics
Quantum theory replaces this by −ih̄∂i

pµ the n + 1 dimensional spacetime momentum,
a covariant representation of energy and momentum
The µ = 0 component is E/c and the spatial
components are pi

πµ the covariant momentum. It is the analogue of
pµ but includes any covariant connections,
e.g. the electromagnetic vector potential, or the
spacetime ‘affine’ connection
e.g. πµ is −ih̄ Dµ or −ih̄∇µ

!σ (or simply !) is the canonical momentum, defined
by the surface term of the variation of the action (see eqn. (4.23))
The covariant definition of the momentum conjugate
to q(x) is !σ = ∂L

∂(Dσ q(x)) , where σ is a timelike direction;

e.g. ! = ∂L
∂(D0q(x))

. This quantity does not have the dimensions of
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408 16 Gallery of definitions

momentum: it is referred to only as a momentum in the sense of
being canonically conjugate to the field variable q(x) (which does
not have the dimensions of position)

q̂, p̂i coordinates and momenta which are re-scaled so as
to have common engineering dimensions

(dk) Schwinger notation for the integration measure dn+1k
(2π)n+1

(dk) Schwinger notation for the integration measure dnk
(2π)n

16.6.6 Position, velocity and acceleration

ri = xi − x ′i a ray between spatial position x and x′

r̂ i a hat can indicate a unit vector
vi components of the velocity of an object in the

laboratory frame
β i same as above in units of the speed of light β i = vi/c
β2 β iβi where β i = vi/c
γ relativistic contraction factor 1/

√
1− β2

Uµ, βµ velocity (n + 1)-vector; Uµ = γ (c, vi ) = γ cβµ

Uµ = ∂τ xµ is not directly measurable, but
transforms as a vector under Lorentz transformations
βµ = ∂t xµ does not because ∂t is not invariant

aµ = ∂0β
µ components of the acceleration

in the laboratory frame ai = v̇i/c2.
This quantity does not transform as an (n + 1)-vector

Aµ = ∂2
τ xµ acceleration vector, transforms

as a tensor of rank 1
ωk
ki
= vi

ph(k) phase velocity
∂ωk
∂ki
= vi

g(k) group velocity
T0i
T00

energy transport velocity

16.7 Limits

It is natural to check derived expressions in various limits to evaluate their
reliability. Here we list a few special limits which might be taken in this
context and caution against possibly singular limits. While it might be possible
to set quantities such as the mass and magnetic field strength to zero without
incurring any explicit singularities, one should not be surprised if these limits
yield inconsistent answers compared with explicit calculations in their absence.
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16.7 Limits 409

In many cases the singular nature of these limits is not immediately obvious,
and one must be careful to set these to zero, only at the end of a calculation, or
risk losing terms of importance:

c →∞ non-relativistic limit
h̄ → 0 classical limit
B → 0 the limit of zero magnetic field is often singular
m → 0 the limit of zero mass is often singular
R → 0 the limit of zero curvature is often singular.
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17
The Schrödinger field

The Schrödinger equation is the quantum mechanical representation of the non-
relativistic energy equation

p2

2m
+ V = E (17.1)

and is obtained by making the replacement pi → −ih̄∂i and E = ih̄∂̃t , and
allowing the equation to operate on a complex field ψ(x). The result is the basic
equation of quantum mechanics(

− h̄2

2m
∇2 + V

)
ψ = ih̄∂̃tψ. (17.2)

which may also be written

HDψ = ih̄∂̃tψ, (17.3)

thereby defining the differential Hamiltonian operator. The free Hamiltonian
operator H0 is defined to be the above with V = 0.

17.1 The action

The action for the Schrödinger field is

S =
∫

dσdt
{
− h̄2

2m
(∂ iψ)∗(∂iψ)− Vψ∗ψ

+ ih̄

2
(ψ∗∂̃tψ − ψ∂̃tψ

∗)− J ∗ψ − ψ∗ J
}
. (17.4)

Notice that this is not Lorentz-invariant, and cannot be expressed in terms of
n + 1 spacetime dimensional vectors.

410
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17.4 Expression for the Green function 411

17.2 Field equations and continuity

The variation of the action can be performed with respect to both ψ(x) and
ψ∗(x) since these are independent variables. The results are

δψ∗S =
∫

dσdt δψ∗
(

h̄2

2m
∂ i∂iψ − Vψ + ih̄∂̃tψ

)

+
∫

dσ
[ ih̄

2
δψ∗ψ

]
+

∫
dσ i

[ h̄2

2m
δψ(∂iψ)

†
]
= 0

δψ S =
∫

dσdt δψ
( h̄2

2m
∂ i∂iψ

∗ − Vψ∗ − ih̄∂̃tψ
∗
)

+
∫

dσ
[
− ih̄

2
δψψ∗

]
+

∫
dσ i

[ h̄2

2m
δψ∗(∂iψ)

]
= 0, (17.5)

where we have used integration by parts, and the two expressions are mutually
conjugate. From the surface terms, we can now infer that the canonical
momentum conjugate to ψ(x) is

! = ih̄ψ, (17.6)

and that spatial continuity at an interface is guaranteed by the condition

�

(
h̄2

2m
(∂iψ)

)
= 0, (17.7)

where � means the change in value across the interface.

17.3 Free-field solutions

The free-field solutions may be written in a compact form as a linear combina-
tion of plane waves satisfying the energy constraint:

ψ(x) =
∫ ∞

0

dω̃

2π

∫ +∞

−∞

dnk
(2π)n

ei(k·�x−ω̃�t) ψ(k, ω̃)

× θ(ω̃) δ
( h̄2k2

2m
− h̄ω̃

)
. (17.8)

The coefficients of the Fourier expansion ψ(k, ω̃) are arbitrary.

17.4 Expression for the Green function

The Schrödinger Green function contains purely retarded solutions. This is a
consequence of its spectrum of purely positive energy solutions. If one views
the Schrödinger field as the non-relativistic limit of a relativistic field, then the
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412 17 The Schrödinger field

negative frequency Wightman function for the relativistic field vanishes in the
non-relativistic limit as a result of choosing only positive energy solutions. The
Fourier space expression for the free-field Green function is

GNR(x, x ′) =
∫ +∞

−∞
dω̃

∫ +∞

−∞

dnk
(2π)n

ei(k·�x−ω̃�t)

( h̄2k2

2m − h̄ω̃)− iε
. (17.9)

This may be interpreted in the light of the more general expression:

GNR(x, x ′) =
∑

n

θ(t − t ′) un(x)u
∗
n(x

′)

=
∫

dα

2π
e−iα(t−t ′) un(x)u∗n(x

′)
α − ωn + iε

(17.10)

where un(x) are a complete set of eigenfunctions of the free Hamiltonian, i.e.

(H0 − En)un(x) = 0, (17.11)

where En = h̄ωn .

17.5 Formal solution by Green functions

The free Schrödinger Green function satisfies the equation(
− h̄2∇2

2m
− ih̄∂̃t

)
GNR(x, x ′) = δ(x, x′)δ(t, t ′), (17.12)

or

(H0 − E)GNR(x, x ′) = δ(x, x′)δ(t, t ′), (17.13)

and provides the solution for the field perturbed by source J (x),

ψ(x) =
∫
(dx ′)GNR(x, x ′)J (x ′). (17.14)

The infinitesimal source J is not normally written as such, but rather in the
framework of the potential V , so that J = Vψ :

(H0 − En)ψn = −Vψn, (17.15)

where ψ(x) =∑
n cnψn(x). Substitution of this into the above relation leads to

an infinite regression:

ψ(x) =
∫
(dx ′)GNR(x, x ′)J (x ′)

=
∫
(dx ′)GNR(x, x ′)V (x ′)ψ(x ′)

=
∫
(dx ′)(dx ′′)GNR(x, x ′)GNR(x

′, x ′′)J (x ′′), (17.16)
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17.6 Conserved norm and probability 413

and so on. This multiplicative hierarchy is only useful if it converges. It is thus
useful to make this into an additive series, which converges for sufficiently weak
V (x). To do this, one defines the free-field ψ0(x) as the solution of the free-field
equation

(H0 − En)ψ0n(x) = 0, (17.17)

and expands in the manner of a perturbation series. The solutions to the full-field
equation are defined by

ψn(x) = ψ0n(x)+ δψn (17.18)

where the latter terms are assumed to be small in the sense that they lead to
convergent results in calculations. Substituting this into eqn. (17.15) gives

(H0 − En)δψn = −V (x)ψn(x), (17.19)

and thus

δψ(x) = −
∫
(dx ′) GNR(x, x ′) V (x ′)ψ(x ′), (17.20)

or

ψ(x) = ψ0(x)−
∫
(dx ′) GNR(x, x ′) V (x ′)ψ(x ′). (17.21)

This result is sometimes called the Lippmann–Schwinger equation. The equa-
tion can be solved iteratively by re-substitution, i.e.

ψ(x) = ψ0(x) −
∫
(dx ′) GNR(x, x ′) V (x ′)ψ0(x

′′)

+
∫
(dx ′)(dx ′′) GNR(x, x ′)GNR(x

′, x ′′) V (x ′)V (x ′′)ψ(x ′′),

(17.22)

and generates the usual quantum mechanical perturbation series, expressed in
the form of Green functions.

17.6 Conserved norm and probability

The variation of the action with respect to constant δs under a phase transforma-
tion ψ → eisψ is given by

δS =
∫
(dx)

{
− h̄2

2m

[−iδs(∂ iψ∗)(∂iψ)+ (∂ iψ∗)iδs(∂iψ)
]

+ i
[
−iδsψ∗∂̃tψ + iδsψ∗∂̃tψ

]}
. (17.23)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


414 17 The Schrödinger field

Integrating by parts and using the equation of motion, we obtain the expression
for the continuity equation,

δS =
∫
(dx)δs

(
∂̃t J t + ∂i J i

)
= 0, (17.24)

where

J t = ψ∗ψ = ρ
J i = ih̄2

2m

[
ψ∗(∂ iψ)− (∂ iψ∗)ψ

]
, (17.25)

which can be compared to the current conservation equation eqn. (12.1). ρ is the
probability density and J i is the probability current. The conserved probability
is therefore

P =
∫

dσψ∗(x)ψ(x), (17.26)

and this can be used to define the notion of an inner product between two
wavefunctions, given by the overlap integral

(ψ1, ψ2) =
∫

dσψ∗1 (x)ψ2(x). (17.27)

17.7 Energy–momentum tensor

Replacing ηµν by δµν (the Euclidean metric), we have for the components of the
energy–momentum tensor:

θt t = ∂L
∂(∂̃tψ)

(∂̃tψ)+ (∂̃tψ
∗)

∂L
∂(∂̃tψ)∗

− L

= h̄2

2m
(∂ iψ)†(∂iψ)+ Vψ∗ψ, (17.28)

≡ H. (17.29)

In the second-quantized theory, where ψ(x) is a field operator, this quantity is
often called the Hamiltonian density operator H . This is to be distinguished
from HD, the differential Hamiltonian operator. In the classical case, the spatial
integral of θt t is the expectation value of the Hamiltonian, as may be seen by
integration by parts:

H =
∫

dσθt t =
∫

dσ ψ(x)∗
[
− h̄2

2m
∂2 + V

]
ψ(x)

= (ψ, HDψ)

≡ 〈HD〉. (17.30)
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17.7 Energy–momentum tensor 415

Thus, θt t represents the total energy of the fields in the action S. The off-diagonal
spacetime components are related to the expectation value of the momentum
operator

θti = ∂L
∂∂̃tψ

(∂iψ)+ (∂iψ
∗)
∂L
∂∂̃tψ∗

= ih̄

2
ψ∗(∂iψ)− ih̄

2
(∂iψ

∗)ψ∫
dσθti = (ψ, ih̄∂iψ)

= −〈pi 〉, (17.31)

and

θi t = ∂L
∂(∂iψ)

(∂̃tψ)+ ∂L
∂(∂iψ∗)

(∂̃tψ
∗)

= − h̄2

2m

{
(∂iψ)

∗(∂̃tψ)+ (∂iψ)(∂̃tψ)
∗
}
. (17.32)

Note that θ is not symmetrical in the spacetime components: θi t �= θti . This is
a result of the lack of Lorentz invariance. Moreover, the sign of the momentum
component is reversed, as compared with the relativistic cases, owing to the
difference in metric signature. Finally, the ‘stress’ in the field is given by the
spatial components:

θi j = ∂L
∂(∂iψ)

(∂ jψ)+ ∂L
∂(∂iψ)∗

(∂ jψ)
∗ − Lδi j

= − h̄2

2m

{
(∂iψ)

∗(∂ jψ)+ (∂iψ)(∂ jψ)
∗ − (∂kψ)∗(∂kψ)δi j

}
+

{
Vψ∗ψ − ih̄

2
(ψ∗

↔
∂̃t ψ)

}
δi j . (17.33)

Using the field equation (17.2), the trace of the spatial part may be written

Tr θi i = (n − 2)
h̄2

2m
(∂kψ)∗(∂kψ)+ n

(
Vψ∗ψ − 1

2

h̄2

2m
ψ∗

↔
∂2 ψ

)
= (1− n) H + 2Vψ∗ψ, (17.34)

where the last line is obtained by partial integration over all space, and on
identifying the first and last terms as being H − V , and is therefore true only
up to a partial derivative, or under the integral sign. See also Jackiw and Pi for
a discussion of a conformally improved energy–momentum tensor, coupled to
electromagnetism [78].
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18
The real Klein–Gordon field

The relativistic scalar field satisfies the Klein–Gordon equation. This equation
can be interpreted as the quantum mechanical analogue of the relativistic energy
relation

E2 = p2c2 + m2c4, (18.1)

and is found by making the usual replacement pµ → −ih̄∂µ, and allowing the
equation to operate on a real scalar field φ(x). The result is(

− + m2c2

h̄2

)
φ(x) = 0. (18.2)

18.1 The action

If we generalize the single scalar field above to a set of N real scalar fields
φA(x) for A = 1, . . . , N , with a linear perturbation, JA, then all of the physical
information about this system can be derived from the following action:

S =
∫
(dx)

{
1

2
h̄2c2(∂µφA)(∂µφA)+ 1

2
m2c4φAφA + V (φ)− JAφA

}
.

(18.3)

Note that the position of the A indices is immaterial here, since they only label
the number of the field components. The repeated indices are summed using a
Euclidean metric, for which there is no notion of ‘up’ or ‘down’ indices.

Looking at this action, it can be noted that it does not have the familiar form
of an integral over T − V (kinetic energy minus potential energy). Instead, it
has the form of an integral over −E2 + p2 + m2 + V . Although this looks
dimensionally incorrect, this is not the case, since the dimensions of the field
are simply chosen so that S has the dimensions of action.
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18.2 Field equations and continuity 417

In what follows, the position of an index A is chosen for clarity. The
Lagrangian density L is defined by

S =
∫
(dx)L. (18.4)

In the usual canonical tradition, we define the conjugate momentum to the field
φa(x) by

!A
σ =

δL
δ(∂σφA)

= h̄2c2∂σφ, (18.5)

where σ is a specific direction, normal to a spacelike hyper-surface. Usually we
do not need to be this general and we can just pick σ = 0 for the normal, which
corresponds to the time direction (normal to space in an observer’s rest frame).
Then we have, more simply,

!A = h̄2c2∂0φA. (18.6)

The Hamiltonian density is then obtained straightforwardly from the Legendre
transformation

H = !(∂0φ)− Lg00. (18.7)

Or, using the fully covariant form,

H = !σ(∂σφ)− Lgσσ . (18.8)

Note the positions of the indices here and the presence of the metric in the
second term of the right hand side. The need for this factor will become
apparent later when looking at transformations and the energy–momentum
tensor. It makes the relativistic Legendre transformation more subtle than that
in Euclidean space, because of the indefinite metric. Eqns. (18.7) and (18.8)
evaluate to

H = 1

2
h̄2c2

[
(∂0φ)

2 + (∂iφ)
2
]+ 1

2
m2c4φ2 + V (φ). (18.9)

18.2 Field equations and continuity

The variation of the action (with V = 0) leads to

δS =
∫
(dx)

{
h̄2c2δφA(− )φA + m2c4φAδφA − JAδφA

}
+ 1

c

∫
dσµ

{
1

2
h̄2c2δφA(∂µφA)

}
. (18.10)
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418 18 The real Klein–Gordon field

Appealing to the action principle (see chapter 4), we surmise that the field
equations are (

− + m2c2

h̄2

)
φA = (h2c2)−1 JA, (18.11)

and that the condition for continuity of the field through any n-dimensional
surface is

�!A
σ = 0. (18.12)

If a delta-function source �JA = δ jAδ(x) is added to Ja exactly on the surface
σ , then this continuity equation is modified, and the new condition is given by

�!A
σ = � j A nσ , (18.13)

where nµ is the unit normal vector to σ . This equation tells us that a sudden
change in the momentum of the field can only be caused by an impulsive force
(source) � j .

18.3 Free-field solutions

The field φ(x) may be expanded as a linear combination of a complete set of
plane wavefunctions satisfying the equation of motion,

φ(x) =
∫

dn+1k

(2π)n+1
φ(k)eikxδ

(
h̄2c2k2 + m2c4

)
, (18.14)

where φ(k) are arbitrary coefficients, independent of x . The reality of the field
requires that

#∗(k) = #(−k). (18.15)

The integral ranges over all energies, but one can separate the positive and
negative energy solutions by writing

φ(x) = φ(+)(x)+ φ(−)(x), (18.16)

where

φ(+)(x) =
∫

dn+1k

(2π)n+1
φ(k)eikxθ(−k0)δ

(
h̄2c2k2 + m2c4

)
φ(−)(x) =

∫
dn+1k

(2π)n+1
φ(k)eikxθ(k0)δ

(
h̄2c2k2 + m2c4

)
. (18.17)

The symmetry of the energy relation then implies that

φ(+)(x) = (
φ(−)(x)

)∗
. (18.18)
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18.5 Conserved norm and probability 419

The positive and negative energy solutions to the free relativistic field equations
form independently complete sets, with respect to the scalar product,

(φ(+)(x), φ(+)(x)) = const.

(φ(−)(x), φ(−)(x)) = const.

(φ(+)(x), φ(−)(x)) = 0. (18.19)

18.4 Reality of solutions

It should be noted that the uses of the real scalar field are somewhat limited. The
boundary conditions one can apply to a real scalar field are only the retarded or
advanced ones. The solution

φ(x) =
∫
(dx ′) G(x, x ′)J (x ′) (18.20)

is only real if the Green function itself is real. This excludes the use of the
time-ordered (Feynman) Green function.

18.5 Conserved norm and probability

Since the real scalar field has no complex phase symmetry, Noether’s theorem
leads to no conserved quantities corresponding to a conserved inner product.
It is possible to define an invariant inner product on the manifold of positive
energy solutions, however. This is what introduces the complex symmetry in
the non-relativistic limit;

φ∂0φ (18.21)

has no definite sign.
Since the relativistic energy equation E2 = p2c2 + m2c4 admits both

possibilities, we do this by writing the real field as a sum of two parts,

φ = φ(+) + φ(−), (18.22)

where φ(+)∗ = φ(−). φ(+) is a complex quantity, but the sum φ(+) + φ(−) is
clearly real. What this means is that it is possible to define a conserved current
and therefore an inner product on the manifold of positive energy solutions φ(+),

(φ
(+)
1 , φ

(+)
2 ) = ih̄c

∫
dσµ(φ(+)∗1 ∂µφ

(+)
2 − (∂µφ(+)1 )∗φ(+)2 ) (18.23)

and another on the manifold of negative energy solutions φ(−). Thus there is
local conservation of probability (though charge still does not make any sense)
of particles and anti-particles separately.
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420 18 The real Klein–Gordon field

18.6 Normalization

The scalar product is only defined for normalizable wave-packet solutions, i.e.
those for which (φ, φ) <∞. A plane wave is a limiting case, which can only be
defined by box normalization. It does not belong to the Hilbert space. However,
adopting an invariant normalization in momentum space, one can express plane
waves simply. Noting that the following construction is both invariant and ‘on
shell’, i.e. satisfies the Klein–Gordon equation,

φ =
∫

dn+1k

(2π)n+1
eikxθ(±k0)δ(p

2c2 + m2c4)

=
∫

dnk

(2π)n
eikx

2p0
. (18.24)

Adopting the normalization

(φ(p), φ(p)) = 2p0 δ(p− p′)(2π)n, (18.25)

a positive energy solution takes the form

φ+(p) = eikx
(

p0 =
√

p2 + m2
)
. (18.26)

18.7 Formal solution by Green functions

The formal solution of the equations of motion can be written down in terms
of Green functions. The essence of the procedure is to find the inverse of the
differential operator on the left hand side of eqn. (18.11). Formally, we may
write

φA(x) =
(
− + m2c2

h̄2

)−1

(h̄2c2)−1 JA, (18.27)

where this is given meaning by comparing it with the expression involving the
Green function or ‘kernel’ G AB(x, x ′):

φA(x) = (h̄2c2)−1
∫
(dx ′)G AB(x, x ′)JB(x

′). (18.28)

Comparing eqns. (18.27) and (18.28), we see that G(x, x ′) must satisfy the
equation (

− + m2c2

h̄2

)
G AB(x, x ′) = δABδ(x, x ′), (18.29)

and thus we see that G AB(x, x ′) is the inverse of the differential operator, insofar
as δABδ(x, x ′) can be regarded as the ‘identity’ operator.
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18.8 All the Green functions 421

In this case, the indices A, B on the Green function are superfluous, since

G AB(x, x ′) = δAB G(x, x ′), (18.30)

but non-diagonal terms in A, B might be important when the components of the
field interact. This is the case in a gauge theory, for example.

The Green function G(x, x ′) is not unique: there is still a freedom to choose
the boundary conditions. By this we mean a specification of how the field is
affected by changes in the source Ja both in the past and in the future. The
‘causal’ Green function, also referred to as the retarded Green function, is such
that φ(x) is only affected by a change in J (x ′) if x > x ′.

18.8 All the Green functions

The symmetry of the Green functions is as follows:

G AB(x, x ′) = G B A(x
′, x)

G̃ AB(x, x ′) = −G̃ B A(x
′, x)

GF AB(x, x ′) = GF B A(x
′, x). (18.31)

The symmetrical parts of the Wightman functions may be constructed explicitly.
For example

1

2

[
G(+)

AB (x, x ′)+ G(+)
B A(x

′, x)
]
= 1

2

[
G(+)

AB (x, x ′)− G(−)
AB (x, x ′)

]
= 1

2

[
G(+)

AB (x, x ′)−
(

G(+)
AB (x, x ′)

)∗]
= iImG(+)

AB (x, x ′). (18.32)

The retarded, advanced and Feynman Green functions are all constructed from
causally selective combinations of the Wightman functions.

G(+)
AB (x, x ′) = −G(−)

B A(x
′, x)(

G(+)
AB (x, x ′)

)∗
= G(−)

AB (x, x ′). (18.33)

The properties of the step function lead to a number of linear relations:

Gr(x, x ′) = −θ(t − t ′)G̃(x, x ′)
Ga(x, x ′) = θ(t ′ − t)G̃(x, x ′)
Gr(x, x ′) = GF(x, x ′)− G(−)(x, x ′)
Ga(x, x ′) = GF(x, x ′)+ G(+)(x, x ′)
GF(x, x ′) = −θ(t − t ′)G(+)(x, x ′)+ θ(t ′ − t)G(−)(x, x ′). (18.34)
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422 18 The real Klein–Gordon field

Some caution is needed in interpreting the latter two relations, which should
be considered formal. The causal properties of the Green functions distinguish
G(±)(x, x ′), which satisfy the homogeneous eqn. (5.65), from Gr,GF, which
pose as right-inverses for a differential operator and satisfy an equation such as
eqn. (5.62). We can investigate this by calculating time derivatives. Starting with
the definition in eqn. (18.34), we obtain the time derivatives using the relations
in sections A.1 and A.2 of Appendix A:

∂t GF(x, x ′) = −δ(t, t ′)G̃(x, x ′)− θ(t − t ′)∂t G
(+)(x, x ′)

+θ(t ′ − t)∂t G
(−)(x, x ′), (18.35)

where eqn. (5.71) was used. The second derivative is thus

∂2
t GF(x, x ′) = − ∂tδ(t − t ′)G̃(x, x ′)− δ(t − t ′)∂t G̃(x, x ′)

− δ(t − t ′)∂t G̃(x, x ′)− θ(t − t ′)∂2
t G(+)(x, x ′)

+ θ(t ′ − t)∂2
t G(−)(x, x ′). (18.36)

The property in eqn. (A.14) was used here. Thus using eqn. (5.73) we may write

∂2
t GF(x, x ′) = δ(t − t ′)δ(x− x′)− θ(t − t ′)∂2

t G̃(x, x ′)
+θ(t ′ − t)∂2

t G(−)(x, x ′). (18.37)

From this it should be clear that

(− + M2)GF(x, x ′) = δ(t − t ′)δ(x− x′)
− θ(t − t ′)(− + M2)G̃(x, x ′)
+ θ(t ′ − t)(− + M2)G(−)(x, x ′)
= cδ(x, x ′). (18.38)

The Green function for the scalar field is directly related to that for the
electromagnetic field in the Lorentz–Feynman gauge, up to factors of h̄ and
µ0.

Dµν(x, x ′)
∣∣∣
α=1

= µ0h̄2 G(x, x ′)
∣∣∣
m=0

gµν. (18.39)

18.9 The energy–momentum tensor

The application of Noether’s theorem for spacetime translations leads to a
symmetrical energy–momentum tensor. Although the sign of the energy is
ambiguous for the Klein–Gordon field, we can define a Hamiltonian with the
interpretation of an energy density which is positive definite, from the zero–zero
component of the energy–momentum tensor. Using the action and the formula
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18.9 The energy–momentum tensor 423

(11.44), we have

θ00 = ∂L
∂(∂0φ)A

(∂0φA)− Lg00

= H = 1

2
h̄2c2

[
(∂0φA)

2 + (∂iφA)
2
]+ 1

2
m2c4φ2

A + V (φ). (18.40)

This quantity has the interpretation of a Hamiltonian density. The integral over
all space provides a definition of the Hamiltonian:

H =
∫

dσH. (18.41)

The explicit use of zero instead of a general timelike direction here makes this
definition of the Hamiltonian explicitly non-covariant. Note that this is not a
differential Hamiltonian operator analogous to that in eqn. (17.3), but more like
an expectation value. In the quantum theory (in which the fields are operator-
valued) this becomes the Hamiltonian operator.

The off-diagonal spacetime components give

θ0i = θi0 = ∂L
∂(∂0φ)A

(∂iφ)A

= h̄2c2(∂0φA)(∂iφA). (18.42)

Since there is no invariant inner product for the real scalar field, it is awkward to
define this as a field momentum. However, on the manifold of positive energy
solutions φ(+), the integral over all space may be written∫

dσθ0i = c
∫

dσ(φ(−)
↔
∂0 ∂iφ

(+))

≡ −(φ(+), pi cφ
(+)), (18.43)

where pi = −ih̄∂i . The diagonal spatial components are

θi i = ∂L
∂(∂ iφA)

(∂iφA)− L

= h̄2c2(∂iφA)
2 − 1

2
h̄2c2(∂µφA)(∂µφA)− 1

2
m2c4φ2

A − V (φ),

(18.44)

where the repeated i index is not summed. The off-diagonal ‘stress’ tensor is

θi j = ∂L
∂(∂ iφA)

(∂ jφA)

= (∂iφA)(∂ jφA), (18.45)
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424 18 The real Klein–Gordon field

where i �= j . Notice that the trace of the space parts in n + 1 dimensions gives∑
i

θi i = H− m2c4φ2
A − 2V (φ)+ (n − 1)L (18.46)

so that the full trace is

θµµ = gµνθνµ = −m2c4φ2
A − 2V (φ)+ (n − 1)L, (18.47)

which vanishes in 1+ 1 dimensions in the massless, potential-less theory.
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19
The complex Klein–Gordon field

This chapter is a supplement to the material for a real scalar field. Much of the
previous chapter applies here too.

19.1 The action

The free-field action is given by

S =
∫
(dx)

{
h̄2c2(∂µφA)

†(∂µφA)+ m2c4φ∗AφA

+V (φ†
AφA)− J †

AφA − JAφ
†
A

}
. (19.1)

The field now has effectively twice as many components as the real scalar field,
coming from the real and imaginary parts.

19.2 Field equations and continuity

Since the complex field and its complex conjugate are independent variables,
there are equations of motion for both of these. Varying S first with respect to
φ∗A, we obtain

δS =
∫
(dx)δφ∗A

(−h̄2c2 φA + m2c4φA + V ′(φ2
A, φA)− JA

)
+1

c

∫
dσµδφ∗A(∂µφA) = 0, (19.2)

which gives rise to the field equation(
− + m2c2

h̄2

)
φA(x) = (h̄2c2)−1 JA(x), (19.3)

425

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


426 19 The complex Klein–Gordon field

and the continuity condition over a spacelike hyper-surface,

�(∂σφ(x)) = �!σ = 0, (19.4)

identifies the conjugate momentum !σ . Conversely, the variation with respect
to φA gives the conjugate field equations, which give rise to the field equation(

− + m2c2

h̄2

)
φ∗A(x) = (h̄2c2)−1 J ∗A(x), (19.5)

and the corresponding continuity condition over a spacelike hyper-surface,

�(∂σφ
∗(x)) = �!∗σ = 0. (19.6)

19.3 Free-field solutions

The free-field solutions for the complex scalar field have the same form as those
of the real scalar field,

φ(x) =
∫

dn+1k

(2π)n+1
φ(k)eikx δ

(
h̄2c2k2 + m2c4

) ; (19.7)

however, the Fourier coefficients are no longer restricted by eqn. (18.15).

19.4 Formal solution by Green functions

The formal solution to the field equation may be expressed in terms of a Green
function G AB(x, x ′) by

φA(x) =
∫
(dx ′)G AB(x, x ′)JB(x

′), (19.8)

where the Green function satisfies the equation(
− x +m2c2

h̄2

)
G AB(x, x ′) = δ(x, x ′)δAB . (19.9)

Similarly,

φ
†
A(x) =

∫
(dx ′)J †

B(x
′)G B A(x

′, x). (19.10)

Note that, although the fields are designated as conjugates φ and φ†, this
relationship is not necessarily preserved by the choice of boundary conditions.
If the time-ordered, or Feynman Green function is used (which represents virtual
processes), then the resulting fields do not remain conjugate to one another over
time. The retarded Green function does preserve the conjugate relationship
between the fields, since it is real.
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19.6 The energy–momentum tensor 427

19.5 Conserved norm and probability

Let s be independent of x , and consider the phase transformation of the kinetic
part of the action:

S =
∫
(dx)h̄2c2

{
(∂µe−isφ∗)(∂µeisφ)

}
δS =

∫
(dx)

[
(∂µφ∗(−iδs)e−is)(∂µφeis)+ c.c.

]
=

∫
(dx)δs(∂µ Jµ), (19.11)

where

Jµ = −ih̄2c2(φ∗∂µφ − φ∂µφ∗). (19.12)

The conserved ‘charge’ of this symmetry can now be used as the definition of
the inner product between fields:

(φ1, φ2) = ih̄c
∫

dσµ(φ∗1∂µφ2 − (∂µφ1)
∗φ2), (19.13)

or, in non-covariant form,

(φ1, φ2) = ih̄c
∫

dσ(φ∗1∂0φ2 − (∂0φ1)
∗φ2). (19.14)

This is now our notion of probability.

19.6 The energy–momentum tensor

The application of Noether’s theorem for spacetime translations leads to a
symmetrical energy–momentum tensor. Although the sign of the energy is
ambiguous for the Klein–Gordon field, we can define a Hamiltonian with the
interpretation of an energy density which is positive definite, from the zero–zero
component of the energy–momentum tensor. Using the action and the formula
(11.44), we have

θ00 = ∂L
∂(∂0φA)

(∂0φA)+ ∂L
∂(∂0φ∗A)

(∂0φ
∗
A)− Lg00

= h̄2c2
[
(∂0φ

∗
A)(∂0φA)+ (∂iφ

∗
A)(∂iφA)

]+ m2c4 + V (φ).

(19.15)

Thus, the last line defines the Hamiltonian density H, and the Hamiltonian is
given by

H =
∫

dσH. (19.16)
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428 19 The complex Klein–Gordon field

The off-diagonal spacetime components define a momentum:

θ0i = θi0 = ∂L
∂(∂0φA)

(∂iφA)+ ∂L
∂(∂0φ∗A)

(∂iφ
∗
A)

= h̄2c2
{
(∂0φ

∗
A)(∂iφA)+ (∂0φA)(∂iφ

∗
A)
}
. (19.17)

Taking the integral over all space enables us to integrate by parts and show that
this quantity is the expectation value (inner product) of the momentum:∫

dσθ0i = h̄2c
∫

dσ
(
φ∗∂i∂0φ − (∂0φ

∗)∂iφ
)

= −(φ, pi cφ), (19.18)

where p = −ih̄∂i . The diagonal space components are given by

θi i = ∂L
∂(∂ iφA)

(∂iφA)+ ∂L
∂(∂ iφ∗A)

(∂iφ
∗
A)− L

= 2h̄2c2(∂iφ
∗)(∂iφ)− L, (19.19)

where i is not summed. Similarly, the off-diagonal ‘stress’ components are given
by

θi j = ∂L
∂(∂ iφA)

(∂ jφA)+ ∂L
∂(∂ iφ∗A)

(∂ jφ
∗
A)

= h̄2c2
{
(∂iφ

∗
A)(∂ jφA)+ (∂ jφ

∗
A)(∂iφA)

}
= h̄−1c(φA, pi p jφA). (19.20)

We see that the trace over spatial components in n + 1 dimensions is∑
i

θi i = H− 2m2c4φ2
A − 2V (φ)+ (n − 1)L, (19.21)

so that the full trace gives

θµµ = gµνθνµ = −2m2c4φ2
A − 2V (φ)+ (n − 1)L. (19.22)

This vanishes for m = V = 0 in 1+ 1 dimensions.

19.7 Formulation as a two-component real field

The real and imaginary components of the complex scalar field can be
parametrized as a two-component vector or real fields ϕA, where A = 1, 2.
Define

#(x) = 1√
2
(ϕ1(x)+ iϕ2(x)) . (19.23)
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19.7 Formulation as a two-component real field 429

Substituting in, and comparing real and imaginary parts, one finds

Dµ = ∂µ + ieAµ, (19.24)

or

DµϕA = ∂µϕA − eεAB AµϕB . (19.25)

The action becomes

S =
∫
(dx)

{
1

2
(DµϕA)(DµϕA)+ 1

2
m2ϕAϕA − JAϕA

}
. (19.26)

Notice that the operation charge conjugation is seen trivially here, due to the
presence of εAB , as the swapping of field labels.
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20
The Dirac field

The Klein–Gordon equation’s negative energy solutions and corresponding
negative probabilities prompted Dirac to look for a relativistically invariant
equation of motion which was linear in time. His equation was formally the
square-root of the Klein–Gordon equation.

The Dirac equation leads naturally to the existence of spin 1
2 . It is the basic

starting point for the study of spin- 1
2 particles such as the electron and quarks. It

also appears in condensed matter physics as the relevant low-energy degrees of
freedom in the strong-coupling limit of the Hubbard model [92], and has been
used as an alternative formulation of gravity [84].

20.1 The action

The action for the Dirac field is given by

SD =
∫
(dx)

{
−1

2
ih̄cψ(γ µ

→
∂µ −γ µ

←
∂µ)ψ

+ (mc2 + V )ψψ − Jψ − ψ J
}
, (20.1)

where ψ and ψ = ψ†γ 0 are dR-component spinors. The γ µ are dR × dR

matrices, defined below. All quantities here are implicitly matrix-valued. They
have hidden ‘spinor’ indices, which we shall write explicitly at times using
Greek letters α, β, . . ..

The variation of the action with respect to a dynamical change in the field ψ
gives the equation of motion for ψ is found by varying the action with respect
to ψ , and is given by

(−ih̄cγ µ∂µ + mc2 + V )ψ = J. (20.2)

If we drop the source term J , this can also be written

ih̄c∂0ψ = γ 0(−ih̄cγ i∂i + mc2 + V )ψ = HDψ, (20.3)
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20.2 The γ -matrices 431

where HD is the differential Hamiltonian operator (to be distinguished from
the field theoretical Hamiltonian below). The conjugate equation is found by
varying the action with respect to ψ and may be written as

ψ(ih̄cγ µ
←
∂ µ +mc2 + V ) = 0, (20.4)

or in terms of the differential Hamiltonian operator HD,

−ih̄c(∂0ψ) = ψγ 0 HDγ
0. (20.5)

The free Dirac equation may be viewed as essentially the square-root of the
Klein–Gordon equation. In the massless limit, the linear combination of
derivatives is a Lorentz-scalar-representation of the square-root of . This
may be verified by squaring the Dirac operator and separating the product of
γ -matrices into symmetric and anti-symmetric parts:

(γ µ∂µ)
2 = γ µγ ν ∂µ∂ν (20.6)

= 1

2
{γ µ, γ ν} ∂µ∂ν + 1

2
[γ µ, γ ν]∂µ∂ν (20.7)

= −gµν∂µ∂ν + 1

2
γ µγ ν[∂µ, ∂ν] (20.8)

= − . (20.9)

The commutator of two partial derivatives vanishes when the derivatives act
on any non-singular function. Since the fields are non-singular, except in the
presence of certain exceptional interactions which do not apply here, the Dirac
operator can be identified as the square-root of the d’Alambertian.

20.2 The γ -matrices

In order to satisfy eqn. (20.9), the γ -matrices must satisfy the relation

{γ µ, γ ν} = −2gµν (20.10)

(γ 0)2 = −(γ i )2 = I. (20.11)

The matrices satisfy a Clifford algebra. The set of matrices which satisfies
this constraint is of fundamental importance to the Dirac theory. They are not
unique, but may have several representations. The form of the γ µ matrices
is dependent on the dimension of spacetime and, since they carry a spacetime
index, on the Lorentz frame [61, 103].

Products of the γ µ form a group of matrices �a , where a = 1, . . . , dG , and
the dimension of the group is dG = 2(n+1). The elements �a are proportional to
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432 20 The Dirac field

the unique combinations:

I
γ 0, γ i , γ iγ j , γ 0γ i

γ 0γ iγ j , γ 1γ 2 . . . γ n

γ 0γ 1γ 2 . . . γ n.

(i �= j)

The usual case is n + 1 = 4, where one has �a ,

I
γ 0, iγ 1, iγ 3, iγ 3,

γ 0γ 1, γ 0γ 2, γ 0γ 3, iγ 2γ 3, iγ 3γ 1, iγ 2γ 3

iγ 0γ 2γ 3, iγ 0γ 1γ 3, iγ 0γ 1γ 2, γ 1γ 2γ 3

iγ 0γ 1γ 2γ 3

Factors of i have been introduced so that each matrix squares to the identity
(see ref. [112]). These may also be grouped differently, in the more suggestive
Lorentz-covariant form:

1 scalar
γ µ vector
σµν anti-symmetric tensor
γ 5γ µ pseudo-(axial) vector
γ 5 pseudo-scalar

where

σµν = 1

2i
[γ µ, γ ν]. (20.12)

For each �a , with the exception of the identity element, it is possible to find a
suitably defined �a , such that

�a�b�a = −�b (b �= 1). (20.13)

By taking the trace of this relation, and noting that

Tr(�a�b�a) = Tr(�a�a�b) = Tr(�b) (20.14)

one obtains

Tr(�b) = −Tr(�b) = 0. (20.15)

From this, it follows that the 2n+1 elements are linearly independent, since, if
one attempts to construct a linear combination which is zero,∑

a

λa�a = 0, (20.16)
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20.2 The γ -matrices 433

then taking the trace of this implies that each of the components λa = 0.
This establishes that each component is linearly independent and that a matrix
representation for the γ µ must have at least this number of elements, in order
to satisfy the algebra constraints. This divides the possibilities into two cases,
depending on whether the dimension of spacetime is even or odd.

For even n+1, the γ µ are most simply represented as dR×dR matrices, where

dR = 2(n+1)/2. (20.17)

d2
R then contains exactly the right number of elements. Although the matrices

are not unique (they can be transformed by similarity transformations), all such
sets of matrices of this dimension are equivalent representations. Moreover,
since there is no redundancy in the matrices, the dR × dR representations are
also irreducible, or fundamental. In this case, the identity is the only element
of the group which commutes with every other element (the group is said to
have a trivial centre). Another common way of expressing this, in the literature,
is to observe that other matrices, typically γ 0γ 1 . . . γ n , anti-commute with
an arbitrary element γ µ. There are thus more elements in the centre of the
group than the identity. This is a sign of reducibility or multiple equivalent
representations.

For odd n + 1, it is not possible to construct a matrix with exactly the
right number of elements. This is a symptom of the existence of several
inequivalent representations of the algebra. In this case, one must either
construct several sets of smaller matrices (which are inequivalent), or combine
these into matrices of larger dimension, which are reducible. The reducible
matrices reduce to block-diagonal representations, in which the blocks are the
multiple, inequivalent, irreducible representations. In this case, the identity is
not the only element of the group which commutes with every other element
(the group is said to have a non-trivial centre), and the matrix γ 0γ 1 . . . γ n

anti-commutes with an arbitrary element γ µ. Spinors in n + 1 dimensions are
discussed in ref. [10].

20.2.1 Example: n + 1 = 4

In 3 + 1 dimensions, the dimension of the algebra is 24 = 16, and one has the
standard representation,

γ 0 =
( −1 0

0 1

)
, γ i =

(
0 −σ i

σ i 0

)
(20.18)

where σ i are the Pauli matrices, defined by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (20.19)
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434 20 The Dirac field

The product of two γ -matrices may be evaluated by separating into even and
odd parts, in terms of the commutator and anti-commutator:

γµγν = 1

2
[γµ, γν]+ 1

2
{γν, γν}

= iσµν − gµν, (20.20)

where

σµν = 1

2i
[γµ, γν]. (20.21)

The product of all the γ ’s is usually referred to as γ 5, and is defined by

γ 5 = iγ 0γ 1γ 2γ 3

=
(

0 −I
I 0

)
. (20.22)

Clearly, this notation is poorly motivated in spacetime dimensions other than
3+ 1. In 3+ 1 dimensions, it is straightforward to show that

(γ 5)2 = 1, {γ µ, γ 5} = 0. (20.23)

The cyclic nature of the trace can be used together with the anti-commutativity
of γ 5 to prove that the trace of an odd number of γ -matrices vanishes in 3 + 1
dimensions. To see this, one notes that

Tr(γ5 Aγ5
−1) = Tr(A). (20.24)

Thus, choosing a product of m such matrices A = γµγν . . . γσ , such that

γ5 A = (−1)m Aγ5, (20.25)

it follows immediately that

Tr(A) = (−1)m Tr(A), (20.26)

and hence the trace of an odd number m of the matrices must vanish. The
hermiticity properties of the matrices are contained by the relation

γ µ
† = γ 0 γ µ γ 0, (20.27)

which summarizes

γ 0† = γ 0 (20.28)

γ i † = −γ i . (20.29)
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20.2 The γ -matrices 435

20.2.2 Example: n + 1 = 3

In 2 + 1 dimensions, the dimension of the algebra is 23 = 8, and thus the
minimum representation is is terms of either two irreducible sets of 2 matrices,
or a single set of reducible 4× 4 matrices, with redundant elements.

The fundamental 
2 representation is satisfied by

γ 0 = σ3, γ i = −iσi (20.30)

for i = 1, 2. This representation breaks parity invariance, thus there are two
inequivalent representations which differ by a sign.

γ µ,−γ µ (20.31)

The 
4 representation is a symmetrized direct sum of these, padded with zeros:

γ µ(
4) =
( +γ µ(
2) 0

0 −γ µ(
2)
)
. (20.32)

The matrices of the 
2 representation satisfy

γ µγ ν = −gµν − iεµνργ c (20.33)

Tr(γ µγ µγ ρ) = 2iεµνρ (20.34)

γ5 = γ 0γ 1γ 2 (20.35)[
γ5, γµ

] = 0, (20.36)

where the first of these relations is found by splitting into a commutator and
anti-commutator and using the su(2) Lie algebra relation for the Pauli matrices:

[σi , σ j ] = 2iεi jkσk . (20.37)

In the 
4 representation in 2+ 1 dimensions the results are as for 
2 except that

Tr(γ µγ νγ ρ)
4 = 0. (20.38)

Note that the product of all elements is usually referred to as γ 5 in the literature,
rather than γ 4, by analogy with the (3+ 1) dimensional case.

γ5 = γ 5 = γ 4 = iγ 0γ 1γ 2

=
( −I 0

0 −I

)
. (20.39)

Since this is a multiple of the identity matrix, it commutes with every element in
the algebra. Thus there are two elements to the centre of the group: I and −I .
The centre is the discrete group Z2, and the complete fundamental representation
of the algebra is

γ µ(
2)⊗ Z2. (20.40)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


436 20 The Dirac field

These two inequivalent representations correspond to the fact that, in a two-
dimensional plane, spin up and spin down cannot be continuously rotated into
one another (not even classically), and thus these two physical possibilities are
disconnected regions of the rotation group. In much of the literature on two-
dimensional physics, it is common to adopt either a spin up, or spin down 2× 2
representation for the γ -matrices, not the complete 
4 representation.

20.3 Transformation properties of the Dirac equation

Consider a Lorentz transformation of the Dirac spinor by a matrix representation
of the Lorentz group:

ψ ′(x ′) = S(L) ψ(x) = L R ψ(x). (20.41)

The matrix, usually denoted S(L) in the literature, is just an example of
a non-adjoint representation of the Lorentz group from section 9.4.3. This
representation has to carry spinor indices α, β, which are suppressed above,
in the usual way. These spinor indices correspond to the representation indices
A, B of section 9.4.3.

A transformation of the free Dirac equation may be written as

(γ µ p′µc + mc2)ψ ′(x ′) = 0 (20.42)

(γ µ(L−1)µν p′µc + mc2)(L Rψ(x)) = 0, (20.43)

where one recalls that

pµ = Lµν pν → pµ = (L−1)µ ν pν. (20.44)

Multiplying on the left hand side by L−1
R , and comparing with the untransformed

equation, leads to a condition

L−1
R γ µ L R = Lµνγ

ν, (20.45)

which is an identity, provided L = Ladj, the adjoint representation of the group.
The infinitesimal form of the spinor representation may be written in terms of

the generators of this representation TR:

L R = S(L) = I + θaT a
R , (20.46)

or, with spinor (representation) indices intact,

S(L)αβ = δαβ + θa(T a
R )
α
β. (20.47)

Consider an infinitesimal transformation

x ′µ = xµ + εωµνxν, (20.48)
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20.3 Transformation properties of the Dirac equation 437

so that

L R(I + εω) = I + εTR. (20.49)

The adjoint transformation can thus be expressed in two equivalent forms:

S−1γ µS = (1− εT )γ µ(1− εT )

= γ µ + ε(γ µT − T γµ)

= (Ladj)
µ
ν (1+ εω)γ ν

= γ µ + εωµνγ ν. (20.50)

Thus,

γ µT − T γ µ = ωµνγ ν, (20.51)

which defines T up to a multiple of the identity matrix. Choosing unit
determinant det(I + εT ) = 1 + ε Tr T , we have that Tr T = 0, and one may
write

(TR)
α
β =

1

8
ωµν(γµγν − γνγµ)αβ, (20.52)

or, compactly,

(TR)
α
β =

i

4
ωµνσµν. (20.53)

20.3.1 Rotations

An infinitesimal rotation by angle ε about the x1 axis has

ω23 = −ω32 = 1, (20.54)

and all other components zero. Thus the generator in the spinor representation
is

T 1 = 1

2
γ2γ3, (20.55)

and the exponentiated finite element becomes

S(R1) = eθ1TR = e−
i
2 θ*1,

= I cos
θ

2
+ i*1 sin

θ

2
, (20.56)

where

*1 =
(
σ1 0
0 σ1

)
. (20.57)

The half-angles are characteristic of the double-valued nature of spin:

S(θ1 + 2π) = −S(θ1). (20.58)
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438 20 The Dirac field

20.3.2 Boosts

For a boost in the x1 direction, ω10 = −ω01 = 1,

S(B1) = 1

2
γ 0γ 1 = 1

2

(
0 σ1

σ1 0

)
≡ 1

2
α1. (20.59)

The finite, exponentiated element is thus

S(B1) = e
α
2 α1 = I cosh

α

2
+ α1 sinh

α

2
, (20.60)

where tanhα = v/c. Notice that the half-valued arguments have no effect on
translations.

20.3.3 Parity and time reversal

The meaning of parity invariance is intrinsically linked to the number of
spacetime dimensions, since an even number of reflections about spatial axes is
equivalent to a rotation, and is therefore simply connected to the infinitesimally
generated group. In that case, spatial reflection is defined by a reflection in an
odd number of axes. In odd numbers of spatial dimensions, reflections in all axes
lead to a ‘large’ transformation which cannot be generated by exponentiated
infinitesimal generators.

Consider the case in 3+ 1 dimensions. For a space inversion, one has

L−1
R γ

0L R = γ 0

L−1
R γ

i L R = −γ i . (20.61)

Thus, the parity transformation can be represented by:

S(P) = eiφ γ 0 (20.62)

in Dirac space. This exchanges the upper and lower spinor contributions.
Similarly, a time inversion

L−1
R γ

0L R = −γ 0

L−1
R γ

i L R = γ i (20.63)

can be given the form

S(T ) = eiφ γ 5. (20.64)

20.3.4 Charge conjugation

Charge conjugation transforms a positive energy solution with charge q into
a negative energy solution with charge −q. One searches for a unitary
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20.3 Transformation properties of the Dirac equation 439

transformation C with the following properties:

C ψ C−1 = η Cψ
T

C Aµ C−1 = −Aµ. (20.65)

η is a possible intrinsic property of the field, η2 = 1. The two features of this
transformation are that it exchanges positive for negative energies and that it
reflects the vector field like an axial vector. Since Aµ always multiplies the
charge q, in the covariant derivative, this is equivalent to changing the sign of
the charge. The action for the gauged Dirac equation is (h̄ = c = 1),

S =
∫
(dx) ψ(iγ µDµ + m)ψ, (20.66)

where Dµ = ∂µ + iq Aµ. In order to find a transformation which exchanges ψ

with ψ
T
, one begins by integrating by parts:

S =
∫
(dx) ψ(−iγ µ(

←
∂µ −iq Aµ)+ m)ψ, (20.67)

then, taking the transpose:

S =
∫
(dx) ψT(−iγ Tµ(

→
∂µ −iq Aµ))ψ

T
. (20.68)

This has almost the same form as the original, untransposed action, with
opposite charge. In order to make it identical, we require a matrix which has
the property

C γ Tµ C−1 = −γ µ. (20.69)

Introducing such a matrix, one has

S =
∫
(dx) (γ TC−1)(iγ µD∗

µ + m)(Cψ
T
)

=
∫
(dx) ψ

c
(iγ µD∗

µ + m)ψc, (20.70)

where the charge conjugated field is ψc = Cψ
T
.

The existence of a matrix C , in 3 + 1 dimensions, possessing the above
properties can be determined as follows [112]. Taking the transpose of the
Clifford algebra relation,

{γ Tµ, γ Tν} = −2gµν, (20.71)

one sees that the transposed γ -matrices also satisfy the algebra, and must
therefore be related to the untransposed ones by a similarity transformation

γ Tµ = B−1 γ µ B. (20.72)
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440 20 The Dirac field

In 3+1 dimensions, the 4×4 γ -matrices are irreducible, and thus the existence
of a non-singular, unitary B is guaranteed. Taking the transpose of eqn. (20.72)
and re-using the relation to replace for γ µ, one obtains

γ Tµ = (B−1 BT) γ Tµ (B−1T B), (20.73)

thus establishing that B−1 BT commutes with all the γ -matrices. From Schur’s
lemma, it follows that this must be a multiple of the identity:

B−1 BT = cI. (20.74)

Taking the inverse and then the complex conjugate of this relation, one finds

1

c∗
= B∗(BT)−1∗

= B∗B∗∗ (20.75)

= B∗B. (20.76)

where we have used the unitarity B† B = I . This means that c is real, and
furthermore that c = ±1, i.e.

B = ±BT, (20.77)

so, from this, the matrix is either symmetrical or anti-symmetrical. An addi-
tional constraint comes from the number of symmetrical and anti-symmetrical
degrees of freedom in the 4 × 4 γ -matrices. If B is anti-symmetric, then the
six matrices γ µB, γ 5 B, B are also anti-symmetric, whereas the ten matrices
Bγ 5γ µ, Bσµν are symmetrical. This matches the number of anti-symmetrical
degrees of freedom in a 4 × 4 matrix representation. Conversely, if one takes
B to be symmetrical, then the numbers are reversed and it does not match. One
concludes, then, that B is an anti-symmetric, unitary matrix. This result was
shown by Pauli in 1935. It has now been shown that it is possible to construct
a similarity transformation which turns γ -matrices into their transposes. The
matrix we require is now

C = −iγ 5 B. (20.78)

With this definition, we have

C−1 γ µ C = −B−1 iγ5 γ
µ iγ5 B = −B−1γ µB

= −γ Tµ. (20.79)

C is thus a charge conjugation matrix for Dirac spinors.
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20.4 Chirality in 3+ 1 dimensions 441

20.4 Chirality in 3+ 1 dimensions

The field equations of massless spinors are, from eqn. (20.101),( −p0+ −σ i pi

σ i pi p0

)(
χ1

χ2

)
= 0 (20.80)

or

σ i p̂i χL = 2λχL = −χL

σ i p̂i χR = 2λ = +χR, (20.81)

where λ = 1
2σ

i p̂i , and

χL = χ1 + χ2

χR = χ1 − χ2. (20.82)

These equations are referred to as the Weyl equations, and χL and χR are Weyl-
spinors. For such massless particles, the eigenvalue of γ 5 is referred to as the
chirality of the solution:

γ 5u(p, λ) = 2λu(p, λ)

γ 5v(p, λ) = −2λv(p, λ). (20.83)

A projection operator for the chirality states is thus

P± = 1

2
(1± γ 5). (20.84)

Particles with helicity + 1
2 are referred to as right handed, while particles with

helicity − 1
2 are referred to as left handed. Only left handed neutrinos interact

by the weak interaction and appear in the Standard Model. Symmetry under the
continuous transformation

ψ(x)→ eiλγ5ψ (20.85)

is known as chiral symmetry.

20.5 Field continuity

The variation of the action leads to surface terms,

h̄
∫

dσµ
(
δψγµψ

)
, (20.86)

for ψ variations, and

h̄
∫

dσµ
(
ψγµδψ

)
, (20.87)
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442 20 The Dirac field

for ψ variations. This provides us with definitions for the conjugate momenta
across spacelike hyper-surfaces σ :

h̄!
A
σ = γσψ A, (20.88)

for the variable conjugate to ψ , and

!A
σ = h̄ψ

A
γσ , (20.89)

for the variable conjugate to ψ . The canonical values for these momenta are

! = h̄γ0ψ

! = h̄ψγ0 = ψ†. (20.90)

20.6 Conserved norm and probability

The linear nature of the Dirac action implies that the conserved current is
independent of derivatives. This means that the sign of the energy ih̄c∂0 cannot
change the sign of the conserved probability, thus the Dirac equation does not
suffer the problem of negative norms or probabilities as does the Klein–Gordon
equation.

To determine the conserved current, one considers the effect of an infinitesi-
mal x-independent phase transformation δ:

δS =
∫
(dx)

{
(ψe−is(−iδs)γ µ∂µ(e

isψ))

+ (ψe−is(−iδs)γ µ∂µ((−iδs)eisψ))

− (∂µ(ψe−is(−iδs))γ µ(eisψ))

− (∂µ(ψe−is(−iδs))γ µ((−iδs)eisψ))
}

(20.91)

Integrating by parts to remove derivatives from δs, and using the equations of
motion, one arrives at the simple expression

δS = h̄
∫

dσµ(ψγµψ)δs, (20.92)

which defines a conserved current δS = ∫
dσµ Jµδs. This motivates the

definition of an inner product given by

(ψ1, ψ2) = −1

2

∫
dσµ(ψ1γµψ2 + ψ2γµψ1), (20.93)
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20.7 Free-field solutions in n = 3 443

giving the norm of the field as

(ψ,ψ) = −
∫

dσµψγµψ. (20.94)

The canonical interpretation of this is

(ψ1, ψ2) = −1

2

∫
dσ(ψ1γ0ψ2 + ψ2γ0ψ1), (20.95)

which means that the norm may also be written

(ψ,ψ) = −
∫

dσψ†γ 0γ0ψ =
∫

dσψ†ψ. (20.96)

The norm of the field is defined separately on the manifold of positive and
negative energy solutions.

20.7 Free-field solutions in n = 3

The free-field equation is

(−ih̄cγ µ∂µ + mc2)αβψβ(x) = 0, (20.97)

where ψα(x) is a 2l-component vector for some l ≥ n/2, which lives on spinor
space (usually these indices are suppressed). In a given number of dimensions,
we may express this equation in terms of a representation of the γ -matrices. In
three dimensions we may use eqn. (20.18) to write(

ih̄∂t + mc2 ih̄cσ i∂i

−ih̄cσ i∂i −ih̄∂t + mc2

)
ψ = 0, (20.98)

where we suppress the α, β spinor indices. The blocks are now 2× 2 matrices,
and the spinor may also be written in terms of two two-component spinors u:

ψ =
(

u1

u2

)
. (20.99)

If we transform the spinors to momentum space,

ψ(x) =
∫

dn+1k

(2π)n+1
eikxψ(k), (20.100)

then the field equations may be written as( −p0c + mc2 −cσ i pi

cσ i pi p0c + mc2

)(
u1

u2

)
= 0, (20.101)
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444 20 The Dirac field

where pµ = h̄kµ. This matrix equation has non-zero solutions for ψ only if the
determinant of the operator vanishes. Thus,

det = p2c2 + m2c4 = 0. (20.102)

Here one makes use of the fact that

(σ i pi )
2 = σ iσ j pi p j

=
(

1

2
[σ i , σ j ]+ 1

2
{σ i , σ j }

)
pi p j

= (iεi jkσk + δi j )pi p j

= pi pi . (20.103)

Eqn. (20.102) indicates that the solutions of the Dirac equation must satisfy the
relativistic energy relation. Thus the Dirac field also satisfies a Klein–Gordon
equation, which may be seen by operating on eqn. (20.97) with the conjugate of
the Dirac operator:

(ih̄cγ µ∂µ + mc2)(−ih̄cγ µ∂µ + mc2)ψ(x) = 0

(−h̄2c2 + m2)ψ = 0. (20.104)

The last line follows from eqn. (20.20). The vanishing of the determinant also
gives us a relation which will be useful later, namely

(p0c + mc2)

cσ i pi
= −cσ i pi

(−p0c + mc2)
. (20.105)

The 2× 2 components of eqn. (20.101) are now

(−p0c + mc2)u1 − c(σ i pi )u2 = 0

c(σ i pi )u1 + (p0c + mc2)u2 = 0, (20.106)

which implies that the two-component spinors u are linearly dependent:

u1 = c(σ i pi )

(−p0c + mc2)
u2,

u1 = −(p0c + mc2)

c(σ i pi )
u2. (20.107)

The consistency of these apparently contradictory relations is secured by the
determinant constraint in eqn. (20.105).

In spite of the linear (first-order) derivative in the Dirac action, the deter-
minant condition for non-trivial solutions leads us straight back to a quadratic
constraint on the allowed spectrum of energy and momenta. This means that
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20.7 Free-field solutions in n = 3 445

both positive and negative energies are allowed in the Dirac equation, exactly
as in the Klein–Gordon case. The linear derivative does cure the negative
probabilities, however, as we show below.

The solutions of the Dirac equation may be written in various forms. A direct
attempt to apply the field equation constraint in a delta function, by analogy
with the scalar field, cannot work directly, since the delta function cannot have
a matrix argument. However, by introducing a projection operator (−γ µ pµc +
mc2)/2|p0|, it is possible to write

ψ(x) =
∫

dn+1k

(2π)n+1
eikx(−γ µ pµc + mc2)δ(p2c2 + m2c4) u(k),

(20.108)

where p = h̄k and u(k) is a mass shell spinor. The projection term ensures that
application of the Dirac operator leads to the squared mass shell constraint. By
inserting θ(±k0) alongside the delta function, one can also restrict this to the
manifold of positive or negative energy solutions, i.e.

ψ(x)(±) =
∫

dn+1k

(2π)n+1
eikxθ(∓k0)(−γ µ pµc + mc2)δ(p2c2 + m2c4) u±(k),

=
∫

dnk

(2π)n
eikx mc2

|k0| γ
0 u±(k), (20.109)

since

(−γ µ pµc + mc2) = 2mc2, (20.110)

when pµ is on the mass shell γ µ pµc+mc2 = 0. In the literature it is customary
to proceed by examining the positive and negative energy cases separately. As
we shall see below, solutions of the Dirac equation can be normalized on either
the positive or negative energy solution spaces.

It is more usual to consider positive and negative energy solutions to the Dirac
equation separately. To this end, there is sufficient freedom in the expression

ψ(±)(x) =
∫

dn+1k

(2π)n+1
eikxδ(p2c2 + m2c4)θ(∓k0)

(
u1

u2

)
N±(k)

=
∫

dnk

(2π)n
ei(kx−ωt)

2|E |ch̄

(
cσ i pi

(±E+mc2)

1

)
N±(k)u. (20.111)

The two-component spinors u are taken to be a linear combination of the spin
eigenfunctions for spin up and spin down, as measured conventionally along the
z axis

ui = c1

(
1
0

)
+ c2

(
0
1

)
, (20.112)
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446 20 The Dirac field

where i = 1, 2 and c2
1+ c2

2 = 1. Unlike, the case of the Klein–Gordon equation,
both positive and negative energy solutions can be normalized to unity, although
this is not necessarily an interesting choice of normalization. An example:
consider the normalization of the positive energy solutions (−p0c = E),

1 = (ψ(+)(x), ψ(+)(x))
=

∫
dσ

∫
dn+1k

(2π)n+1

dn+1k ′

(2π)n+1

ei(k−k′)x

4E2c2h̄2 N 2
+

(
c2(σ i pi )

2

(E + mc2)
+ 1

)
|u|2

=
∫

dnk

(2π)n
N 2
+

4E2c2h̄2

(
2E

E + mc2

)
. (20.113)

Assuming a box normalization, where dnk/(2π)n ∼ L−n
∑

k , we have

N+ =
√

2Lnc2h̄2(E + mc2), (20.114)

and hence

ψ(+)(k) = Ln/2ei(kx−ωt)

√
(E + mc2)

2E

(
cσ i pi
(E+mc2)

1

)
χ(s), (20.115)

where

χ(
1
2 ) =

(
1
0

)
, χ(−

1
2 ) =

(
0
1

)
. (20.116)

20.8 Invariant normalization in p-space

The normalization of Dirac fields is a matter of some subtlety. Different
invariant normalizations are used for different purposes. The usual case is to
consider plane wave solutions, or wave-packets. Consider the probability on a
spacelike hyper-surface, transforming as the zeroth component of a vector:

ψ(x)γ0ψ(x) =
∫

dn+1k

(2π)n+1
u(k)† u(k) θ(∓k0)

× (−γ µ pµc + mc2) δ(p2c2 + m2c4)

=
∫

dnk

(2π)n
2mc2

2|p0| u(k)†u(k) = 1. (20.117)

The factor of 2mc2/2|p0| is required to ensure that the spinors satisfy the
equations of motion for the Dirac field. This indicates that the invariant
normalization for the spinors should be

u†(k)u(k) = |p0|
mc2

. (20.118)
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20.9 Formal solution by Green functions 447

Consider now what this means for the product u(k)u(k). The field equations for
these, in momentum space, are:

(γ 0 p0c + γ i pi c + mc2)u(k) = 0

u(k)(γ 0 p0c + γ i pi c + mc2) = 0. (20.119)

Multiplying the first of these by u†, and using the fact that u = u†γ 0, gives:

u(γ 0 p0c + γ 0γ i pi c + mc2γ 0)u(k) = 0. (20.120)

Now, multiplying the second (adjoint) equation on the right hand side by γ 0u
and commuting γ 0 through the left hand side, one has:

u(p0c − γ 0γ i pi c + mc2γ 0)u(k) = 0. (20.121)

Thus, adding eqns. (20.121) and (20.120), leaves

2p0c uu + 2mc2 u†u = 0. (20.122)

Taking the normalization for u†u in eqn. (20.118), we find that

uu = −p0

|p0| =
E

|E | . (20.123)

Thus, a positive energy spinor is normalized with positive norm, whilst a
negative energy spinor has a negative norm, in momentum space. It is custom to
refer to the positive and negative energy spinors as u(k) and v(k), respectively.
Accordingly, one takes the invariant normalization to be

ur us = δrs

vrvs = −δrs, (20.124)

with spinor indices shown.

20.9 Formal solution by Green functions

The formal solution to the free equations of motion (V = 0) may be written

ψ(x) =
∫
(dx ′)S(x, x ′)J (x ′), (20.125)

and the conjugate form

ψ†(x) =
∫
(dx ′)J †(x ′)S(x ′, x). (20.126)
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448 20 The Dirac field

20.10 Expressions for the Green functions

The Green functions can be obtained from the corresponding Green functions
for the scalar field; see section 5.6:

(−ih̄cγ µ∂µ + mc2)(ih̄cγ µ∂µ + mc2) =
−h̄2c2 + m2c4 + 1

2
[γ µ, γ ν]∂µ∂ν, (20.127)

and the latter term vanishes when operating on non-singular objects. It follows
for the free field that

(ih̄cγ µ∂µ + mc2)G(±)(x, x ′) = S(±)(x, x ′) (20.128)

(ih̄cγ µ∂µ + mc2)GF(x, x ′) = SF(x, x ′) (20.129)

(−ih̄cγ µ∂µ + mc2)S(±)(x, x ′) = 0 (20.130)

(−ih̄cγ µ∂µ + mc2)SF(x, x ′) = δ(x, x ′). (20.131)

20.11 The energy–momentum tensor

The application of Noether’s theorem for spacetime translations leads to a
symmetrical energy–momentum tensor. In accordance with the other fields, the
zero–zero component of the energy–momentum tensor has the interpretation
of an energy density or Hamiltonian density. This is to be distinguished from
the differential Hamiltonian operator, which generates the time evolution of the
field. We have,

θ00 = ∂L
∂(∂0ψ)

(∂0ψ)+ (∂0ψ)
∂L

∂(∂0ψ)
− Lg00

= − ih̄c

2
ψγ0(∂0ψ)+ ih̄c

2
(∂0ψ)γ0ψ + L. (20.132)

Using the equation of motion (20.2), the integral of this quantity over all space
may be written as∫

dσθ00 =
∫

dσψ(−ih̄cγ i∂i + mc2 + V )ψ

= (ψ, HDψ), (20.133)

where we have used (γ 0)2 = 1. This expression is formally the expectation
value of the differential Hamiltonian operator, but it is also used as the definition
of a ‘field theoretical’ Hamiltonian. In the second quantization, where the fields
are operator-valued, this expression is referred to as the Hamiltonian operator
and may be thought of as generating the time evolution of the fully quantized
field.
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20.11 The energy–momentum tensor 449

The spacetime components of the energy–momentum tensor are not explicitly
symmetrical. This is a consequence of the linear derivative in the field equation
(20.2). However, the off-diagonal components can be shown to be equal
provided the field satisfies the equations of motion. We have

θ0i = ∂L
∂(∂0ψ)

(∂iψ)+ (∂iψ)
∂L

∂(∂0ψ)

= − ih̄c

2
ψγ0(∂iψ)+ ih̄c

2
(∂iψ)γ0ψ. (20.134)

Taking the integral over all space allows us to integrate by parts, giving∫
dσθ0i = −ih̄c

∫
dσψγ0∂iψ

= −(ψ, pi cψ), (20.135)

where pi = −ih̄∂i . Thus, this component is identified with the momentum in
the field. Switching the order of the indices, we have

θ0i = ∂L
∂(∂ iψ)

(∂0ψ)+ (∂0ψ)
∂L

∂(∂ iψ)

= − ih̄c

2
ψγi (∂0ψ)+ ih̄c

2
(∂0ψ)γiψ. (20.136)

This is clearly not the same as eqn. (20.134). However on using the field
equation and its conjugate in eqns. (20.2) and (20.5), it may be shown that

θi0 = ih̄c

2
ψ(γiγ

0γ j
→
∂ j −γ j

←
∂ j γ

0γi )ψ − 1

2
{γi , γ

0}(mc2 + V )ψψ,

(20.137)

so that the integral over all space can be integrated by parts to give∫
dσθi0 =

∫
dσ

{
ih̄c

2
ψγ 0{γi , γ

j }∂ jψ − 1

2
{γi , γ

0}(mc2 + V )ψψ

}
.

(20.138)

On using the anti-commutation relations for the γ -matrices, we find∫
dσθi0 = −ih̄c

∫
dσψγ0∂iψ =

∫
dσθ0i . (20.139)

The diagonal space components are given by

θi i = ∂L
∂(∂ iψ)

(∂iψ)+ (∂iψ)
∂L

∂(∂ iψ)

= − ih̄c

2
ψγi (∂iψ)+ L, (20.140)
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450 20 The Dirac field

where i is not summed. The off-diagonal space components are

θi j = ∂L
∂(∂ iψ)

(∂ jψ)+ (∂ jψ)
∂L

∂(∂ iψ)

= − ih̄c

2

(
ψγi∂ jψ − (∂iψ)γ jψ

)
, (20.141)

where i �= j . Although not explicitly symmetrical in this form, the integral over
all space of this quantity is symmetrical by partial integration. Note that the
trace of the space components is given in n + 1 dimensions by∑

i

θi i = H+ (mc2 + V )ψψ + (n − 1)L, (20.142)

so that the total trace of the energy–momentum tensor is

θµµ = gµνθµν = (mc2 + V )ψψ + (n − 1)L. (20.143)

This vanishes for m = V = 0 in 1+ 1 dimensions.

20.12 Spinor electrodynamics

The action for spinor electrodynamics is

SQED =
∫
(dx)

{
ψ
(
− 1

2
ih̄c(γ µ

→
Dµ −γ µ

←
Dµ

†

)+ mc2
)
ψ

+ 1

4µ0
FµνFµν

}
. (20.144)

This is the basis of the quantum theory of electrodynamics for electrons (QED).
Pauli [104] has shown that the Dirac action may be modified by a term of the

form

S → S +
∫
(dx) ψ

1

2

µc2

h̄
σρλFρλψ, (20.145)

whereupon the field behaves as though it has an additional (anomalous) mag-
netic moment eh̄/2m. Later, Foldy investigated generalizations of the Dirac
action which preserve Lorentz invariance and gauge invariance [51]. One
makes two restrictions: linearity in Aµ (weak field) and finiteness in the zero
momentum limit (independent of ∂µψ). The result is

S → S +
∫
(dx)ψ

[
c
∞∑

i=0

(
αi

i γ µAµ + 1

2
βnσ

µν i Fµν

)]
ψ,

(20.146)
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20.12 Spinor electrodynamics 451

where αi , βi are constants representing anomalous charge and magnetic mo-
ments respectively.

There is a number of problems for which spinor electrodynamics can be
solved exactly. These include:

• the spherically symmetrical Coulomb potential [31, 38, 62, 75, 98];

• the homogeneous magnetic field [73, 81, 106, 109];

• the field of an electromagnetic plane wave [131].

A review of these is given in many books. See, for example, ref. [8].
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21
The Maxwell radiation field

There are two ways of describing the interaction between matter and the
electromagnetic field: the first and most fundamental way is to consider the
electromagnetic field to be coupled to every individual microscopic charge in
a physical system explicitly. Apart from these charges, the field lives on a
background vacuum. The charges are represented by an (n + 1) dimensional
current vector Jµ.

In systems with very complex distributions of charge, this approach is too
cumbersome, and an alternative view is useful: that of an electromagnetic field
in dielectric media. This approach is an effective-field-theory approach in which
the average effect of a very complex, on average neutral, distribution of charges
is taken into account by introducing an effective speed of light, or equivalently
effective permittivities and permeabilities. Any remainder charges which make
the system non-neutral can then be handled explicitly by an (n+1) dimensional
current vector. Although the second of these two approaches is a popular
simplification in many cases, it has only a limited range of validity, whereas
the first approach is fundamental. We shall consider these two cases separately.

21.1 Charges in a vacuum

21.1.1 The action

The action for the electromagnetic field in a vacuum is given by

S =
∫
(dx)

{
1

4µ0
FµνFµν

}
, (21.1)

where the anti-symmetric field strength tensor is defined by

Fµν = ∂µAν − ∂ν Aµ, (21.2)

452
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21.1 Charges in a vacuum 453

and

Aµ =
(

c−1φ

A

)
. (21.3)

In 3+ 1 dimensions, the field components are given by

Ei = −∂iφ − ∂t Ai = c Fi0

εi jk Bk = Fi j , (21.4)

where i = 1, 2, 3. The latter equation may be inverted to give

Bi = 1

2
εi jk Fjk . (21.5)

Note that the indices on the electric and magnetic field vectors in 3 + 1
dimensions are always written as subscripts, never as superscripts. In 2 + 1
dimensions, the magnetic field is a pseudo-scalar, and one has

Ei = −∂iφ − ∂t Ai = c Fi0

B = F12, (21.6)

where i = 1, 2. In higher dimensions, the tensor character of Fµν is unavoidable,
and E and B cease to lose their separate identities. A further important point is
that the derivatives in the action are purely classical – there are no factors of h̄
present here.

A phenomenological source can be added to the Maxwell action, in an
ambient vacuum:

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ

}
. (21.7)

This describes an electromagnetic field, extended in a vacuum around source
charges. What we really mean here is that there is no ambient background matter
present: we allow positive and negative charges to exist freely in a vacuum, but
there is no overall neutral, polarizable matter present. The case of polarization
in the ambient medium is dealt with later.

21.1.2 Field equations and continuity

The variation of the action leads to

δS =
∫
(dx)

{
(∂µδAν)Fµν − JµδAµ

}
=

∫
(dx)

{
δAν(−∂µFµν)− JµδAµ

}
+

∫
dσµ

{
δAνFµν

}
. (21.8)
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454 21 The Maxwell radiation field

Thus, the field equations δS = 0 are given by

∂µFµν = −µ0 J ν, (21.9)

and the continuity condition tells us that the conjugate momentum (dσµ = dσ 0)
is

!i = F0i . (21.10)

If the surface σ is taken to separate two regions of space rather than time, one
has the standard continuity conditions for the electromagnetic field in a vacuum:

�Fi0 = 0

�Fi j = 0, (21.11)

and we have assumed that δAµ is a continuous function. The momentum
conjugate to the field Aµ is

!σµ =
δL

δ(∂σ Aµ)
= Fσµ, (21.12)

where σ points outward from a spacelike hyper-surface. The canonical choice
for this momentum is σ = 0, where one has

!µ = δL
δ(∂0 Aµ)

= F0i , (21.13)

which means that µ can only take values i = 1, . . . , n in n spatial dimensions,
owing to the anti-symmetry of Fµν .

The velocity analogous to q̇ is given by the derivative of the field ∂σ Aµ =
∂0 Aµ. Thus, the canonical definition of the Hamiltonian is

H = F0µ(∂0 Aµ)− gµν
1

4µ0
FµνFµν. (21.14)

However, this expression is not gauge-invariant, whereas the Hamiltonian must
be. The problem lies in the naive interpretation of the Legendre transform. The
problem may be cured by defining the Hamiltonian in terms of the variation of
the action:

H = −δS

δt
. (21.15)

This is a special case (the zero–zero component θ00) of the energy–momentum
tensor, which is discussed below in more general terms. The result for the
Hamiltonian density is

H = 1

2

(
ε0 Ei Ei + µ−1

0 Bi Bi
)

(21.16)

where i = 1, . . . , n.
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21.1 Charges in a vacuum 455

21.1.3 The Jacobi–Bianchi identity

The Bianchi identity in n + 1 dimensions provides two of Maxwell’s equations.
The equations implied by this identity are different in each new number of
dimensions. In 3+ 1 dimensions, we have

εµνλρ∂νFλρ = 0. (21.17)

Separating out the space and time components of µ, we obtain, for µ = 0,

εi jk∂i Fjk = ∂ i Bi = divB = 0. (21.18)

For µ = i , i.e. the spatial components, we have

εi0 jk∂0 Fjk + εik0 j∂k F0 j + εi jk0∂ j Fk0 = 0, (21.19)

which may be re-written as

2
1

c
∂t Bi − εi jk∂k F0 j + εi jk∂ j Fk0 = 0. (21.20)

Thus, using the definition of the electric field in eqn. (21.12), together with the
anti-symmetry of Fµν , we obtain

(curl E)i = −∂Bi

∂t
, (21.21)

which completes the proof.
In 2 + 1 dimensions, eqn. (21.18) is absent, since the Bianchi identity now

has the form

εµνλ∂µFνλ = 0. (21.22)

The full expansion of this equation is

ε0 jk∂0 Fjk + εk0 j∂k F0 j + ε jk0∂ j Fk0 = 0, (21.23)

which can be written as

ε jk∂ j Ek = −∂B

∂t
. (21.24)

Note that, in 2+ 1 dimensions, the B field is a pseudo-scalar.

21.1.4 Formal solution by Green functions

The formal solution to the equations of motion is most conveniently expressed
in terms of the vector potential. Re-writing the field equation (21.9) in terms of
the vector potential, we have

− Aν + ∂µ∂ν Aµ = µ0 Jν (21.25)
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456 21 The Maxwell radiation field

or

(− δµν + ∂µ∂ν)Aµ = µ0 Jν. (21.26)

The formal solution therefore requires the inverse of the operator on the left
hand side of this equation. This presents problem, though: the determinant of
this matrix-valued operator vanishes! This is easily seen by separating space
and time components as a 2× 2 matrix,∣∣∣∣ − + ∂0∂

0 ∂0∂
i

∂i∂
0 − + ∂i∂

i

∣∣∣∣ = 0. (21.27)

The problem here is related to the gauge symmetry, or non-uniqueness, of Aµ
and can be fixed by choosing a gauge for the potential. The choice of gauge is
arbitrary, but two conditions are required in general to fix the gauge freedom
fully (see chapter 9), and ensure a one-to-one correspondence between the
potentials and the physical fields.

21.1.5 Lorentz gauge

To solve the inverse problem in the ‘Lorentz gauge’, it is sufficient to take

∂µAµ = 0. (21.28)

This is only a single condition, so it does not fix the gauge completely, but it is
sufficient for our purposes. Using this condition directly in eqn. (21.26) we get
the modified field equation,

− Aµ = µ0 Jµ. (21.29)

This equation now presents the appearance of a massless Klein–Gordon field.
The formal inverse of the differential operator is therefore the scalar Green
function G(x, x ′), for m = 0, giving the solution

Aµ = µ0

∫
(dx ′)G(x, x ′)Jµ(x ′). (21.30)

Another way of imposing this condition, which is frequently used in the
literature, is to add a Lagrange multiplier term to the action:

S′ =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ + 1

2α
µ−1

0 (∂
µAµ)

2

}
, (21.31)

where α−1 is the Lagrange multiplier. The field equations and continuity
conditions resulting from the variation of the action are now[

− δµν +
(

1− 1

α

)
∂µ∂ν

]
Aµ = µ0 Jν (21.32)
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21.1 Charges in a vacuum 457

and

�(Fσν + ∂σ Aν) = 0. (21.33)

The inverse of the differential operator in eqn. (21.32) is found by solving the
equation [

− δµν +
(

1− 1

α

)
∂µ∂ν

]
D λ
µ (x, x ′) = δ λν δ(x, x ′), (21.34)

which gives a formal solution for the potential

Aµ(x) = µ0

∫
(dx ′)Dµν(x, x ′)J ν(x ′). (21.35)

21.1.6 Coulomb/radiation gauge

The Coulomb gauge is based on the condition

∂ i Ai = 0. (21.36)

Again, this is only a single condition, and it is usually supplemented by the
condition A0 = 0, or by the use of the zeroth-component field equation to
eliminate A0 entirely. Using eqn. (21.36) in eqn. (21.26), we separate the space
and time parts of the field equations (a step backwards from covariance):

(− A0 + ∂0(∂
0 A0)) = µ0 J0 (21.37)

(−(∂0∂
0 + ∇2)Ai + ∂i∂

0 A0 + ∂i (∂
0 A0)) = µ0 Ji , (21.38)

or, simplifying,

−∇2 A0 = µ0 J0 (21.39)

− Ai + ∂i (∂
0 A0) = µ0 Ji . (21.40)

At this point, it is usual to use the first of these equations to eliminate A0 from
the second, thereby fixing the gauge completely. Formally, we may write

− Ai + ∂i∂
0

(
J0

−∇2

)
= µ0 Ji , (21.41)

where (−∇2)−1 really implies the inverse (or Green function) for the differential
operator −∇2, which we denote g(x, x ′) and which satisfies the equation

−∇2g(x, x ′) = δ(x, x ′). (21.42)

Thus, eqn. (21.41) is given (still formally, but more explicitly) by

− Ai + µ0∂i∂
0
∫

dσx ′g(x, x ′)J0(x
′) = µ0 Ji . (21.43)
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458 21 The Maxwell radiation field

21.1.7 Retarded Green function in n = 3

In the Lorentz gauge, with α = 1, we have

Dµν(x, x ′) = gµνG(x, x ′). (21.44)

From Cauchy’s residue theorem in eqn. (5.76), we have

Gr(x, x ′) = −2π i(h̄2c)−1
∫

d3k
(2π)4

[
ei(k·�x−ωk�t)

2ωk
− ei(k·�x+ωk�t)

2ωk

]
.

(21.45)

Using the derivation in section 5.4.1, this evaluates to

Gr(x, x ′) = 1

4π h̄2c�X
δ(ct −�X)

= 1

4π h̄2c|x− x′| δ
(
c(t ′ − tret)

)
, (21.46)

where the retarded time is defined by

tret = t − |x− x′|. (21.47)

Note that the retarded time is a function of the position.

21.1.8 The energy–momentum tensor

The gauge-invariant definition of the energy–momentum tensor is (see section
11.5),

θ ′µν =
∂L

∂(∂µAα)
F α
ν − Lgµν

= 2
∂L
∂Fµα

F α
ν − Lgµν

= µ−1
0 FµαF α

ν −
1

4µ0
FλρFλρgµν. (21.48)

This result is manifestly gauge-invariant and can be checked against the tradi-
tional expressions obtained from Maxwell’s equations for the energy density and
the momentum flux.

The zero–zero component, in 3+ 1 dimensions, evaluates to:

θ00 = µ−1
0

(
F0i F i

0 − Lg00
)

= Ei Ei

c2µ0
+ 1

2µ0

(
Bi Bi − Ei Ei

c2

)

= 1

2µ0
(E2/c2 + B2)

= 1

2
(ε0E · E+ µ−1

0 B · B), (21.49)
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21.2 Effective theory of dielectric and magnetic media 459

which has the interpretation as an energy or Hamiltonian density. The spacetime
off-diagonal components are given by

θ0 j = θ j0 = µ−1
0 F0i F i

j

= µ−1
0 εi jk Ei Bk/c

= −(E×H)k
c

, (21.50)

which have the interpretation of a momentum density for the field. This vector
is also known as Poynting’s vector. The off-diagonal space parts are

µ0θi j = FiµF µ

j = Fi0 F i
j + Fik F k

j

= −Ei

c

E j

c
− 2Bi B j , (21.51)

with i �= j . The diagonal terms with i not summed are

µ0θi i = Fi0 F 0
i + Fi j F j

i − 1

4
FµνFµν

= −E2
i

c2
+ 2B2

i −
1

2
(B j B j − E j E j/c

2). (21.52)

The invariant trace of this tensor in n + 1 dimensions is

θµµ = µ−1
0 FµαFµα − (n + 1)

4µ0
FµνFµν, (21.53)

which vanishes when n = 3, indicating that Maxwell’s theory is conformally
invariant in 3+ 1 dimensions.

21.2 Effective theory of dielectric and magnetic media

This section contains a brief summarial discussion of the effective fields for the
radiation field in the presence of a passive medium. The dielectric approach to
electromagnetism in near-neutral media is often used since it offers an enormous
simplification of very many systems. Its main weaknesses are that it makes
two assumptions: namely, that the response of background matter is dipole-
like and linear in the applied fields, and that the background matter is smoothly
homogeneous throughout a given region. The first of these assumptions breaks
down for strong fields, and the latter breaks down on very small length scales;
thus, the theory provided in this section must be treated as a long-wavelength
approximation to electromagnetism for weak fields.

Maxwell’s equations in a dielectric/magnetic medium are most conveniently
written in terms of the dielectric displacement vector D, defined by any one of
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460 21 The Maxwell radiation field

the equivalent relations

D = ε0εrE+ P (21.54)

= ε0(1+ χe)E (21.55)

= ε0εrE, (21.56)

where P is the dielectric polarization and χe is the electric susceptibility,
described below. The magnetic field intensity H, defined by the equivalent forms

H = 1

µ0µr
B−M (21.57)

= B
µ0(1+ χm)

(21.58)

= B
µ0µr

. (21.59)

M is called the magnetization and χm is the magnetic susceptibility, also defined
below. In terms of these quantities, Maxwell’s equations take on the form


∇ · D = ρe


∇ × E = −∂B
∂t


∇ · B = 0


∇ ×H = j+ ∂D
∂t
. (21.60)

This form of Maxwell’s equations is valid inside any linear medium. As a further
point, the energy density of the electromagnetic field is given by

E = 1

2
(E · D+ B ·H). (21.61)

This must agree with the Hamiltonian density.

21.2.1 The Maxwell action and Hamiltonian in a medium

To express Maxwell’s equations in covariant form, we had to introduce the fields
D and H. We should therefore expect that, in the covariant description, we need
to introduce a new tensor. We shall call this tensor Gµν , and define it by

Gµν =




0 −cD1 −cD2 −cD3

cD1 0 H3 −H2

cD2 −H3 0 H1

cD3 H2 −H1 0


 . (21.62)
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21.2 Effective theory of dielectric and magnetic media 461

We see that this tensor has the same structure as Fµν , but with cD replacing E/c
and H replacing B.

In terms of this tensor, we can write the action in the form

S =
∫
(dx)

{
1

4
FµνGµν − JµAµ

}
. (21.63)

The canonical momentum can be written

!µ = ∂L
∂(∂0 Aµ)

= G0i . (21.64)

Again, one has the same problem of gauge invariance with the generalized
‘velocity’ as in the vacuum case. The Hamiltonian is best computed from the
energy–momentum tensor. It is given by

H = 1

2
(Bi Hi + Ei Di )+ JµAµ. (21.65)

21.2.2 Field equations and continuity

Using the property of the trace that

δFµνGµν = δGµνFµν, (21.66)

for linear equations of motion (i.e. Gµν does not depend on Fµν), we find the
variation of the action is given by

δS =
∫
(dx)

{−δAν ∂µGµν − JµδAµ
}+ ∫

dσµ
{
δAνGµν

} = 0.(21.67)

We see immediately that the field equations are given by

∂µGµν = −Jν, (21.68)

which may be compared with eqn. (21.9), and that the continuity condition
implies that the canonical momentum is (µ = 0)

!µ = D0µ, (21.69)

and that the condition for continuity across a surface dividing two regions of
space is µ = i divides into two cases,

�Di0 = �D = 0

�Di j = �H = 0. (21.70)

These are the well known continuity conditions for the field at a dielectric
boundary.
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462 21 The Maxwell radiation field

In terms of the vector potential, we can write the field equations

c2ε
{
∂0(∂i Ai )+ ∇2 A0

}+ J 0 = 0

c2ε
{
∂0∂

0 Ai − ∂ i (∂0 A0)
}+ 1

µ
(∂ j∂ j Ai − ∂ i (∂ j A j ))+ J i = 0.

(21.71)

This ugly mess can be compared with eqn. (21.26) for the vacuum case. At first
sight, it appears that covariance is irretrievably lost in these expressions, but this
is only an illusion caused by the spurious factors of ε and µ as explained below.

21.2.3 Reinstating covariance with c → c/n

To reinstate covariance, we note that the introduction of a modified gauge
condition helps to unravel the equations:

c2εµ(∂0 A0)+ ∂ j A j = 0. (21.72)

This can also be written as

n2(∂0 A0)+ ∂ j A j = 0, (21.73)

which suggests that we re-define the derivative as

∂̂µ =
(n

c
∂t , 
∇

)
. (21.74)

In terms of this equation, the field equations now combine to give

− ˆ Aµ = µJµ. (21.75)

To re-write the gauge condition in terms of this new derivative, we must also
define Âµ and Ĵµ, replacing c by c/n in each case:

Âµ =
(

n
cφ

A

)
Ĵµ =

(
ρe

c
n

J

)
. (21.76)

Then we have the complete, covariant (n+ 1)-vector form of the field equations
in a medium:

− ˆ Âµ = µ Ĵµ

∂̂µ Âµ = 0. (21.77)
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21.2 Effective theory of dielectric and magnetic media 463

21.2.4 Green function

The Green function is easily obtained by direct analogy to the vacuum case.
The most elegant form is obtained using the careted notation. The photon Green
function in a dielectric satisfies the equation[

ˆ gµν +
(

1− 1

α

)
∂̂µ∂̂ν

]
D̂νρ(x, x ′)δ ρµ δ(x, x ′). (21.78)

Thus, defining the careted momentum by

ik̂µ ≡ ∂̂µeikx , (21.79)

i.e. such that k̂µ = (−nω/c,k), one has straightforwardly that

D̂µν(x, x ′) =
∫

dn+1k

(2π)n+1
eik(x−x ′)

[
gµν

k̂2
+ (α − 1)

k̂µk̂ν

k̂4

]
. (21.80)

Note carefully which of the quantities are careted and which are not. This Green
function relates the careted field to the careted source,

Âµ(x) =
∫
(dx ′)D̂µν(x, x ′) Ĵ ν(x ′). (21.81)
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22
The massive Proca field

The massive vector field is the model which describes massive vector bosons,
such as the W and Z particles of the electro-weak theory.

22.1 Action and field equations

The action for the Proca field is

S =
∫
(dx)

{
1

4
FµνFµ + 1

2
m2 AµAµ − JµAν

}
, (22.1)

where

Fµν = ∂µAν − ∂ν Aµ. (22.2)

The variation of the action gives

δA =
∫
(dx)

[−∂νFµν + m2 Aµ − Jµ
]
δAµ +

∫
dσµ FµνδAν. (22.3)

This yields the field equation

−∂νFµν + m2 Aµ = Jµ, (22.4)

also writable as

− Aµ − ∂µ(∂ν Aν)+ m2 Aµ = Jµ, (22.5)

and associated continuity conditions identical to those of the Maxwell field. The
conjugate momentum (dσµ = dσ 0) is

!i = F0i . (22.6)
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22.1 Action and field equations 465

If the surface σ is taken to separate two regions of space rather than time, one
has the continuity conditions for the Proca field in a vacuum:

�Fi0 = 0

�Fi j = 0, (22.7)

and we have assumed that δAµ is a continuous function. Taking the n + 1
divergence of eqn. (22.4), we obtain

∂µAµ = 0. (22.8)

Here we have used the anti-symmetry of Fµν and the assumption that the source
is conserved, ∂µ Jν . Thus the field equations, in the form of eqn. (22.5), become

(− + m2)Aµ = Jµ (22.9)

∂µAµ = 0. (22.10)

In contrast to the electromagnetic field, this has both transverse and longitudinal
components.
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23
Non-Abelian fields

Positive and negative electrical charges label the different kinds of matter that
respond to the electromagnetic field; there is the gravitational mass, for example,
which only seems to have positive sign and labels matter which responds to the
gravitational field. More kinds of charge are required to label particles which
respond to the nuclear forces. With more kinds of charge, there are many
more possibilities for conservation than simply that the sum of all positive and
negative charges is constant. Non-Abelian gauge theories are physical models
analogous to electromagnetism, but with more general ideas of charge. Some
have three kinds of charge: red, green and blue (named whimsically after the
primary colours); other theories have more kinds with very complicated rules
about how the different charges are conserved. This chapter is about such
theories.

23.1 Lie groups and algebras

In chapter 9 it was noted that the gauge invariance of matter and electromagnetic
radiation could be thought of as a symmetry group called U (1): the group of
phase transformations on matter fields:

#→ eiθ(x)#, (23.1)

for some scalar function θ(x). Since phase factors of this type commute with
one another,

[eiθ(x), eiθ ′(x)] = 0 (23.2)

such a symmetry group is called commutative or Abelian. The symmetry group
was identified from the anti-symmetry properties of the curls in Maxwell’s
equations, but the full beauty of the symmetry only became apparent in the
covariant formulation of field theory.
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23.2 Construction 467

In the study of angular momentum in chapter 9, it was noted that the
symmetry group of rotations in two spatial dimensions was U (1), but that in
three spatial dimensions it was O(3). The latter is a non-Abelian group, i.e. its
generators do not commute; instead they have a commutator which satisfies a
relation called a Lie algebra.

Non-Abelian gauge theories have, for the most part, been the domain of
particle physicists trying to explain the elementary nature of the nuclear forces
in collision experiments. In recent times, some non-Abelian field theories have
also been used by condensed matter physicists. In the latter case, it is not
fundamental fields which satisfy the exotic symmetry properties, but composite
excitations in matter referred to as quasi-particles.

The motivation for non-Abelian field theory is the existence of families of
excitations which are related to one another by the fact that they share and
respond to a common form of charge. Each so-called flavour of excitation is
represented by an individual field which satisfies an equation of motion. The
fields are grouped together so that they form the components of a column vector,
and matrices, which multiply these vectors exact symmetry transformations on
them – precisely analogous to the phase transformations of electromagnetism,
but now with more components. The local form of the symmetry requires the
existence of a non-Abelian gauge field, Aµ, which is matrix-valued.

Thus one asks the question: what happens if fields are grouped into multiplets
(analogous to the components of angular momentum) by postulating hidden
symmetries, based on non-Abelian groups.

This idea was first used by Yang and Mills in 1954 to develop the isospin
SU (2) model for the nuclear force [141]. The unfolding of the experimental
evidence surrounding nucleons led to a series of deductions about conservation
from observed particle lifetimes. Charge labels such as baryon number, isospin
and strangeness were invented to give a name to these, and the supposition that
conserved charges are associated with symmetries led to the development of
non-Abelian symmetry models. For a summary of the particle physics, see, for
example, refs. [34, 108].

Non-Abelian models have been used in condensed matter physics, where
quasi-fields for mean-field spin systems have been formulated as field theories
with SU (N ) symmetry [1, 54].

23.2 Construction

We can now extend the formalism in the remainder of this book to encompass
non-Abelian fields. To do this, we have to treat the fields as multi-component
vectors on the abstract internal space of the symmetry group, since the transfor-
mations which act on the fields are now matrices. The dimension of the matrices
which act on matter fields (Klein–Gordon or Dirac) does not have to be the same
as those which attach to the gauge field Aµ – the only requirement is that both
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468 23 Non-Abelian fields

sets of matrices satisfy the same algebra. This will become clearer when we
examine the nature of gauge transformations for non-Abelian groups.

We begin with some notation. Let {T a
R }, where a = 1, . . . , dG , denote a set

of matrices which acts as the generators of the simple Lie algebra for the group
G. These matrices satisfy the Lie algebra

[T a, T b] = −i f ab
cT c . (23.3)

T a are chosen here to be Hermitian. This makes the structure constants
real numbers. It is also possible to find an anti-Hermitian representation by
multiplying all of the T a by a factor of i = √−1, but we shall not use this
convention here. With anti-Hermitian conventions, the Abelian limit leads to
an imaginary electric charge which does not agree with the conventions used in
other chapters.

The T a are dR × dR matrices. In component form, one may therefore write
them explicitly (T a)AB , where A, B = 1, . . . , dR, but normally the explicit
components of T a are suppressed and a matrix multiplication is understood.
We denote the group which is obtained from these by GR, which means the
representation R of the group G. The normalization of the generators is fixed
by defining

Tr
(
T a

R T b
R

) = I2(GR)δ
ab, (23.4)

where I2 is called the Dynkin index for the representation GR. The Dynkin
index may also be written

I2(GR) = dR

dG
C2(GR), (23.5)

where dR is the dimension (number of rows/columns) of the generators in the
representation G R and dG is the dimension of the group. C2(G R) is the quadratic
Casimir invariant for the group in the representation G R: C2(G R) and I2(G R)

are constants which are listed in tables for various representations of Lie groups.
dG is the same as the dimension of the adjoint representation of the algebra
Gadj, by definition of the adjoint representation. Note therefore that I2(Gadj) =
C2(Gadj).

In many texts, authors make the arbitrary choice of replacing the right hand
side of eqn. (23.4) with 1

2δ
ab. This practice simplifies formulae in a small

number of special cases, but can lead to confusion later. Also, it makes the
identification of group constants (for arbitrary groups) impossible and leads
therefore to expressions which are not covariant with respect to changes of
symmetry group.

To construct a physical theory with such an internal symmetry group we
must look to the behaviour of the fields under a symmetry transformation. We
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23.2 Construction 469

require the analogue of a gauge transformation in the Abelian case. We begin
by assuming that the form of a symmetry transformation on matter fields is

#→ U#, (23.6)

for some matter field # and some matrix

U = exp
(
iθa(x)T a

)
, (23.7)

which is the element of some Lie group, with an algebra generated by T a ,
(a = 1, . . . , dG). Eqn. (23.6) contains an implicit matrix multiplication: the
components are normally suppressed; if we write them explicitly, eqn. (23.6)
has the appearance:

#A → U A
B#

B . (23.8)

Since the generators do not commute with one another, and since U is a com-
bination of these generators, T a and U cannot commute; moreover, consecutive
gauge transformations do not commute,

[U,U ′] �= 0, (23.9)

in general. The exception to this statement is if the group element U lies in
the centre of the group (i.e. the group’s Abelian sub-group) which is generated
purely by the Cartan sub-algebra:

Uc = exp
(
iθ i (x)Hi

)
, (i = 1, . . . , rank G) (23.10)

0 = [Uc,U ]. (23.11)

Under such a transformation, the spacetime-covariant derivative is not gauge-
covariant:

∂µ(U#) �= U (∂µ#). (23.12)

We must therefore follow the analogue of the procedure in chapter 10 to define a
covariant derivative for the non-Abelian symmetry. We do this in the usual way,
by introducing a gauge connection, or vector potential

Aµ = Aa
µ(x)T

a, (23.13)

which is a linear combination of all the generators. The basis components Aa
µ(x)

are now the physical fields, which are to be varied in the action. There is
one such field for each generator, i.e. the total number of fields is equal to the
dimension of the group dG . In terms of this new field, we write the covariant
derivative

Dµ = ∂µ + i
g

h̄
Aµ, (23.14)
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470 23 Non-Abelian fields

where g is a new charge for the non-Abelian symmetry. As in the Abelian case,
Dµ will only satisfy

Dµ(U#) = U (Dµ#), (23.15)

if # and Aµ both transform together. We can determine the way in which Aµ
must transform by writing

Dµ(U#) = (∂µU )#+U (∂µ#)+ i
g

h̄
AµU#

= U

(
∂µ#+U−1(∂µU )#+ i

g

h̄
U−1 AµU#

)
. (23.16)

From this, we deduce that

i
g

h̄
A′µ# = i

g

h̄
U−1 AµU#+U−1(∂µU )#, (23.17)

so that the complete non-Abelian gauge transformation has the form

#′ = U#

A′µ = U−1 AµU − ih̄

g
U−1(∂µU ). (23.18)

The transformation of the field strength tensor in a non-Abelian field theory can
be derived from its definition:

Fµν = ∂µAν − ∂ν Aµ + i
g

h̄
[Aµ, Aν], (23.19)

and has the form

Fµν → U−1 FµνU. (23.20)

Note that the field strength is not gauge-invariant: it transforms in a non-trivial
way. This means that Fµν is not an observable in non-Abelian field theory. The
field strength tensor can also be expressed directly in terms of the covariant
derivative by the formula

[Dµ, Dν] = i
g

h̄
Fµν, (23.21)

or

Fµν = DµAν − Dν Aµ − i
g

h̄
[Aµ, Aν]. (23.22)

The field strength can also be expressed as a linear combination of the generators
of the Lie algebra, and we define the physical components relative to a given
basis set T a by

Fµν = Fa
µνT

a. (23.23)

Using the algebra relation (23.3), these components can be expressed in the form

Fa
µν = ∂µAa

ν − ∂ν Aa
µ + g f a

bc Ab
µAc

ν. (23.24)
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23.4 Equations of motion and continuity 471

23.3 The action

We are now in a position to postulate a form for the action of a non-Abelian
gauge theory. We have no way of knowing what the ‘correct’ action for such
a theory is (nor any way of knowing if such a theory is relevant to nature), so
we allow ourselves to be guided by the invariant quantities which can be formed
from the non-Abelian fields. For free scalar matter fields, it is natural to write

SM =
∫
(dx)

{
h̄2c2(Dµ#)†(Dµ#)+ m2c4#†#

}
, (23.25)

where

Dµ# = ∂µ#+ ig Aµ# (23.26)

which has the form of a matrix acting on a vector. Clearly, the number of
components in the vector # must be the same as the number of rows and
columns in the matrix Aµ in order for this to make sense. The dagger symbol
implies complex conjugation and transposition.

For the non-Abelian Yang–Mills field the action analogous to the Maxwell
action is SYM[A + A], where

SYM[A] = 1

4µNA I2(Gadj)

∫
(dx)Tr

(
FµνFµν

)
, (23.27)

where µNA is analogous to the permeability in electromagnetism. The trace
in eqn. (23.27) refers to the trace over implicit matrix components of the
generators. The cyclic property of the trace ensures that this quantity is
gauge-invariant. Under a gauge transformation, one has

Tr
(
FµνFµν

)→ Tr
(
U−1 FµνFµνU

) = Tr
(
FµνFµν

)
. (23.28)

23.4 Equations of motion and continuity

The Wong equations describe classical point particles coupled to a non-Abelian
gauge field [140]:

m
dxµ

dτ
= pµ

m
dpµ

dτ
= gQa Faµν pν

m
dQ

dτ
= −g f abc pµAb

µQc. (23.29)
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472 23 Non-Abelian fields

23.5 Multiple representations

The gauge field Aµ appears several times in the action: both in connection with
the covariant derivative acting on matter fields, and in connection with the Yang–
Mills term. The dimension dR of the matrix representation used in the different
parts of the action does not have to be equal throughout. Indeed, the number
of components in the matter vector is chosen on ‘phenomenological’ grounds to
match the number of particles known to exist in a multiplet. A common choice
is:

• the fundamental representation for matter fields, i.e. Aµ = Aa
µT a

f in Dµ;

• the adjoint representation for the Yang–Mills terms, i.e. Aµ = Aa
µT a

adj in
TrF2. common situation is to choose

Although this is a common situation, it is not a necessity. The choice of
representation for the matter fields should be motivated by phenomenology. In
the classical theory, there seems to be no good reason for choosing the adjoint
matrices for gauge fields. It is always true that the components of the field
transform in the adjoint representation regardless of the matrices used to define
the action.

23.6 The adjoint representation

One commonly held belief is that the gauge field, Aµ, must be constructed from
the generators of the adjoint representation. The components of the gauge field
Aa
µ transform like a vector in the adjoint representation, regardless of the matrix

representations used to define the gauge fields in the action. This follows simply
from the fact that Aµ is a linear combination of all the generators of the algebra
[21]. To show this, we begin by noting that, in a given representation, the
structure constants which are identical for any matrix representation form the
components of a matrix representation for the adjoint representation, by virtue
of the Jacobi identity (see section 8.5.2).

Consider an arbitrary field  , with components θa relative to a set of basis
generators T a in an arbitrary representation, defined by

 = T aλa. (23.30)

The generator matrices may be in a representation with arbitrary dimension dR .
Under a gauge transformation, we shall assume that the field transforms like

 ′ = U−1 U, (23.31)

where U is in the same matrix representation as T a and may be written

U = exp(iθaT a). (23.32)
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23.6 The adjoint representation 473

Using the matrix identity,

exp(A)B exp(−A) = B + [A, B]+ 1

2!
[A, [A, B]]

+ 1

3!
[A, [A, [A, B]]]+ · · · , (23.33)

it is straightforward to show that

 ′ = λa
{
δa

r − θb f ab
r +

1

2
θbθc f ca

s f bs
r

− 1

3!
θbθcθd f da

q f cq
p f bp

r + . . .
}

T r , (23.34)

where the algebra commutation relation has been used. In our notation, the
generators of the adjoint representation may be written

(T a
adj)

b
c = i f ab

c , (23.35)

and the structure constants are real. Eqn. (23.34) may therefore be identified as

 ′ = λa(Uadj)
a
bT b, (23.36)

where

Uadj = exp(iθaT a
adj). (23.37)

If we now define the components of the transformed field by

 ′ = λ′aT a, (23.38)

in terms of the original generators, then it follows that

λ′a = (Uadj)
a
bλ

b. (23.39)

We can now think of the set of components λa and λ′a as being grouped into dG

component column vectors λ and λ′, so that

λ′ = Uadjλ. (23.40)

In matrix notation, the covariant derivative of the matrix-valued field  is

Dµ = ∂µ + ig[Aµ, ], (23.41)

for any representation. Using the algebra commutation relation this becomes

Dµ = ∂µ + ig Aadj
µ  , (23.42)

where Aadj
µ = Aa

µT a
adj. We have therefore shown that the vectorial components

of the gauge field transform according to the adjoint representation, regardless
of the matrices which are used in the matrix form.
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474 23 Non-Abelian fields

23.7 Field equations and continuity

S =
∫
(dx)

{
(Dµ#)†(Dµ#)+ m2#†#+ 1

4I2(Gadj)
Tr
(

FµνFµν
)}
.

(23.43)

The variation of the action with respect to #† yields the equation of motion
for #:

δS =
∫
(dx)

{
(Dµδ#)†(Dµ#)+ m2δ#†#

}
=

∫
(dx)δ#†

{−D2#+ m2#
}

+
∫

dσµ
{
δ#†(Dµ#)

}
. (23.44)

The gauge-fixing term is

SGF = 1

2αµNA I2(Gadj)

∫
dvx Tr

(
DµAµ

)2
. (23.45)

23.8 Commonly used generators

It is useful to have explicit forms for the generators in the fundamental and
adjoint representations for the two most commonly discussed groups. For
SU (N ), the matrices of the fundamental representation have dimension N .

23.8.1 SU (2) Hermitian fundamental representation

Here, the generators are simply one-half the Pauli matrices in the usual basis:

T 1 = 1

2

(
0 1
1 0

)

T 2 = 1

2

(
0 −i
i 0

)

T 3 = 1

2

(
1 0
0 −1

)
(23.46)

In the Cartan–Weyl basis, we construct

H = T 3 = 1

2

(
1 0
0 −1

)

Eα = 1√
2
(T 1 + iT 2) = 1√

2

(
0 1
0 0

)
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23.8 Commonly used generators 475

E−α = 1√
2
(T 1 − iT 2) = 1√

2

(
0 0
1 0

)
, (23.47)

where the eigenvalue α = 1 and

[H, Eα] = αEα
[Eα, E−α] = αH. (23.48)

The diagonal components of H are the weights of the representation.

23.8.2 SU (2) Hermitian adjoint representation

In the adjoint representation, the generators are simply the components of the
structure constants in the regular basis:

T 1 =

 0 0 0

0 0 −i
0 i 0




T 2 =

 0 0 i

0 0 0
−i 0 0




T 3 =

 0 −i 0

i 0 0
0 0 0


 . (23.49)

To find a Cartan–Weyl basis, in which the Cartan sub-algebra matrices are
diagonal, we explicitly look for a transformation which diagonalizes one of
the matrices. The same transformation will diagonalize the entire Cartan
sub-algebra. Pick arbitrarily T 1 to diagonalize. The self-inverse matrix of
eigenvectors for T 1 is easily found. It is given by

 =


 −1 0 0

0 1√
2

−i√
2

0 i√
2

−1√
2


 . (23.50)

Constructing the matrices  −1T a , one finds a new set of generators,

T 1 =

 0 0 0

0 1 0
0 0 −1




T 2 =

 0 1 i

1 0 0
−i 0 0
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476 23 Non-Abelian fields

T 3 =

 0 i 1
−i 0 0
1 0 0


 . (23.51)

The Cartan–Weyl basis is obtained from these by constructing the combinations

E±1 = 1√
2
(T 3 ∓ iT 2)

H = T 1. (23.52)

Explicitly,

E1 =

 0 i 0

0 0 0
1 0 0




E−1 =

 0 0 1
−i 0 0
0 0 0


 . (23.53)

It may be verified that

[H, Eα] = αEα (23.54)

for α = ±1. The diagonal values of H are the roots of the Lie algebra. It is
interesting to note that the footprint of SU (2) crops up often in the generators
of other groups. This is because SU (2) sub-groups are a basic entity where the
roots show the simplest reflection symmetry. Since roots occur in signed pairs,
SU (2) is associated with root pairs.

23.8.3 SU (3) Hermitian fundamental representation

The generators of SU (3)’s fundamental representation are the Gell-Mann ma-
trices:

T1 = 1

2


 0 −1 0
−1 0 0
0 0 0




T2 = 1

2


 0 i 0
−i 0 0
0 0 0




T3 = 1

2


 −1 0 0

0 1 0
0 0 0
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T4 = 1

2


 0 0 −1

0 0 0
−1 0 0




T5 = 1

2


 0 0 i

0 0 0
−i 0 0




T6 = 1

2


 0 0 0

0 0 −1
0 −1 0




T7 = 1

2


 0 0 0

0 0 i
0 −i 0




T8 = 1

2
√

3


 −1 0 0

0 −1 0
0 0 2


 . (23.55)

The generators of the Cartan sub-algebra T 3 and T 8 are already diagonal in
this representation. Forming a matrix which is an explicit linear combination of
these generators θaT a , the following linear combinations are seen to parametrize
the algebra naturally:

E∓1 = i√
2
(T 1 ± iT 2)

E∓2 = i√
2
(T 4 ± iT 5)

E∓3 = i√
2
(T 6 ± iT 7)

H 1 = T 3

H 2 = T 8. (23.56)

These matrices satisfy the Cartan–Weyl relations[
Hi , Eα

] = αi Eα

[Eα, E−α] = αi Hi , (23.57)

where i is summed over the elements of the Cartan sub-algebra. This last
relation tells us that the commutator of the generators for equal and opposite
roots always generates an element of the centre of the group. The coefficients αi

are the components of the root vectors on the sub-space spanned by the Cartan
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478 23 Non-Abelian fields

sub-algebra. Explicitly,

E1 = 1√
2


 0 0 0
−1 0 0
0 0 0




E−1 = 1√
2


 0 −1 0

0 0 0
0 0 0




E2 = 1√
2


 0 0 0

0 0 0
−1 0 0




E−2 = 1√
2


 0 0 −1

0 0 0
0 0 0




E3 = 1√
2


 0 0 0

0 0 0
0 −1 0




E−3 = 1√
2


 0 0 0

0 0 −1
0 0 0


 . (23.58)

Constructing all of the opposite combinations in the second relation of
eqn. (23.57), one finds the root vectors in the Cartan–Weyl basis,

α±1 = ±(1, 0)

α±2 = ±
(

1

2
,

√
3

2

)

α±3 = ±
(
−1

2
,

√
3

2

)
. (23.59)

23.8.4 SU (3) Hermitian adjoint representation

The generators in the adjoint representation are obtained from the observation in
eqn. (23.35) that the structure constants form a representation of the Lie algebra
with the same dimension as the group:

(T a)bc = i f ab
c , (23.60)
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23.8 Commonly used generators 479

where a, b, c = 1, . . . , 8. The structure constants are

f123 = 1

f147 = − f156 = f246 = f257 = f345 = − f367 = 1

2

f458 = f678 =
√

3

2
, (23.61)

together with anti-symmetric permutations. In explicit form, we have

T 1 = i




0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2 0
0 0 0 0 0 1

2 0 0
0 0 0 0 − 1

2 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0




T 2 = i




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 − 1

2 0 0
0 0 0 0 0 0 − 1

2 0
0 0 0 1

2 0 0 0 0
0 0 0 0 1

2 0 0 0
0 0 0 0 0 0 0 0




T 3 = i




0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 − 1

2 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 1

2 0
0 0 0 0 0 − 1

2 0 0
0 0 0 0 0 0 0 0
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480 23 Non-Abelian fields

T 4 = i




0 0 0 0 0 0 1
2 0

0 0 0 0 0 1
2 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0 −

√
3

2
0 − 1

2 0 0 0 0 0 0
− 1

2 0 0 0 0 0 0 0

0 0 0 0
√

3
2 0 0 0




T 5 = i




0 0 0 0 0 − 1
2 0 0

0 0 0 0 0 0 1
2 0

0 0 0 − 1
2 0 0 0 0

0 0 1
2 0 0 0 0

√
3

2
0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0
0 − 1

2 0 0 0 0 0 0

0 0 0 −
√

3
2 0 0 0 0




T 6 = i




0 0 0 0 1
2 0 0 0

0 0 0 − 1
2 0 0 0 0

0 0 0 0 0 0 − 1
2 0

0 1
2 0 0 0 0 0 0

− 1
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0 −

√
3

2

0 0 0 0 0 0
√

3
2 0




T 7 = i




0 0 0 − 1
2 0 0 0 0

0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 1
2 0 0

1
2 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0

√
3

2
0 0 0 0 0 0 0 0

0 0 0 0 0 −
√

3
2 0 0
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T 8 = i




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 −
√

3
2 0 0 0

0 0 0
√

3
2 0 0 0 0

0 0 0 0 0 0 −
√

3
2 0

0 0 0 0 0
√

3
2 0 0

0 0 0 0 0 0 0 0



. (23.62)

The anti-Hermitian form of these matrices is obtained by dropping the leading
factor of i. The Cartan–Weyl basis for the adjoint representation is obtained
by diagonalizing one (and thereby several) of the generators. We choose to
diagonalize T 8 because of its simple form. This matrix has four zero eigenvalues
representing an invariant sub-space, so eigenvectors must be constructed for
these manually. A set of normalized eigenvectors can be formed into a matrix
which will diagonalize the generators of the Cartan sub-algebra:

 =




i√
2

1√
2

0 0 0 0 0 0
1√
2

i√
2

0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 i√

2
1√
2

0 0 0

0 0 0 1√
2

i√
2

0 0 0

0 0 0 0 0 i√
2

1√
2

0

0 0 0 0 0 1√
2

i√
2

0
0 0 0 0 0 0 0 1



. (23.63)

The inverse of this is simply the complex conjugate. The new basis is now
constructed by forming  −1T a :

T 1 =




0 0 i√
2

0 0 0 0 0

0 0 − 1√
2

0 0 0 0 0

− i√
2
− 1√

2
0 0 0 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 − 1
2 0

0 0 0 1
2 0 0 0 0

0 0 0 0 − 1
2 0 0 0

0 0 0 0 0 0 0 0
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T 2 =




0 0 1√
2

0 0 0 0 0

0 0 − i√
2

0 0 0 0 0
1√
2

i√
2

0 0 0 0 0 0

0 0 0 0 0 − i√
2

0 0

0 0 0 0 0 0 − i√
2

0

0 0 0 i√
2

0 0 0 0

0 0 0 0 i√
2

0 0 0
0 0 0 0 0 0 0 0




T 3 =




1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 − 1

2 0 0 0
0 0 0 0 0 − 1

2 0 0
0 0 0 0 0 0 1

2 0
0 0 0 0 0 0 0 0




T 4 =




0 0 0 0 0 0 i√
2

0

0 0 0 0 0 i√
2

0 0

0 0 0 − i
2
√

2
− 1

2
√

2
0 0 0

0 0 i
2
√

2
0 0 0 0 − i

√
3

2
√

2

0 0 − 1
2
√

2
0 0 0 0

√
3

2
√

2
0 − i

2 0 0 0 0 0 0
− i

2 0 0 0 0 0 0 0

0 0 0 − i
√

3
2
√

2

√
3

2
√

2
0 0 0




T 5 =




0 0 0 0 0 0 1
2 0

0 0 0 0 0 − 1
2 0 0

0 0 0 1
2
√

2
i

2
√

2
0 0 0

0 0 1
2
√

2
0 0 0 0 −

√
3

2
√

2

0 0 − i
2
√

2
0 0 0 0 i

√
3

2
√

2
0 − 1

2 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0

0 0 0 −
√

3
2
√

2
− i

√
3

2
√

2
0 0 0
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T 6 =




0 0 0 − 1
2 0 0 0 0

0 0 0 0 1
2 0 0 0

0 0 0 0 0 i
2
√

2
1

2
√

2
0

− 1
2 0 0 0 0 0 0 0

0 1
2 0 0 0 0 0 0

0 0 i i
2
√

2
0 0 0 0 − i

√
3

2
√

2

0 0 1
2
√

2
0 0 0 0

√
3

2
√

2

0 0 0 0 0 i
√

3
2
√

2

√
3

2
√

2
0




T 7 =




0 0 0 − i
2 0 0 0 0

0 0 0 0 − i
2 0 0 0

0 0 0 0 0 − 1
2
√

2
− i

2
√

2
0

i
2 0 0 0 0 0 0 0
0 i

2 0 0 0 0 0 0

0 0 − 1
2
√

2
0 0 0 0 −

√
3

2
√

2

0 0 i
2
√

2
0 0 0 0 i

√
3

2
√

2

0 0 0 0 0 −
√

3
2
√

2
− i

√
3

2
√

2
0




T 8 =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
√

3
2 0 0 0 0

0 0 0 0 −
√

3
2 0 0 0

0 0 0 0 0
√

3
2 0 0

0 0 0 0 0 0 −
√

3
2 0

0 0 0 0 0 0 0 0



. (23.64)

The Cartan–Weyl basis is now obtained by constructing the linear combinations

E∓1 = 1√
2
(T 1 ± iT 2)

E∓2 = 1√
2
(T 4 ± iT 5)

E∓3 = 1√
2
(T 6 ± iT 7). (23.65)

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


484 23 Non-Abelian fields

Explicitly,

E1 =




0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
−i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1√

2
0

0 0 0 1√
2

0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




E−1 =




0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 1√

2
0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 − 1√

2
0 0 0

0 0 0 0 0 0 0 0




E2 =




0 0 0 0 0 0 0 0
0 0 0 0 0 1√

2
0 0

0 0 0 − i
2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0 −i

√
3

2
0 0 0 0 0 0 0 0
− i√

2
0 0 0 0 0 0 0

0 0 0 0 i
√

3
2 0 0 0




E−2 =




0 0 0 0 0 0 i√
2

0
0 0 0 0 0 0 0 0
0 0 0 0 − 1

2 0 0 0

0 0 i
2 0 0 0 0 −i

√
3

2
0 0 0 0 0 0 0 0
0 − i√

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0
√

3
2 0 0
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E3 =




0 0 0 − 1√
2

0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 i

2 0 0
0 0 0 0 0 0 0 0
0 1√

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 0

√
3

2

0 0 0 0 0 i
√

3
2 0 0




E−3 =




0 0 0 0 0 0 0 0
0 0 0 0 1√

2
0 0 0

0 0 0 0 0 0 1
2 0

− 1√
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 − i

2 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0
√

3
2 0



. (23.66)

These generators satisfy the relations in eqns. (23.57) and define the components
of the root vectors in two ways. The diagonal components of the generators
spanning the Cartan sub-algebra are the components of the root vectors. We
define

H1 = T3

H2 = T8. (23.67)

The commutators in eqns. (23.57) may now be calculated, and one identifies

α±1 = ∓(1, 0)

α±2 = ∓
(

1

2
,

√
3

2

)

α±3 = ∓
(
−1

2
,

√
3

2

)
. (23.68)
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24
Chern–Simons theories

In 2+ 1 dimensions it is possible to construct actions which include a ‘topolog-
ical’ interaction called the Chern–Simons term. The Chern–Simons term takes
the form

SCS =
∫
(dx)√

g

1

2
µεµνλAµ∂ν Aλ

=
∫

dn+1x
1

2
µεµνλAµ∂ν Aλ, (24.1)

for Abelian theories, and the extended form,

SCS−NA =
∫

dVt√
g

kg2

2h̄2C2(Gadj)
εµνλTr

(
Aµ∂ν Aλ − i

2

3
AµAν Aλ

)
,

(24.2)

in the non-Abelian case, where Hermitian generators are used. This action is
real, as may be seen by applying the Lie algebra relation in eqn. (23.3). The
effect of the Chern–Simons term on the dynamics of a field theory depends
on whether the Maxwell or Yang–Mills term is also present. Since the
Chern–Simons term is purely linear in all derivatives, and there are no additional
constraints, as in the Dirac equation, it does not carry any independent dynamics
of its own.

In the absence of dynamics from a Maxwell or Yang–Mills-like contribution
to the action, the effect of this term is to induce a duality of variables, i.e. an
equivalence relation between Fµ and Jµ. Coupled together with a Maxwell or
Yang–Mills term, the Chern–Simons term endows the vector potential with a
gauge-invariant mass [35, 36, 64, 110].

An unusual but important feature of the Chern–Simons action is that it is
independent of the spacetime metric. Since the Levi-Cevita tensor transforms
like a tensor density, a factor of

√
g is therefore required to cancel the one
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24.1 Parity- and time reversal invariance 487

already in the volume element. This has obvious implications for the usefulness
of the variational definition of energy and momentum, by Tµν .

24.1 Parity- and time reversal invariance

The Chern–Simons terms violates parity- and time reversal invariance, both
of which are defined for 2 + 1 dimensions as the reflection in the axis of a
single coordinate [64]. This is clearly not a fundamental property of nature.
It is therefore only expected to play a role in physical systems where such
a breakdown of parity invariance is present by virtue of special physical
conditions. There are several such situations. Ferromagnetic states of spin fields,
in the Hall effect, strong magnetic fields and vortices are examples [54].

The presence of a Chern–Simons term in the action of a field theory would
lead to a rotation of the plane of polarization of radiation passing through a
two-dimensional system, as in the Faraday effect (see sections A.6.1 and 7.3.3
and refs. [14, 16]). In ref. [24], the authors use the formalism of parity-violating
terms to set limits on parity-violation from astronomical observations of distant
galaxies. Spin polarized systems can be made into junctions, where Chern–
Simons coefficients can appear with variable strength and sign [11, 14].

24.2 Gauge invariance

The transformation of the Chern–Simons action under gauge transformations,
with its independence of the metric tensor, is what leads to its being referred to
as a topological term. Consider the transformation of the non-Abelian action
under a gauge transformation

Aµ→ U AµU−1 − i
h̄

g
(∂µU )U−1; (24.3)

it transforms to

S → S +
∫
(dx) (∂µV µ)

+ k

6C2(Gadj)
εµνλ Tr

∫
(dx)

[
U (∂µU−1)U (∂νU

−1)U (∂λU
−1)

]
.

(24.4)

The second term in the transformed expression is a total derivative and therefore
vanishes, provided U (∞) = U (0): for instance, if U → 1 in both cases (this
effectively compactifies the spacetime to a sphere). The remaining term is:

δS = h̄k

6C2(Gadj)
εµνλ Tr

∫
(dx)

[
U (∂µU−1)U (∂νU

−1)U (∂λU
−1)

]
= 8h̄π2k W (U ), (24.5)
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488 24 Chern–Simons theories

where W (U ) is the winding number of the mapping of the spacetime into the
group, which is determined by the cohomology of the spacetime manifold. It
takes integer values n. Clearly the action is not invariant under large gauge
transformations. However, if k is quantized, such that 4πk is an integer,
the action only changes by an integral multiple of 2π , leaving the phase
exp(iS/h̄ + 2π i n) invariant. This quantization condition has been discussed
in detail by a number of authors [35, 36, 39, 40, 43].

24.3 Abelian pure Chern–Simons theory

The Abelian Chern–Simons theory is relatively simple and has been used mainly
in connection with studies of fractional statistics and the quantum Hall effect,
where it gives rise to ‘anyons’ [4].

24.3.1 Field equations and continuity

Pure Chern–Simons theory is described by the Chern–Simons action together
with a gauged matter action. In the literature, Chern–Simons theory is usually
analysed by coupling it only to some unspecified gauge-invariant source:

S =
∫ (

−1

2
µεµνλAµ∂ν Aλ + JµAµ

)
. (24.6)

The variation of the action is given by

δS =
∫
(dx){−µεµνλδAµ∂ν Aλ + JµδAµ} −

∫
dσν

1

2
µAµδAλ, (24.7)

implying that the field equations are

1

2
µεµνλFνλ = Jµ, (24.8)

with associated boundary (continuity) conditions

�

(
1

2
µεµσλAµ

)
= 0, (24.9)

where the boundary of interest points in the direction of xσ . Notice that, whereas
the field equations are gauge-invariant, the boundary conditions are not. The
physical interpretation of this result requires a specific context.
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24.4 Maxwell–Chern–Simons theory 489

24.4 Maxwell–Chern–Simons theory

24.4.1 Field equations and continuity

In the literature, Chern–Simons theory is usually analysed by coupling it only to
some unspecified gauge-invariant current:

S =
∫ (

1

4µ0
FµνFµν − 1

2
µεµνλAµ∂ν Aλ + JµAµ

)
. (24.10)

The same warnings about the generality of this notation apply as for pure Chern–
Simons theory. The field equations are now given by

1

µ0
∂µFµν + 1

2
µεµνλFνλ = Jµ, (24.11)

with associated boundary conditions

�

(
−µ−1

0 Fσλ + 1

2
µεµσλAµ

)
= 0. (24.12)

24.4.2 Topological mass

To see that the derivative terms of the Chern–Simons action lead to a gauge-
invariant massive mode, one may perform a diagonalization to the eigenbasis of
the action operator:

S = 1

2

∫
(dx) Aµ(− gµν + µεµ λν ∂λ)

=
∫
(dx)AµOµ

ν Aν. (24.13)

In a flat space, Cartesian coordinate basis, where all derivatives commute, this
is seen most easily by writing the components in matrix form:

Oµ
ν =

( − µ∂2 −µ∂1

−µ∂2 − µ∂0

µ∂1 µ∂0 −

)
. (24.14)

The determinant of this basis-independent operator is the product of its eigen-
values, which is the product of dispersion constraints. Noting that − =
−∂2

0 + ∂2
1 + ∂2

2 , it is straightforward to show that

detO = (− )2(− + µ2), (24.15)

showing that the dispersion of the Maxwell–Chern–Simons field contains two
massless modes and one mode of mass µ2. This massive theory has been studied
in refs. [35, 36, 64, 110].
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490 24 Chern–Simons theories

24.4.3 Energy–momentum tensors

In Chern–Simons theory, the energy–momentum tensors θµν and Tµν do not
agree. The reason for this is that the Chern–Simons action is independent of
the metric tensor (it involves only anti-symmetric symbols), thus the variational
definition of Tµν inevitably leads to a zero value. If we use eqn. (11.68) and
assume the gauge-invariant variation in eqn. (4.81), we obtain the following
contributions to θµν from the action in eqn. (24.1),

θµν = 1

4
µgµνε

ρσλAρFσλ − 1

2
µερ σµ AρFνσ . (24.16)

The fact that these two tensors do not agree can be attributed to the failure of
the variational definition of Tµν in eqn. (11.79). Since the Chern–Simons term
is independent of the spacetime metric, it cannot be used as a generator for the
conformal symmetry.

The contribution in eqn. (24.16) is not symmetrical but, in using the Bianchi
identity εµνρ∂µFνρ , it is seen to be gauge-invariant, provided the Chern–Simons
coefficient is a constant [11, 12, 14].

24.5 Euclidean formulation

In its Wick-rotated, Hermitian form, the Chern–Simons action acquires a factor
of i = √−1, unlike most other action terms, since the Levi-Cevita tensor does
not transform under Wick rotation. It has the Abelian form

SCS−E = i
∫
(dx)√

g

1

2
µεµνλAµ∂ν Aλ, (24.17)

and the non-Abelian form, for Hermitian generators

SCS−NA−E = i
∫
(dx)√

g

kg2

2C2(Gadj)
εµνλTr

(
Aµ∂ν Aλ − i

2

3
AµAν Aλ

)
.

(24.18)
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25
Gravity as a field theory

This chapter provides the briefest, tangential encounter with the Einsteinian
gravity viewed as a field theory. Gravity is a huge topic, full of subtleties, and
it deserves to be introduced as a systematic tower of thought, rather than as a
gallery of sketchy assertions. The purpose of this chapter is therefore no more
than to indicate, to those who already know the general theory of relativity, how
gravity fits into the foregoing discussions, i.e. why the foregoing ideas are still
valid in the presence of gravity, and how we generalize our notion of covariance
to include the gravitational force.

25.1 Newtonian gravity

Newtonian gravity plays virtually no role in field theory, for the simple reason
that gravity barely couples to any of the fields. Gravity is such a weak force at
the scale of elementary particles that it is almost completely negligible. There
are occasions, however, when we use field theory outside of the realm of the
elementary physics. For instance, fluid dynamics is a field theory where gravity
plays an often significant role.

In order to include gravity in terrestrial systems, we do not need to think about
Einstein or relativity. Gravity is simply an effective potential

V = mgx + const., (25.1)

where x is the height above the centre of gravity. In this effective theory of
gravity, planets and large objects are considered to be point particles, located
at the centre of gravity of the system. Eqn. (25.1) expresses a linear, flat-Earth
geometry, in which the potential is usually measured from the ground up (for
small distances of a few hundred metres). The arbitrary constant in the potential
is analogous to the arbitrariness in the electromagnetic potential Aµ. Instead
of gauge invariance, we have a corresponding arbitrariness in the origin of the
gravitational potential.
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492 25 Gravity as a field theory

25.2 Curvature

On astrophysical scales, gravity is the dominant force, and we need to consider
the subtleties of general relativity. There are two motivations for wanting to do
this

• Einsteinian gravity can be formulated as a field theory, in which the metric
tensor (spacetime itself) is also a dynamical field. This enables us to
understand gravity and spacetime as a dynamical system, leaning on all
of the lessons we have learned from electromagnetism etc.

• In the early universe, there was an important coupling between gravity
and other fundamental fields. Thus, relativistic, covariant formulations of
fields which include gravity are important models to consider.

Gravity therefore means Einsteinian gravity here, and this, we know, has a nat-
ural expression in terms of the intrinsic curvature of spacetime. For the reasons
discussed in the previous section, it makes no sense to look at non-relativistic
theories in the presence of a relativistically generalized gravitational potential;
such combinations would not be consistently compatible. We therefore dispense
with the non-relativistic theories for the remainder of this short chapter.

25.3 Particles in a gravitational field

The essence of general relativity is that gravitational effects can be considered
as physics in non-inertial frames. A non-inertial frame is a coordinate basis
which is either accelerating or which contains a gravitational field. These two
situations are indistinguishable, according to the equivalence principle, and so
this is a kind of tautology. Indeed, we could go on to refer to the gravitational
field as an acceleration field.

How shall we describe physics in such frames? Non-linear coordinate
transformations can always map us from a locally inertial frame,1 so covariance
will help us to formulate theories optimally. The discussion which follows is
based on the conventions and notations of Weinberg [133]. Readers who are
unfamiliar with gravity could do worse than to consult his book, since there is
no room for more than a cursory sketch here.

Let us denote the coordinates and derivatives and metric in a locally inertial

Cartesian frame by ξµ,
ξ

∂µ, ηµν , and the corresponding quantities in any other
coordinate system (flat, curvilinear, curved, accelerating etc.) by xµ, ∂µ, gµν .
The transformation which relates the two metrics is written according to the

1 Suppose you are in a fighter plane and are suffering from the effects of strong acceleration G
forces: to transform to a locally inertial frame, simply press the ejector seat button and you
will soon be in a freely falling coordinate system.

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


25.3 Particles in a gravitational field 493

usual tensor rules,

ηαβ = gµν L α
µ L β

ν

= gµν (∂µξ
α)(∂νξ

β). (25.2)

In its locally inertial, or freely falling, coordinate frame, a moving particle seems
to be following a straight-line path (although, since the frame is only inertial
locally, we should not extrapolate too far from our position of observation). The
equation of motion of such a particle would then be

m
d2ξα

dτ 2
= 0, (25.3)

where the proper time τ is defined in the usual way by

−c2dτ 2 = ηαβdξαdξβ. (25.4)

Suppose now we transform into a general set of coordinates, using the Lorentz
transformation L ν

µ . We then have to transform ξα, so that eqn. (25.3) becomes

d

dτ

(
dξα(x)

dτ

)
= d

dτ

(
dξα(x)

dxµ
dxµ

dτ

)
. (25.5)

Thus, the equation of motion becomes

(∂µξ
α)

d2xµ

dτ 2
+ (∂µ∂νξα) dxµ

dτ

dxν

dτ
= 0. (25.6)

This can be simplified by multiplying through by
ξ

∂α xλ and using the chain-rule

(
ξ

∂α xλ)(∂λξβ) = δβα to give

d2xλ

dτ 2
+ �λµν

dxµ

dτ

dxν

dτ
= 0, (25.7)

which is the geodesic equation, where

�λµν = (∂µ∂νξα)(
ξ

∂α xλ). (25.8)

The presence of the affine connection �λµν signals the non-linear nature of the
coordinates. The connection may also be expressed in terms of the metric tensor
as

�σλµ =
1

2
gνσ

{
∂λgµν + ∂µgλν − ∂νgµλ

}
. (25.9)
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494 25 Gravity as a field theory

25.4 Geodesics

The geodesic equation can also be understood in a different way, from the action
principle. The geodesic equation is, in a sense, the structure of empty space, so
what if we take an empty action in a locally inertial rest frame of a general
curved spacetime and vary it with respect to different paths, as follows:

xµ→ xµ(λ)+ δxµ(λ)? (25.10)

The action would then be

S = a
∫

dτ, (25.11)

where τ is the proper time, defined in eqn. (3.38) and a is a constant with the
dimensions of energy. Writing this in general coordinates, we have

S = a
∫ √

gµν(x)dxµdxν, (25.12)

or – introducing a parameter λ,

S = a
∫

dλ
dτ

dλ
=

∫
dλ

√
gµν(x)

dxµ

dλ

dxν

dλ
. (25.13)

This equation can now be varied with respect to xµ to obtain the path of ‘least
action’ in the coordinate system x . We already know that, in a locally inertial
frame, the path of an object would be a straight line, and in a rest frame there
is no motion. So the question is: how does this look to a different observer in
possibly accelerating coordinates? The variation of the action is

δS = a
∫

dλ
1

2

dλ

dτ

{
δgµν

dxµ

dλ

dxν

dλ
+ 2gµν

dδxµ

dλ

dxν

dλ

}
= 0. (25.14)

Since we are looking at a coordinate variation, we have

δgµν = (∂λgµν) δxλ; (25.15)

see eqn. (4.85). Thus, integrating by parts and writing dλ dλ
dτ as dλ dλdτ

dτdτ ,

δS = a

2

∫
dτ

{
(∂λgµν)

dxµ

dτ

dxν

dτ
− 2(∂ρgµν)

dxρ

dτ

dxν

dτ
gµλ

−2gµν
d2xν

dτ 2
gµλ

}
δxλ = 0. (25.16)

Here we have assumed that the surface term

�

(
dxµ

dτ
δxµ

)
= 0 (25.17)
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25.5 Curvature 495

vanishes for continuity. From eqn. (25.9), the result may be identified as

δS = a
∫ {

−�λµν
dxµ

dτ

dxν

dτ
− dxλ

dτ 2

}
gλσ δx

σdτ = 0. (25.18)

We have used the symmetry on the lower indices of �λµν . Thus we end up with
the geodesic equation once again:

d2xλ

dτ 2
+ �λµν

dxµ

dτ

xν

dτ
= 0. (25.19)

25.5 Curvature

The curvature of a vector field ξσ may be defined by the commutator of covariant
derivatives, just as in the case of the electromagnetic field (see eqn. (10.45)).
This defines a process of parallel transport of vectors and a tensor known as the
Riemann curvature tensor:

[∇µ,∇ν]ξσ = −Rλσµνξλ. (25.20)

Also analogous to electromagnetism is the expression of the curvature as a
covariant curl:

Rλµνκ = ∇κ�λµν − ∇ν�λµκ . (25.21)

This may be compared with eqn. (2.24). The Riemann tensor has the following
symmetry properties:

Rλµνκ = Rνκλµ (25.22)

Rλµνκ = −Rµλνκ = Rλµκν = Rµλκν (25.23)

Rλµνκ + Rλκµν + Rλνκµ = 0. (25.24)

The Ricci tensor is defined as the contraction

Rµκ = Rλµνκgλν = Rνµνκ, (25.25)

and satisfies

Rµν = Rνµ. (25.26)

The scalar curvature is the total contraction

R = Rµνµν. (25.27)

The curvature satisfies Bianchi identities, just like the electromagnetic field:

∇ρRλµνκ + ∇κRλµρν + ∇νRλµκρ = 0. (25.28)

Contracting with gλν gives

∇µ
[

Rµν − 1

2
gµνR

]
= 0. (25.29)
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25.6 The action

The action for matter coupled to gravity is written

S = SM + SG, (25.30)

where

SG = − c4

16πG

∫
(dx) [R − 2 ] ; (25.31)

(dx) = dtdnx
√

g and g = − det gµ. SM is the action for matter fields. These
act as the source of the gravitational field, i.e. they carry gravitational charge
(mass/energy).
 is the cosmological constant, which is usually set to zero. The variation of

the action with respect to the metric is

δ
√

g = −1

2
√

ggµν δµν

δR = δ(gµνRµν)

= δgµν Rµν. (25.32)

Thus,

δS = − c4

16πG

∫
(dx)

[
−1

2
gµν[R − 2 /c2]+ Rµν

]
δgµν

+ δSM

δgµν
δgµν = 0. (25.33)

The last term is the conformal energy–momentum tensor

Rµν − 1

2
Rgµν +  

c2
gµν = 8πG

c4
Tµν. (25.34)

This is Einstein’s field equation for gravity. It is, of course, supplemented by the
field equations for matter to complete the dynamical system. Notice that matter
and energy (the energy–momentum tensor) is the source of gravitation. Matter,
in other words, carries the gravitational charge: mass/energy.

The solution of these field equations is non-trivial and beyond the scope of
this book.

25.7 Kaluza–Klein theory

Following Maxwell’s treatise on the electromagnetic field, Theodore Kaluza
was amongst the first to propose a scheme for unifying the forces of nature
using a classical field theory, based in Einstein’s equations. Kaluza’s paper,

https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core


25.7 Kaluza–Klein theory 497

communicated to Einstein, endured a long delay before its publication in 1921.
His main idea, later refined by Oskar Klein, made the bold assertion that, if one
postulated the existence of extra dimensions, then both of the known forces of
nature (electromagnetism and gravity) could be unified, using Einstein’s idea of
spacetime curvature. In Kaluza–Klein theory, the line element is assumed to
have the usual form

ds2 = ĝµ̂ν̂ dx µ̂dx ν̂ (25.35)

where the careted indices run from 0, . . . , 5 and xµ = (ct, x1, x2, x3, y) =
(xµ, y). Uncareted indices represent the usual 3 + 1 dimensional vectors of
general relativity. In order to account for the U (1) symmetry, Klein proposed
that the extra dimension should have the topology of a circle, with length L . The
electromagnetic field plays the role of a vector field on the 3 + 1 dimensional
spacetime, seen as the projection of the curvature of the extra dimension:

ds2 = ĝµ̂ν̂ dx µ̂dx ν̂

= gµν dxµdxν + (dy + κAµ(x)dxµ)2, (25.36)

where κ is a constant. Covariance in the extra dimension determines the
transformation rule for Aµ under coordinate transformations y′ = θ(y, xµ):

dy′ = ∂θ
∂y

dy + ∂µθ dxµ. (25.37)

For consistency with eqn. (25.36), one requires ∂θ/∂y = 1, so that under a
change of y only,

dy + κAµdxµ→ dy′ + κA′µdxµ

= (
dy + ∂µθdxµ

)+ κA′dxµ

= dy + κ (A′µ(x)+ κ−1∂µθ
)

dxµ. (25.38)

Invariance of ds2 therefore requires

A′µ(x) = Aµ(x)− κ−1∂µθ, (25.39)

which is the electromagnetic gauge transformation. From the line element, the
metric is

ĝµ̂ν̂ =
(

gµν + κAµAν κAµ
κAν 1

)
; (25.40)

however, by changing coordinates to the so-called horizontal lift basis, with
1-forms:

ω̃µ = dxµ

ω̃5 = dy + κAµ(x)dxµ, (25.41)
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498 25 Gravity as a field theory

the metric may be diagonalized, at the expense of non-Cartesian coordinates:

ĝ′µ̂ν̂ =
(

gµν 0
0 1

)
, (25.42)

The basis vectors conjugate to the 1-forms are ω̃µ̂êν̂ = δµ̂ν̂ , i.e.

êµ = ∂µ − κAµ(x)∂y

Ê5 = ∂y. (25.43)

In this anholonomic basis, there is one non-zero commutator:

[êµ, êν] = −κFµν(x) ∂y, (25.44)

where Aµν = ∂µAν − ∂ν Aµ, which gives the Lie algebra relation

[êµ̂, êµ̂] = C ρ̂

µ̂ν̂
êρ̂ . (25.45)

The affine connection, in a non-holonomic basis, is

�µνλ = 1

2

[
êλ gµν + êν gµλ − êµ gλν + Cµνλ + Cµλν + Cλνµ

]
, (25.46)

so that we have non-zero components

�̂µν5 = �̂µ5ν = −�̂5µν = −1

2
κFµν

�̂555 = 0 , �̂µνλ = �µνλ. (25.47)

From these, one may calculate the scalar curvature for the Einstein action,

R̂ = R̂µνµν + 2R̂µ5
µ5

= R + κ
2

4
FµνFµν. (25.48)

Thus, the Einstein action, in five dimensions, automatically incorporates and
extrapolates the Maxwell action:

S = − c4

16πGL

∫
d4xdy

√
ĝ
[

R̂ − 2 ]
]
. (25.49)

Kaluza–Klein theory came into trouble when it attempted to incorporate the
newly discovered nuclear forces in a common framework, and was eventually
abandoned in its original form. However, the essence of Kaluza–Klein theory
lives on, in a more sophisticated guise, in super-string theory.
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Appendix A

Useful formulae

A.1 The delta function

The Dirac delta function is a bi-local distribution defined by the relations

δ(t, t ′) =
{

0 t − t ′ �= 0 (A.1)
∞ t − t ′ = 0 (A.2)

δ(x, x ′) = δ(x − x ′) (A.3)

∫ +a

−a
dx ′ δ(x, x ′) f (x ′) = f (x) (A.4)∫ +a

−a
dx ′ δ(x − x ′) = 1. (A.5)

If f (x) is a function which is symmetrical about x0, then∫ x0

−∞
δ(x0 − x ′) f (x ′)dx ′ +

∫ ∞

x0

δ(x0 − x ′) f (x ′)dx ′ = f (x0); (A.6)

thus, by symmetry, ∫ x0

−∞
δ(x0 − x ′) f (x ′)dx ′ = 1

2
f (x0). (A.7)

A useful, integral representation of the delta function is given by the Fourier
integral

δ(x1 − x ′1) =
∫

dk

2π
eik(x1−x ′1). (A.8)
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502 Appendix A

Various integral representations of the delta function are useful. For instance

δ(x) = lim
α→0

1

2πα
e−

1
α

x2
. (A.9)

The Fourier representation on the (n + 1) dimensional delta function

δ(x, x ′) ≡ δ(x − x ′) =
∫

dn+1k

(2π)n+1
eik(x−x ′)

= δ(x0 − x0′)δ(x1 − x1′) . . . δ(xn − xn ′) (A.10)

in particular is used in solving for Green functions. Here the shorthand notation
k(x − x ′) in the exponential stands for kµ(x − x ′)µ.

Derivatives of the delta function normally refer to derivatives of the test
functions which they multiply. Meaning may be assigned to these as follows.
Consider the boundary value of a function f (x). From the property of the delta
function, ∫

δ(x − a) f (x − a)dx = f (0). (A.11)

Now, differentiating with respect to a,

d

da
f (0) =

∫ [
d

da
δ(x − a) f (x − a)+ δ(x − a)

d

da
f (x − a)

]
dx

= 0. (A.12)

From this, we discover that

f (x − a)
d

da
δ(x − a) = −δ(x − a)

d

da
f (x − a), (A.13)

or

f (t) ∂tδ(t) = −δ(t) ∂t f (t), (A.14)

which effectively defines the derivative of the delta function.
A useful relation for the one-dimensional delta function of a function g(x)

with several roots satisfying g(xi ) = 0 is:

δ(g(x)) =
∑

i

1

g′(xi )
δ(g(xi )), (A.15)

where xi are the roots of the function g(x) and the prime denotes the derivative
with respect to x . This is easily proven by change of variable. As with all
delta-function relations, this is only strictly valid under the integral sign. Given

I =
∫

dx f (x)δ(g(x)), (A.16)
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Useful formulae 503

change variables to x ′ = g(x). This incurs a Jacobian in the measure |J | =
∂x
∂x ′ = ∂x

∂g(x) =
(
∂g(x)
∂x

)−1
. So,

I =
∫

dx ′
1

g′(x ′)
f (g−1(x))δ(x ′). (A.17)

In replacing x by g−1, we satisfy the rules of the change of variable, but the
inverse function g−1(x ′) is not usually known. Fortunately, the singular nature
of the delta function simplifies the calculation, since it implies that contributions
can only come from the roots of g(x ′), thus, the expression becomes,

I =
∫

dx ′
1

g′(xi )
f (xi )δ(x

′). (A.18)

In summary, one may use this eqn. (A.15) under the integral sign generally,
thanks to the extremely singular nature of the delta function, provided all
multiplying functions in the integrand are evaluated at the roots of the original
function g(x).

A.2 The step function

θ(t, t ′) =



1 t − t ′ > 0
1
2 t = t ′

0 t − t ′ < 0.
(A.19)

An integral representation of these may be expressed in two equivalent forms:

θ(t − t ′) = i
∫ ∞

∞

dα

2π

e−iα(t−t ′)

α + iε

θ(t ′ − t) = −i
∫ ∞

∞

dα

2π

e−iα(t−t ′)

α − iε
, (A.20)

where the limit ε → 0 is understood. The derivative of the step function is a
delta function,

∂tθ(t − t ′) = δ(t − t ′). (A.21)

A.3 Anti-symmetry and the Jacobi identity

The commutator (or indeed any anti-symmetrical quantity) has the purely
algebraic property that:

[A, [B,C]]+ [B, [C, A]]+ [C, [A, B]] = 0. (A.22)
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504 Appendix A

A.4 Anti-symmetric tensors in Euclidean space

Anti-symmetric tensors arise in many situations in field theory. In most cases,
we shall only be interested in the two-, three- and four-dimensional tensors,
defined respectively by

εi j =


+1 i j = 12
−1 i j = 21
0 otherwise,

(A.23)

εi jk =


+1 i jk = 123 and even permutations
−1 i jk = 321 and other odd permutations
0 otherwise,

(A.24)

εi jkl =


+1 i jkl = 1234 and even permutations
−1 i jkl = 1243 and other odd permutations
0 otherwise.

(A.25)

There are as many values for the indices as there are indices on the tensors in
the above relations. Because of the anti-symmetric properties, the following
relations are also true.

εi j = = −ε j i

εi jk = εki j = ε jki = −εk ji = εik j = −ε j ik

εi i = 0

εi i j = 0

εi i jk = 0. (A.26)

The number of different permutations increases as the factorial of the number
of indices on the tensor. The different permutations can easily be generated by
computing the determinant ∣∣∣∣∣∣∣∣

i j k l
i j k l
i j k l
i j k l

∣∣∣∣∣∣∣∣ (A.27)

as a mnemonic, but the signs will not automatically distinguish even and odd
permutations, so this is not a practical procedure.

Contractions of indices on anti-symmetric objects are straightforward to work
out. The simplest of these are trivial to verify:

εi jεkl = δi
kδ

j
l − δi

lδ
j
k

εi jε jk = −δi
k

εi jεk j = δi
k

εi jεi j = 2. (A.28)
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Useful formulae 505

More general contractions can be calculated by expressing the anti-symmetric
tensor products as combinations of delta functions with varying signs and
permutations of indices. These are most easily expressed using a notational
shorthand for anti-symmetrization. Embedded square brackets are used to
denote the anti-symmetrization over a set of indices. For example,

X [aYb] ≡ 1

2!
(XaYb − XbYa), (A.29)

X [aYb Zc] ≡ 1

3!
(XaYb Zc + XcYa Zb + XbYc Za

−XcYb Za − XaYc Zb − XbYa Zc), (A.30)

and higher generalizations.
Consider then the product of two three-dimensional Levi-Cevita symbols. It

may be proven on the grounds of symmetry alone that

εi jkεlmn = 3!δi
[lδ

j
mδ

k
n], (A.31)

where

δi
[lδ

j
mδ

k
n] =

1

3!

(
δi

lδ
j
mδ

k
n + δi

nδ
j
lδ

k
m + δi

mδ
j
nδ

k
l

−δi
nδ

j
mδ

k
l − δi

lδ
j
nδ

k
m − δi

mδ
j
lδ

k
n ) . (A.32)

Contracting this on one index (setting i = l), and writing the outermost
permutation explicitly, we have

εi jkεimn = 2!
(
δi

iδ
j
[mδ

k
n] − δi

mδ
j
[iδ

k
n] − δi

nδ
j
[mδ

k
i]

)
. (A.33)

Summing over i gives

εi jkεimn = 2!(3− 1− 1)δ j
[mδ

k
n]

= δ j
mδ

k
n − δ j

nδ
k
m . (A.34)

It is not difficult to see that this procedure may be repeated for n-dimensional
products,

εi j ...kεlm...n = n!δi
[lδ

j
m . . . δ

k
n]. (A.35)

Again, setting i = l and expanding the outermost permutation gives,

εi j ...kεlm...n = (n − 1)!(δi
iδ

j
[m . . . δ

k
n] − · · ·)

= (n − 1)!(δi
i − (n − 1))δ j

[m . . . δ
k
n]. (A.36)
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506 Appendix A

Since δi
i = n, the first bracket in the result above always reduces to unity. We

may also write this result in a more general way, for the contraction of two
p-index anti-symmetric products in n dimensions:

p!δi
[iδ

j
m . . . δ

k
n] = (p − 1)!(n − p + 1)δ j

[m . . . δ
k
n]. (A.37)

This formula leads to a number of frequently used results:

εi jkεimn = δ j
mδ

k
n − δ j

nδ
k
m

εi jklεimnp = 3!δ j
[mδ

k
nδ

l
p]

εi jklεi jnp = 2!(n − 2)δk
[nδ

l
p]

= 2(δk
nδ

l
p − δk

pδ
l
n)

εi jklεi jkl = 2(42 − 4) = 24. (A.38)

A.5 Anti-symmetric tensors in Minkowski spacetime

In Minkowski spacetime, we have to distinguish between up and down indices.
It is normal to define

εµν =


+1 µν = 01
−1 µν = 10
0 otherwise,

(A.39)

εµνλ =


+1 µνλ = 012 and even permutations
−1 µνλ = 210 and other odd permutations
0 otherwise,

(A.40)

εµνλρ =


+1 µνλρ = 0123 and even permutations
−1 µνλρ = 0132 and other odd permutations
0 otherwise.

(A.41)

Indices are raised and lowered using the metric for the appropriate dimensional
spacetime. Since the zeroth component always incurs a minus sign,

εµνλρ = gµσ gνκgλτ gρδεσκτδ
ε0123 = −1.1.1.1.ε0123, (A.42)

one has all of the above definitions with indices lowered on the left hand side
and minus signs changed on the right hand side. This also means that all of the
contraction formulae incur an additional minus sign. This formula leads to a
number of frequently used results:

εµνλεµρσ = −δνρδλσ + δνσ δλρ
εµνλρεµστζ = −3!δν[σ δ

λ
τ δ
ρ

ζ ]

εµνλρεµνστ = −2(δλσ δ
ρ
τ − δλτ δρσ )

εµνλρεµνλρ = −24. (A.43)
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Useful formulae 507

A.6 Doubly complex numbers

Complex numbers z = x + iy and the conjugates z∗ = x − iy are vectors in
the Argand plane. They form a complete covering of the two-dimensional space
and, because of de Moivre’s theorem,

eiθ = cos θ + i sin θ, (A.44)

they are particularly suited to problems where rotation or circular symmetry
is expected. But what of problems where rotation occurs in two separate,
orthogonal planes? It seems logical to suppose that a complex representation
of such rotation could be applied to each orthogonal plane individually. But
such a description would require two separate kinds of vectors x + iy for one
plane and x + jz for the orthogonal plane, where i = √−1 and j = √−1. We
must treat these two imaginary numbers as independent vectors, such that

i2 = −1

j2 = −1

ij �= −1. (A.45)

Using these quantities, we can formulate doubly complex numbers

w = x + iy − jz

W = X + iY − jZ (A.46)

as an alternative representation to the three-dimensional vectors w = x î +
y ĵ + zk̂. The final line in eqn. (A.45) above leads to an interesting question.
What commutation properties should we assign to these objects? There are two
possibilities:

ij = ±ji. (A.47)

Interestingly, these two signs correspond to the representations of two different
groups. When i and j commute, thew form a representation of the group U (1)×
U (1) which corresponds to independent rotations about two orthogonal axes z
and y, but no rotation about the third axis x , in a three-dimensional space. This
result is, in fact, trivial from de Moivre’s theorem.

When i and j anti-commute, the w form a representation of SU (2), the group
of three-dimensional rotations. To show this we must introduce some notation
for complex conjugation with respect to the i and j parts. Let us denote

i
w = x − iy − jz
j
w = x + iy + jz
ij
w = x − iy + jz, (A.48)
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508 Appendix A

which have the following algebraic products:

w
ij
w = x2 + y2z2 − 2ijyz

i
w

j
w = x2 + y2 + z2 + 2ijyz. (A.49)

Thus, the length of a vector is

1

2
(w

ij
w + i

w
j
w) = x2 + y2 + z2 = w · w, (A.50)

and the scalar product is

w ·W = 1

4

(
w

ij
W + i

w
j

W + j
w

i
W + ij

w W

)
. (A.51)

It is interesting, and significant, that – concealed within these products are the
vector and scalar products for Euclidean space. If we assume that i and j anti-
commute, we have

(w,W ) = i
w

j
W = (x X + yY + zZ)+ i(xY − Y x)

−j(z X − x Z)− ij(y Z − zY )

= (w ·W)1+ (w×W), (A.52)

where we have identified the complex numbers with Euclidean unit vectors as
follows:

1 ↔ scalars

i ↔ k̂

j ↔ −ĵ

ij ↔ −î. (A.53)

When the coupling between planes is unimportant, i and j commute and the
power of this algebraic tool is maximal. An application of this method is given
in section A.6.1.

A.6.1 Refraction in a magnetized medium

The addition of a magnetic field leads to the interesting phenomenon of plane
wave rotation, studied in section 7.3.3. Neglecting attenuation, γ = 0, the
forcing term can be written in the form of a general Lorentz force

m
d2s
dt2

+ ks = −e

(
E+ ds

dt
× B

)
; (A.54)
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or writing out the components and defining ω0 = k/m, B = Bz ,

d2sx

dt2
+ e

m
B

dsy

dt
+ ω2

0sx = − e

m
Ex , (A.55)

d2sy

dt2
− e

m
B

dsx

dt
+ ω2

0sy = − e

m
Ey. (A.56)

These two equations may be combined into a single equation by defining
complex coordinates s = sx+ isy and E = Ex+ iEy , provided ω0 is an isotropic
spring constant, i.e. ω0x = ω0y

d2s

dt2
− i

e

m
B

ds

dt
+ ω2

0s = − e

m
E . (A.57)

Plane polarized waves enter the medium, initially with their E vector parallel
to the x axis. These waves impinge upon the quasi-elastically bound electrons,
forcing the motion

s = Re
[
s0ej(kz−ωt−φ)] , (A.58)

E = Re
[
E0ej(kz−ωt)

]
, (A.59)

where j2 = −1, but ij �= −1. We use j as a vector, orthogonal to i and to the real
line. Re is the real part with respect to the j complex part of a complex number.
Substituting for E and s, we obtain[

−ω2 + ijω
eB

m
+ ω2

0

]
s0 = − e

m
E0ejφ. (A.60)

The amplitudes s0 and E0 are purely real both in i and j. Comparing real and
imaginary parts in j, we obtain two equations:

(ω2
0 − ω2)s0 = − e

m
E0 cosφ, (A.61)

i
eBω

m
s0 = − e

m
E0 sinφ. (A.62)

The phase φ is i complex, and this leads to rotation of the polarization plane –
but this is not the best way to proceed. We shall show below that it is enough
that the wavevector k be an i complex number to have rotation of the polarization
plane vector E . To find k, we must find the dispersion relation for waves in a
magnetized dielectric. It is assumed that the resonant frequency of the system
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510 Appendix A

is greater than the frequency of the electromagnetic waves (ω0 > ω). For low-
energy radiation, this is reasonable. Defining the usual relations

P = −ρN es

D = P+ ε0E

B = µH

c2 = 1

ε0µ0
, (A.63)

from Maxwell‘s equations, one has that

∇2E = µ0
∂2D
∂t2

= µ0
∂2P
∂t2

+ 1

c2

∂2E
∂t2
. (A.64)

Differentiating twice with respect to t allows one to substitute for s in terms of
P and therefore E , so that eliminate s altogether to obtain a dispersion relation
for the waves.[

∂2

∂t2
− i

eB

m

∂

∂t
+ ω2

0

](
∇2E− 1

c2

∂2E
∂t2

)
= µ0ρN e2

m

∂2E
∂t2
. (A.65)

For linearly polarized plane waves, it then follows that(
−ω2 + ij

eB

m
ω + ω2

0

)(
−k2 + ω

2

c2

)
E = −µ0ρN e2 Eω2

m
. (A.66)

This is the dispersion relation. The ij complex nature is a direct result of the
coupling to the magnetic field. Re-arranging:

k2 = ω
2

c2

[
1+ µ0ρN e2c2/m

(−ω2 + ij eB
m ω + ω2

0)

]
(ω0 > ω). (A.67)

The wavevector is therefore a complex number. Writing the wavenumber with
real and imaginary parts separated:

k = kr − ijki (ki > 0), (A.68)

one can substitute back into the plane wave:

E = E0 cos(kz − ωt) = ReE0 ej(kz−ωt)

= ReE0 exp j(krz − ωt + ijkiz)

= E0 exp(ikiz)Re exp(j(krz − ωt))

E = E0 · [cos(kiz)+ i sin(kiz)︸ ︷︷ ︸
rotation ∝ z

] · cos(krz − ωt).︸ ︷︷ ︸
travelling wave

(A.69)

Thus, we have a clockwise rotation of the polarization plane.
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Useful formulae 511

A.7 Vector identities in n = 3 dimensions

For general vectors A and B, and scalar φ,

∇ · (φA) = φ(∇ · A)+ A · (∇φ) (A.70)

∇ · (A× B) = B · (∇ × A)− A · (∇ × B) (A.71)

∇ × φA = φ(∇ × A)+ (∇φ)× A (A.72)

∇ × ∇φ = 0 (A.73)

∇ · (∇ × A) = 0 (A.74)

(∇ × (∇ × A)) = ∇(∇ · A)− ∇2A. (A.75)

A.8 The Stokes and Gauss theorems

Stokes’ theorem in three spatial dimensions states that∫
R
(∇ × A) · dS =

∮
C

A · dl, (A.76)

i.e. the integral over a surface region R of the curl of a vector, also called the
flux of the curl of that vector, is equal to the value of the vector integrated along
a loop which encloses the region.

The Gauss divergence theorem in three-dimensional vector language states
that ∫

σ

(∇ · A)dσx =
∫

S
A · dS; (A.77)

i.e. the integral over a spatial volume, σ , of the divergence of a vector is equal to
the integral over the surface enclosing the volume of the vector itself. In index
notation this takes on the trivial form:∫

dσ∂ i Ai =
∫

dSi Ai , (A.78)

and the spacetime generalization to n+1 dimensions (which we use frequently)
is ∫

dVx ∂
µAµ =

∫
dσµAµ. (A.79)

Notice that Gauss’ law is really just the generalization of integration by parts in a
multi-dimensional context. In action expressions we frequently use the quantity
(dx) = dVt = 1

c dVx , whence∫
(dx) ∂µAµ = 1

c

∫
dσµAµ. (A.80)
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512 Appendix A

A.9 Integrating factors

Differential equations of the form

dy

dx
+ f (x) y = g(x) (A.81)

can often be solved by multiplying through by a factor I (x)

I (x)
dy

dx
+ f (x) I (x) y = g(x) I (x), (A.82)

which makes the left hand side a perfect differential:

d(uv)

dx
= u

dV

dx
+ v du

dx
. (A.83)

Comparing these equations and identifying u = I and v = y, one finds

dI

dx
= I (x) f (x), (A.84)

which solves to give

I (x) = exp

(∫ x

0
f (x ′) dx ′

)
. (A.85)

Thus the differential equation (A.81) may be written

d

dx
(I (x)y) = g(x) I (x). (A.86)

A.10 Matrix formulae

The so-called Baker–Campbell–Hausdorf identity for non-singular matrices A
and B states that

e−A BeA = B + 1

1!
[B, A]+ 1

2!
[[B, A], A]+ · · · . (A.87)

A.11 Matrix factorization

A formula which is useful in diagonalizing systems is:

(
�1 A
B �2

)
=

(
�1 − A�−1

2 B A�−1
2

0 1

)(
1 0
B �2

)
. (A.88)

det

(
�1 A
B �2

)
= det(�1 − A�−1

2 B)det�2. (A.89)
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Appendix B

Recommended reading

• J.M. Cassels, Basic Quantum Mechanics (2nd edition). Macmillan Press,
London (1970). An excellent summary of basic quantum mechanics.

• B. DeWitt, Dynamical Theory of Groups and Fields. Gordon and Breach,
New York (1965). This demanding book contains deep insights into basic
field theory, prior to the understanding of non-Abelian gauge theories.
There is no other book like it. Metric conventions are the same as in this
book.

• K. Huang, Statistical Mechanics. John Wiley and Sons, New York (1963).
A classic book on statistical mechanics, which details the foundations of
the subject, in a scholarly fashion, prior to the renormalization group era.

• H.F. Jones, Groups, Representations and Physics (2nd edition). Institute
of Physics IoP Press, Bristol (1998). A very nice introduction to group
theory for physicists, with much more attention to relevant detail than
most group theory texts. A very nice summary of Dirac notation.

• S. Schweber, Relativistic Quantum Field Theory, Harper & Row, New
York (1961). Although a little dated, this is still one of the most scholarly
books on quantum field theory. It is one of the few books which answers
more probing questions than it raises about the formulation of field theory.
This book cannot be praised highly enough. The opposite metric signature
is used.

• J. Schwinger, Particles, Sources and Fields, Volume I. Addison Wesley,
Redwood, CA (1970). This book is Schwinger’s motivation for, and
treatise on, source theory, which is a formulation of effective quantum
field theory. This is a classic work, which is full of important insights for
the dedicated reader. The conventions are largely the same as those used
here.
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514 Appendix B

• J. Schwinger, L.L. DeRaad, K.A. Milton and W. Tsai, Classical Elec-
trodynamics, Perseus, Reading MA (1998). A long awaited book on the
Green function approach to classical electrodynamics. Alas, it uses old
gaussian units, which can be confusing with regard to dimensions and
factors of c. Notations otherwise resemble those used here.

• B. Schutz, Geometrical Methods in Mathematical Physics. Cambridge
University Press (1980). A uniquely readable, and unpretentious, intro-
duction to geometrical methods with carefully crafted examples.

• S. Weinberg, Gravitation and Cosmology. J. Wiley and Sons, New York
(1972). An excellent introduction to the general theory of relativity and
its influence on physics. The conventions used are the same as those used
in this book.

• S. Weinberg, Quantum Theory of Fields, Volume I, Cambridge University
Press (1995). A new book, which takes over where Schweber leaves
off and one of the few books on quantum field theory which tries to
explain what field theory is really about. A must for any field theorist.
Conventions are similar to this book, but the Lagrangian functions differ
by an overall sign.
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A.C. conductivity, 319
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complex scalar fields, 425
Dirac field, 430
freedom to change, 64
non-Abelian fields, 471
physical meaning, 71
real scalar field, 416
Yang–Mills theory, 471

action principle, 50
fields, 61
preferred directions, 157

adjoint field
Dirac, 430

adjoint group, 203
adjoint representation, 182, 185, 472

centre of group, 203
advanced boundary conditions, 75
advanced Green function, 82, 96
Aharonov–Bohm effect, 28, 164, 264
algebra

group, 172
N -ality, 205

Anderson–Higgs mechanism, 278
angular momentum, 195, 303
anisotropy, refractive index, 28
anti-commutator Green function, 89

anti-particles, non-relativistic limit, 340
anti-symmetric products, reduction

formulae, 505
anti-symmetric tensors, 15, 40

properties, 504
anyons, 164, 304

Baker–Campbell–Hausdorf formula, 512
BCH formula, 512
Bianchi identity, Maxwell field, 15, 455
Bloch’s theorem, 212, 213
Bode’s law, 108
Boltzmann factor, 124
boosts, 220
Bose–Einstein distribution, 126
bound states, 257
boundary conditions, 74, 219

advanced, 75
and complexity, 419, 426
electromagnetism, 461
Feynman, 75
on field, 57
Green functions, 82
magnetic field, 213
retarded, 75
symmetry breaking, 254

bra-ket notation, 378
Brownian motion, 160
bulk viscosity, 317

canonical hyper-surface, 64
canonical momentum, 55
canonical position, 283
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522 Index

canonical transformations, 363
Cartan–Weyl basis, 191
Casimir invariant, quadratic, 184, 468
causality, 74, 90

Green functions, 82
centre of group, 170, 175

Clifford algebra, 433
charge, 257

generalized, 466
Cherenkov radiation, 147
Chern–Simons field

action, 486
continuity, 489
field equations, 488, 489
tensor density, 487

Chern–Simons Green function, 165
Chern–Simons theory, 164

energy–momentum tensor, 490
Chevalley normalization, 193
chiral invariance, 441
Christoffel symbol, 37
classical particle mechanics, 50
Clebsch–Gordon series, 232
Clifford algebra, 431
commutation relations, 89, 377

angular motion, 303
commutator Green function, 89
commuting derivatives, 260
compactness of group, 220
complementary function, 138
completeness and Poisson bracket, 368
complex scalar, Green function solution,

426
complex scalar field

action, 425
as two-component real field, 428

components of a vector, 38
conductivity, 335
configuration space, 34
conformal energy–momentum tensor,

301
conformal group, 208

gauge fields, 235
conformal invariance, 208, 247
congruency class, 180
conjugacy of group elements, 180

conjugate elements of a group, 174
conjugate field

Dirac, 442
Maxwell, in ambient vacuum, 454
Proca field, 464

conjugate momentum, 55
fields, 64
scalar field, 417
Schrödinger field, 411

conjugate pairs, 285
conjugate variable, 328
connection, 187
conservation

electromagnetic field, 21
law, 20, 206, 325
of energy–momentum tensor, 295,

322
conserved current, 20, 325
conserved inner product, 333
conserved probability, 332
constancy of c, 207
constitutive relation, 158, 317, 318
constrained form of field solution, 74
constraint

equation of motion, 74
on field, 19
of motion, 54

contact potential, 65
continuity

complex scalar, 425
Dirac field, 441
of the field, 55
Maxwell field, 453

in dielectric, 461
real scalar field, 417

continuity condition, 20
continuum hypothesis, 5
contour integration, 92
contravariant components of a vector, 39
coordinate invariance, 207
coordinate transformations, 207
coordinate translations, generator, 366
correlation length, 117
correlations, 4
cosets, 173

group of, 175
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Index 523

cosmological constant, 65
Coulomb gauge, 457
covariant components of a vector, 39
covariant derivative, 261

physical assumption, 262
coverings of groups, 180
CPT theorem, 263
curl, 40
currents, 20, 77

classical particle mechanics, 329
conserved, 325
electric, 330

curvature, 492, 495
cyclotron radiation, 148

damping in dielectrics, 25
D.C. conductivity, 319
de Broglie relation, 376
de Broglie waves, 42, 375
degeneracy, 253
delta function, 501
derivatives

commuting, 260
coordinate symmetry, 258
covariant, 262
form invariance, 261
Hermitian property, 258
substantive, 246
symmetry in action, 66
time-reversal invariance, 66

de Moivre’s theorem, 507
differential Hamiltonian operator, 284
diffusion, 162
dimension of a group, 170, 184, 199
dimension of algebra representation,

184, 468
dimension of group, 468
dimension of representations, 199
dimensions, engineering, 400
dipole moment, 24
Dirac delta function, 501
Dirac field

action, 430
adjoint, 430
conjugate, 442
continuity, 441

energy–momentum tensor, 448
Dirac Green function, 106, 447

non-relativistic limit, 348
Dirac notation, 378
disconnected sub-groups, 224
dispersion relation, 19, 73
dissipation, 59
Doppler effect, 25
dual vector, 36
duality, 336
dynamical symmetry, 262
dynamical variables and groups, 172
Dynkin index, 184, 468

effective action
as a function of source, 115
W [J ], 115

effective field theory, 4, 5, 77
dielectrics, 452

effective mechanical force, 6
Einstein and gravity, 491
Einstein’s A, B coefficients, 124
Einstein’s equations, 496
Einstein’s relation for mobility, 163
Einstein’s summation convention, 404
electric components of a tensor, 229
electric current, 330
electric susceptibility, 25
electromagnetic waves, 18
electromagnetism and Lorentz group,

230
energy constraint, relativistic, 416
energy density of E.M. field, 21
energy density of Maxwell field, 460
energy–momentum tensor, 22, 496

Chern–Simons theory, 490
complex scalar field, 427
conformally improved, 301
conservation of, 295, 322
Dirac, 448
gauge theories, 296
isotropic fluid, 314
Maxwell field, 458
in particle mechanics, 293
scalar field, 293, 422
symmetry, 296
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524 Index

energy–momentum tensor (cont.)
Tµν , 298
θµν , 289
trace, 300

energy–momentum waves, 42
ensemble, 372
equation of motion, 54
equations

Einstein, 496
Langevin, 160
Lippmann–Schwinger, 413
London, 335
Navier–Stokes, 314

equilibrium, statistical, 114
ergodic hypothesis, 372
Euclidean Green function, 113
Euclidean spacetime, 47
Euler–Lagrange equations, derived, 54
expectation values

statistical, 373
exponentiation, 179

factor group, 175
Faraday effect, 139
Feynman boundary conditions, 75
Feynman Green function, 82, 96
Feynman proof of Maxwell equations, 66
field, 5

continuity condition, 57
as dynamical potential, 72
free, 73
as a potential/source, 7
as wavefunction, 72

field strength tensor Fµν , 14
field theory, as quantum mechanics, 87
finite group transformations, 178
first quantization, 3
flavour, 467
fluctuation force, 161
fluctuations, 121

and Green functions, 114
fluids as fields, 314
flux tubes, 164
force, 6, 310

mechanical, 6
form-invariant derivative, 261

Fourier transform of Green function, 83
free fields, 73
friction, 59
functional differentiation, 60
functional integral, 394
fundamental representation, 182

Galilean invariance, 243
gamma-matrices (γ -matrices) in n + 1

dimensions, 431
gauge coupling, 11
gauge fixing, 108, 456
gauge invariance, 17, 264

Fµν in non-Abelian fields, 470
gauge parameter α, 108
gauge symmetry, 11
gauge transformation

global, 332
non-Abelian, 470
rigid, 332

gauge-invariant variations, 70
Gauss’ theorem, 511
Gell-Mann matrices, 476
generalized forces, 310
generating functional, 121
generator, 177

algebra, 183
conjugate variables, 388
coordinate translations, 366
derivation from action principle,

366
time translations, 365

geodesic equation, 58, 493
global gauge transformation, 332
global symmetries, 256
Goldstone bosons, 274, 281
Grassman variables, 263
gravitational field, action, 496
Green function

advanced, 96
anti-commutator, 89
boundary conditions, 82
causality, 90
Chern–Simons, 165
commutator, 89
Dirac field, 106, 447
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Index 525

Green function (cont.)
Euclidean, 113

n = 2, 102
Feynman, 96

n = 3, 101
as matrix, 98
non-relativistic limit, 345
as operator inverse, 81
and Poisson bracket, 370
retarded, 91

n = 3, 100
scalar field, 420
Schrödinger field, 104
symmetry problems, 107
Wightman functions, 91

Green functions, 79
relationships between, 421

group
Lie, 183
U (N ), 199
Z(N ), 201

group algebra, 172
group axioms, 170
group centre, 175

and cover group, 203
group generators, normalization, 193
group of cosets, 175
group representation, 177
group theory, 169
group vectors, 171
groups, 206

Hamilton–Jacobi equation, 367
Hamilton’s equations, 359
Hamilton’s operator equations of motion,

381
Hamiltonian, 22

formulation, 358
Hamiltonian density

Maxwell field, 454, 460
scalar field, 417

heat bath, 123
Heaviside step function, 503
Heisenberg picture, 377
helicity, 240

massless fields, 242

Helmholtz relations, 66
Hermitian derivatives, 258
hidden momentum, 285
higher derivative theories, 68
Hilbert space, 185
holonomic, 7

ignorable coordinates, 181, 360
index notation, 35
infinitesimal group transformations, 178
inner product defined from conserved

current, 333
interactions, 79, 310
invariant length, relativity, 40
invariant probability, 419
invariant sub-group, 174
invariant sub-space, 181
invariants

boundary conditions, 75
E.M. field, 16

inverse of ∇2 in two dimensions, 102
inverse problem, 79
irreversibility, 67
isospin, 467

Jacobi identity, 183
Maxwell field, 15, 455

Jacobi identity and Poisson bracket, 368

Kaluza–Klein theory, 496
kernel, 81
kinetic energy, 50, 51
KMS relation, non-relativistic limit, 354
Kramers–Kronig relation, 25, 108

Lagrange multipler, 108
Lagrangian, 51

and T − V , 62
Landau damping, 150
Langevin’s equation, 59, 160
large transformations, 179, 209
large-scale approximation, 5
laser cooling, 153
length of a vector, 38
Levi-Cevita tensor, 15, 40
Lie algebra, 368, 466
Lie groups, 183, 466
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526 Index

limits
of action principle, 66
defined, 409

line element, 38
Minkowski spacetime, 207

linear derivatives, 71
linear response theory, 79, 335
Liouville’s theorem, 374
Lippmann–Schwinger equation, 413
little group, 241
Liénard–Wiechert potential, 142
local coupling to E.M. field, 11
local symmetry, 278
localization of massless particles, 309
London equation, 335
long-range order, 122, 130, 274
long-wavelength approximation, 5
longitudinal components, 43
longitudinal field, 236
Lorentz gauge, 108, 456
Lorentz group, 12

electromagnetism, 230
irreducible representations, 231

Lorentz invariance, 219

magnetic components of a tensor, 229
magnetic field, boundary conditions, 213
magnetic susceptibility, 460
magnetization, 460
Markov property, 67, 172, 248
mass shell, 73, 87, 88, 386
matrix factorization formula, 512
Matsubara frequencies, 123
Maxwell field

action, in ambient vacuum, 452
ambient dielectric, 459
conjugate field, 454
continuity, 453
in a dielectric

continuity, 461
energy–momentum tensor, 458
Fµν defined, 14
Green function solution, 455
Hamiltonian density, 454, 460
in a vacuum, 452

Maxwell Green function

gauge invariance, 456
Maxwell’s equations, 9

covariant form, 13
measurements as interactions, 79
mechanical force, 6
metric tensor, Minkowski spacetime, 41
Minkowski spacetime, 33
mobility, 163
momentum operator, 284, 377
momentum space, 33
momentum, definitions, 283
multi-component fields, 257
multi-valuedness, 201
multiple coverings, 180

Nambu, 274
Nambu–Goldstone modes, 281
Navier–Stokes equations, 314
negative energy solutions, 75

scalar field, 418
Newton’s law, 51
Noether’s theorem, 325
non-Abelian field, 257, 466

action, 471
gauge transformation, 470
strength, 470

non-Abelian group, 170
non-holonomic, 7
non-integrable phase, 212
non-relativistic limit, 88, 340

curvature, 357
Green function, 345

observables, 376
ODLRO, 122
off-diagonal long-range order, 122
Ohm’s law, 127, 335
ohmic dissipation, 318
on shell, 73, 88
operator action principle, 383
operator equations of motion, 394
operator Hamilton equations, 381
operator variations, quantum field theory,

393
optical activity, 139
optical molasses, 155
optically active electrons, 24
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Index 527

order, 274
of a group, 170

parity transformations, 209
helicity, 234

particle energy, 283
particle field, 24
particle mechanics

classical, 50
Hamiltonian formulation, 358
Lagrangian formulation, 369
relativistic, 57

particle trajectories, 283
particular integral, 138
path integral, 394
Pauli–Lubanski vector, 239, 306
PCT theorem, 263
periodic potential, 213
permeability of free space, 460
permeability, non-Abelian field theory,

471
phase invariance, 264
phase transitions, 117, 277
phonons, 277
Planck scales, 400
plane waves, 42
Poincaré invariance, 219
Poisson brackets, 362

fields, 369
Green functions, 370

polarizability, 24
polarization, 23
position coordinate in field theory, 283
position operator, 377
positive definite metric, 41
positive energy solutions, 75
potential as a field/source, 7
potential energy, 51
potentials, 10, 12
Poynting vector, 21
pressure

radiation, 321
principal value, 108
probability

Dirac field, 442
scalar field, 419

probability interpretation
quantum mechanics, 332
real fields, 334

Proca field, conjugate field, 464
propagator, 81
proper group, 179
proper Lorentz group, 224
proper time, 40

QED, 348, 450
quantum, defined, 3
quantum action principle, 383, 391
quantum field theory, 277
quantum mechanics

classical correspondence, 382
relativistic fields, 385
statistical interpretation, 381

quasi-non-Abelian fields, 467
quasi-particles, 467

radiation
Cherenkov, 147
cyclotron, 148
pressure, 321
synchrotron, 148

radiation from moving charge, 142
radiation gauge, 457
rank of a group, 170
rate of work, E.M. field, 21
real fields

become complex, 419
probability interpretation, 334

real scalar field
action, 416
continuity condition, 417

reciprocal lattice, 34
reciprocal lattice space, 33
reflection symmetry Z2, 201
reflection, Z2 invariance, 256
refractive index, 26
relativistic energy constraint, 416
relativistic quantum mechanics, 77, 385
renormalization group, 5
representation

non-Abelian gauge field, 472
dimension of, 184, 468
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528 Index

representation (cont.)
of group, 177
of Lie algebra, 184, 468

representation space, 172, 184
reservoir, thermal, 123
restricted Lorentz group, 224
retardation, Galilean, 245
retarded boundary conditions, 75
retarded Green function, 82, 91

independent of state, 126
reversibility, 67
rigid gauge transformation, 332
role of position coordinate in field

theory, 283
root vector, 192
roots of unity, 201
rotation eigenvalues, 195
rotational invariance, 214

scalar electrodynamics
action, 278

scalar field
action, 416
conjugate momentum, 417
conserved currents, 419
energy–momentum tensor, 422
gauged, 278
Green function, 420
Hamiltonian density, 417

scalar potential, 12
scalar product, 40
scale invariance, 252
scaling, 117
Schrödinger action, 410
Schrödinger field

conjugate momentum, 411
conserved currents, 413
differential Hamiltonian operator,

410
energy–momentum tensor, 414
Green function, 104

Schrödinger picture, 377
Schur’s lemma, 170
Schwinger action principle, 383, 391
second quantization, 3
semi-simple group, 206

shear viscosity, 317
simple group, 206
Slater determinant, 391
source as a field/potential, 7
source theory, 5
sources, 77, 310
spacelike hyper-surface, 64
speed of light, constancy, 207
spin, 195, 197, 303, 305, 306

double-valued nature, 201
Lorentz theory background, 231
of a tensor field, 198

spinor electrodynamics, 348, 450
spring model of dielectric, 24
standing waves, 74
state independent Green function, 126
stationary waves, 74
statistical expectation values, 373
statistical mechanics, 372
step function, 503
Stokes’ theorem, 511
structure constants, 183, 468
sub-groups, 170

SU (2), 476
substantive derivative, 156, 246
summation convention, 404
susceptibility, 352

Green function, 82
Magnetic, 460
thermal, 124

symmetry breaking
by boundary condition, 253
dynamical, 281
global, 274
local, 278
spontaneous, 130, 336

symmetry, Hamiltonian view, 360
symplectic coordinates, 362
symplectic transformations, 360
synchrotron radiation, 148

tangent space, 36
TCP theorem, 263
thermal conductivity, 317
thermal susceptibility, 124
time, special role of, 358
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Index 529

time-ordered products, 114
time-reversal transformation, 209
time-translation generator, 365
trace of energy–momentum tensor, 300
transformation

of coordinates, 207
of group vectors, 171

transformation function, 380
translation in periodic lattice, 213
transversality, 236
transverse components, 43
travelling waves, 74
triality, 205

unitarity, 88
and macrostate, 126

unitary gauge, 280
unitary matrices, 199
units, defined, 399
universal cover group, 203

vacuum, 4
variation

classical dynamical variables, 365
dynamical, 68
gauge-invariant, 70
non-dynamical, 68

variation of an operator, 380

variational principle, 52
vector

length of, 38
potential, 12
product, 40

Verdet’s constant, 142, 510
vielbein, 300
virtual processes, 121
viscosity, 317
vortices, 164

wavefunction, 376
gauge transformation, 264

wavenumber kµ, 42
waves, electromagnetic, 18
Weyl spinors, 441
Wick rotation, 47, 48, 113
Wightman functions, 83, 88

Green functions, 91
n = 3, 101

Wilson loop, 213
world-lines, 57

Yang–Mills theory, 467
action, 471

Zeeman effect, 139
Zitterbewegung, 351
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