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Foreword

This book is a collection of notes and unpublished results which I have
accumulated on the subject of classical field theory. In 1996, it occurred to me
that it would be useful to collect these under a common umbrella of conventions,
as a reference work for myself and perhaps other researchers and graduate
students. I realize now that this project can never be finished to my satisfaction:
the material here only diverges. I prefer to think of this not as a finished book,
so much as some notes from a personal perspective.

In writing the book, I have not held history as an authority, nor based the
approach on any particular authors; rather, I have tried to approach the subject
rationally and systematically. I aimed for the kind of book which I would have
appreciated myself as a graduate student: a book of general theory accompanied
by specific examples, which separates logically independent ideas and uses
a consistent notation; a book which does not skip details of derivation, and
which answers practical questions. I like books with an attitude, which have
a special angle on their material, and so I make no apologies for this book’s
idiosyncrasies.

Several physicists have influenced me over the years. I am especially grateful
to David Toms, my graduate supervisor, for inspiring, impressing, even depress-
ing but never repressing me, with his unstoppable ‘Nike’ philosophy: (shrug)
‘just do it’. I am indebted to the late Peter Wood for kind encouragement, as a
student, and for entrusting me with his copy of Schweber’s now ex-masterpiece
Relativistic Quantum Field Theory, one of my most prized possessions. My
brief acquaintance with Julian Schwinger encouraged me to pay more attention
to my instincts and less to conforming (though more to the conformal). I have
appreciated the friendship of Gabor Kunstatter and Meg Carrington, my frequent
collaborators, and have welcomed occasional encouraging communications
from Roman Jackiw, one of the champions of classical and quantum field theory.
I am, of course, indebted to my friends in Oslo. I blame Alan McLachlan
for teaching me more than I wanted to know about group congruence classes.

XiX
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XX Foreword

Thanks finally to Tai Phan, of the Space Science Lab at Berkeley for providing
some sources of information for the gallery data.

Like all software, this book will contain bugs; it is never really finished and
trivial, even obvious errors creep in inexplicably. I hope that these do not distract
from my perspective on one of the most beautiful ideas in modern physics:
covariant field theory.

I called the original set of these notes: The X, Files: Covert Field Theory,
as a joke to myself. The world of research has become a merciless battleground
of competitive self-interest, a noise in which it is all but impossible to be heard.
Without friendly encouragement, and a pinch of humour, the battle to publish
would not be worth the effort.

Mark Burgess
Oslo University College
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“The Dutch astronomer De Sitter was able to show that
the velocity of propagation of light cannot depend on
the velocity of motion of the body emitting the light...
theoretical investigations of H.A. Lorentz...lead[s] conclusively
to a theory of electromagnetic phenomena, of which the
law of the constancy of the velocity of light in vacuo
is a necessary consequence.”

— Albert Einstein

“Energy of a type never before encountered.”

— Spock, Star Trek: The motion picture.
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Part 1
Fields
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1

Introduction

In contemporary field theory, the word classical is reserved for an analytical
framework in which the local equations of motion provide a complete de-
scription of the evolution of the fields. Classical field theory is a differential
expression of change in functions of space and time, which summarizes the
state of a physical system entirely in terms of smooth fields. The differential
(holonomic) structure of field theory, derived from the action principle, implies
that field theories are microscopically reversible by design: differential changes
experience no significant obstacles in a system and may be trivially undone.
Yet, when summed macroscopically, in the context of an environment, such
individually reversible changes lead to the well known irreversible behaviours
of thermodynamics: the reversal of paths through an environmental landscape
would require the full history of the route taken. Classical field theory thus
forms a basis for both the microscopic and the macroscopic.

When applied to quantum mechanics, the classical framework is sometimes
called the first quantization. The first quantization may be considered the
first stage of a more complete theory, which goes on to deal with the issues
of many-particle symmetries and interacting fields. Quantum mechanics is
classical field theory with additional assumptions about measurement. The
term quantum mechanics is used as a name for the specific theory of the
Schrodinger equation, which one learns about in undergraduate studies, but it is
also sometimes used for any fundamental description of physics, which employs
the measurement axioms of Schrédinger quantum mechanics, i.e. where change
is expressed in terms of fields and groups. In that sense, this book is also about
quantum mechanics, though it does not consider the problem of measurement,
and all of its subtlety.

In the so-called quantum field theory, or second quantization, fields are
promoted from c-number functions to operators, acting upon an additional
set of states, called Fock space. Fock space supplants Slater determinant
combinatorics in the classical theory, and adds a discrete aspect to smooth field

3
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4 1 Introduction

theory. It quantizes the allowed amplitudes of the normal modes of the field
and gives excitations the same denumerable property that ensembles of particles
have; i.e. it adds quanta to the fields, or indistinguishable, countable excitations,
with varying numbers. Some authors refer to these quanta simply as ‘particles’;
however, they are not particles in the classical sense of localizable, pointlike
objects. Moreover, whereas particles are separate entities, quanta are excita-
tions, spawned from a single entity: the quantum field. The second-quantized
theory naturally incorporates the concept of a lowest possible energy state
(the vacuum), which rescues the relativistic theory from negative energies and
probabilities. Such an assumption must be added by hand in the classical theory.
When one speaks about quantum field theory, one is therefore referring to this
‘second quantization’ in which the fields are dynamical operators, spawning
indistinguishable quanta.

This book is not about quantum field theory, though one might occasionally
imagine it is. It will mention the quantum theory of fields, only insofar as to hint
at how it generalizes the classical theory of fields. It discusses statistical aspects
of the classical field to the extent that classical Boltzmann statistical mechanics
suffices to describe them, but does not delve into interactions or combinatorics.
One should not be misled; books on quantum field theory generally begin with
a dose of classical field theory, and many purely classical ideas have come to be
confused with second-quantized ones. Only in the final chapter is the second-
quantized framework outlined for comparison. This book is a summary of the
core methodology, which underpins covariant field theory at the classical level.
Rather than being a limitation, this avoidance of quantum field theory allows one
to place a sharper focus on key issues of symmetry and causality which lie at the
heart of all subsequent developments, and to dwell on the physical interpretation
of formalism in a way which other treatments take for granted.

1.1 Fundamental and effective field theories

The main pursuit of theoretical physics, since quantum mechanics was first
envisaged, has been to explore the maxim that the more microscopic a theory
is, the more fundamental it is. In the 1960s and 1970s it became clear that this
view was too simplistic. Physics is as much about scale as it is about constituent
components. What is fundamental at one scale might be irrelevant to physics at
another scale. For example, quark dynamics is not generally required to describe
the motion of the planets. All one needs, in fact, is an effective theory of planets
as point mass objects. their detailed structure is irrelevant to so many decimal
places that it would be nonsense to attempt to include it in calculations. Planets
are less elementary than quarks, but they are not less fundamental to the problem
at hand.

The quantum theory of fields takes account of dynamical correlations be-
tween the field at different points in space and time. These correlations,
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1.2 The continuum hypothesis 5

called fluctuations or virtual processes, give rise to guantum corrections to the
equations of motion for the fields. At first order, these can also be included
in the classical theory. The corrections modify the form of the equations of
motion and lead to effective field equations for the quantized system. At low
energies, these look like classical field theories with renormalized coefficients.
Indeed, this sometimes results in the confusion of statistical mechanics with the
second quantization. Put another way, at a superficial level all field theories are
approximately classical field theories, if one starts with the right coefficients.
The reason for this is that all one needs to describe physical phenomena is a
blend of two things: symmetry and causal time evolution. What troubles the
second quantization is demonstrating the consistency of this point of view, given
sometimes uncertain assumptions about space, time and the nature of fields.
This point has been made, for instance, by Wilson in the context of the
renormalization group [139]; it was also made by Schwinger, in the early 1970s,
who, disillusioned with the direction that field theory was taking, redefined his
own interpretation of field theory called source theory [119], inspired by ideas
from Shannon’s mathematical theory of communication [123]. The thrust of
source theory is the abstraction of irrelevant detail from calculations, and a
reinforcement of the importance of causality and boundary conditions.

1.2 The continuum hypothesis

Even in classical field theory, there is a difference between particle and field
descriptions of matter. This has nothing a priori to do with wave—particle duality
in quantum mechanics. Rather, it is to do with scale.

In classical mechanics, individual pointlike particle trajectories are character-
ized in terms of ‘canonical variables’ x(¢) and p(¢), the position and momentum
at time 7. Underpinning this description is the assumption that matter can be
described by particles whose important properties are localized at a special place
at a special time. It is not even necessarily assumed that matter is made of
particles, since the particle position might represent the centre of mass of an
entire planet, for instance. The key point is that, in this case, the centre of mass
is a localizable quantity, relevant to the dynamics.

In complex systems composed of many particles, it is impractical to take
into account the behaviour of every single particle separately. Instead, one
invokes the continuum hypothesis, which supposes that matter can be treated
as a continuous substance with bulk properties at large enough scales. A system
with a practically infinite number of point variables is thus reduced to the study
of continuous functions or effective fields. Classically, continuum theory is a
high-level or long-wavelength approximation to the particle theory, which blurs
out the individual particles. Such a theory is called an effective theory.

In quantum mechanics, a continuous wavefunction determines the probability
of measuring a discrete particle event. However, free elementary quantum
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6 1 Introduction

particles cannot be localized to precise trajectories because of the uncertainty
principle. This wavefunction-field is different from the continuum hypothesis
of classical matter: it is a function which represents the state of the particle’s
quantum numbers, and the probability of its position. It is not just a smeared
out approximation to a more detailed theory. The continuous, field nature is
observed as the interference of matter waves in electron diffraction experiments,
and single-particle events are measured by detectors. If the wavefunction is
sharply localized in one place, the probability of measuring an event is very
large, and one can argue that the particle has been identified as a bump in the
field.

To summarize, a sufficient number of localizable particles can be viewed as an
effective field, and conversely a particle can be viewed as a localized disturbance
in an elementary field.

To envisage an elementary field as representing particles (not to be confused
with quanta), one ends up with a picture of the particles as localized disturbances
in the field. This picture is only completely tenable in the non-relativistic limit of
the classical theory, however. At relativistic energies, the existence of particles,
and their numbers, are fuzzy concepts which need to be given meaning by the
quantum theory of fields.

1.3 Forces

In classical mechanics, forces act on particles to change their momentum. The
mechanical force is defined by

dp

F = i (1.1)
where p is the momentum. In field theory, the notion of a dynamical influence
is more subtle and has much in common with the interference of waves. The
idea of a force is of something which acts at a point of contact and creates an
impulse. This is supplanted by the notion of fields, which act at a distance and
interfere with one another, and currents, which can modify the field in more
subtle ways. Effective mechanical force is associated with a quantity called the
energy—momentum tensor 6,,,, or T),,,.

1.4 Structural elements of a dynamical system

The shift of focus, in modern physics, from particle theories to field theories
means that many intuitive ideas need to be re-formulated. The aim of this book is
to give a substantive meaning to the physical attributes of fields, at the classical
level, so that the fully quantized theory makes physical sense. This requires
example.
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1.4 Structural elements of a dynamical system 7

A detailed description of dynamical systems touches on a wide variety of
themes, drawing on ideas from both historical and mathematical sources. The
simplicity of field theory, as a description of nature, is easily overwhelmed by
these details. It is thus fitting to introduce the key players, and mention their
significance, before the clear lines of physics become obscured by the topog-
raphy of a mathematical landscape. There are two kinds of dynamical system,
which may be called continuous and discrete, or holonomic and non-holonomic.
In this book, only systems which are parametrized by continuous, spacetime
parameters are dealt with. There are three major ingredients required in the
formulation of such a dynamical system.

e Assumptions
A model of nature embodies a body of assumptions and approximations.
The assumptions define the ultimate extent to which the theory may be
considered valid. The best that physics can do is to find an idealized
description of isolated phenomena under special conditions. These
conditions need to be borne clearly in mind to prevent the mathematical
machinery from straying from the intended path.

e Dynamical freedom

The capacity for a system to change is expressed by introducing dynam-
ical variables. In this case, the dynamical variables are normally fields.
The number of ways in which a physical system can change is called its
number of degrees of freedom. Such freedom describes nothing unless
one sculpts out a limited form from the amorphous realm of possibility.
The structure of a dynamical system is a balance between freedom and
constraint.

The variables in a dynamical system are fields, potentials and sources.
There is no substantive distinction between field, potential and source,
these are all simply functions of space and time; however, the words
potential or source are often reserved for functions which are either static
or rigidly defined by boundary conditions, whereas field is reserved for
functions which change dynamically according to an equation of motion.

e Constraints
Constraints are restrictions which determine what makes one system
with n variables different from another system with n variables. The
constraints of a system are both dynamical and kinematical.

— Equations of motion
These are usually the most important constraints on a system. They
tell us that the dynamical variables cannot take arbitrary values; they
are dynamical constraints which express limitations on the way in
which dynamical variables can change.
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8 1 Introduction

— Sources: external influences

Physical models almost always describe systems which are isolated
from external influences. Outside influences are modelled by intro-
ducing sources and sinks. These are perturbations to a closed system
of dynamical variables whose value is specified by some external
boundary conditions. Sources are sometimes called generalized
forces. Normally, one assumes that a source is a kind of ‘immovable
object’ or infinite bath of energy whose value cannot be changed
by the system under consideration. Sources are used to examine
what happens under controlled boundary conditions. Once sources
are introduced, conservation laws may be disturbed, since a source
effectively opens a system to an external agent.

— Interactions

Interactions are couplings which relate changes in one dynamical
variable to changes in another. This usually occurs through a
coupling of the equations of motion. Interaction means simply that
one dynamical variable changes another. Interactions can also be
thought of as internal sources, internal influences.

— Symmetries and conservation laws

If a physical system possesses a symmetry, it indicates that even
though one might try to affect it in a specific way, nothing significant
will happen. Symmetries exert passive restrictions on the behaviour
of a system, i.e. kinematical constraints. The conservation of book-
keeping parameters, such as energy and momentum, is related to
symmetries, so geometry and conservation are, at some level, related
topics.

The Lagrangian of a dynamical theory must contain time derivatives if it is to be
considered a dynamical theory. Clearly, if the rate of change of the dynamical
variables with time is zero, nothing ever happens in the system, and the most
one can do is to discuss steady state properties.
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2

The electromagnetic field

Classical electrodynamics serves both as a point of reference and as the point
of departure for the development of covariant field theories of matter and
radiation. It was the observation that Maxwell’s equations predict a universal
speed of light in vacuo which led to the special theory of relativity, and
this, in turn, led to the importance of perspective in identifying generally
applicable physical laws. It was realized that the symmetries of special relativity
meant that electromagnetism could be reformulated in a compact form, using
a vector notation for spacetime unified into a single parameter space. The
story of covariant fields therefore begins with Maxwell’s four equations for the
electromagnetic field in 3 4- 1 dimensions.

2.1 Maxwell’s equations

In their familiar form, Maxwell’s equations are written (in SI units)

Pe

V.E= (2.1a)
€0
- B
VXE=—— (2.1b)
at
V.-B=0 2.1¢)
- J OE
AV xB) ==+ —. (2.1d)
€0 ot

pe 1s the charge density, J is the electric current density and c? = (eopo) ! is
the speed of light in a vacuum squared. These are valid, as they stand, in inertial
frames in flat (34-1) dimensional spacetimes. The study of covariant field theory
begins by assuming that these equations are true, in the sense that any physical
laws are ‘true’ — i.e. that they provide a suitably idealized description of the
physics of electromagnetism. We shall not attempt to follow the path which

9
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10 2 The electromagnetic field

led to their discovery, nor explore their limitations. Rather, we are interested
in summarizing their form and substance, and in identifying symmetries which
allow them to be expressed in an optimally simple form. In this way, we hope
to learn something deeper about their meaning, and facilitate their application.

2.1.1 Potentials

This chapter may be viewed as a demonstration of how applied covariance leads
to a maximally simple formulation of Maxwell’s equations. A more complete
understanding of electromagnetic covariance is only possible after dealing with
the intricacies of chapter 9, which discusses the symmetry of spacetime. Here,
the aim is to build an algorithmic understanding, in order to gain a familiarity
with key concepts for later clarification.

In texts on electromagnetism, Maxwell’s equations are solved for a number
of problems by introducing the idea of the vector and scalar potentials. The po-
tentials play an important role in modern electrodynamics, and are a convenient
starting point for introducing covariance.

The electromagnetic potentials are introduced by making use of two theo-
rems, which allow Maxwell’s equations to be re-written in a simplified form. In
a covariant formulation, one starts with these and adds the idea of a unified
spacetime. Spacetime is the description of space and time which treats the
apparently different parameters x and ¢ in a symmetrical way. It does not claim
that they are equivalent, but only that they may be treated together, since both
describe different aspects of the extent of a system. The procedure allows us to
discover a simplicity in electromagnetism which is not obvious in eqns. (2.1).

The first theorem states that the vanishing divergence of a vector implies that
it may be written as the curl of some other vector quantity A:

Viv=0 = v=V xA. (2.2)

The second theorem asserts that the vanishing of the curl of a vector implies that
it may be written as the gradient of some scalar ¢:

Vxv=0 = v=V. 2.3)

The deeper reason for both these theorems, which will manifest itself later, is
that the curl has an anti-symmetric property. The theorems, as stated, are true
in a homogeneous, isotropic, flat space, i.e. in a system which does not have
irregularities, but they can be generalized to any kind of space. From these, one
defines two potentials: a vector potential A; and a scalar ¢, which are auxiliary
functions (fields) of space and time.

The physical electromagnetic field is the derivative of the potentials. From
eqn. (2.1c), one defines

B=V xA. (2.4)
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2.1 Maxwell’s equations 11
This form completely solves that equation. One equation has now been

automatically and completely solved by re-parametrizing the problem in terms
of a new variable. Eqn. (2.1c) tells us now that

- 9 -
VxE=——(VxA)
ot
- 0A
V x E+¥ = 0. (2.5)

Consequently, according to the second theorem, one can write

0A

E4+ —=-V¢, 2.6
ot 26)
giving
E=-V¢ 2.7
at '

The minus sign on the right hand side of eqn. (2.6) is the convention which is
used to make attractive forces positive and repulsive forces negative.

Introducing potentials in this way is not a necessity: many problems in
electromagnetism can be treated by solving eqns. (2.1) directly, but the intro-
duction often leads to significant simplifications when it is easier to solve for
the potentials than it is to solve for the fields.

The potentials themselves are a mixed blessing: on the one hand, the
re-parametrization leads to a number of helpful insights about Maxwell’s equa-
tions. In particular, it reveals symmetries, such as the gauge symmetry, which
we shall explore in detail later. It also allows us to write the matter—radiation
interaction in a local form which would otherwise be impossible. The price one
pays for these benefits is the extra conceptual layers associated with the potential
and its gauge invariance. This confuses several issues and forces us to deal with
constraints, or conditions, which uniquely define the potentials.

2.1.2 Gauge invariance

Gauge invariance is a symmetry which expresses the freedom to re-define the
potentials arbitrarily without changing their physical significance. In view of
the theorems above, the fields E and B are invariant under the re-definitions

A—>A=A+Vs
as
= — —. 2.8
¢—>¢ =9 o7 (2.8)

These re-definitions are called gauge transformations, and s(x) is an arbitrary
scalar function. The transformation means that, when the potentials are used
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12 2 The electromagnetic field

as variables to solve Maxwell’s equations, the parametrization of physics is not
unique. Another way of saying this is that there is a freedom to choose between
one of many different values of the potentials, each of which leads to the same
values for the physical fields E and B. One may therefore choose whichever
potential makes the solution easiest. This is a curious development. Why make a
definite problem arbitrary? Indeed, this freedom can cause problems if one is not
cautious. However, the arbitrariness is unavoidable: it is deeply connected with
the symmetries of spacetime (the Lorentz group). Occasionally gauge invariance
leads to helpful, if abstract, insights into the structure of the field theory. At other
times, it is desirable to eliminate the fictitious freedom it confers by introducing
an auxiliary condition which pins down a single ¢, A pair for each value of
E, B. As long as one uses a potential as a tool to solve Maxwell’s equations,
it is necessary to deal with gauge invariance and the multiplicity of equivalent
solutions which it implies.

2.1.3 4-vectors and (n + 1)-vectors

Putting the conceptual baggage of gauge invariance aside for a moment, one
proceeds to make Maxwell’s equations covariant by combining space and time
in a unified vector formulation. This is easily done by looking at the equations
of motion for the potentials. The equations of motion for the vector potentials
are found as follows: first, substituting for the electric field in eqn. (2.1a) using
eqn. (2.7), one has

0 e
V22— Z(v.A) = (2.9)
ot €0
Similarly, using eqn. (2.4) in (2.1d), one obtains
— = 3 —d 8A
szx(VXA)=i+— —Vo— — ). (2.10)
) ot ot
Using the vector identity
Vx(VxA)=V(V-A) —V3A (2.11)
to simplify this, one obtains
1 92 i = [0¢ -
2 2 2
—— =V )JA==—-V|— V-A)). 2.12
¢ <028t2 ) . (at +c*( )) (2.12)

It is already apparent from eqns. (2.8) that the potentials ¢, A are not unique.
This fact can now be used to tidy up eqn. (2.12), by making a choice for ¢ and
A:

1 9¢

V. A+ -2 =0. 2.13
+c2 ot ( )
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2.1 Maxwell’s equations 13

The right hand side of eqn. (2.13) is chosen to be zero, but, of course, any
constant would do. Making this arbitrary (but not random) choice, is called
choosing a gauge. It partially fixes the freedom to choose the scalar field s in
eqns. (2.8). Specifically, eqn. (2.13) is called the Lorentz gauge. This common
choice is primarily used to tidy up the equations of motion, but, as noted above,
at some point one has to make a choice anyway so that a single pair of vector
potentials (scalar, vector) corresponds to only one pair of physical fields (E, B).

The freedom to choose the potentials is not entirely fixed by the adoption of
the Lorentz condition, however, as we may see by substituting eqn. (2.8) into
eqn. (2.13). Eqn. (2.13) is not completely satisfied; instead, one obtains a new

condition
2 82

A second condition is required in general to eliminate all of the freedom in the
vector potentials.

General covariance is now within reach. The symmetry with which space and
time, and also ¢ and A, enter into these equations leads us to define spacetime
vectors and derivatives:

1 -
0, = (Za,, V) (2.15)
P (2.16)
x /)’ )
with Greek indices i, v =0, ..., n and x° = ct. Repeated indices are summed
according to the usual Einstein summation convention, and we define'
1
0 = 3"9, = —zaf + V2, (2.17)

In n space dimensions and one time dimension (n = 3 normally), the (n + 1)
dimensional vector potential is defined by

_( ¥/
A“_( A ) (2.18)

Using these (n 4+ 1) dimensional quantities, it is now possible to re-write
eqn. (2.12) in an extremely beautiful and fully covariant form. First, one
re-writes eqn. (2.10) as

J

S Vo, A", (2.19)
0

—JA=

'In some old texts, authors wrote []2 for the same operator, since it is really a four-sided
(four-dimensional) version of V2,
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14 2 The electromagnetic field
Next, one substitutes the gauge condition eqn. (2.13) into eqn. (2.9), giving

=" (2.20)
€0

Finally, the (n + 1) dimensional current is defined by

_ | cpe
J"—( ] ) 2.21)

and we end up with the (n + 1) dimensional field equation
—0 A" = poJt, (2.22)

where ¢> = (uo€g)~! has been used. The potential is still subject to the
constraint in eqn. (2.13), which now appears as

9, A" =0, (2.23)

2.1.4 The field strength

The new attention given to the potential A, should not distract from the main
aim of electromagnetism: namely to solve Maxwell’s equations for the electric
and magnetic fields. These two physical components also have a covariant
formulation; they are now elegantly unified as the components of a rank 2 tensor
which is denoted F),, and is defined by

Fu=0,A, —0,A,; (2.24)
the tensor is anti-symmetric
Fu=—F,,. (2.25)

This anti-symmetry, which was alluded to earlier, is the reason for the gauge
invariance. The form of eqn. (2.24) is like a (3 4+ 1) dimensional curl,
expressed in index notation. The explicit components of this field tensor are
the components of the electric and magnetic field components, in a Cartesian
basis E = (Ey, E,, E3), etc.:

0 —El/C —EQ/C —E3/C

_ El/C 0 Bg —Bz
Fuy = E>/c —B3 0 B (2.26)
E3/C Bz —B1 0

In chapter 9, it will be possible to provide a complete understanding of how
the symmetries of spacetime provide an explanation for why the electric and
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2.1 Maxwell’s equations 15

magnetic components of this field appear to be separate entities, in a fixed
reference frame.

With the help of the potentials, three of Maxwell’s equations (eqns. (2.1a,c,d))
are now expressed in covariant form. Eqn. (2.1c) is solved implicitly by the
vector potential. The final equation (and also eqn. (2.1c), had one not used the
vector potential) is an algebraic identity, called the Jacobi or Bianchi identity.
Moreover, the fact that it is an identity is only clear when we write the equations
in covariant form. The final equation can be written

"y, Fyy =0, (2.27)

where e*"* is the completely anti-symmetric tensor in four dimensions, defined
by its components in a Cartesian basis:

+1 pvip = 0123 and even permutations
e =L —1 pvip = 0132 and other odd permutations (2.28)
0 otherwise.

This equation is not a condition on Fj,,, in spite of appearances. The anti-
symmetry of both " and F,, implies that the expansion of eqn. (2.27),
in terms of components, includes many terms of the form (9,0, — 9,0,)A;,
the sum of which vanishes, provided A, contains no singularities. Since the
vector potential is a continuous function in all physical systems,? the truth of the
identity is not in question here.

The proof that this identity results in the two remaining Maxwell’s equations
applies only in 3 + 1 dimensions. In other numbers of dimensions the equations
must be modified. We shall not give it here, since it is easiest to derive using the
index notation and we shall later re-derive our entire formalism consistently in
that framework.

2.1.5 Covariant field equations using F,,

The vector potential has been used thus far, because it was easier to identify the
structure of the (3 4+ 1) dimensional vectors than to guess the form of F*¥, but
one can now go back and re-express the equations of motion in terms of the
so-called physical fields, or field strength F),,. The arbitrary choice of gauge in
eqn. (2.22) is then eliminated.

Returning to eqn. (2.9) and adding and subtracting 83(1), one obtains

D¢ — 3(0,A”) = f—;. (2.29)

2 The field strength can never change by more than a step function, because of Gauss’ law: the
field is caused by charges, and a point charge (delta function) is the most singular charge that
exists physically. This ensures the continuity of A,.

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

16 2 The electromagnetic field

Adding this to eqn. (2.19) (without choosing a value for d,A"), one has

JH
—0A" = —— —93"(3,A"). (2.30)
C €
Taking the last term on the right hand side over to the left and using eqn. (2.17)
yields
JH
3y (0" AY —9"AN) = ——. (2.31)
C€Q

The parenthesis on the left hand side is now readily identified as
0, F" = poJ". (2.32)

This is the covariant form of the field equations for the physical fields. It
incorporates two of the four Maxwell equations as before (eqn. (2.1c¢) is implicit
in the structure we have set up). The final eqn. (2.27) is already expressed in
terms of the physical field strength, so no more attention is required.

2.1.6 Two invariants

There are two invariant, scalar quantities (no free indices) which can be written
down using the physical fields in (3 4+ 1) dimensions. They are

F =F"F,, (2.33)
G =", F,. (2.34)

The first of these evaluates to
, 1.
F=2|B ——2E . (2.35)
c

In chapter 4 this quantity is used to construct the action of the system: a
generating function the dynamical behaviour. The latter gives

G=E-B. (2.36)

In four dimensions, this last quantity vanishes for a self-consistent field: the
electric and magnetic components of a field (resulting from the same source)
are always perpendicular. In other numbers of dimensions the analogue of this
invariant does not necessarily vanish.

The quantity F has a special significance. It turns out to be a Lagrangian,
or generating functional, for the electromagnetic field. It is also related to the
energy density of the field by a simple transformation.
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2.1 Maxwell’s equations 17

2.1.7 Gauge invariance and physical momentum
As shown, Maxwell’s equations and the physical field F,,, are invariant under
gauge transformations of the form

Ay = Ay + (B,9). (2.37)

It turns out that, when considering the interaction of the electromagnetic field
with matter, the dynamical variables for matter have to change under this gauge
transformation in order to uphold the invariance of the field equations.

First, consider classical particles interacting with an electromagnetic field.
The force experienced by classical particles with charge g and velocity v is the
Lorentz force

Fim = ¢(E+ v x B). (2.38)

The total force for an electron in an external potential V and an electromagnetic
field is therefore

dp;
d—l; = _e(Ei + Gijkvak) - ai V. (239)

Expressing E and B in terms of the vector potential, we have
o (pi —eA;) = —eF,'j).Cj —0;(V +eA)). (2.40)

This indicates that, apart from a gauge-invariant Biot—Savart contribution in the
first term on the right hand side of this equation, the electromagnetic interaction
is achieved by replacing the momentum p; and the energy E by

Py —> (Pp—eAy). (2.41)

The Biot—Savart term can also be accounted for in this way if we go over to a
relativistic, Lorentz-covariant form of the equations:

d
E(pu - EA;L) + Fu,vllv =0, (2.42)

where I/ = —edx*/dt ~ Idl is the current in a length of wire dx (with
dimensions current x length) and t is the proper time. In terms of the more
familiar current density, we have

d
(P — A + / do F,J" = 0. (2.43)

We can now investigate what happens under a gauge transformation. Clearly,
these equations of motion can only be invariant if p, also transforms so as to
cancel the term, 9,5, in eqn. (2.37). We must have in addition

Pu —> Du +eoys. (2.44)
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18 2 The electromagnetic field

Without a deeper appreciation of symmetry, this transformation is hard to under-
stand. Arising here in a classical context, where symmetry is not emphasized,
it seems unfamiliar. What is remarkable, however, is that the group theoretical
notions of quantum theory of matter makes the transformation very clear. The
reason is that the state of a quantum mechanical system is formulated very
conveniently as a vector in a group theoretical vector space. Classically, po-
sitions and momenta are not given a state-space representation. In the quantum
formulation, gauge invariance is a simple consequence of the invariance of
the equations of motion under changes of the arbitrary complex phase of the
quantum state or wavefunction.

In covariant vector language, the field equations are invariant under a re-
definition of the vector potential by

Ay — Ay +(9,8), (2.45)

where s(x) is any scalar field. This symmetry is not only a mathematical
curiosity; it also has a physical significance, which has to do with conservation.

2.1.8 Wave solutions to Maxwell’s equations
The equation for harmonic waves W (x), travelling with speed v, is given by

, 192
Vi —as ) W =o. (2.46)

If the speed of the waves is v = ¢, this may be written in the compact form
—-OW(x)=0. (2.47)

It should already be apparent from eqn. (2.22) that Maxwell’s equations have
wavelike solutions which travel at the speed of light. Writing eqn. (2.22) in
terms of the field strength tensor, we have

—0 Fuy = po(9,Jy — 0,J)). (2.48)

In the absence of electric charge J,, = 0, the solutions are free harmonic waves.
When J, # 0, Maxwell’s equations may be thought of as the equations of
forced oscillations, but this does not necessarily imply that all the solutions
of Maxwell’s equations are wavelike. The Fourier theorem implies that any
function may be represented by a suitable linear super-position of waves. This is
understood by noting that the source in eqn. (2.48) is the spacetime ‘curl’ of the
current, which involves an extra derivative. Eqn. (2.32) is a more useful starting
point for solving the equations for many sources. The free wave solutions for
the field are linear combinations of plane waves with constant coefficients:

A, (k) = Cp exp(ik,x™). (2.49)
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2.1 Maxwell’s equations 19

By substituting this form into the equation
—0A, =0, (2.50)
one obtains a so-called dispersion relation for the field:
k= k> =k* — 0?/c* = 0. (2.51)

This equation may be thought of as a constraint on the allowed values of k. The
total field may be written compactly in the form

A,(x) = f ﬂeikw“ A, (k) 8(k%) (2.52)
H - (27‘[)”"‘1 H K ’

where A(k), represents the amplitude of the wave with wavenumber k;, and
the vector index specifies the polarization of the wave modes. From the gauge
condition in eqn. (2.23), we have

k,A(k)" = 0. (2.53)

The delta-function constraint in eqn. (2.52) ensures that the combination of
waves satisfies the dispersion relation in eqn. (2.51). If we use the property
of the delta function expressed in Appendix A, eqn. (A.15), then eqn. (2.52)
may be written

R G S 1 /9
Aulx) = 6#/ (27 )+ e ) A(k) c_kl (8_165)
x (8(k0 — VK + 8(ko + \/E)) . (2.54)

The delta functions ensure that the complex exponentials are waves travelling at
the so-called phase velocity

vl =+ (2.55)

where w and k; satisfy the dispersion relation. The amplitude of the wave clearly
changes at the rate

; dow
L= 2.56
Y = o (2.56)
known as the group velocity. By choosing the coefficient C(k) for each
frequency and wavelength, the super-position principle may be used to build
up any complementary (steady state) solution to the Maxwell field. We shall use
this approach for other fields in chapter 5.
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20 2 The electromagnetic field

2.2 Conservation laws

The simple observation of ‘what goes in must come out’ applies to many
physical phenomena, including electromagnetism, and forms a predictive frame-
work with rich consequences. Conservation is a physical fact, which must be
reflected in dynamical models. Just as economics uses money as a book-keeping
parameter for transactions, so physics accounts for transactions (interactions)
with energy, charge and a variety of similarly contrived labels which have proven
useful in keeping track of ‘stock’ in the physical world.

2.2.1 Current conservation

Perhaps the central axiom of electromagnetism is the conservation of total
electric charge. An algebraic formulation of this hypothesis provides an
important relationship, which will be referred to many times. Consider the
electric current /, defined in terms of the rate of flow of charge:

I / do -J do (2.57)
dr
Expressing the charge Q as the integral over the charge density, one has
/V -Jdo = —8,/peda. (2.58)
Comparing the integrand on the left and right hand sides gives
., =
Pe 4 v.J=0, (2.59)
ot
or, in index notation,
8 J" = —3,p.. (2.60)

This may now be expressed in 4-vector language (or (n + 1)-vector language),
and the result is:

3, J" = 0. 2.61)

This result is known as a continuity condition or a conservation law. All
conservation laws have this essential form, for some (n + 1) dimensional current
vector J#. The current is then called a conserved current. In electromagnetism
one can verify that the conservation of current is compatible with the equations
of motion very simply in eqn. (2.32) by taking the 4-divergence of the equation:

3,0, F"" = 1o 8, J" = 0. (2.62)

The fact that the left hand size is zero follows directly from the anti-symmetrical
and non-singular nature of F,,.
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2.2 Conservation laws 21

2.2.2 Poynting’s vector and energy conservation

The electromagnetic field satisfies a continuity relation of its own. This relation
is arrived at by considering the energy flowing though a unit volume of the field.
The quantities defined below will later re-emerge in a more general form as the
so-called field theoretical energy—momentum tensor.

The passage of energy through an electromagnetic system may be split up into
two contributions. The first is the work done on any electric charges contained
in the volume. This may be expressed in terms of the current density and the
electric field as follows. The rate at which work is done on a moving charge is
given by the force vector dotted with the rate of change of the displacement (i.e.
the velocity), F - v. The force, in turn, is given by the charge multiplied by the
electric field strength g E, which we may write in terms of the charge density p,
inside a spatial volume do as p.Edo. The rate at which work is done on charges
may now be expressed in terms of an external source or current, by identifying
the external current to be the density of charge which is flowing out of some
volume of space with a velocity v

Jext = PeV. (2.63)
‘We have
Rate of work = E - J.do. (2.64)

The second contribution to the energy loss from a unit volume is due to the
flux of radiation passing through the surface (5) which bounds the infinitesimal
volume (o). This flux of radiation is presently unknown, so we shall refer to it
as S. If we call the total energy density H, then we may write that the loss of
energy from an infinitesimal volume is the sum of these two contributions:

—0; /Hdo :/S-dS+/E-Jexth. (2.65)
o S o

In 1884, Poynting identified 7 and S using Maxwell’s equations. We shall now
do the same. The aim is to eliminate the current J., from this relation in order
to express H and S in terms of E and B only. We begin by using the fourth
Maxwell equation (2.1d) to replace Jex in eqn. (2.65):

E-(VxB)

E Jx=——"—"——-¢E: 0E. (2.66)
o

Using the vector identity in Appendix A, eqn. (A.71), we may write
E-(VxB)=V-BxE)+B.-(VxE). (2.67)
The second Maxwell eqn. (2.1b) may now be used to replace V x E, giving

E-(VxB)=V.-(B xE)—-BoB. (2.68)
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22 2 The electromagnetic field

Finally, noting that
1
58,(X -X) = X9,X, (2.69)

and using this with X = E and X = B in eqns. (2.66) and (2.68), we may write:

V.BxE) 1
E'Jext:—_iat

1
eE-E4+ —B- B) . (2.70)
Ko

Mo

This equation has precisely the form of eqn. (2.65), and the pieces can now be
identified:

1 1
ﬁ:H:EGmE+—BB)

Ko
1
EE(E-D+B~H) (2.71)
< ExB
Si=8=—"
CHo
ExH
= . 2.72)
c

The new fields D = ¢yE and poH = B have been defined. The energy density H
is often referred to as a Hamiltonian for the free electromagnetic field, whereas
S is referred to as the Poynting vector.

3, S"* = (FopJdy) (2.73)

is the rate at which work is done by an infinitesimal volume of the field. It
is clear from the appearance of an explicit zero component in the above that
this argument cannot be the whole story. One expects a generally covariant
expression. The expression turns out to be

a/"el\le:xwell = FMVJ;U (274)

where 6,,, is the energy—momentum tensor. Notice how it is a surface integral
which tells us about flows in and out of a volume of space. One meets this idea
several times, in connection with boundary conditions and continuity.

2.3 Electromagnetism in matter

To describe the effect of matter on the electromagnetic field in a covariant way,
one may use either a microscopic picture of the field interacting with matter at
the molecular level, or a macroscopic, effective field theory, which hides the
details of these interactions by defining equivalent fields.
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Fig. 2.1. Matter is not electrically neutral at the microscopic level.

2.3.1 Dielectrics

One tends to think of ordinary matter as being electrically neutral, but of course
it is composed of atoms and molecules, which have a centre of positive charge
and a centre of negative charge — and these two centres do not necessarily lie at
the same place. The more symmetrical a molecule is, the more neutral it is: for
instance, the noble gases have highly symmetrical electron orbits and thus have
almost no polarizability on average; the water molecule, on the other hand, has
an asymmetry which allows a trickle of water to be attracted by a charged comb.

When an electric field is switched on in the vicinity of a dielectric material, the
centres of positive and negative charge in each molecule are forced apart slightly
(see figure 2.1) in a substance-dependent way. We say that such a molecule has
a certain polarizability.

For classical external fields, atoms and molecules behave like dipoles, i.e.
there is a clear separation of the charge into two parts: a positive pole and a
negative pole. But we would be doing a disservice to the radiation field (not to
mention the quantum theory) if we did not recall that the field has a wave nature
and a characteristic wavelength. Molecules behave like dipoles if the wavelength
of the external field is large compared to the size of the molecule — since then
there is a clear direction to the field at every point inside the molecule’s charge
cloud. If, on the other hand, the wavelength of the field is of the order of the size
of the molecule or less, then the field can reverse direction inside the molecule
itself. The charge then gets re-distributed into a more complex pattern, and so-
called quadrapole moments and perhaps higher ‘pole moments’ must be taken
into account. In this text, we shall only consider the dipole approximation.

The simplest way to model the polarization of an atom or molecule is to view
it as opposite charges coupled together by a spring. This model is adequate for
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24 2 The electromagnetic field

many materials, provided the external electric field is not too strong. Materials
which behave like this are called linear media. Initially, the centres of positive
and negative charge are in the same place, but, as the external field is switched
on, they are pulled further and further apart, balanced by the restoring force of
the spring. This separation of charge creates a new local field, which tends to
cancel the external field inside the molecule, but to reinforce it at the poles. If the
charge clouds have charge ¢ and the spring constant is « then the force equation
is simply

F =—xs = Eq, (2.75)

where s is the displacement of the charges from one another, in the rest frame
of the atoms. The separation multiplied by the charge gives the effective
contribution to the field at the poles of a single molecule, denoted the dipole
moment d:

q2
d=|s|g = —E. (2.76)

K

The quantity g2/« is denoted by « and is called the polarizability; it denotes the
effective strength of the resistance to polarization. The polarization field is

where py is the total number of molecules per unit volume. It is proportional
to the field of particles displacements s’(x) and it hides some non-covariant
assumptions (see the next section). Normally speaking, one writes g = —e,
where —e is the charge on the electron. Then,

_ 2
Ostatic = Kq . (2.78)

If one considers time-varying fields, or specifically waves of the form
E = Ee'®*), (2.79)

it is found that, for a single optically active electron (i.e. one in an orbit which
can be affected by an external field), the equation of motion is now that of a
damped harmonic oscillator:

m(wy + iyw — w?)s = —eEy, (2.80)

where a)g = «/m and y is a damping term. Using this equation to replace for s
in eqn. (2.76), we get

q*/m
(0} +iyw — @?)
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2.3 Electromagnetism in matter 25

Thus the polarizability is a frequency-dependent quantity. This explains why a
prism can split a mixture of white light into its component frequencies. A further
definition is of interest, namely the electric susceptibility x. = No(w)/€y. For
pn particles per unit volume, this is often expressed in terms of the plasma
frequency a)g = Ne?/m. Thus,

P = ¢x.E. (2.82)

This is closely related to the change in the refractive index, n> = 1 + x, of
a material due to polarization, when u, = 1 (which it nearly always is). In
real space, we note from eqn. (2.80) that the polarization satisfies a differential
equation

2
(02 — yd, + wd)P = %pNE (2.83)

and thus the real space susceptibility can be thought of as a Green function for
the differential operator and E may be thought of as a source.

P(r) =€ / dt x(t — t")E. (2.84)

x (¢ —1') is taken to satisfy retarded boundary conditions, which, in turn, implies
that its real and imaginary parts in terms of w are related. The relationship is
referred to as a Kramers—Kronig relation, and is simply a consequence of the
fact that a retarded Green function is real.

2.3.2 Covariance and relative motion: the Doppler effect

The frequency-dependent expressions above are true only in the rest frame of the
atoms. The results are not covariant with respect to moving frames of reference.
When one studies solid state systems, such as glasses and crystals, these
expressions are quite adequate, because the system has a naturally preferred
rest frame and the atoms in the material do not move relative to one another, on
average. However, in gaseous matter or plasmas, this is not the case: the thermal
motion of atoms relative to one another can be important, because of the Doppler
effect. This fact can be utilized to good effect; for example, in laser cooling the
motion of atoms relative to a laser radiation field can be used to bring all of the
atoms into a common rest frame by the use of a resonant, frequency-dependent
interaction. A Galilean-covariant expression can be written by treating the field
as one co-moving mass, or as a linear super-position of co-moving masses. With
only one component co-moving, the transformation of the position of an atom
in the displacement field can be written

x(t) = x + vt, (2.85)
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26 2 The electromagnetic field

where v is the velocity of the motion relative to some reference frame (usually
the container of the gaseous matter, or the laboratory frame). This means that
the invariant form (kx — wt) is transformed into

kK- x—ot > K- (xX+vt) —ot =k-xX— wgt, (2.86)
where
wp=wl—k-B)=wl—-k-v/c). (2.87)

Thus, the expressions above can be used, on replacing w with a sum over all wg,
and integrated over all the values of the velocity vector B of which the field is
composed. The polarizability takes the form

(@) = — L™ (2.88)
alw _(wg—i-iya)—a)é)' '
where
wg =1 —k'Bo. (2.89)

2.3.3 Refractive index in matter

It appears that the introduction of a medium destroys the spacetime covariance
of the equations of motion. In fact this is false. What is interesting is that
covariance can be restored by re-defining the (n 4 1) dimensional vectors so as
to replace the speed of light in a vacuum with the effective speed of light in a
medium. The speed of light in a dielectric medium is

C
V=" (2.90)
n

where n = €., > 1 is the refractive index of the medium.

Before showing that covariance can be restored, one may consider the
equation of motion for waves in a dielectric medium from two perspectives.
The purpose is to relate the multifarious fields to the refractive index itself. It is
also to demonstrate that the polarization terms can themselves be identified as
currents which are set in motion by the electric field. In other words, we will
show the equivalence of (i) P # 0, but J, = 0, and (ii) P = 0 with J,, given by
the current resulting from charges on springs! Taking

0 ; ds’
J' =cp.J = —pyec—, (2.91)
dr
the current is seen to be a result of the net charge density set in motion by the
field. This particular derivation applies only in 3 4 1 dimensions.
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2.3 Electromagnetism in matter 27

To obtain the wave equation we begin with the Bianchi identity
€ijk0;Ex + 0,B; =0, (2.92)

and then operate from the left with €;,,0;. Using the identity (A.38) (see
Appendix A) for the product of two anti-symmetric tensors, we obtain

[V’E; — %;(3'E})] + €imd,0,B; = 0. (2.93)

Taking 0, of the fourth Maxwell equation, one obtains

1 9°E;
mE,’jkajatBk = 0,J; + €o€r PR (2.94)

These two equations can be used to eliminate B;, giving an equation purely
in terms of the electric field. Choosing the charge distribution to be isotropic
(uniform in space), we have 9; p, = 0, and thus

[V2 n? 9%

- EW] E; = wou0: J;. (2.95)

In this last step, we used the definition of the refractive index in terms of ¢;:

n® = e = (14 xe) hr- (2.96)

This result is already suggestive of the fact that Maxwell’s equations in a
medium can be written in terms of an effective speed of light.
We may now consider the two cases: (i) P # 0, but J, =0,

) n? 9%
and (i) P=0(n=1),J, #0.
) 1 92 —pne’w?/m - E;
Vi G | B et e Ty
c? ot (0 +1yw — w?)

(2.98)

The differential operators on the left hand side can be replaced by k* and w?, by
using the wave solution (2.79) for the electric field to give a ‘dispersion relation’
for the field. This gives:

K’ 1 we  pye’w’/m
Y I ) :
w? 2 € (@ +iyw — w?)

112
— (2.99)

c2?
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28 2 The electromagnetic field

So, from this slightly cumbersome expression for the motion of charges, one
derives the microscopic form of the refractive index. In fact, comparing
eqns. (2.99) and (2.98), one sees that

pnva(w) i,
€0 '

n?=1+

(2.100)
Since u, is very nearly unity in all materials that waves penetrate, it is common
to ignore this and write

n? ~ 1+ xe. (2.101)

The refractive index is a vector in general, since a material could have a
different index of refraction in different directions. Such materials are said to be
anisotropic. One now has both microscopic and macroscopic descriptions for
the interaction of radiation with matter, and it is therefore possible to pick and
choose how one wishes to represent this physical system. The advantage of the
microscopic formulation is that it can easily be replaced by a quantum theory
at a later stage. The advantage of the macroscopic field description is that it is
clear why the form of Maxwell’s equations is unaltered by the specific details of
the microscopic interactions.

2.4 Aharonov-Bohm effect

The physical significance of the vector potential A, (as opposed to the field
F,,) was moot prior to the arrival of quantum mechanics. For many, the
vector potential was merely an artifice, useful in the computation of certain
boundary value problems. The formulation of quantum mechanics as a local
field theory established the vector potential as the fundamental local field, and
the subsequent attention to gauge symmetry fuelled pivotal developments in the
world of particle physics. Today, it is understood that there is no fundamental
difference between treating the basic electromagnetic interaction as a rank 2
anti-symmetric tensor F),, or as a vector with the additional requirement of
gauge invariance. They are equivalent representations of the problem. In
practice, however, the vector potential is the easier field to work with, since
it couples locally. The price one pays lies in ensuring that gauge invariance is
maintained (see chapter 9).

The view of the vector potential as a mathematical construct was shaken by
the discovery of the Aharonov—Bohm effect. This was demonstrated is a classic
experiment of electron interference through a double slit, in which electrons are
made to pass through an area of space in which A, # 0 but where F,, = 0.
The fact that a change in the electron interference pattern was produced by this
configuration was seen as direct evidence for the physical reality of A,. Let us
examine this phenomenon.

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

2.4 Aharonov—Bohm effect 29

Fig. 2.2. The Aharonov—Bohm experiment.

The physical layout of the double-slit experiment is shown in figure 2.2.
An electron source fires electrons at the slits, these pass through the slits and
interfere in the usual way, forming an interference pattern on the screen at the
end of their path. In order to observe the Aharonov—Bohm effect, one places a
solenoid on the far side of the slits, whose magnetic field is constrained within
a cylinder of radius R. The vector potential arising from the solenoid geometry
is not confined to the inside of the solenoid however. It also extends outside of
the solenoid, but in such a way as to produce no magnetic field.

What is remarkable is that, when the solenoid is switched on, the interference
pattern is shifted by an amount x. This indicates that a phase shift A6 is
introduced between the radiation from the two slits, and is caused by the
presence of the solenoid. If the distance L is much greater than x and a then we

have
a~£d
L
L,—L 2
A9:2zr( ! 2): Ta
A
LA
x=|—] A6. (2.102)
2rd

The phase difference can be accounted for by the gauge transformation of the
electron field by the vector potential. Although the absolute value of the vector
potential is not gauge-invariant, the potential difference between the paths is.
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30 2 The electromagnetic field

The vector potential inside and outside the solenoid position is

1
(r<R): A¢=§Br, A, =A,=0

BR?
(r>R): Ay= - A=A, =0. (2.103)
r

The magnetic field in the regions is

B. =V, Ay — VyA,
=V, A,

rla, Y gl
=0 (r<R)
=B (r>R). (2.104)

The phase difference can be determined, either from group theory, or from
quantum mechanics to be

exp(if) = exp <1% / A"dx,->, (2.105)
P

where ‘P’ indicates the integral along a given path. Around the closed loop
from one slit to the screen and back to the other slit, the phase difference is
(using Stokes’ theorem)

A =6, —6,

~%7§ Ay dr

:%/(%xB).ds

_ % / B.dS. (2.106)

The phase shift therefore results from the paths having to travel around the
solenoid, i.e. in a loop where magnetic flux passes through a small part of
the centre. Note, however, that the flux does not pass through the path of the
electrons, only the vector potential is non-zero for the straight-line paths.

There are two ways of expressing this: (i) electrons must be affected by the
vector potential, since the field is zero for any classical path from the slits to the
screen; or (ii) electrons are stranger than we think: they seem to be affected by
a region of space which is classically inaccessible to them. The viewpoints are
really equivalent, since the vector potential is simply an analytic extension of
the field strength, but the result is no less amazing. It implies a non-locality in
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2.4 Aharonov-Bohm effect 31

the action of the magnetic field: action at a distance, and not only at a distance,
but from within a container. If one chooses to believe in the vector potential as
a fundamental field, the behaviour seems less objectionable: the interaction is
then local. There is no action at a distance, and what happens inside the solenoid
is of less interest.

Whether one chooses to view this as evidence for the physical reality of
the vector potential or of the strangeness of quantum mechanics is a matter
of viewpoint. Indeed, the reality of any field is only substantiated by the
measurable effect it has on experiments. However, there are deeper reasons for
choosing the interpretation based on the reality of the vector potential, which
have to do with locality and topology, so at the very least this gives us a new
respect for the utility of the vector potential. In view of the utility of A, and its
direct appearance in dynamical calculations, it seems reasonable to accept it as
the fundamental field in any problem which is simplified by that assumption.
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3

Field parameters

The parameters which measure change in dynamical systems have a unique
importance: they describe both the layout and the development of a system.
Space (position) and time are the most familiar parameters, but there are other
possibilities, such as Fourier modes.

In the previous chapter, it was seen how the unification of spatial and temporal
parameters, in electromagnetism, led to a tidier and deeper form of the Maxwell
equations. It also made the equations easier to transform into other relativistic
frames. In the covariant approach to physics one is concerned with what
does and does not change, when shifting from one perspective to another,
i.e. with the properties of a system which are dependent and independent of
the circumstances of observation. In a continuous, holonomic system, this is
summarized by two independent concepts: parameter spaces and coordinates.

e Parameter space (manifold). This represents the stage for physical
reality. A parameter space has coordinate-independent properties such
as topology and curvature.

e Coordinates. These are arbitrary labels used to mark out a reference
scheme, or measurement scheme, in parameter space. There is no unique
way to map out a parameter space, e.g. Cartesian or polar coordinates.
If there is a special symmetry, calculations are often made easier by
choosing coordinates which match this symmetry.

Coordinates are labels which mark a scale on a parameter space. They measure
a distance in a particular direction from an arbitrary origin. Clearly, there
is nothing fundamental about coordinates: by changing the arbitrary origin,
or orientation of measurement, all coordinate labels are changed, but the
underlying reality is still the same. They may be based on flat Cartesian (x, y, z)
or polar (r, 6, ¢) conventions; they can be marked on flat sheets or curved shells.

32
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3.1 Choice of parametrization 33

Underneath the details of an arbitrary system of measurement is a physical
system which owes nothing to those details.

The invariant properties or symmetries of parameter spaces have many
implicit consequences for physical systems; not all are immediately intuitive.
For this reason, it is useful to study these invariant properties in depth, to see
how they dictate the possibilities of behaviour (see chapter 9). For now it is
sufficient to define a notation for coordinates on the most important parameter
spaces.

This chapter summarizes the formulation of (n 4+ 1) dimensional vectors in
Minkowski spacetime and in its complementary space of wavevectors k, usually
called momentum space or reciprocal lattice space.

3.1 Choice of parametrization

The dynamical variables, in field theory, are the fields themselves. They are
functions of the parameters which map out the background space or spacetime;

e.g.
v(t), ¢, %), x(,r.0,9). (3.1

Field variables are normally written as functions of spacetime positions, but
other decompositions of the field are also useful. Another ubiquitous choice
is to use a complementary set of variables based upon a decomposition of the
field into a set of basis functions, a so-called spectral decomposition. Given
a complete set of functions v;(x), one can always write an arbitrary field as a
linear super-position:

POx) =D ¢ Pix). (3.2)

i

Since the functions are fixed and known, a knowledge of the coefficients ¢; in
this decomposition is equivalent to a knowledge of ¢ (x), i.e. as a function of x.
However, the function may also be written in a different parametrization:

¢(c1,c2,¢3...). (3.3)

This is a shorthand for the decomposition above, just as ¢ (x) is a shorthand for
a polynomial or series in x. Usually, an infinite number of such coefficients is
needed to prescribe a complete decomposition of the field, as, for instance, in
the Fourier expansion of a function, described below.

Spacetime is an obvious parameter space for a field theory since it comprises
the world around us and it includes laboratories where experiments take place,
but other basis functions sometimes reveal simpler descriptions. One important
example is the complementary Fourier transform of spacetime. The Fourier
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34 3 Field parameters

transform is important in situations where one suspects a translationally invari-
ant, homogeneous system. The Fourier transform of a function of x is defined
to be a new function of the wavenumber k (and the inverse transform) by the
relations:

dk .
Flx) = f SN0
JT
fk) = / dx e f(x). (3.4)

k is a continuous label on a continuous set of functions exp(ikx), not a discrete
set of ¢;, for integer i. In solid state physics, the space parametrized by k is
called the reciprocal lattice space. Fourier transform variables are useful for
many purposes, such as revealing hidden periodicities in a function, since the
expansion is based on periodic functions. The Fourier transform is also a useful
calculational aid.

Spacetime (configuration space) and the Fourier transform are two com-
plementary ways of describing the basic evolution of most systems. These
two viewpoints have advantages and disadvantages. For example, imagine a
two-state system whose behaviour in time can be drawn as a square wave. To
represent a square wave in Fourier space, one requires either an infinite number
of Fourier waves of different frequencies, or merely two positions over time. In
that case, it would be cumbersome to use a Fourier representation of the time
evolution.

3.2 Configuration space

The four-dimensional vectors used to re-write electromagnetism are easily
generalized to (n+ 1) spacetime dimensions, for any positive n. They place time
and space on an almost equal footing. In spite of the notational convenience of
unified spacetime, some caution is required in interpreting the step. Time is not
the same as space: formally, it distinguishes itself by a sign in the metric tensor;
physically, it plays a special role in determining the dynamics of a system.

3.2.1 Flat and curved space

Physical systems in constrained geometries, such as on curved surfaces, or
within containers, are best described using curvilinear coordinates. Experi-
mental apparatus is often spherical or toroidal; shapes with a simple symmetry
are commonly used when generating electromagnetic fields; rectangular fields
with sharp corners are less common, since these require much higher energy to
sustain.

Studies of what happens within the volumes of containers, and what happens
on their surface boundaries, are important in many situations [121]. When
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3.2 Configuration space 35

generalizing, to study systems in (n 4+ 1) dimensions, the idea of surfaces and
volumes also has to be generalized. The distinction becomes mainly one of
convenience: (n + 1) dimensional curved surfaces are curved spacetimes. The
fact that they enclose a volume or partition a space which is (n +2) dimensional
is not always germane to the discussion at hand. This is particularly true in
cosmology.

It is important to distinguish between curvilinear coordinates in flat space
and coordinate labellings of curved space. An example of the former is the
use of polar (r, #) coordinates to map out a plane. The plane is flat, but the
coordinates span the space in a set of curved rings. An example of the latter
is (6, ¢) coordinates (at fixed r), mapping out the surface of a sphere. Over
very short distances, (6, ¢) can be likened to a tiny planar patch with Cartesian
coordinates (x, y).

Einstein’s contribution to the theory of gravity was to show that the laws of
gravitation could be considered as an intrinsic curvature of a (34 1) dimensional
spacetime. Einstein used the idea of covariance to argue that one could view
gravity in one of two equivalent ways: as forced motion in a flat spacetime,
or as free-fall in a curved spacetime. Using coordinates and metric tensors,
gravitation could itself be described as a field theory, in which the field g, (x)
was the shape of spacetime itself.

Gravitational effects may be built into a covariant formalism to ensure that
every expression is general enough to be cast into an arbitrary scheme of
coordinates. If one allows for general coordinates (i.e. general covariance),
one does not assume that all coordinates are orthogonal Cartesian systems, and
gravity and curvature are not excluded from the discussion.

Spacetime curvature will not be treated in detail here, since this topic is widely
discussed in books on relativity. However, we take the issue of curvature ‘under
advisement’ and construct a formalism for dealing with arbitrary coordinates,
assured that the results will transform correctly even in a curved environment.

3.2.2 Vector equations

Vector methods express spatial relationships, which remain true regardless of
the system of coordinates used to write them down. They thus play a central
role in covariant formulation. For example, the simple vector equation

A-B=0 (3.5)

expresses the fact that two vectors A and B are orthogonal. It says nothing about
the orientation of the vectors relative to a coordinate system, nor their position
relative to an origin; rather, it expresses a relationship of more intrinsic value
between the vectors: their relative orientation. Vector equations and covariance
are natural partners.
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36 3 Field parameters

Vector equations are form-invariant under changes of coordinates, but the
details of their components do change. For instance, in the above equation,
if one fixes a coordinate system, then the components of the two vectors take on
definite values. If one then rotates or translates the coordinates, the values of the
components change, but the equation itself remains true.

3.2.3 Coordinate bases

A coordinate basis is a set of (n 4 1) linearly independent reference vectors
e,, used to provide a concise description of any vector within a vector space.
They are ‘standard arrows’; without them, every direction would need to have a
different name.'

In index notation, the components of a vector a are written, relative to a basis
or set of axes e;, as {a'}, i.e.

a=)Y d'e, =ad"e,. (3.6)

n

Note that, as usual, there is an implied summation convention over repeated
indices throughout this book. The subscript p runs over the number of
dimensions of the space.

Linearity is a central concept in vector descriptions. One does not require
what happens within the space to be linear, but the basis vectors must be locally
linear in order for the vector description to be single-valued. Consider, then,
the set of all linear scalar functions of vectors. Linearity implies that a linear
combination of arguments leads to a linear combination of the functions:

w(cte,) = ctwle,). (3.7)

Also, the linear combination of different functions results in new linear func-
tions:

o(V) =Y (V). (3.8)
"

The space of these functions is therefore also a vector space V*, called the dual
space. It has the same dimension as the vector space (also called the tangent
space). The duality refers to the fact that one may consider the 1-forms to be
linear functions of the basis vectors, or vice versa, 1.€.

o (V) = v(o). (3.9)

U'In terms of information theory, the vector basis provides a systematic (14 1)-tuple of numbers,
which in turn provides an optimally compressed coding of directional information in the vector
space. Without such a system, we would be stuck with names like north, south, east, west,
north-north-west, north-north-north-west etc. for each new direction.
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3.2 Configuration space 37

Vector components v’ are written

v =1"e,, (3.10)
and dual vector (1-form) components are written

v=uv,0". (3.11)
The scalar product is

Vv = Vv=(v,0")(ve,)

=v,v" (0''e,)

=v,v" 8;
= v, v", (3.12)
where
(w'e,) = 8". (3.13)
The metric tensor g, maps between these equivalent descriptions:
V= guV”
v = gMv,, (3.14)
and
€€ =guy (3.15a)
ot w” =gt (3.15b)

When acting on scalar functions, the basis vectors e, — 0,, are tangential to the
vector space; the 1-forms w* — dx* lie along it.

In general, under an infinitesimal shift of the coordinate basis by an amount
dx*, the basis changes by an amount

de, =T} e, dx". (3.16)

The symbol Fﬂﬁ is called the affine connection, or Christoffel symbol. From
this, one determines that

de, =T, e, (3.17)
and by differentiating eqn. (3.13), one finds that
o' =—T, " w,. (3.18)

The connection can be expressed in terms of the metric, by differentiating
eqn. (3.15a):

018y = 0x€, - €, + €, -0,
=T, 8o + gpul, (3.19)
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38 3 Field parameters

By permuting indices in this equation, one may show that

1
FA,I,LU = Egvo {8Ag;w + ap.g)w - auguk} . (3.20)

The connection is thus related to cases where the metric tensor is not constant.
This occurs in various contexts, such when using curvilinear coordinates, and
when fields undergo conformal transformations, such as in the case of gauge
transformations.

3.2.4 Example: Euclidean space

In n-dimensional Euclidean space, the spatial indices i of a vector’s components
run from 1 to n except where otherwise stated. The length of a vector interval
ds is an invariant quantity, which is defined by the inner product. This may be
written

ds - ds = dx* + dy? +dz? (3.21)
in a Cartesian basis. In the index notation (for n = 3) this may be written,
ds - ds = dx'dx;. (3.22)

Repeated indices are summed over, unless otherwise stated. We distinguish, in
general, between vector components with raised indices (called contravariant
components) and those with lower indices (called, confusingly, covariant
components,” and ‘normal’ components, which we shall almost never use. In a
Cartesian basis (x, y, z...) there is no difference between these components. In
other coordinate systems, such as polar coordinates however, they are different.

Results which are independent of coordinate basis always involve a sum over
one raised index and one lower index. The length of the vector interval above
is an example. We can convert an up index into a down index using a matrix
(actually a tensor) called the metric tensor g;;,

The inverse of the metric g;; is written g*/ (with indices raised), and it serves to
convert a lower index into an upper one:

a = gijaj. (3.24)
The metric and its inverse satisfy the relation,

giig’ =gl =85~ (3.25)

2 There is no connection between this designation and the usual meaning of covariant.
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3.2 Configuration space 39

In Cartesian components, the components of the metric are trivial. It is simply
the identity matrix, or Kronecker delta:

(Cartesian) : g;; = g" = ;. (3.26)

To illustrate the difference between covariant, contravariant and normal
components, consider two-dimensional polar coordinates as an example. The
vector interval, or line element, is now written

ds - ds = dr? + r2do>. (3.27)

The normal components of the vector ds have the dimensions of length in this
case, and are written

(dr, rdo). (3.28)
The contravariant components are simply the coordinate intervals,
ds' = (dr, do), (3.29)
and the covariant components are
ds; = (dr, r*do). (3.30)

The metric tensor is then defined by

1 0
gij = ( 0 1"2 )’ (331)
and the inverse tensor is simply
i 1 0
ij —
g' = < 0 -2 > (3.32)

The covariant and contravariant components are used almost exclusively in the
theory of special relativity.

Having introduced the metric tensor, we may define the scalar product of any
two vectors a and b by

a-b :aibi :aigijbj. (333)

The definition of the vector product and the curl are special to three space di-
mensions. We define the completely anti-symmetric tensor in three dimensions
by

- +1 ijk = 123 and even permutations
e’* =1 —1 ijk =321 and other odd permutations (3.34)
0  otherwise.
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40 3 Field parameters

This is also referred to as the three-dimensional Levi-Cevita tensor in some
texts. Since its value depends on permutations of 123, and its indices run only
over these values, it can only be used to generate products in three dimensions.
There are generalizations of this quantity for other numbers of dimensions, but
the generalizations must always have the same number of indices as spatial
dimensions, thus this object is unique in three dimensions. More properties
of anti-symmetric tensors are described below.

In terms of this tensor, we may write the ith covariant component of the three-
dimensional vector cross-product as

(b x ¢); = b’ cr. (3.35)

Contracting with a scalar product gives the volume of a parallelepiped spanned
by vectors a, b and c,

a-(bxc)=epablck, (3.36)

which is basis-independent.

3.2.5 Example: Minkowski spacetime

The generalization of Euclidean space to relativistically motivated spacetime
is called Minkowski spacetime. Close to the speed of light, the lengths of n-
dimensional spatial vectors are not invariant under boosts (changes of speed),
due to the Lorentz length contraction. From classical electromagnetism, one
finds that the speed of light in a vacuum must be constant for all observers:
) 1
c-= , (3.37)
€00

and one deduces from this that a new quantity is invariant; we refer to this as the
invariant line element

ds? = —c?dr® + dx? + dy? + dz? = =2 d7?, (3.38)

where dt is referred to as the proper time. By comparing the middle and
rightmost terms in this equation, it may be seen that the proper time is the
time coordinate in the rest frame of a system, since there is no change in the
position variables. The negative sign singles out the time contribution as special.
The nomenclature ‘timelike separation’ is used for intervals in which ds? < 0,
‘spacelike separation’ is used for ds?> > 0, and ‘null’ is used for ds? = 0.

In terms of (n + 1) dimensional vectors, one writes:

ds? = dx*dx,, = dx"g,,dx" (3.39)
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3.2 Configuration space 41

where u, v =0, 1, 2, ..., n In a Cartesian basis, the contravariant and covariant
components of the spacetime interval are defined, respectively, by

dx* = (ct,x,y,2,...)
dx, = (—ct,x,y,2,...), (3.40)

and the metric tensor in this Cartesian basis, or locally inertial frame (LIF), is
the constant tensor

-1 0 0--- 0
0 1 0--- 0

Ty = 8| = 0 0 1--- 0 (3.41)
0 0 0--- 1

This is a special case of a metric in a general frame g,,,.

This placement of signs in the metric is arbitrary, and two other conventions
are found in the literature: the opposite sign for the metric, with corresponding
movement of the minus sign from the time to the space parts in the covariant
and contravariant components; and a Euclidean formulation, in which the
metric is entirely positive (positive definite), and the time components of
the components are symmetrically ict. This last form, called a Euclidean
formulation (or Riemannian in curved spacetime), has several uses, and thus
we adopt conventions in this text in which it is trivial to convert to the Euclidean
form and back.

Contravariant vectors describe regular parametrizations of the coordinates. In
order to define a frame-invariant derivative, we need to define partial derivatives
by the requirement that the partial derivative of x! with respect to x; be unity:

Wxl =9 x' =1. (3.42)

Notice that ‘dividing by’ an upper index makes it into an object with an
effectively lower index. More generally, we require:

v V__ gV
ax“x =0dux" =94, (3.43)

From this, one sees that the Cartesian components of the derivative must be

1
0, = (;8,, Ox, 0y, 0z, .. )

1
ot = (——8,,8x,8y,8z,...>. (3.44)
c
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42 3 Field parameters

Velocity is a relative concept, by definition. It is intimately associated with a
choice of Lorentz frame. The relative velocity is defined as the time derivative

of the position
g = Ldx" — dx” (3.45)
Ccdt dxO '

Unfortunately, because both x* and ¢ are frame-dependent, this quantity does
not transform like a vector. To obtain a vector, we choose to look at

1 xH*
Ut = -2, (3.46)
cdr

The components of the relative velocity are as follows:

B = (. p) = (1.v'/o). (3.47)
The relationship to the velocity vector is given by
U" = ycph. (3.48)
Hence,
Uy, = —c%. (3.49)

3.3 Momentum space and waves

The reciprocal wavevector space of k, plays a complementary role to that of
spacetime. It measures changes in waves when one is not interested in spacetime
locations. Pure harmonic (sinusoidal) waves are spread over an infinite distance.
They have no beginning or end, only a definite wavelength.

In the quantum theory, energy and momentum are determined by the operators

E — iho,, p; —> —iho;, (3.50)
which have pure values when acting on plane wave states
¥ ~expi(kix’ — wt). (3.51)
In (n + 1) dimensional notation, the wavevector becomes:
k= (=2 k). (3.52)
c
so that plane waves take the simple form

Y ~ exp(ik,x"). (3.53)
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3.4 Tensor transformations 43

The energy and momentum are therefore given by the time and space eigenval-
ues of the operator

pu = —ihd,, (3.54)

respectively, as they act upon a plane wave. This leads to the definition of an
(n + 1) dimensional energy—momentum vector,

E
pu = hk, = <—?, Pi) . (3.55)

The identification p, = fik, is the de Broglie relation for matter waves. This is
one of the most central and important relations in the definition of the quantum
theory of matter.

In discussing wavelike excitations, it is useful to resolve the components of
vectors along the direction of motion of the wave (longitudinal) and perpen-
dicular (transverse) to the direction of motion. A longitudinal vector is one
proportional to a vector in the direction of motion of a wave k*. A transverse
vector is orthogonal to this vector. The longitudinal and transverse components
of a vector are defined by

=t
Vi = (g,w — %) |4 (3.56)
It is straightforward to verify that the two projection operators
Pl = kav
Prf, = (gw - k;—f) (3.57)
are orthogonal to one another:
(P, (Pp)Y, = 0. (3.58)

3.4 Tensor transformations

Vector equations remain true in general coordinate frames because the com-
ponents of a vector transform according to specific rules under a coordinate
transformation U':

vV=Uyv, (3.59)
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44 3 Field parameters

or
Vi =U 0, (3.60)

where the components of the matrix U are fixed by the requirement that the
equations remain true in general coordinate systems. This is a valuable property,
and we should be interested in generalizations of this idea which might be useful
in physics.

Tensors are objects with any number of indices, which have the same basic
transformation properties as vectors. The number of indices on a tensor is its
rank. Each free index in a tensor equation requires a transformation matrix
under changes of coordinates; free indices represent the components in a specific
coordinate basis, and each summed index is invariant since scalar products are
independent of basis.

Under a change of coordinates, x — x’, a scalar (rank 0-tensor) transforms
simply as

¢ (x) = ¢ (x). (3.61)

For a vector (rank 1-tensor), such a simple rule does make sense. If one
rotates a coordinate system, for instance, then all the components of a vector
must change, since it points in a new direction with respect to the coordinate
axes. Thus, a vector’s components must transform separately, but as linear
combinations of the old components. The rule for a vector with raised index
is:

1

9
Vi) = &

VV(x) = (3,x") VY (x). (3.62)
axV

For a vector with lowered index, it is the converse:

Vv

, ax

Vulx) = ax™*

Here we have used two notations for the derivatives: the longhand notation first

for clarity and the shorthand form which is more compact and is used throughout

this book.

The metric tensor is a tensor of rank 2. Using the property of the metric in

raising and lowering indices, one can also deduce its transformation rule under
the change of coordinates from x to x’. Starting with

Wx) = (a;lx”) Vi (x). (3.63)

Vi) = g (VL (), (3.64)

and expressing it in the x coordinate system, using the transformation above,
one obtains:

@x") VI (x) = 8" () (@, x") Vp (x). (3.65)
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3.5 Properties 45

However, it is also known that, in the unprimed coordinates,
Vi(x) = g" (x) Vo (x). (3.66)

Comparing eqns. (3.65) and (3.66), it is possible to deduce the transformation
rule for the inverse metric g"”. To do this, one rearranges eqn. (3.65) by
multiplying by (3, x") and using the chain-rule:

(aux’“)(al;x’) =4, . (3.67)
Being careful to re-label duplicate indices, this gives
Sv T VV(x) = g"" (x)(3,x")(0,x") V,(x), (3.68)
which is
Vi(x) = g"" (x)(8,x")(3,x7) Vo (x). (3.09)

Comparing this with eqn. (3.66), one finds that

g7 (x")(9,x7)(3,x7) = g7 (x), (3.70)
or, equivalently, after re-labelling and re-arranging once more,

g (") = (3,x") (05 x™) g (x). (3.71)

One sees that this follows the same pattern as the vector transformation with
raised indices. The difference is that there is now a partial derivative matrix
(d,x"") for each index. In fact, this is a general feature of tensors. Each raised
index transforms with a factor like (9,x’") and each lowered index transforms
with a factor like 9/ x”. For instance,

T (x') = (Bax") (3px") (@27 ) (8, x°) T*%;. (3.72)

3.5 Properties

The following properties of tensors are instructive and useful.

(1) Any matrix 7 may be written as a sum of a symmetric part T,’j = %(T,- i+
T;;) and an anti-symmetric part f} ;= %(Ti ; — Tj;). Thus one may write
any 2 x 2 matrix in the form

Tu le + le
T=1| _ B . (3.73)
Tiy— T T»

(2) It may be shown that the trace of the product of a symmetric matrix with
an anti-symmetric matrix is zero, i.e. S~ 1;; = 0.
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46 3 Field parameters

(3) By considering similarity transformations of the form T'— A~'T A, one
may show that the trace of any matrix is an invariant, equal to the sum of
its eigenvalues.

(4) By definition, a rank 2-tensor 7 transforms by the following matrix
multiplication rule:

T — ATTA, (3.74)
for some transformation matrix A. Consider a general 2 x 2 tensor
r 1+ ATy Tin+Thn
Ti+Tn 1+ ATy,

where ¢ is the trace t = (T, + T2), and consider the effect of the
following matrices on 7':

z
I

g

I
N T N N

|

-

O =

N——

A—1 b 3.75
3—@1_1- (3.75)

For each of these matrices, compute:

(a) ATA,
(b) ATT A.

It may be shown that, used as a transformation on 7':

(a) the anti-symmetric matrix A leaves anti-symmetric terms invariant
and preserves the trace of T';

(b) the off-diagonal symmetric matrix A, leaves the off-diagonal sym-
metric terms invariant and preserves the trace of T';

(c) the symmetrical, traceless matrix Aj, preserves only the trace of T'.

It may thus be concluded that a tensor 7 in n dimensions has three
separately invariant parts and may be written in the form

1 _ ~ 1
Tij = ;T’,‘( Sij+ Ty + (Tij - ;T]/i 5,’,’) . (3.76)
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3.6 Euclidean and Riemannian spacetime 47

3.6 Euclidean and Riemannian spacetime

Minkowski spacetime has an indefinite metric tensor signature. In Euclidean
and Riemannian spacetime, the metric signature is definite (usually positive
definite). General curved spaces with a definite signature are referred to
as Riemannian manifolds. Multiplying the time components of vectors and
tensors by the square-root of minus one (i) allows one to pass from Minkowski
spacetime to Euclidean spacetime and back again. This procedure is known as
Wick rotation and is encountered in several contexts in quantum theory. For
instance, it serves a regulatory role: integrals involving the Lorentzian form
(k* + m?)~! are conveniently evaluated in Euclidean space, where k> + m?
has no zeros. Also, there is a convenient relationship between equilibrium
thermodynamics and quantum field theory in Euclidean space.

We shall use subscripts and superscripts ‘E’ to indicate quantities in Euclidean
space; ‘M’ denotes Minkowski space, for this section only. Note that the
transformation affects only the time or zeroth components of tensors; the space
parts are unchanged.

The transformation required to convert from Minkowski spacetime (with its
indefinite metric) to Euclidean spacetime (with its definite metric) is motivated
by the appearance of plane waves in the Fourier decomposition of field variables.
Integrals over plane waves of the form exp i(k - X — wt) have no definite
convergence properties, since the complex exponential simply oscillates for
all values of k and w. However, if one adds a small imaginary part to time
t — t — it, then we turn the oscillatory behaviour into exponential decay:

eikx—on) _ gilkx—on) —or 3.77)

The requirement of decay rather than growth chooses the sign for the Wick
rotation. An equivalent motivation is to examine the Lorentzian form:

1 1 1
K2+m? T G+ +m? (ko + VK m2) (ko + VK2 m?)

(3.78)

This is singular and has poles on the real kq axis at kg = £+/k? + m?. This
makes the integral of ky non-analytical, and a prescription must be specified for
integrating around the poles. The problem can be resolved by adding a small
(infinitesimal) imaginary part to the momenta:

I 1
K2 tm?—ie  (—ko —ie + VI + m2) (ko — i€ + VKT + m?)’

(3.79)

This effectively shifts the poles from the real axis to above the axis for negative
ko and below the axis for positive kj. Since it is possible to rotate the contour
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48 3 Field parameters

90 degrees onto the imaginary axis without having to pass through any poles, by
defining (see section 6.1.1)

kg = iko, (3.80)

this once again chooses the sign of the rotation. The contour is rotated clockwise
by 90 degrees, the integrand is positive definite and no poles are encountered in
an integral over ko:

1 1
Rk Am—ic | ket K m G581
All variables in a field theory must be rotated consistently:
x) = —ix? (3.82)
x§ = ixg (3.83)
kg = iko = —iw/c. (3.84)
The inner product
kx" =k x4 kox® — k - x + kox° (3.85)
is consistent with
dox’ =35 x2 =1 (3.86)
where
dy = 1o, (3.87)

since 8(’)E — ikg. Since the Wick transformation affects derivatives and vectors,
it also affects Maxwell’s equations. From

3" Fy = 1o, (3.88)

we deduce that
Jy=iJy (3.89)
Ab = iAy, (3.90)

which are necessary in view of the homogeneous form of the field strength:
—iF} = 3A; — 8;Ag = Fo;. (3.91)

Notice that, in (3 4+ 1) dimensions, this means that

1 E2 E2
EF’”FM = (132 — ?) = (132 + C—ZE> . (3.92)
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3.6 Euclidean and Riemannian spacetime 49

Notice how the Euclideanized Lagrangian takes on the appearance of a Hamilto-
nian. This result is the key to relating Wick-rotated field theory to thermodynam-
ical partition functions. It works because the quantum phase factor exp(iSy/%)
looks like the partition function, or statistical weight factor exp(—8Hy) when
Wick-rotated:

Sg = —1Swm, (3.93)

since the volume measure dVE = —idV,. The superficial form of the
Lagrangian density is unchanged in theories with only quadratic derivatives
provided everything is written in terms of summed indices, but internally all
of the time-summed terms have changed sign. Thus, one has that

S S 1
exp <17M) = exp (—f) ~ exp (—% / dVg HM) . (3.94)

A Euclideanized invariant becomes something which looks like a Minkowski
space non-invariant. The invariant F2, which is used to deduce the dynamics of
electromagnetism, transformed into Euclidean space, resembles a non-invariant
of Minkowski space called the Hamiltonian, or total energy function (see
eqn. (2.70)). This has physical as well as practical implications for field theories
at finite temperature. If one takes the Euclidean time to be an integral from zero
to if and take H = [ do'H,

exp (1571“) = exp (—%HM> , (3.95)

then a Euclidean field theory phase factor resembles a Minkowski space, finite-
temperature Boltzmann factor. This is discussed further in chapter 6.
In a Cartesian basis, one has

v = 8hy = v (3.96)
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4

The action principle

The variational principle is central to covariant field theory. It displays
symmetries, field equations and continuity conditions on an equal footing. It
can be used as the starting point for every field theoretical analysis. In older
books, the method is referred to as Hamilton’s principle. In field theory it is
referred to more colloquially as the action principle. Put plainly, it is a method
of generating functionals; it compresses all of the kinematics and dynamics of a
physical theory into a single integral expression S called the action.

The advantage of the action principle is that it guarantees a well formulated
dynamical problem, assuming only the existence of a set of parameters on
which the dynamical variables depends. Any theory formulated as, and derived
from an action principle, automatically leads to a complete dynamical system
of equations with dynamical variables which play the roles of positions and
momenta, by analogy with Newtonian mechanics. To formulate a new model
in physics, all one does is formulate invariant physical properties in the form of
an action, and the principle elucidates the resulting kinematical and dynamical
structure in detail.

4.1 The action in Newtonian particle mechanics

Consider a system consisting of a particle with position ¢g(¢#) and momentum
p(t). The kinetic energy of the particle is

T = tmg? (4.1)

= —m , .
> q

and the potential energy is simply denoted V (¢). The ‘dot’ over the g denotes

the time derivative, or

. dq

q=1 4.2)

50
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4.1 The action in Newtonian particle mechanics 51

Classical mechanics holds that the equation of motion for a classical particle is
Newton’s law:

. dv
F=mg=——7-, 4.3)

dg
but it is interesting to be able to derive this equation from a general principle.
If many equations of motion could be derived from a common principle, it
would represent a significant compression of information in physics. This is
accomplished by introducing a generating function L called the Lagrangian.

For a conservative system, the Lagrangian is defined by

L=T-V, (4.4)

which, in this case, becomes

L:%mf—wqm. 4.5)
This form, kinetic energy minus potential energy, is a coincidence. It does not
apply to all Lagrangians. In relativistic theories, for instance, it is not even clear
what one should refer to as the kinetic and potential energies. The Lagrangian
is a generating function; it has no unique physical interpretation.
The Lagrangian is formally a function of ¢ and g. The general rule for
obtaining the equations of motion is the well known Euler-Lagrange equations.
They are

aL d /oL
——— (=) =0. (4.6)
dag dt \ g

If the physical system is changed, one only has to change the Lagrangian: the
general rule will remain true. Evaluating, in this case,

oL dv

dg  dgq

aL

9= — g, (4.7)
aq

one obtains the field equations (4.3), as promised.

Is this approach better than a method in which one simply writes down the
field equations? Rather than changing the field equations for each case, one
instead changes the Lagrangian. Moreover, eqn. (4.6) was pulled out of a hat,
so really there are two unknowns now instead of one! To see why this approach
has more to offer, we introduce the action.

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

52 4 The action principle

4.1.1 Variational principle

The fact that one can derive known equations of motion from an arbitrary
formula involving a constructed function L is not at all surprising — there are
hundreds of possibilities; indeed, the motivation for such an arbitrary procedure
is not clear. The fact that one can obtain them from a function involving
only the potential and kinetic energies of the system, for any conservative
system, is interesting. What is remarkable is the fact that one can derive the
Euler—Lagrange equations (i.e. the equations of motion), together with many
other important physical properties for any system, from one simple principle:
the action principle.
Consider the action S from the Lagrangian by

5]
Sy = / L(g. d)dr. 438)
n

The action has (naturally) dimensions of action or ‘energy x time’, and is
thought of as being a property of the path ¢ () of our particle between the
fixed points ¢ (¢;) and g(#,). The action has no physical significance in itself.
Its significance lies instead in the fact that it is a generating functional for the
dynamical properties of a physical system.

When formulating physics using the action, it is not necessary to consider the
fact that ¢ and ¢ are independent variables: that is taken care of automatically. In
fact, the beauty of the action principle is that all of the useful information about
a physical system falls out of the action principle more or less automatically.

To extract information from S, one varies it with respect to its dynamical
variables, i.e. one examines how the integral changes when the key variables in
the problem are changed. The details one can change are ¢, and 1,, the end-points
of integration, and ¢ (¢), the path or world-line of the particle between those two
points (see figure 4.1). Note however that Q(¢) is the path the particle would
take from A to B, and that is not arbitrary: it is determined by, or determines,
physical law, depending on one’s view. So, in order to make the variational
principle a useful device, we have to be able to select the correct path by some
simple criterion.

Remarkably, the criterion is the same in every case: one chooses the path
which minimizes (or more correctly: makes stationary) the action; i.e. we look
for paths g (¢) satisfying

N

8q (1)
These are the stable or stationary solutions to the variational problem. This tells
us that most physical laws can be thought of as regions of stability in a space

of all solutions. The action behaves like a potential, or stability measure, in this
space.

(4.9)

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

4.1 The action in Newtonian particle mechanics 53

It is an attractive human idea (Occam’s razor) that physical systems do the
‘least action’ possible; however, eqn. (4.9) is clearly no ordinary differentiation.
First of all, S is a scalar number — it is integrated over a dummy variable ¢,
so t is certainly not a variable on which S depends. To distinguish this from
ordinary differentiation of a function with respect to a variable, it is referred to as
Jfunctional differentiation because it is differentiation with respect to a function.

The functional variation of § with respect to g (¢) is defined by

68 = Slg + dq]1 — Slq]. (4.10)

where 8¢ (¢) is an infinitesimal change in the form of the function ¢ at time ¢.
Specifically, for the single-particle example,

8S = /dt {%m(q’ +8¢)> - V(g +8q)} - fdt {%mq'2 — V(q)} (4.11)

Now, since §q is infinitesimal, we keep only the first-order contributions, so on
expanding the potential to first order as a Taylor series about ¢ (¢),

dv
V(g +dq) = V(q)—i—a(Sq—F---, 4.12)

one obtains the first-order variation of §,

88 = /dt {mq(a,aq) - d—Vaq}. (4.13)
dg

A ‘dot’ has been exchanged for an explicit time derivative to emphasize the
time derivative of 8g. Looking at this expression, one notices that, if the time
derivative did not act on g, we would be able to take out an overall factor of
dq, and we would be almost ready to move &g to the left hand side to make
something like a derivative. Since we are now operating under the integral sign,
it is possible to integrate by parts, using the property:

/th(atB) — [AB]tz —/dt(a,A)B, (4.14)

so that the time derivative can be removed from §¢q, giving:

. dv )
58 = /dt {—mq(t) - —}8q(t) + [mq-aq(t)] (4.15)

dg (1)

The stationary action criterion tells us that 65 = 0. Assuming that g(¢) is not
always zero, one obtains a restriction on the allowed values of ¢ (¢). This result
must now be interpreted.

[5)
n
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54 4 The action principle

Fig. 4.1. The variational formula selects the path from A to B with a stationary value
of the action. Stationary or minimum means that the solution is stable on the surface of
all field solutions. Unless one adds additional perturbations in the action, it will describe
the ‘steady state’ behaviour of the system.

4.1.2 §S: equation of motion

The first thing to notice about eqn. (4.15) is that it is composed of two logically
separate parts. The first term is an integral over all times which interpolate
between ¢, and f,, and the second is a term which lives only at the end-points.
Now, suppose we ask the question: what path g(¢) is picked out by the action
principle, if we consider all the possible variations of paths g (¢) 4+ 8q(¢), given
that the two end-points are always fixed, i.e. g (#;) = 0 and 8q (t,) = 0?

The requirement of fixed end-points now makes the second term in eqn. (4.15)
vanish, so that §S = 0 implies that the contents of the remaining curly braces
must vanish. This gives precisely the equation of motion

dv

—a. (4.16)

mg =
The action principle delivers the required formula as promised. This arises from
an equation of constraint on the path ¢ (¢) — a constraint which forces the path to
take a value satisfying the equation of motion. This notion of constraint recurs
later, in more advanced uses of the action principle.

4.1.3 The Euler—Lagrange equations

The Euler-Lagrange equations of motion are trivially derived from the action
principle for an arbitrary Lagrangian which is a function of ¢ and ¢. The action
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4.1 The action in Newtonian particle mechanics 55

one requires is simply

S= /dtL(CI(t),C}(t)), 4.17)
and its variation can be written, using the functional chain-rule,
N fdt {8L8 + —(SL é(0 )} 0 (4.18)
— JR— q q = . .
8¢ ' 8(dg)

The variation of the path commutes with the time derivative (trivially), since
8(d:q) = 9,q(t +87) — 8,q(7) = 3,(89). (4.19)

Thus, one may re-write eqn. (4.18) as

8S—[dt{5—L8 + 2L a6 )}—0 (4.20)
N YR TC R R B ‘

Integrating the second term by parts, one obtains

8S—/dt{8—L8 —8< oL )(5 )}—i—/da[ oL ) :|—O
- sq 1 " \s@q)) 5@ T

(4.21)

The second term vanishes independently (since its variation is zero at the fixed
end-points), and thus one obtains the Euler—Lagrange equations (4.6).

4.1.4 5S: continuity

Before leaving this simple world of classical particles, there is one more thing to
remark about eqn. (4.21). Consider the second term; when one asks the question:
what is the condition on ¢ (¢) for the classical trajectories with stationary action
and fixed end-points? — this term drops out. It vanishes by assumption. It
contains useful information however. If we consider the example of a single
particle, the surface term has the form

mq - 8q = pdq. (4.22)

This term represents the momentum of the particle. For a general Lagrangian,
one can use this fact to define a ‘generalized momentum’. From eqn. (4.21)

6L
= =111
3(0:q)

Traditionally, this quantity is called the canonical momentum, or conjugate
momentum, and is denoted generically as IT.

p (4.23)
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56 4 The action principle

A

Fig. 4.2. The continuity of paths obeying the equations of motion, over an infinitesi-
mal interval is assured by the null variation of the action over that interval.

Suppose one asks a different question of the variation. Consider only an
infinitesimal time period #, — #; = €, where ¢ — 0. What happens between
the two limits of integration in eqn. (4.21) is now less important. In fact, it
becomes decreasingly important as € — 0, since

8812 = [ pdqli + O(e). (4.24)

What infinitesimal property of the action ensures that §S = 0 for all intermediate
points between the limits #; and #,? To find out, we relax the condition that the
end-points of variation should vanish. Then, over any infinitesimal interval e,
the change in §¢(¢) can itself only be infinitesimal, unless g (¢) is singular, but
it need not vanish. However, as ¢ — 0, the change in this quantity must also
vanish as long as g(¢) is a smooth field, so one must take A(8g) = 0.' This
means that

Ap = p(ty) — p(11) =0; (4.25)

i.e. the change in momentum across any infinitesimal surface is zero, or
momentum is conserved at any point. This is a continuity condition on ¢(¢).
To see this, ask what would happen if the potential V (¢) contained a singular
term at the surface:

Vig,t) =8 —1)AV +V(q), (4.26)

' Note that we are assuming that the field is a continuous function, but the momentum need
not be strictly continuous if there are impulsive forces (influences) on the field. This is fully
consistent with our new philosophy of treating the ‘field” ¢ as a fundamental variable, and p
as a derived quantity.
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4.1 The action in Newtonian particle mechanics 57

where %(tl + ;) is the mid-point of the infinitesimal interval. Here, the delta
function integrates out immediately, leaving an explicit surface contribution
from the potential, in addition to the term from the integration by parts:

dAV

S =
12 dg

8q + [ pdqli + O(e) =0, 4.27)

Provided AV is finite, using the same argument as before, one obtains,

dAV
Ap=——, (4.28)
dg
i.e. the change in momentum across any surface is a direct consequence of the
impulsive force dAV /dqg at that surface.

We thus have another facet of the action: it evaluates relationships between
dynamical variables which satisfy the constraints of stable behaviour. This
property of the action is very useful: it generates standard continuity and
boundary conditions in field theory, and is the backbone of the canonical
formulation of both classical and quantum mechanics. For instance, in the
case of the electromagnetic field, we can generate all of the ‘electromagnetic
boundary conditions’ at interfaces using this technique (see section 21.2.2). This
issue occurs more generally in connection with the energy—momentum tensor,
in chapter 11, where we shall re-visit and formalize this argument.

4.1.5 Relativistic point particles
The relativistically invariant form of the action for a single point particle is

D e 2 429
2" ST (4.29)

S:/dt\/%{ L@ dxj(t)+v}.

The particle positions trace out world-lines g(7) = x(t). If we re-express this
in terms of the proper time t of the particle, where

1

T=1ty"

y =1/vy(1 - 8%

, V1 [dx\®

B ZEZE(E) , (4.30)

then the action may now be written in the frame of the particle,

dr — ydr
Vg = Y8, 4.31)
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58 4 The action principle

giving

. 1 dx(7) 2 s
S= [ dr\/goo _Em T +Vy . (4.32)

The field equations are therefore

8S  dx 9V

o, ux 0, 433
5x mdr2 + 0x ( )
i.e.
F = ma, (4.34)
where
F=-VV
x (4.35)
a=—. )
dz2

The conjugate momentum from the continuity condition is

dx
p=m—, (4.36)
dr
which is simply the relativistic momentum vector p. See section 11.3.1 for the
energy of the classical particle system.
In the above derivation, we have treated the metric tensor as a constant, but in
curved spacetime g, depends on the coordinates. In that case, the variation of
the action leads to the field equation

d a1 o ded @i
ar \&m g ) T ke g gy T '

The equation of a free particle on a curved spacetime is called the geodesic
equation. After some manipulation, it may be written
d?xr dx” dx”
K _— =
dr? " dr dr

(4.38)

Interestingly, this equation can be obtained from the absurdly simple variational
principle:

S/ds =0, (4.39)

where ds is the line element, described in section 3.2.5. See also section 25.4.
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4.2 Frictional forces and dissipation

In many branches of physics, phenomenological equations are used for the
dissipation of energy. Friction and ohmic resistance are two common examples.
Empirical frictional forces cannot be represented by a microscopic action
principle, since they arise physically only through time-dependent boundary
conditions on the system. No fundamental dynamical system is dissipative at
the microscopic level; however, fluctuations in dynamical variables, averaged
over time, can lead to a re-distribution of energy within a system, and this is
what leads to dissipation of energy from one part of a system to another. More
advanced statistical notions are required to discuss dissipation fully, but a few
simple observations can be made at the level of the action.
Consider the example of the frictional force represented by Langevin’s
equation:
2
mdd—tx +ax = F(1). (4.40)

Initially it appears as though one could write the action in the following way:

1 (de)* 1 dx
S=)dt{-m|— —ax— ¢ . 441

/ [zm(dt) +2axdt] 440
However, if one varies this action with respect to x, the term proportional to «
gives

/ dta|$ d + d 8 (4.42)

a|dx —x+x—6x). .
dr dr

But this term is a total derivative. Integrating by parts yields

d
/ de? a(xz) = x2

b
=0, (4.43)

a

which may be ignored, since it exists only on the boundary. Because of the
reversibility of the action principle, one cannot introduce terms which pick out a
special direction in time. The only place where such terms can appear is through
boundary conditions. For the same reason, it is impossible to represent Ohm’s
law

J =0FE' (4.44)

in an action principle. An ohmic resistor has to dissipate heat as current passes
through it.

In some cases, the action principle can tricked into giving a non-zero con-
tribution from velocity-dependent terms by multiplying the whole Lagrangian
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60 4 The action principle

with an ‘integrating factor’ exp(y (¢)), but the resulting field equations require
y(¢) to make the whole action decay exponentially, and often the results are
ambiguous and not physically motivated.

We shall return to the issue of dissipation in detail in chapter 6 and show the
beginnings of how physical boundary conditions and statistical averages can be
incorporated into the action principle, in a consistent manner, employing the
principle of causality. It is instructive to show that it is not possible to write
down a gauge-invariant action for the equation

J =0cE'. (4.45)

i.e. Ohm’s law, in terms of the vector potential A,. The equation is only an
effective representation of an averaged statistical effect, because it does provide
a reversible description of the underlying physics.

(1) By varying with respect to A, one may show that the action
S = /(dx) {JPA; — 0;;A'E7} (4.46)

with E; = —0d,A; — 0; Ay, does not give eqn. (4.45). If one postulates
that E? and J' may be replaced by their steady state (time-independent)
averages (E') and (J'), then we can show that this does give the correct
equation. This is an indication that some averaging procedure might be
the key to representing dissipative properties of bulk matter.

(2) Consider the action
S = / (dx) {J*A, — oy, AT ETe "1 (4.47)

This may be varied with respect to Ap and A; to find the equations of
motion; gauge invariance requires the equations to be independent of the
vector potential A,. On taking 0;,; = 04;;, one can show that gauge
invariance requires that the vector potential decay exponentially. Readers
are encouraged to check whether the resulting equations of motion are a
satisfactory representation of Ohm’s law.

4.3 Functional differentiation

It is useful to define the concept of functional differentiation, which is to
ordinary differentiation what ¢ (¢) is to dg. Functional differentiation differs
from normal differentiation in some important ways.

The ordinary derivative of a function with respect to its control variable is
defined by

df @) _ o, Seton —f@

4.48
dr 8t—0 St ( )
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It tells us about how a function changes with respect to the value of its control
variable at a given point. Functional differentiation, on the other hand, is
something one does to an integral expression; it is performed with respect to
a function of some variable of integration. The ‘point of differentiation’ is now
a function f(¢) evaluated at a special value of its control variable ¢'. It takes
some value from within the limits of the integral. So, whereas we start with a
quantity which is not a function of ¢ or ¢/, the result of the functional derivation
is a function which is evaluated at the point of differentiation. Consider, as an
example, the arbitrary functional

Fift= [a Y acor. (4.49)
This is clearly not a function of ¢ due to the integral. The variation of such a

functional F[f] is given by
SF[f]l=FLf(®)+8f®)] = FLf@®)] (4.50)

We define the functional derivative by

SF lim FIf@) +ed( —1)]— FIf(1)]
Sf(t)) >0 € '

(4.51)

This is a function, because an extra variable ¢’ has been introduced. You can
check that this has the unusual side effect that

dq (1)
3q(t)

which is logical (since we expect the derivative to differ from zero only if the
function is evaluated at the same point), but unusual, since the right hand side is
not dimensionless — in spite of the fact that the left hand side seems to be. On
the other hand, if we define a functional

=8t —1), (4.52)

0= /dtq(t) (4.53)
then we have
8 dq(t
Q :/ 240 _ / t—1)=1. (4.54)
8q (1) 8q(t')
Thus, the integral plays a key part in the definition of differentiation for

functionals.

4.4 The action in covariant field theory

The action principle can be extended to generally covariant field theories. This
generalization is trivial in practice. An important difference is that field theories
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62 4 The action principle

are defined in terms of variables which depend not only on time but also on
space; ¢(X,t) = ¢(x). This means that the action, which must be a scalar,
without functional dependence, must also be integrated over space in addition
to time. Since the final action should have the dimensions of energy x time, this
means that the Lagrangian is to be replaced by a Lagrangian density £

/

S = fa (dx)L(p(x,1), 0,0 (X, 1), x). (4.55)

The integral measure is (dx) = dV,/c, where dV, = cdtd"x. /g = dxod’zxﬁ.
Although it would be nice to use dV, here (since this is the Minkowski space
volume element), this is not possible if £ is an energy density and S is to have the
dimensions of action.? The non-relativistic action principle has already chosen
this convention for us. The special role played by time forces is also manifest in
that the volume is taken between an earlier time 7 and a later time ¢’ — or, more
correctly, from one spacelike hyper-surface, o, to another, o”.

The classical interpretation of the action as the integral over T — V, the kinetic
energy minus the potential energy, does not apply in the general case. The
Lagrangian density has no direct physical interpretation, it is merely an artefact
which gives the correct equations of motion. What is important, however, is
how one defines a Hamiltonian, or energy functional, from the action. The
Hamiltonian is related to measurable quantities, namely the total energy of the
system at a given time, and it is responsible for the time development of the
system. One must be careful to use consistent definitions, e.g. by sticking to the
notation and conventions used in this book.

Another important difference between field theory and particle mechanics is
the role of position. Particle mechanics describes the trajectories of particles,
q (1), as a function of time. The position was a function with time as a parameter.
In field theory, however, space and time are independent parameters, on a par
with one another, and the ambient field is a function which depends on both
of them. In particle mechanics, the action principle determines the equation
for a constrained path ¢(#); the field theoretical action principle determines an
equation for a field which simultaneously exists at all spacetime points, i.e.
it does not single out any trajectory in spacetime, but rather a set of allowed
solutions for an omnipresent field space. In spite of this difference, the formal
properties of the action principle are identical, but for an extra integration:

2 One could absorb a factor of ¢ into the definition of the field ¢ (x), since its dimensions are
not defined, but this would then mean that the Lagrangian and Hamiltonian would not have
the dimensions of energy. This blemish on the otherwise beautiful notation is eliminated when
one chooses natural units in which ¢ = 1.
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4.4 The action in covariant field theory 63

4.4.1 Field equations and continuity

For illustrative purposes, consider the following action:

| |
_ f (dx){i(aw)(am) +om’’ - J¢}, (4.56)

where dV, = cdrdx. Assuming that the variables ¢ (x) commute with one
another, the variation of this action is given by

58 = / (dx){(aﬂw)(am) +m2psp — 15¢}. (4.57)

Integrating this by parts and using the commutativity of the field, one has

58 = /(dx){ —O¢+mip — J} ~|—/do“ 56 (3,8). (4.58)

From the general arguments given earlier, one recognizes a piece which is purely
a surface integral and a piece which applies the field in a general volume of
spacetime. These terms vanish separately. This immediately results in the field
equations of the system,

(=0 + mHp(x) = J(x), (4.59)

and a continuity condition which we shall return to presently.

The procedure can be reproduced for a general Lagrangian density £ and
gives the Euler—Lagrange equations for a field. Taking the general form of the
action in eqn. (4.55), one may write the first variation

9L
88 = /(dx){—&/b—i-a(aud)) () - (4.60)

Now, the variation symbol and the derivative commute with one another since
they are defined in the same way:

3,80 = 0,¢(x + Ax) — 0, (x)
= 5(3,0); (4.61)

thus, one may integrate by parts to obtain

AL AL 1 oL
35:/@6){% <a<aﬂ¢>)]+ / M‘Sd’(a(aw)) (462

The first of these terms exists for every spacetime point in the volume of
integration, whereas the second is restricted only to the bounding hyper-surfaces
o and o’. These two terms must therefore vanish independently in general.

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

64 4 The action principle

The vanishing integrand of the first term gives the Euler-Lagrange equations of
motion for the field

oL aL
— — 0, =0, (4.63)
d¢ 9(0"9)
and the vanishing of the second term leads to the boundary continuity condition,
oL
A8¢ =0. (4.64)
a(9"e)

If this result is compared with eqns. (4.22) and (4.23), an analogous ‘momen-
tum’, or conjugate variable to the field ¢ (x), can be defined. This conjugate
variable is unusually denoted T1(x):

(4.65)

and is derived by taking the canonical spacelike hyper-surface with o = 0. Note
the position of indices such that the variable transforms like a covariant vector
p = doq. The covariant generalization of this is

SL

T 3(07¢)

I, (x) (4.66)

4.4.2 Uniqueness of the action

In deriving everything from the action principle, one could gain the impression
that there is a unique prescription at work. This is not the case. The definition
of the action itself is not unique. There is always an infinity of actions
which generates the correct equations of motion. This infinity is obtained by
multiplying the action by an arbitrary complex number. In addition to this trivial
change, there may be several actions which give equivalent results depending on
(i) what we take the object of variation to be, and (ii) what we wish to deduce
from the action principle. For example, we might choose to re-parametrize the
action using new variables. The object of variation and its conjugate are then
re-defined.

It is clear from eqn. (4.21) that the field equations and boundary conditions
would be the same if one were to re-define the Lagrangian by multiplying by a
general complex number:

S — (a +1b)S. 4.67)

The complex factor would simply cancel out of the field equations and boundary
conditions. Moreover, the Lagrangian itself has no physical meaning, so there
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4.4 The action in covariant field theory 65

is no physical impediment to such a re-definition. In spite of this, it is normal
to choose the action to be real. The main reason for this is that this choice
makes for a clean relationship between the Lagrangian and a new object, the
Hamiltonian, which is related to the energy of the system and is therefore, by
assumption, a real quantity.

Except in the case of the gravitational field, one is also free to add a term on
to the action which is independent of the field variables, since this is always zero
with respect to variations in the fields:

S—> S+ /(dx) A. (4.68)

Such a term is often called a cosmological constant, because it was introduced
by Einstein into the theory of relativity in order to create a static (non-expansive)
cosmology. Variations of the action with respect to the metric are not invariant
under the addition of this term, so the energy—momentum tensor in chapter 11
is not invariant under this change, in general. Since the Lagrangian density is an
energy density (up to a factor of c), the addition of this arbitrary term in a flat
(gravitation-free) spacetime simply reflects the freedom one has in choosing an
origin for the scale of energy density for the field.?

Another way in which the action can be re-defined is by the addition of a total
derivative,

S—> S+ /(dx)B“FMM)]

=S+ / do " F,[¢]. (4.69)

The additional term exists only on the boundaries o of the volume integral.
By assumption, the surface term vanishes independently of the rest, thus, since
the field equations are defined entirely from the non-surface contributions, they
will never be affected by the addition of such a total derivative. However,
the boundary conditions or continuity will depend on this addition. This has
a physical interpretation: if the boundary of a physical system involves a
discontinuous change, it implies the action of an external agent at the boundary.
Such a jump is called a contact potential. It might signify the connection of a
system to an external potential source (a battery attached by leads, for instance).
The connection of a battery to a physical system clearly does not change the laws
of physics (equations of motion) in the system, but it does change the boundary
conditions.

In light of this observation, we must be cautious to write down a ‘neutral’,
or unbiased action for free systems. This places a requirement on the action,

3 Indeed, the action principle 88 = 0 can be interpreted as saying that only potential differences
are physical. The action potential itself has no unique physical interpretation.
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66 4 The action principle

namely that the action must be Hermitian, time-reversal-invariant, or symmetri-
cal with respect to the placement of derivatives, so that, if we let t — —r, then
nothing is changed. For instance, one writes

(3"¢)(0,¢) insteadof @ (—¢), (4.70)

for quadratic derivatives, and

1 © 1
§(¢* & @) = §(¢*(3z¢) — (0,¢")¢) insteadof ¢*3p,  (4.71)

in the case of linear derivatives. These alternatives differ only by an integration
by parts, but the symmetry is essential for the correct interpretation of the action
principle as presented. This point recurs in more detail in section 10.3.1.

4.4.3 Limitations of the action principle

In 1887, Helmholtz showed that an equation of motion can only be derived from
Lagrange’s equations of motion (4.6) if the generalized force can be written

Fi=—-0,V + d av 4.72)
T dr 9¢;° '
where V = V(q, g, t) is the potential L = T — V, and the following identities

are satisfied:

oF; 0F;
9g; 94
8Fi+8Fj_d 8Fl~+8FJ-
9g; 8¢ dr \dg; 0
d (0F; OF;
0jF; —0;F; = — — = (4.73)
dr \ g 0q;

For a review and discussion of these conditions, see ref. [67]. These relations lie
at the core of Feynman’s ‘proof” of Maxwell’s equations [42, 74]. Although they
are couched in a form which derives from the historical approach of varying the
action with respect to the coordinate ¢; and its associated velocity, g;, separately,
their covariant generalization effectively summarizes the limits of generalized
force which can be derived from a local action principle, even using the approach
taken here. Is this a significant limitation of the action principle?

Ohm’s law is an example where a Lagrangian formulation does not work
convincingly. What characterizes Ohm’s law is that it is a substantive rela-
tionship between large-scale averages, derived from a deeper theory, whose
actual dynamics are hidden and approximated at several levels. The relation
summarizes a coarse average result of limited validity. Ohm’s law cannot be
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4.4 The action in covariant field theory 67

derived from symmetry principles, only from a theory with complex hidden
variables. The deeper theory from which it derives (classical electrodynamics
and linear response theory) does have an action principle formulation however.

Ohm’s law is an example of how irreversibility enters into physics. The
equations of fundamental physics are reversible because they deal only with
infinitesimal changes. An infinitesimal interval, by assumption, explores so
little of its surrounding phase space that changes are trivially reversed. This
is the main reason why a generating functional (action) formulation is so
successful at generating equations of motion: it is simply a mechanism for
exploring the differential structure of the action potential-surface in a local
region; the action is a definition of a conservation book-keeping parameter
(essentially energy), parametrized in terms of field variables. The reversible,
differential structure ensures conservation and generates all of the familiar
quantities such as momentum. Irreversibility arises only when infinitesimal
changes are compounded into significant changes; i.e. when one is able to
explore the larger part of the phase space and take account of long-term history
of a system. The methods of statistical field theory (closed time path [116]
and density matrices [49]) may be used to study long-term change, based on
sums of differential changes. Only in this way can one relate differential law to
macroscopic change.

Another way of expressing the above is that the action principle provides a
concise formulation of Markov processes, or processes whose behaviour now
is independent of what happened in their past. Non-Markov processes, or
processes whose behaviour now depends on what happened to them earlier,
require additional long-term information, which can only be described by the
combination of many infinitesimal changes.

Clearly, it is possible to write down equations which cannot be easily derived
from an action principle. The question is whether such equations are of
interest to physics. Some of them are (such as Ohm’s law), but these only fail
because, employing an action principle formulation of a high-level emergent
phenomenon ignores the actual energy accounting taking place in the system.
If one jumps in at the level of an effective field theory, one is not guaranteed
an effective energy parameter which obeys the reversible accounting rules of
the action principle. If an action principle formulation fails to make sense,
it is possible to go to a deeper, more microscopic theory and re-gain an
action formulation, thereby gaining a more fundamental (though perhaps more
involved) understanding of the problem.

So are there any fundamental, elementary processes which cannot be derived
from an action principle? The answer is probably not. Indeed, today all
formulations of elementary physics assume an action principle formulation at
the outset. What one can say in general is that any theory derived from an
action principle, based on local fields, will lead to a well defined problem,
within a natural, covariant formulation. This does not guarantee any prescription
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68 4 The action principle

understanding physical phenomena, but it does faithfully generate differential
formulations which satisfy the symmetry principle.

4.4.4 Higher derivatives

Another possibility which is not considered in this book is that of higher
derivative terms. The actions used here are at most quadratic in the derivatives.
Particularly in speculative gravitational field theories, higher derivative terms do
occur in the literature (often through terms quadratic in the curvature, such as
Gauss—Bonnet terms or Weyl couplings); these are motivated by geometrical or
topological considerations, and are therefore ‘natural’ to consider. Postulating
higher order derivative terms is usually not useful in other contexts.

Higher derivative terms are often problematic, for several reasons. The
main reason is that they lead to acausal solutions and ‘ghost’ excitations,
or to field modes which appear to be solutions, but which actually do not
correspond to physical propagations. In the quantum field theory, they are
non-renormalizable. Although none of these problems is itself sufficient to
disregard higher derivatives entirely, it limits their physical significance and
usefulness. Some higher derivative theories can be factorized and expressed
as coupled local fields with no more than quadratic derivatives; thus, a difficult
action may be re-written as a simpler action, in a different formulation. This
occurs, for instance, if the theories arise from non-local self-energy terms.

4.5 Dynamical and non-dynamical variations

It is convenient to distinguish between two kinds of variations of tensor quanti-
ties. These occur in the derivation of field equations and symmetry generators,
such as energy and momentum, from the action.

4.5.1 Scalar fields

The first kind of variation is a dynamical variation; it has been used implicitly
up to now. A dynamical variation of an object ¢ is defined by

8q = q'(x) — q(x). (4.74)

This represents a change in the function g(x) at constant position x. It is like
the ‘rubber-banding’ of a function into a new function: a parabola into a cubic
curve, and so on.

The other kind of variation is a coordinate variation, or kinematical variation,
which we denote

3rq(x) = q(x') — g (x). (4.75)
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4.5 Dynamical and non-dynamical variations 69

This is the apparent change in the height of the function when making a shift
in the coordinates x, or perhaps some other parameter which appears either
explicitly or implicitly in the action. More generally, the special symbol &; is
used for a variation with respect to the parameter £. By changing the coordinates
in successive variations, d§,, one could explore the entire function g(x) at
different points. This variation is clearly related to the partial (directional)
derivative of g. For instance, under a shift

xt — xHt et (4.76)
i.e. 6x* = e€*, we have

8xq(x) = (9.q)€". 4.77)

One writes the total variation in the field g as

St =68+ Z Si. (4.78)

4.5.2 Gauge and vector fields

The coordinate variation of a vector field is simply

8:Vy = Vu(x') = Vyu(x)
= (3, Ve (4.79)

For a gauge field, the variation is more subtle. The field at position x" need only
be related to the Taylor expansion of the field at x up to a gauge transformation,
SO

8cA, = A, (x) — A, (x)
= (AL + 0, (3,8)e™. (4.80)

The gauge transformation s is important because §, A, (x) is a potential differ-
ence, and we know that potential differences are observable as the electric and
magnetic fields, so this variation should be gauge-invariant. To make this so,
one identifies the arbitrary gauge function s by d,s = —A;, which is equally
arbitrary, owing to the gauge symmetry. Then one has

8y Ay = (A, — 3,A5)€”
= F €. (4.81)

Neglect of the gauge freedom has led to confusion over the definition of the
energy—momentum tensor for gauge fields; see section 11.5.
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70 4 The action principle

The dynamical variation of a vector field follows from the general tensor
transformation
P

[// x/ =—V,(x 4.82
( ) P 0( ) ( . )
From this we have

8V (x) =V (x) = Vu(x)
=V, (x") = (3, V)€ — Vyu(x)

dax” N
= o Vo) — (Ve — Viu(x)
= — (e )V’ — (3, V)€ (4.83)

For the gauge field, one should again be wary about the implicit coordinate
variation. The analogous derivation gives

8AL(x) = Al (x) — Au(x)
= A, (x") — Fyu€e" — Au(x)

ox”? Y
= oo Ap () = Fue® — A, ()
= — () AY — Fyu€h. (4.84)

4.5.3 The metric and second-rank tensors

The coordinate variation of the metric is obtained by Taylor-expanding the
metric about a point x,

axguv = guv(x/) - g;/.v(x)

= (B guv(x))e". (4.85)
To obtain the dynamical variation, we must use the tensor transformation rule
ax? dx°
/ N o
8 (X) = 2 55 8o (X), (4.86)
where
ox” 0 p )
P =8, — (0u€”) + -+ -+ O(e7). (4.87)
Thus,
Sg;w = g,/w(x) - g;w(x)
ax” 9x° D
= 9x/H mgpa(x) - (apglw)e - g;w(x)
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= —(01.gu)e" — (3" grr — (3v€M) g
—(05.8u)€" — {060 + dvep ) (4.88)

where one only keeps terms to first order in €.

4.6 The value of the action

There is a frequent temptation to assign a physical meaning to the action, beyond
its significance as a generating functional. The differential structure of the
action, and the variational principle, give rise to canonical systems obeying
conservation laws. This is the limit of the action’s physical significance. The
impulse to deify the action should be stifled.

Some field theorists have been known to use the value of the action as an
argument for the triviality of a theory. For example, if the action has value zero,
when evaluated on the constraint shell of the system, one might imagine that this
is problematic. In fact, it is not. It is not the numerical value of the action but its
differential structure which is relevant.

The vanishing of an action on the constraint shell is a trivial property of any
theory which is linear in the derivatives. For instance, the Dirac action and the
Chern—Simons [12] action have this property. For example:

5= [@wy s, +my
S .
5 = (7"t my =0

5| =o. (4.89)
v

The scalar value of the action is irrelevant, even when evaluated on some speci-
fied constraint surface. Whether it is zero, or non-zero, it has no meaning. The
only exception to this is in the Wick-rotated theory, where a serendipitous link
to finite temperature physics relates the Wick-rotated action to the Hamiltonian
or energy operator of the non-rotated theory.
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5

Classical field dynamics

A field is a dynamically changing potential V (X, t), which evolves in time
according to an equation of motion. The equation of motion is a constraint
on the allowed behaviour of the field. It expresses the dynamical content of the
theory. The solution of that constraint, called the physical field, is the pivotal
variable from which we glean all of the physical properties of the system. In
addition to dynamical equations, a field theory has a conceptual basis composed
of physical assumptions, interpretations and boundary conditions.

The familiar equations of motion, in classical field dynamics, include the
Schrodinger equation, Maxwell’s equations, Dirac’s relativistic equation and
several others. In the context of field theory, we call such equations classical
as long as we are not doing quantum field theory (see chapter 15), since the
method of solution is directly analogous to that of classical electrodynamics.
In spite of this designation, we know that the solutions of Schrodinger’s field
equation are wavefunctions, i.e. the stuff of quantum mechanics. Whole books
have been written about these solutions and their interpretation, but they are not
called field theory; they use a different name.

Field theory embraces both quantum mechanics and classical electrodynam-
ics, and goes on to describe the most fundamental picture of matter and energy
known to physics. Our aim here is to seek a unified level of description for
matter and radiation, by focusing on a field theoretical formulation. This ap-
proach allows a uniquely valuable perspective, which forms the basis for the full
quantum theory. The equations presented ‘classically’ in this book have many
features in common, although they arise from very different historical threads,
but — as we shall see in this chapter — the completeness of the field theoretical
description of matter and radiation can only be appreciated by introducing
further physical assumptions brought forcefully to bear by Einsteinian relativity.
This is discussed in chapter 15.

72
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5.1 Solving the field equations 73

5.1 Solving the field equations

A solution is a mathematical expression of the balance between the freedom
expressed by the variables of a theory and the constraints which are implicitly
imposed upon them by symmetries and equations of motion.

Each physical model has a limited validity, and each has a context into
which one builds its interpretation. Some solutions must be disregarded on the
basis of these physical assumptions. Sometimes, additional constraints, such as
boundary conditions, are desirable to make contact with the real world. The
basic vocabulary of solutions involves some common themes.

5.1.1 Free fields

Free particles or fields do not interact. They experience no disturbances and
continue in a fixed state of motion for ever. Free particles are generally described
by plane wave fields or simple combinations of plane waves, which may be
written as a Fourier transform,

dn+lk

Gyt e, G-

P (x) =
or, using Schwinger’s compact notation for the integration measure, as

d(x) = f (dk) e** d (k). (5.2)

For this combination to satisfy the field equations, we must add a condition
x (k) = 0, which picks out a hyper-surface (a sub-set) of all of the k, which
actually satisfy the equations of motion:

B x) = / (e D, (k)5 (x). (5.3)

where x = 0 is the constraint imposed by the equations of motion on k. Without
such a condition, the Fourier transform can represent an arbitrary function.
Notice that ® (k) and ®, (k) have different dimensions by a factor of k due to the
delta function. This condition x is sometimes called the mass shell in particle
physics. Elsewhere it is called a dispersion relation. Fields which satisfy this
condition (i.e. the equations of motion) are said to be on shell, and values of k
which do not satisfy this condition are off shell. For free fields we have

xr = h(—0® + K> +m?c* =0
h2K?
2m

for the relativistic and non-relativistic scalar fields, respectively. The delta-
function constraint ensures that the combinations of plane waves obey the

XNR = —w=0, (5.4)
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74 5 Classical field dynamics

field equations. It has the additional side effect that one component of the
wavenumber k, is not independent and can be eliminated. It is normal to
integrate over the zeroth (energy) component to eliminate the delta function.
From Appendix A, eqn. (A.15), we have

-1
d(x) = / (dK) 'g—é el kx—0®N g (k. w(K)). (5.5)

Travelling waves carry momentum k; > O or k; < 0, while stationary waves
carry no momentum, or rather both k; and —k; in equal and opposite amounts.

5.1.2 Boundary conditions and causality 1

A common strategy for simplifying the analysis of physical systems is to assume
that they are infinitely large, or that they are uniform in space and/or time, or that
they have been running uniformly in a steady state for ever. Assumptions like
this allow one to do away with the complicated behaviour which is associated
with the starting up or shutting down of a dynamical process. It also allows
one to consider bulk behaviour without dealing with more difficult effects in the
vicinity of the edges of a system. Some of the effects of finite size and starting
up/shutting down can be dealt with by imposing boundary conditions on the
behaviour of a system. The term boundary conditions is used with a variety of
meanings.

e Boundary conditions can be a specification of the absolute value of the
field at some specific spacetime points, e.g.

¢ (x) =0. (5.6)

This indicates a constraint associated with some inhomogeneity in space-
time.

e A corollary to the above is the specification of the value of the field on the
walls of a container in a finite system.

e At junctions or interfaces, one is interested in continuity conditions, like
those derived in section 4.1.4 and generalizations thereof. Here, one
matches the value of the field, perhaps up to a symmetry transformation,
across the junction, e.g.

A¢p(xg) =0, 6.7

meaning that the field does not change discontinuously across a junction.
Conditions of this type are sometimes applied to fields, but usually it
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5.1 Solving the field equations 75

is more correct to apply them to conserved quantities such as invariant
products of fields, probabilities

A(y'y) =0, (5.8)

etc. since fields can undergo discontinuous phase changes at boundaries
when the topology of spacetime allows or demands it.

e Related to the last case is the issue of spatial topology. Some boundary
conditions tell us about the connectivity of a system. For example, a field
in a periodic lattice or circle of length L could satisfy

¢(x+ L) =U(L) ¢ (x). (5.9)

In other words, the value of the field is identical, up to a possible phase or
symmetry factor U (L), on translating a distance L.

e Another kind of condition which one can impose on a reversible physical
system is a direction for causal development. The keywords here are
advanced, retarded and Feynman boundary conditions or fluctuations.
They have to do with a freedom to change perspective between cause and
effect in time-reversible systems. Is the source switched on/off before
or after a change in the field? In other words, does the source cause
the effect or does it absorb and dampen the effect? This is a matter
of viewpoint in reversible systems. The boundary conditions known as
Feynman boundary conditions mix these two causal perspectives and
provide a physical model for fluctuations of the field or ‘virtual particles’:
a short-lived effect which is caused and then absorbed shortly afterwards.

5.1.3 Positive and negative energy solutions

The study of fields in relativistic systems leads to solutions which can be
interpreted as having both positive and negative energy. Free relativistic field
equations are all transcriptions of the energy relation

E = £/ p2c? + m2c4, (5.10)

with the operator replacement p,, = —i#d, and a field on which the operators
act. This is most apparent in the case of the Klein—-Gordon equation,

(—h%c*0 +m?cHe(x) = 0. (5.11)

Clearly, both signs for the energy are possible from the square-root in
eqn. (5.10). The non-relativistic theory does not suffer from the same problem,
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76 5 Classical field dynamics

since the Schrodinger equation is linear in the energy and the sign is defined to
be positive:

=~ —E. (5.12)

The field ¢ (x) can be expanded as a linear combination of a complete set of
plane wavefunctions satisfying the equation of motion. The field can therefore
be written

d(x) = f (k) (k)e™*§ (h*k* +m>c?), (5.13)

where ¢ (k) are arbitrary coefficients, independent of x. The integral ranges over
all energies, but one can separate the positive and negative energy solutions by
writing

P(x) =P (x) + ¢ (1), (5.14)

where
dP(x) = / (dk)p (k)e* 0 (ko)s (h**k* + m*c?)
d(x) = / (dk)p (k)e™ 0 (—ko)d (h**k* + m>c?) . (5.15)

The symmetry of the energy relation then implies that

¢ ) = (67 )" (5.16)

The physical interpretation of negative energy solutions is an important issue,
not because negative energy is necessarily unphysical (energy is just a label
which embraces a variety of conventions), but rather because there are solutions
with arbitrarily large negative energy. A transition from any state to a state with
energy £ = —oo would produce an infinite amount of real energy for free. This
is contrary to observations and is, presumably, nonsense.

The positive and negative energy solutions to the free relativistic field equa-
tions form independently complete sets, with respect to the scalar product,

(@ (x), 9 (x)) = const.

(@7 (x), 7 (x)) = const.

@), () =0. (5.17)
In the search for physically meaningful solutions to the free relativistic equa-
tions, it might therefore be acceptable to ignore the negative energy solutions

on the basis that they are just the mirror image of the positive energy solutions,
describing the same physics with a different sign.
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This is the case for plane waves, or any solutions which are translationally
invariant in time. Such a wave has a time dependence of the form,

¢ () ~ exp (—i%(z — to)> , (5.18)

where £y is an arbitrary origin for time. If E < 0, one can simply recover a
positive energy description by moving the origin for time #; into the far future,
tp — 00, which essentially switches t — —f. Since a free particle cannot
change its energy by interaction, it will always have a definite energy, either
positive or negative. It cannot therefore extract energy from the field by making
a transition.

The real problem with negative energies arises in interacting theories. It is not
clear how to interpret these solutions from the viewpoint of classical field theory.
An extra assumption is needed. This assumption is more clearly justified in the
quantum theory of fields (see chapter 15), but is equally valid in the classical
theory. The assumption is that there exists a physical state of lowest energy
(called the vacuum state) and that states below this energy are interpreted as
anti-matter states.

It is sometimes stated that relativistic quantum mechanics (prior to second
quantization) is sick, and that quantum field theory is required to make sense
of this problem. This is not correct, and would certainly contradict modern
thinking about effective field theories.! All that is required is a prescription for
interpreting the negative energies. The assumptions of quantum field theory,
although less well justified, are equally effective and no more arbitrary here. In
fact, they are essential since the classical field theory is a well defined limit to
the fully quantized field theory.

5.1.4 Sources

The terms source and current are often used interchangeably in field theory,
but they refer to logically distinct entities. Sources (sometimes referred to
emphatically as external sources) are infinitesimal perturbations to a physical
system; currents represent a transfer between one part of a system and another.
In an isolated (closed) system, matter and energy can flow from one place to
another, and such currents are conserved. There is a close formal similarity
between sources and currents, which is no accident. Sources — and their
opposites: sinks — can be thought of as infinitesimal currents which are not
conserved. They represent the flow of something into or out of a physical
system, and thus a perturbation to it. Sources are also the generators of
infinitesimal field changes, called virtual processes or fluctuations.

! Certain specific Lagrangians lead to unphysical theories, but this is only a reason to reject
certain models, not the quantum theory itself.
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78 5 Classical field dynamics

In mathematics, any quantity on the ‘right hand side’ of a field equation is
called a source, ‘forcing term’ or ‘driving term’. A source perturbs or drives the
field linearly. For example, consider the Klein—Gordon equation

m?c?
(—D + 2 )¢(x) =J. (5.19)

One says that J(x) is a source for the field ¢ (x). J is sometimes also referred
to as a generalized force. Sources are included in the action in the form

S— S+ /(dx)]¢(x). (5.20)
For example, the Klein—Gordon action with a source term becomes
1 1
S = /(dx) {Ehzcz(a’%)(auqb) + 5mzc“qbz — J¢} . (5.21)
When this action is varied, one obtains
N 22 2.4
g:(—th+m0)¢—J:0, (5.22)

which leads directly to eqn. (5.19). Other source terms include

SMaxwell - SMaxwell + /(dx)JMAM (523)

for the electromagnetic field, and

Scomplex = Scomplex 1 f(dx) {J¢* + J*¢} (5.24)

for a complex scalar field. Most interactions with the field do not have the form
of an infinitesimal perturbation. For instance, the interaction with a Schrédinger
field, in quantum mechanics, has the form ¥ *Vyr, making J = V¢, which is
not infinitesimal. However, if one assumes that V is small, or infinitesimal, then
this may be expanded around the field ¢ for a free theory in such a way that
it appears to be a series of infinitesimal impulsive sources; see section 17.5. In
this way, the source is the basic model for causal change in the field.
Another definition of the source is by functional differentiation:

— = Ju, 5.25
o, A (5.25)
where ¢ is a generic field. This is a generic definition and it follows directly

from eqn. (5.20), where one does not treat the source term as part of the action
S.
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5.2 Green functions and linear response 79

A current represents a flow or transport. To define current, one looks to the
only example of current known prior to field theory, namely the electric current.
Recall Maxwell’s equation

9 F"" = pioJ". (5.26)

The quantity J, is the (n + 1) dimensional current vector. It is known,
from the microscopics of electromagnetism, that this is the electric current:
electric currents and electric charges are responsible for the electromagnetic
field. However, one may also say that J,, is a source for the electromagnetic
field, because it prevents the left hand side of this equation from being equal to
zero. It perturbs the equation of motion. In electromagnetism the current is a
source for the field F),, or A,, so it is common to treat source and current as
being the same thing. This tendency spills over for other fields too, and one
often defines a generic current by eqn. (5.25). Of course, normally one imagines
a current as being a vector, whereas the quantity in eqn. (5.25) is a scalar, but
this may be used as a definition of ‘current’. The notion of conserved currents
and their relation to symmetries recurs in chapter 9.

5.1.5 Interactions and measurements

Fields undergo interactions with other fields, and perhaps with themselves
(self-interaction). When fields interact with other fields or potentials (either
static or dynamical), the state of the field is modified. Classically, the field
responds deterministically according to a well defined differential equation
(the equation of motion), and interactions apply new constraints. One way to
understand weakly interacting systems is to imagine them to be assemblies
of weakly-coupled oscillators. In special circumstances, it is possible to
construct models with interactions which can be solved exactly. Often, however,
approximate methods are required to unravel the behaviour of interacting fields.

In quantum mechanics the act of measurement itself is a kind of temporary
interaction, which can lead to a discontinuous change of state. It is not funda-
mentally different from switching on a potential in field theory. The ‘collapse of
the wavefunction’ thus occurs as a transition resulting from an interaction with a
measurement apparatus. This collapse has no detailed description in the theory.

5.2 Green functions and linear response
5.2.1 The inverse problem

Consider an equation of the form

Dy = f(@), (5.27)
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80 5 Classical field dynamics

where D is a differential operator, y(¢) is a variable we seek to determine, and
f(#) is some forcing term, or ‘source’. We meet this kind of equation repeatedly
in field theory, and D is often an operator of the form D = —J + m?.

Normally, one would attempt to solve a differential equation either by
integrating it directly, or by ‘substituting in’ a trial solution and looking for
consistency. An alternative method is the method of Green functions. The idea
can be approached in a number of ways. Let us first take a naive approach.

If D is an operator, then, if a unique solution to the above equation exists,
it must have an inverse. We can therefore write the solution to this equation
formally (because the following step has no meaning until we have defined the
inverse) by

f)

ﬂﬂ=@Y7®=jE= (5.28)

This is much like the approach used to solve matrix equations in linear algebra.
Both the notations in the equation above are to be found in the literature. If the
inverse exists, then it must be defined by a relation of the form
E:DD”:L (5.29)
D
where [ is the identity operator.> We do not yet know what these quantities
are, but if an inverse exists, then it must be defined in this way. An obvious
thing to notice is that our eqn. (5.27) is a differential equation, so the solution
involves some kind of integration of the right hand side. Let us now postpone the
remainder of this train of thought for a few lines and consider another approach.
The second way in which we can approach this problem is to think of
eqn. (5.27) as a ‘linear response’ equation. This means that we think of the right
hand side as being a forcing term which perturbs the solution y(¢) by kicking it
over time into a particular shape. We can decompose the force f(¢) into a set of
delta-function impulse forces over time,

f() = /dt/(S(t,t/)f(t’). (5.30)

This equation, although apparently trivial (since it defines the delta function),
tells us that we can think of the function f(¢) as being a sum of delta functions
at different times, weighted by the values of f(#'). We can always build up a
function by summing up delta functions at different times. In most physical
problems we expect the value of y(¢) to depend on the past history of all the
kicks it has received from the forcing function f(z). This gives us a clue as to
how we can define an inverse for the differential operator D.

2 Note that the ordering of the operator and inverse is an issue for differential operators. We
require a ‘right-inverse’, but there may be no left inverse satisfying D lp=1.
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Suppose we introduce a bi-local function G (¢, t'), such that

¥(0) = / dr G, 1) f(1; (5.31)

i.e. when we sum up the contributions to the force over time with this weight,
it gives us not the force itself at a later time, but the solution. This, in fact, is
the way we define the inverse D~!. It has to be a bi-local function, as we shall
see below, and it involves an integration, in spite of the purely formal notation
in eqn. (5.29).

Substituting this trial solution into the equation of motion, we have

D/dt’ G, t)f(t') = f(@), (5.32)

where the operator D acts on the variable ¢ only, since the dummy variable ¢’ is
integrated out from minus to plus infinity. Thus, we may write,

/dfﬁ(ﬂnﬁf@):f@) (5.33)

This equation becomes the defining equation for the delta function (5.30) if and
only if

DG 1) =58(.1). (5.34)

and this equation is precisely of the form of an inverse relation, where the delta
function is the identity operator. We have therefore obtained a consistent set of
relations which allow us to write a formal solution y(¢) in terms of an inverse for
the operator G (¢, t'); we also have an equation which this inverse must satisfy,
so the problem has been changed from one of finding the solution y(#) to one of
calculating the inverse function. It turns out that this is often an easier problem
than trying to integrate eqn. (5.27) directly.

The function G(t, t') goes by several names. It is usually referred to as the
Green(’s) function for the operator D, but it is also called the kernel for D and,
in quantum field theory, the propagator.

We can, of course, generalize this function for differential operators which
actin an (n + 1) dimensional spacetime. The only difference is that we replace
t,t' by x, x’ in the above discussion:

Dy(x) = f(x)
DG(x,x") =cd(x,x)
y(x) = /(dx’)G(x, x") f(x)). (5.35)
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82 5 Classical field dynamics
Or, equivalently,
DG(x,x) =8(x,x)8(¢t, t)
yx) = /(dX’)G(x,X’)f(X’)- (5.36)

We are not quite finished with Green functions yet, however: we have skirted
around an important issue above, which is described in the next section.

5.2.2 Boundary conditions and causality Il

The discussion above is not quite complete: we have written down a function
which relates the solution at x to a forcing term at x’ via a bi-local function
G(x, x’). The inverse relation involves an integral over all intermediate times
and positions x’, but over what values does this integral run? And over what
values of x” was the force defined? Was it switched on suddenly at some time
in the past (giving an integral from a fixed time in the past to the present), or
has it always existed (giving an integral from minus infinity)? Moreover, why
should x’ be in the past? We know that physics is usually time-reversible, so
why could we not run time backwards and relate a solution in the past to a value
of the force in the future, or perhaps a combination of the past and future?

All of these things are possible using different Green functions. We therefore
see that the inverse is not unique, and it is not unique because the definition of
the inverse involves an integration, and integrals have limits. Physically we are
talking about the need to specify initial or boundary conditions on our physical
system.

The commonly used Green functions are as follows.

e Retarded Green function G.(x, x"). This relates a solution at the present
to forces strictly in the past. It is the basis of linear response theory. Due to
its origins in electromagnetism, it is often referred to as the susceptibility
x(x,x") = x' + ix” in other books, with real and imaginary parts as
denoted.

e Advanced Green function G,(x, x’). This relates a solution at the present
to forces strictly in the future.

e Feynman Green function Gg(x, x"). This relates a solution at the present
to forces disposed equally in the past and the future. Its interpretation
is rather subtle, since it turns real fields into complex fields as they
propagate. The Feynman Green function is a correlation function, and
a model for fluctuations in a system. It is sometimes denoted A(x, x’),
C(x, x") or S(x, x) in other books.
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5.2 Green functions and linear response 83

e Wightman functions. The positive and negative frequency Wightman
functions G (x, x’) may be thought of as building blocks out of which
all the other Green functions may be constructed.

5.2.3 Green functions in Fourier momentum space’

A useful way of calculating quantities is to use an integral transformation,
usually the Fourier transformation on the Green functions. The purpose of this
step is to turn an operator equation into an ordinary algebraic equation, plus a
single integral. This is often referred to as transforming into ‘momentum space’,
since the choice of units makes the Fourier transform variables equivalent to
momenta.

We shall focus largely on the Green functions for the scalar field, since most of
the Green functions for other fields can be obtained from this by differentiation.
We are looking to solve an equation of the form

(=0 + M*)G(x,x") = 8(x, x'), (5.37)

where M? is some real mass term. We define the Fourier transforms of the Green
function by the mutually inverse relations,

G(r) = / (dk)e™* G (k) (5.382)
Gk) = / (dr)e % G(x, x), (5.38b)
where we have assumed that G(r) = G(x, x’) is a translationally invariant

function of the coordinates (a function only of the difference x — x’), which is
reasonable since M? is constant with respect to x. We shall also have use for the
Fourier representation of the delta function, defined in Appendix A, eqn. (A.10).
Notice how the Fourier integral is a general linear combination of plane waves
exp(ik(x — x’)), with coefficients G (k). Using this as a solution is just like
substituting complex exponentials into differential equations. Substituting these
transformed quantities into eqn. (5.37), and comparing the integrands on the left
and right hand sides, we obtain

k*> + M*)G (k) = 1. (5.39)

This is now an algebraic relation which may be immediately inverted and
substituted back into eqn. (5.38b) to give

1k(x x")

5.40
k> + M? (5.40)

G(x, x)_/(dk)

3 In this section we set i = ¢ = 1 for convenience.
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84 5 Classical field dynamics

In addition to this ‘particular integral’, one may add to this any linear combina-
tion of plane waves which satisfies the mass shell constraint k> + M? = 0. Thus
the general solution to the Green function is

Gx(x,x) = / (dk)ek =) [ + X (k, %) 8(k* + Mz):| , (541

k2 + M2
where X (k, X) is an arbitrary function of &, and in the unusual case of inhomo-
geneous systems it can also depend on the average position x = %(x + x').
This arbitrariness in the complementary function is related to the issue of
boundary conditions in the previous section and the subsequent discussion in
the remainder of this chapter, including the choice of integration path for the
Green function. In most cases studied here, X (k,x) = 0, and we choose a
special solution (retarded, advanced, etc.) for the Green function. This term
becomes important in satisfying special boundary conditions, and occurs most
notably in statistical ‘many-particle’ systems, which vary slowly with 7 away
from equilibrium.

We are therefore left with an integral which looks calculable, and this is
correct. However, its value is ambiguous for the reason mentioned above:
we have not specified any boundary conditions. The ambiguity in boundary
conditions takes on the form of a division by zero in the integrand, since

K>+ M? = —kj + K> + M? = (w0 — ko) (i + ko), (5.42)
where w, = vk + M2. This G (k) has simple poles at
ko = tay. (5.43)

In order to perform the integral, we need to define it unambiguously in the
complex plane, by choosing a prescription for going around the poles. It
turns out that this procedure, described in many texts, is equivalent to choosing
boundary conditions on the Green function.

5.2.4 Limitations of the Green function method

The Green function method nearly always works well in field theory, but it is
not without its limitations. The limitations have to do with the order of the
differential operator, D, the number of spacetime dimensions and whether or
not the operator contains a mass term. For a massive operator

(-0 + M (x) = J(x), (5.44)

the general solution is given by

d(x) = /(dx) G(x,x)J(x). (5.45)
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5.2 Green functions and linear response 85

For a massless field, it is clear that one can always add to this a polynomial of
order lower than the order of the differential operator. In the example above,
setting M = 0 allows us to add

P(x) = /(dx) Gx,x)J(x") +a(x —x")+ B. (5.46)

A more serious limitation of the Green function method arises when the order of
the differential operator exceeds the number of spacetime dimensions involved
in the operator. This leads to non-simple poles in the Green function, which
presents problems for the evaluation of the Green function. For example, a
second-order operator in one dimension

3G, 1) =8(,1). (5.47)
If we try to solve this using the Fourier method, we end up with an integral of
the form
dw e—iw(t—t’)
Gt,t= | ———. 5.48
@) /271 —(w £ i€)? (5.48)

This integral has a second-order pole and cannot be used to solve an equation
involving 82. For example, the equation for the position of a Newtonian body

3 x(t) = F/m, (5.49)

cannot be solved in this way since it is not homogeneous in the source F/m.
The solution is easily obtained by integration

1F ,
x(t) = =——1t° + vt + xo. (5.50)
2m

Since there are terms in this solution which are not proportional to F/m, it is
clear that the Green function method cannot provide this full answer. However,
the equation can still be solved by the Green function method in two stages.

5.2.5 Green functions and eigenfunction methods

In introductory quantum mechanics texts, the usual approach to solving the
system is based on the use of the eigenfunctions of a Hamiltonian operator.
This is equivalent to the use of Green functions. The Fourier space expressions
given thus far assume that an appropriate expansion can be made in terms of
plane wave eigenfunctions:

up(x) = el (5.51)
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86 5 Classical field dynamics

Weritten in this notation, the Green functions have the form

Gx.x) =) Gyuy()u(x) (5.52)

where the u, are a complete set of eigenfunctions, or solutions of the field
equations, and the G, are a set of constants in this new expansion. The labels n
are sometimes discrete (as in bound state problems) and sometimes continuous,
as in the case n = k, G (k) and so on. In addition to the above expansion, the
question of boundary conditions must be addressed. This can be accomplished
by multiplying the coefficients by step functions:

Gu(x,x") o (ay 0t — 1) + B, 0" — 1)) (5.53)

This is true in many situations, at least when the system concerned is transla-
tionally invariant. However, in bound state problems and situations of special
symmetry, this expansion leads to an inefficient and sometimes pathological
approach.

Consider the relativistic scalar field as an example. The complex scalar field
satisfies the equation

(-0 +m* + V) ¢(x) = J(x). (5.54)

Now let ¢, be a complete set of eigenfunctions of the operator in this equation,
such that a general wavefunction ¢ (x) may be expanded in terms of a complete
set of these with coefficients ¢,,,

P(x) =Y cagn(x), (5.55)

n

such that

/ dox(@n, om)| = Sum- (5.56)

t=t'

The wavefunction ¢ (x) and the eigenfunctions ¢, (x) are assumed to be one-
particle wavefunctions. The discrete indices n, m denote any bound state
quantum numbers which the wavefunction might have. The eigenfunctions
satisfy

(-0 +m*>+ V) @u(x) =0. (5.57)

The eigenfunctions can also be expressed in terms of their positive and negative
frequency parts,

Pn(x) = o (x) + ¢ (), (5.58)
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5.3 Scalar field Green function 87
where ¢ (x) = (57 (x))*,
#00 = (@O kSE 4+ V), (559

and a, (k) is a c-number. The Green function for the field (wavefunction) ¢ (x)
is the inverse of the operator in eqn. (5.54), satisfying,

(=0 +m* + V) G (x, x) = 818 (x, X'). (5.60)

Using eqn. (5.57) and eqn. (A.21) from Appendix A, we can solve this equation
with an object of the form

Gum = (0 =)+ BOE —0) Y @)}, (x), (5.61)

where o and 8 are to be fixed by the choice of boundary conditions on the Green
function.

5.3 Scalar field Green function

The Green function for the scalar field is defined by the relation
(—h*’0 + m*cHG(x, x') = 8(x, X)8(t, 1. (5.62)

It is often convenient to express this in terms of the (n 4+ 1) dimensional delta
function

5(x,X)8(t, 1) = c8(x, x)8(x°, x*) = 8 (x, x'). (5.63)

The right hand side of eqn. (5.62) differs from an (n 4+ 1) dimensional delta
function by a factor of ¢ because the action is defined as an integral over
dV; = (dx) rather than dV,. This convention is chosen because it simplifies
the coupling between matter and radiation, and because it makes the Lagrangian
density have the dimensions of an energy density. In natural units, i = ¢ = 1,
this distinction does not arise. The formal expression for the scalar Green
function on solving this equation is

eik()c —x')

G(x,x") = c/(dk) 5 (5.64)
p

2 + m2ct’
where p, = hk,. Thus, G(x, x’) has the dimensions of ¢?(x). This Green
function can be understood in a number of ways. For the remainder of this
section, we shall explore its structure in terms of the free-field solutions and the
momentum-space constraint surface p>c? + m?c* = 0, which is referred to in
the literature as the ‘mass shell’.
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88 5 Classical field dynamics

5.3.1 The Wightman functions

It is useful to define two quantities, known in quantum field theory as the positive
and negative frequency Wightman functions, since all the Green functions can
be expressed in terms of these. The Wightman functions are the solutions to the
free differential equation,*

(—=h*0 + m*cHGF (x, x) = 0. (5.65)

For convenience, it is useful to separate the solutions of this equation into
those which have positive frequency, kg = |wy|, and those which have negative
frequency, kp = —|wi|. They may be written by inspection as a general linear
combination of plane waves, using a step function, 6 (£ko), to restrict the sign
of the frequency, and a delta function to ensure that the integral over all k is
restricted only to those values which satisfy the equations of motion,

G (x,x") = =27ic / (dk)e* =0 (—ko)8 (p*c? + m>ch)

G, x) =2xic / (dk)e =0 (kg)S (p2c? + m3c*). (5.66)

Because of unitarity,” these two functions are mutually conjugate (adjoint) in
the relativistic theory.

G, x) =[GV, )] = -G, x). (5.67)

In the non-relativistic limit, field theory splits into a separate theory for particles
(which have positive energy) and for anti-particles (which have negative energy).
Although this relation continues to be true, when comparing the particle theory
with the anti-particle theory, it is not true for straightforward Schrodinger theory
where the negative frequency Wightman function is zero at zero temperature.

The delta function in the integrands implies that one of the components of the
momentum is related to all the others,® thus we may integrate over one of them,
ko, in order to eliminate this and express it in terms of the others. The equations
of motion tell us that cky = £wy, where

hap =/ BZK2c? + m2c4, (5.68)

i.e. there are two solutions, so we may use the identity proven in eqn. (A.15) to
write

1
O ey Jp—— {5 (—ko + @) 45 <k0 4 @» (5.69)
2h°c?|wy| c c

4 They are analogous to the complementary function in the theory of linear partial differential
equations.

3 Unitarity is the property of field theories which implies conservation of energy and probabili-
ties.

6 The momentum is said to be ‘on shell’ since the equation, k2 —|—m2 = 0, resembles the equation
of a spherical shell in momentum space with radius im.
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5.3 Scalar field Green function 89

This relation is valid under the integral sign for ky. Noting that the step
functions, 8(%ko), pick out only one or the other delta function on the right
hand side, we have

G (x,x") = —27i (h%c)”! / B 1 itexx-tantie—r
21 Zwk
SRR B
’ 2 261)k
(dk) 1

=i ()" | S e T,
T 2Wj

(5.70)

Before leaving this section, we define two further symbols which appear in field
theory,

G, x') =GP (x,x) + G (x,x)
G(x,x) =GP, x") =G (x, x)). (5.71)

G(x, x") is the sum of all solutions to the free-field equations and, in quantum
field theory, becomes the so-called anti-commutator function.” Note that
this quantity is explicitly the sum of GP(x, x) and its complex conjugate
G (x, x’) and is therefore real in the relativistic theory.®

The symmetric and anti-symmetric combinations satisfy the identities

3, Gx.x)| =0 (5.72)

t=t’

and

5 G| = s x). (5.73)

t=t’'

The latter turns out to be equivalent to the fundamental commutation relations
in the quantum theory of fields. G(x, x") becomes the commutator function in
the quantum theory of fields.

7 This looks wrong from the definitions in terms of Green functions, but recall the signs in the
definitions of the Green functions. The tilde denotes the fact that it is a commutator of the
quantum fields in the quantum theory.

8 This symmetry is broken by the non-relativistic theory as G ) (x, x’) vanishes at the one-
particle level.
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90 5 Classical field dynamics

Finally, we may note that wy is always positive, since it is the square-root of a
positive, real quantity, so we may drop the modulus signs in future and take this
as given.

5.3.2 Boundary conditions and poles in the ko plane

When solving differential equations in physics, the choice of boundary con-
ditions normally determines the appropriate mixture of particular integral and
complementary functions. The same is true for the Green function approach, but
here the familiar procedure is occluded by the formalism of the Green function.

The Wightman functions are the general solutions of the free-field equations:
they are the complementary functions, which one may always add to any
particular integral. There are two ways to add them to a special solution. One
is to use the term X in eqn. (5.41); the other is to deform the complex contour
around the poles. This deformation accomplishes precisely the same result as
the addition of complementary solutions with complex coefficients. Let us now
consider how the deformation of the complex contour leads to the choice of
boundary conditions for the field.

The retarded, advanced and Feynman Green functions solve the equations
of motion in the presence of a source, with specific boundary conditions as
mentioned in section 5.2.2. In this section, we shall impose those boundary
conditions and show how this leads to an automatic prescription for dealing
with the complex poles in the integrand of eqn. (5.40). The most intuitive way
of imposing the boundary conditions is to write the Green functions in terms of
the step function:

G.(x,x") = —0(c,0)G(x, x) (5.742)
Ga(x,x) =0(c’,0)G(x, x)) (5.74b)
Gr(x,x') = —0(0, 0GP (x,x) +0(c’',0)GT(x,x").  (5.74c)

Note that, since the retarded and advanced Green functions derive from G(x, x'),
they are real in x, x’ space (though this does not mean that their Fourier
transforms are real in k space), except in the non-relativistic theory. When
we write 6(o, o) in this way, the o’s usually refer to two time coordinates
O(t,t), but in general we may be measuring the development of a system
with respect to more general spacelike hyper-surfaces, unconnected with the
Cartesian coordinate ¢ or x°. For simplicity, we shall refer to ¢ and ¢’ in
future. The physical meaning of these functions is as advertised: the retarded
function propagates all data from earlier times to later times, the advanced
function propagates all data from future times to past times, and the Feynman
function takes positive frequency data and propagates them forwards in time,
while propagating negative frequency data backwards in time.
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5.3 Scalar field Green function 91

To convert these expressions into momentum-space integrals, we make use of
the integral representations of the step function,

) o % du e—ioz(t—t’)
0t —t)=ilim [ — ——
>0 Joo 2m «a+ie

© do efioz(tft’)
0" —t) = —ilim _— (5.75)
=0 Joo 2m « —ie
Writing Ax = x — x’ for brevity, we can now evaluate these expressions using
the momentum-space forms for the Wightman functions in eqn. (5.70).

To evaluate the Green functions in momentum-space, it is useful to employ
Cauchy’s residue theorem, which states that the integral around a closed (anti-
clockwise) circuit of a function equals 27 times the sum of the residues of the
function. Suppose the function ¢ (z) has simple poles in the complex plane at z;,
then, assuming that the closed contour is in the anti-clockwise (positive) sense,
we have

f $(2)dz =2mi Y (2 —2)p@)| (5.76)
¢ i

I=Zi

If the contour C is in the clockwise sense, the sign is reversed.

The complex contour method for evaluating integrals is a useful tool for
dealing with Green functions, but one should not confuse the contours with the
Green functions themselves. The Green functions we seek are only defined
on the real axis, but Cauchy’s formula only works for a closed contour with
generally complex pieces. We can evaluate integrals over any contour, in order
to use Cauchy’s formula, provided we can extract the value purely along the
real axis at the end. The general strategy is to choose a contour so that the
contributions along uninteresting parts of the curve are zero.

5.3.3 Retarded Green function

Let us begin with the retarded (causal) Green function, sometimes called the
susceptibility yx, and write it as an integral expression in k space. We substitute
the integral expressions in eqn. (5.75) into eqn. (5.70) and eqn. (5.74a), giving

27 do efiozAt (dk) ei(kAxfa)kAz) ei(kAx+a)kAt)
Gelx,x) ==~ | 5~ —— / -
hcc ) 2m a+ie 2 2wy, 2wy,
1 (dk)dO( ei(kAxf(w/‘Jrot)At) ei(kAxf(afwk)At)
w2l en [ 2on(a +i€)  2ap(a +i€) }

(5.77)
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92 5 Classical field dynamics

‘We now shift « — o — wy in the first term and ¢« — « + wy in the second term.
This gives
d"kda ei(kAxfaAt)

Gr , / — h2 -1
(. %) (#%) (2wl 2wy

x|: ! — — ! :| (5.78)
(@ —wp+i€) (a4 wi +i€)

Re-labelling « — k¢ and combining the partial fractions on the right hand side,
we are left with,

) 1
G.(x,x") = (h*c)™! f G : , (5.79)
— (ko +i€)? +
or to first order, re-defining € — €/2,
: 1
G.(x,x') = dk) el*ax . 5.80
(x,x) c/( )e 2 T mie ipoe (5.80)

This is the significant form we have been looking for. It may be compared
with the expression in eqn. (5.40), and we notice that it reduces to eqn. (5.40)
in the limit ¢ — 0. What is important is that we now have an unambiguous
prescription for dealing with the poles: they no longer lie in the real ky axis. If
we examine the poles of the integrand in eqn. (5.79) we see that they have been
shifted below the axis to

cky = Loy — i¢; (5.81)

see figure 5.1. An alternative and completely equivalent contour is shown in
figure 5.2. In this approach, we bend the contour rather than shift the poles; the
end result is identical.

This ie prescription tells us how to avoid the poles on the real axis, but it
does not tell us how to complete the complex contour. Although the result we
are looking for is equal to the value of the integral along the real axis only,
Cauchy’s theorem only gives us a prescription for calculating an integral around
a closed contour, so we must complete the contour by joining the end of the real
axis at 400 and —oo with a loop. After that, we extract the value of the portion
which lies along the real axis.

The simplest way to evaluate the contribution to such a loop is to make it a
semi-circle either in the upper half-plane or in the lower half-plane (see figure
5.2). But which do we choose? In fact, the choice is unimportant as long as we
can extract the part of integral along the real axis.

Evaluation around two closed loops We begin by writing the integrals piece-
wise around the loop in the complex kg plane. It is convenient to use w = kgc as
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Fig. 5.1. Contour in the complex plane for the retarded Green function with poles
shifted using the ie prescription.

Fig. 5.2. Contour in the complex plane for the retarded Green function.
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94 5 Classical field dynamics

the integration variable, since this is what appears in the complex exponential.
The contour in figure 5.1 has the simplest shape, so we shall use this as our
template. We write eqn. (5.79) schematically: the integral over w is written
explicitly, but we absorb all the remaining integrals and the integrand into an
object which we shall call G,(k) to avoid clutter;

. ’ +o0 . 2
fda)e—lw(f—”G;(k) = f dwe " G (k)

o0

+ / dwe @G (k), (5.82)
SC

where the first term on the right hand side is the piece we wish to find and the
second term is the contribution from the semi-circle.

By Cauchy’s theorem, the value of the left hand side is equal to 27i times the
sum of the residues of the integrand which are enclosed by the contour. Since all
of the poles lie in the lower half-plane, the left hand side is zero if we complete
in the upper half-plane. In the lower half-plane it is

d*k
— X
(27 )]

fdwe—iw@—")c;;(k) = —27i (h%c)™! /

el Ax+o AN Gi(k-Ax—wr AT)
[ "o + Yo ] (5.83)
Re-labelling k — —k in the first term and using
T e™™ = 2isin(x), (5.84)
we have (At > 0)
%da)e_i“’(’_’,)G;(k) _ / () d’k cos(k - Ax) sin(a)kAt). (5.85)
Q2m)n Wk

This is clearly real.

Semi-circle in the upper half-plane The integral around the semi-circle in the
upper half-plane can be parametrized using polar coordinates. We let

o =re’ =r(cosh +1isinb), (5.86)

so that,
T
/ da)e—ia)(l—t/)G/ (k) — / irei9d9 e—ir(cos@—l—iSin@)(l—t/)G/(reiQ)
T r
SC 0

b4
. H 3 ¢ H ¢/ H
=/ 1re19dee ir cos O (t t)ersm0(t ’)G;(relg).
0

(5.87)

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

5.3 Scalar field Green function 95

Note what has happened here. The imaginary component from the semi-circle
(the contribution involving sin 8 (¢ —¢’)) has created a real exponential. This real
exponential causes the integrand to either blow up or decay to zero at r = oo,
depending on the sign of the sinf (¢ — t’) term. So we have two cases:

Q/ dwe @G (k) = 0 (t—t <0)
SC
=7 (t—1t >0). (5.88)

In the first case, in which we do not expect the retarded function to be defined,
the integral over the semi-circle vanishes. Since the complete integral around
the loop also vanishes here, the real axis contribution that we are looking for
(looking at eqn. (5.82)), must also be zero. In the second case, the contribution
from the loop is difficult to determine, so the contribution to the real axis part,
from eqn. (5.82) is also difficult to determine. In fact, we cannot derive any
useful information from this, so for t — ¢’ > 0, we cannot determine the value of
the integral. In order to evaluate the integral for r — ¢’ > 0 we close the contour
in the lower half-plane where the semi-circle contribution is again well behaved.

Semi-circle in the lower half-plane The integral around the semi-circle in the
lower half-plane can also be parametrized using polar coordinates,

-7
/ dwe—iw(t—t’)Gl(k) — _/ irei9d9 e—ir(c050+i sinO)(t—t’)G/(reiG)
r r
SC 0

- _ /_” ireigdg e—irCOS@(t—t’)e—HSin0|(t—t/)G;(rei0)‘
0
(5.89)

Now the opposite happens:

f<mewH%mm:? (t—1 <0)
SC
=0 (t—1t > 0). (5.90)

This time the situation is reversed. The value of the integral tells us nothing for
t —t < 0. In the second case, however, the contribution to the loop goes to
zero, making the integral along the real axis equal to the loop integral result in
eqn. (5.85).

Piece-wise definition Because of the infinite pieces, we must close the contour
for the retarded Green function separately for t+ — ' > 0 (lower half-plane,
non-zero result) and ¢+ — ' < O (upper half-plane, zero result). This is not a
serious problem for evaluating single Green functions, but the correct choice
of contour becomes more subtle when calculating products of Green functions
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96 5 Classical field dynamics

using the momentum-space forms. We have nonetheless established that these
momentum-space prescriptions lead to a Green function which propagates from
the past into the future:

d"k cos(k - AXx) sin(w; At)

(2m)" Wy
=0 (t—1t <0). (5.91)

G(x,x) = (h*c)™! (t—1 >0)

5.3.4 Advanced Green function

The treatment of this function is identical in structure to that for the retarded
propagator. The only difference is that the poles lie in the opposite half-plane,
and thus the results are reversed:

1

—(ky — i) + @}

Ga(x,x") = — (h%c)™! / (dk) elkAx (5.92)

We see that the poles are shifted above the axis and that the complex contour
may now be completed in the opposite manner to the retarded Green function.
The result is

d"k sin(k - AX — wi Ar)
(2m)" an
=0 (t—1 >0). (5.93)

Ga(x,x") = — (h%c)™! (t—1 <0)

5.3.5 Feynman Green function

Gex.x)= -2 [ =2
P X) = = 27 (27)

27 da (dk) ei(kAX—(wk+a)At) ei(kAX—(oz—wk)At)
[ (o +i€)2wy (0 —1€)2wy ]

(5.94)

Shifting ¢ — o — wy, in the first fraction and ¢« — o 4 wy, in the second fraction,
and re-labelling « — k(o we obtain,

N 5y eikAx 1 B 1
Crlx,x) = (o) /(dk) 2o [(ko—l—wk—ie) (ko—wk—l—ie)]'

(5.95)

It is normal to re-write this in the following way. Remember that we are
interested in the limit € — 0. Combining the partial fractions above, we get

-1
(ko + w —i€) (kg — w + i€)

Gp(x,x') = (hzc)_lf(dk) eikA"|: +0(e)].

(5.96)
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5.3 Scalar field Green function 97

Fig. 5.3. Contour in the complex plane for the Feynman Green function. This shows
how the ie prescription moves the poles effectively from the real axis.

From this expression, we see that the poles have been shifted from the real axis
to

Ck() = Wi — i€
cky = —wy + i€, 5.97)

i.e. the negative root is shifted above the axis and the positive root below the axis
in the ko plane (see figure 5.4). An equivalent contour is shown in figure 5.3.
Although it does not improve one’s understanding in any way, it is normal in the
literature to write the Feynman Green function in the following way. Re-writing

the denominator, we have
(cko + w — i€)(cky — @ + i€) = c*kj — wf + 2iew; + €. (5.98)

Now, since € is infinitesimal and w; > 0, we may drop €2, and write 2iew; = i€’.

This allows us to write
ikAx

e
(5.99)

Gr(x,x) = c/ (dk)

p2ct 4+ m2c* —ie’’
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98 5 Classical field dynamics

Fig. 5.4. Contour in the complex plane for the Feynman Green function. Here we
bend the contour rather than moving the poles. The result is identical.

5.3.6 Comment on complex contours

The procedure described by Green functions is a formalism for extracting
solutions to the inverse-operator problem. It has a direct analogy in the theory of
matrices or linear algebra. There the issue concerns the invertibility of matrices
and the determinant of the matrix operator. Suppose we have a matrix equation

M- -x=], (5.100)
with a matrix M given by
a b
M_(C d)' (5.101)
If this matrix has an inverse, which is true if the determinant ad — bc does not
vanish,
1 d —b
M= —— , 5.102
ad — bc < —Cc a ) ( )

then eqn. (5.100) has a unique solution. We would not expect this case to
correspond to the solution of a differential equation such as the one we are
considering, since we know that the general solution to second-order differential
equations usually involves a linear super-position of many solutions.
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5.4 Scalar Green functions in real space 99

If the determinant of M does vanish, then it means that there is an infinite
number of solutions, which corresponds to a sub-space of x (a hyper-surface
which is determined by a constraint linking the coordinates). In this case, the
inverse defined above in eqn. (5.102) has a pole. For example, suppose we take
M to be the matrix

<

Il
A==
(e B

1
0], (5.103)
4

and
J = 2 . (5.104)

This matrix clearly has no inverse, since the third row is a multiple of the first.
The determinant vanishes, but in this trivial case we can solve the equations
directly. Since there are only two independent equations and three unknowns, it
is not possible to find a unique solution. Instead, we eliminate all but one of the
variables, leaving

Xy 4+ x3 =2. (5.105)

This is the equation of a straight line, or a sub-space of the full three-dimensional
solution space. We regard this as an incomplete constraint on the solution space
rather than a complete solution.

This is analogous to the situation we have with the Green functions. The poles
indicate that the solution to the differential equation which we are trying to solve
is not unique. In fact, there is an infinite number of plane wave solutions which
lie on the hyper-surface k? + m? = 0, called the mass shell.

5.4 Scalar Green functions in real space

Although the momentum-space representations of the Green functions are useful
for calculations, we are usually interested in their forms in real space. For
general fields with a mass, these can be quite complicated, but in the massless
limit the momentum-space integrals can be straightforwardly evaluated.

Again, since the other relativistic Green functions can be expressed in terms
of that for the scalar field, we shall focus mainly on this simple case.
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100 5 Classical field dynamics

5.4.1 The retarded Green function forn =3 asm — 0

From Cauchy’s residue theorem in eqn. (5.76), we have

/ . Bk [elkdx—oiAn  gilk-Ax+arAr)
G.(x,x") = —2mi (h“c)

Q2m)* 2wy 2wy

(5.106)

For general m # O, this integral defines Bessel functions. For m = 0,
however, the integral is straightforward and can be evaluated by going to
three-dimensional polar coordinates in momentum space:

=|rle
21
/d3k / r/ s1n0d9/ d¢
0
k-x=|r|AX cosé, (5.107)

where AX = |Ax|, so that

Gr 7/=
(x,x) 63

o0
c)_I/ 2mr? dr
0

T eerx cosf . .
X / sinf dg ———— [ A — A ]. (5.108)
0

r

The integral over d9 may now be performed, giving

o0
H2c dr {efir(AXJrcAt)
TIAX (h7c)™ /0

_ elr(AtchX) _ eir(AX—cAn 4 eir(AX+cAt)}' (5.109)

G (x,x) =

Note that both At and Ax are positive by assumption. From the definition of
the delta function, we have

+o0 .
278 (x) :/ dk e**

= /0 [e””C + efikx]. (5.110)

Using this result, we see that the first and last terms in eqn. (5.109) vanish, since
Ax can never be equal to —At as both Ax and At are positive. This leaves us
with

G:(x,x") = S(ct — AX)

Ah’cr AX
1

=——>——8(ct—1)—|x=X]). 5.111
4mhic|x — X/| (=)~ ) o1
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5.4 Scalar Green functions in real space 101

5.4.2 The G® and Gg forn =3 asm — 0

From eqn. (5.74c) we can see that the Feynman propagator is manifestly equal
to —G™ for ¢t > ' and is equal to G for t' < t. The calculation of all three
quantities can therefore be taken together. We could, in fact, write this down
from the definitions, but it is useful to use the residue theorem on eqn. (5.95)
to show the consistency of the procedure with the definitions we have already
given. In fact, we shall see that the Wightman functions are just the residues, up
to a sign which depends on the orientation of the closed contour.

Fort — ' > 0, we complete the contour in the lower half-plane, creating an
anti-clockwise contour. The residue theorem then tells us that

d®) 1 g,

) 20 x =2mwi{—1} . (5.112)

ko=wk

f dkoGr(ko) = (h%c)™!

Comparing this equation with eqns. (5.66), we see that this is precisely equal to
—G™)(x, x'). In the massless limit with n = 3, we may therefore write

d3k eikAx
G(+) — i hZ -1 &~
T
-1 e . .
— 5 dr {e—lr(AX+cAt) _ elr(AX—cAt)} .
82k c|x — x| Jo

(5.113)

Similarly, for t — ¢/ > 0, we complete the contour in the upper half-plane,
creating a clockwise contour. This gives

d(k) Lei(k~AX+kaf) x 27 {1} (5.114)

’ — 201
ff dkoGg (ko) = (n7c) (27) 2a

Comparing this equation with eqn. (5.66), we see that this is precisely equal to
G (x, x), and

1 00 . ‘ .
G(*) — 8n2h2€|x/ X| f dr {eflr(Axf(,At) _ e]r(AX+CAt)} . (5115)
- 0

It may be checked that these expressions satisfy eqn. (5.67). Finally, we may
piece together the Feynman Green function from G™. Given that the At are
assumed positive, we have

1 o ) ‘ .
GF('X’ x/) = —— dr {ef”’(AX) _ elr(AX)eflrcAt}
872h%c|x — x| Jo

j— 00 . /
— W&m/ dr sin(r|x’ — x)e "1 (5.116)
- 0
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102 5 Classical field dynamics

We may note that the difference between the retarded and Feynman Green
functions is

GF(X, x/) . Gr(x, x/) = lim 2/00 dr eir(cAt—AX-i—ia) . eir(cAt+AX+ia)
a—0 0
1 1
T x—x|—clt—t| x+xX|—clt—1t]
(5.117)

where « is introduced to define the infinite limit of the complex exponential.
This difference is a purely imaginary number, which diverges on the light cone.

5.4.3 Frequency-dependent form of Gy and G, inn = 3

In atomic physics and optics, one usually deals in implicitly translational
invariant systems, in the rest frames of an atom, where the frequency w and time
are the only variables entering physical models. To use standard field theoretical
methods in these cases, it is useful to have the Green functions in such a form,
by integrating over spatial wavenumbers leaving only the Fourier transform over
time. These are obtained trivially by re-writing the non-zero contributions to
eqns. (5.109) and (5.116) with r — w/c:
s o
Gr(x, x) = ;1/ do sin (9|x — x’|) emiel—|
Ar2h*ex — x| Jo c

/ 1 * w / /
G, x)=— dwcos<—|x—x|—w|t—t|>.
4r2r%x — x| Jo c
(5.118)

5.4.4 Euclidean Green function in 2 + 0 dimensions

In the special case of a space-only Green function (the inverse of the Laplacian
operator), there is no ambiguity in the boundary conditions, since the Green
function is time-independent and there are no poles in the integrand. Let us
define the inverse Laplacian by

(—=V2+mPHg(x, x") = 8(x, x). (5.119)
To evaluate this function, we work in Fourier space and write
d2k eik(x—x/)

i Sa—— 5.120
2m)? k% + m? ( )

glx,x") =

where k? = ki + k3. Expressing this in polar coordinates, we have

27 oo rdrde eir\x—x’lcos()
,x') = ) 5.121
g (x. ) fo /0 e (5.121)
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5.4 Scalar Green functions in real space 103

Massless case In the massless limit, this integral can be evaluated straight-
forwardly using a trick which is frequently useful in the evaluation of Fourier
integrals. The trick is only valid strictly when x # x’, but we shall leave it as
an exercise to show what happens in that case. The integral is then evaluated by
setting m to zero in eqn. (5.121) and cancelling a factor of » from the integration
measure. To evaluate the expression, we differentiate under the integral sign
with respect to the quantity |x — x'[:

2
0 e
i |g( —x)—/ / 1(;‘:)2 erirlesiga gy (5.122)

Notice that this step cancels a factor of » in the denominator, which means that
the integral over r is now much simpler. Formally, we have

ode
glx —x) = / P gl —xlcosd| (5.123)
0 0

There is still a subtlety remaining, however: since we are integrating a complex,
multi-valued function, the limit at infinity has an ambiguous limit. The limit can
be defined uniquely (analytically continued) by adding an infinitesimal positive
imaginary part to r, so that r — r(i 4+ €) and letting ¢ — 0 afterwards. This
makes the infinite limit converge to zero, leaving only a contribution from the
lower limit:

dlx — x'|

2 d@ 1 . ) o0
—g(x — x’) = lim/ - __e(lr—er)lx—x |cos@
dlx — x| e~0Jo (2m)* 1—ie 0
= /h © o1 (5.124)
TS e lx—x :

To complete the evaluation, we evaluate the two remaining integrals trivially,
first the anti-derivative with respect to |x — x’|, which gives rise to a logarithm,
and finally the integral over 8, giving:

1
glx,x') = ——1In|x — x|, (5.125)
2w

where it is understood that x # x’'.

5.4.5 Massive case

In the massive case, we can write down the result in terms of Bessel functions
Jy, K,, by noting the following integral identities [63]:

2)Y T
L) = — G2 [T et givgag (5.126)

T+ 3)T(G;)
2T (u+1) [ Jy(bx) x"H!

Kiwlab) = = 20— | S (5.127)
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104 5 Classical field dynamics

From the first of these, we can choose v = 0 and use the symmetry of the cosine
function to write

1 2T
Jo(z) = —/ elzcosfqg. (5.128)
2 0
Eqn. (5.121) may now be expressed in the form
© rdr Jo(r|x —x'))
,x') = _— 5.129
g(x, ) /0 T (5.129)

and hence
1
g(x,x") = —Ko(m|x — x']). (5.130)
21

The massless limit is singular, but with care can be inferred from the small
argument expansion

(m(x—x/)) k
Ko(m(x —x)) = lim —1In (@) kZ; (li# (5.131)

5.5 Schrodinger Green function

Being linear in the time derivative, the solutions of the Schrédinger equation
have positive definite energy. The Fourier transform may therefore be written
as,

00 3~ 400 212
V(x) = f ;1_“’ / (dk) e'®AX=0AD Y (K $Y0 ()8 (ﬂ —h&)).
0 T J—0o 2m
(5.132)

This singles out the Schrodinger field amongst the other relativistic fields which
have solutions of both signs. Correspondingly, the Schrodinger field has only a
positive energy Wightman function, the negative energy function vanishes from
the particle theory.” The positive frequency Wightman function is

00 d ~ +00 ) B h2k2
GR (x,x') = —2ri / = / (dk)e®Ax=0400 (G3) 5 <— - h&)) :
0 2 —00 2m
(5.133)
The negative frequency Wightman function vanishes now,

GR(x,x) =0, (5.134)

9 This does not remain true at finite temperature or in interacting field theory, but there remains
a fundamental asymmetry between positive and negative energy Green functions in the non-
relativistic theory.
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5.5 Schrodinger Green function 105

since there is no pole in the negative @ plane to enclose. Moreover, this means
that there is no Feynman Green function in the non-relativistic theory, only a
retarded one. In the non-relativistic limit, both the Feynman Green function and
the retarded Green function for relativistic particles reduce to the same result,
which has poles only in the lower half complex @ plane. This non-relativistic
Green function satisfies the equation

h2V2
(— o iha,) Gnr(x, x') = 8(x, X)8(z, 1). (5.135)

This Green function can be evaluated from the expression corresponding to
those in eqns. (5.74):

Grr(x, x') = —0(1 — )G (x, x'). (5.136)

Using eqn. (5.75) in eqn. (5.133), we have

+oo © do [T
Gar(x, X)) = — / do f P / (dk)
—00 0 T J-co

el AX—(@+@)AD) 7 B22
X - 8 —ho ). (5.137)
(o +1€) 2m

The integral over « can be shifted, « — o — ©, without consequences for the
limits or the measure, giving

+o00 % 4 +00
Gar(x, x) = — / da / aad / (dk)
—00 0 2r —00

ei(k‘AxfaAt) h2k2
x 5 —ha). (5.138)
(¢ — ) + 1€ 2m

We may now integrate over @ to invoke the delta function. Noting that the
argument of the delta function is defined only for positive @, and that the integral
is also over this range, we have simply

+00 +00 ei(k~AxfozAl)
Gar(x, x') = — / do / (dk) — . (5.139)
—o0 —o0 (ha - %) + ie

or, re-labelling o — @,

400 400 E:i(k~Ax7cZ)At)
Gar(x, x') = / do / (dk) —— . (5.140)
—00 —00 <% — h&)) — i€

In spite of appearances, the parameter @ is not really the energy of the system,
since it runs from minus infinity to plus infinity. It should properly be regarded
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106 5 Classical field dynamics

only as a variable of integration. It is clear from this expression that the
Schrodinger field has a single pole in the lower half complex plane. It therefore
satisfies purely retarded boundary conditions. We shall see in section 13.2.2
how the relativistic Feynman Green function reduces to a purely retarded one in
the non-relativistic limit.

5.6 Dirac Green functions

The Dirac Green function satisfies an equation which is first order in the
derivatives, but which is matrix-valued. The equation of motion for the Dirac
field,

(=iyHo, +m)y = J, (5.141)

tells us that a formal solution may be written as

Y= /de/S(x,x/)J(x/), (5.142)

where the spinor Green function is defined by
(—ihcy*d, +mc*)S(x, x') = 8(x, x'). (5.143)

Although this looks rather different to the scalar field case, S(x,x’) can be
obtained from the expression for the scalar propagator by noting that

(—ihcy*d, + mc*)(ihcy™d,, + mc?)

1
= —h*0 + mPct + E[y“, ¥"19,.0,, (5.144)

and the latter term vanishes when operating on non-singular objects. It follows
for the free field that

(ihey™d, + me")GH (x, x') = SP(x, x') (5.145)
(ihcy™o, + me?)Gr(x, x') = Sp(x, x') (5.146)
(—ihicy"d, + mc*)SH (x,x) =0 (5.147)
(—ihcy*d, +mc?)Sp(x, x') = 8(x, x'). (5.148)

5.7 Photon Green functions

The Green function for the Maxwell field satisfies the (n+ 1) dimensional vector
equation

[-D8,) + 0,0"] A*(x) = poJ". (5.149)
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5.7 Photon Green functions 107

As usual, we look for the inverse of the operator,'® which satisfies

[—D 8, + aﬂa”] Dl (x,x") = ocd L8 (x, x'). (5.150)
Formally, it can be written as a Fourier transform:
vo— | & k*kY
D, (x, x") = poc /(dk)e”‘( ) [kiz - ] . (5.151)

In this case, however, there is a problem. In inverting the operator, we are
looking for a constraint which imposes the equations of motion. For scalar
particles, this is done by going to momentum space and constructing the Green
function, which embodies the equations of motion in the dispersion relation
k* +m? = 0 (see eqn. (5.40)). In this case, that approach fails.

The difficulty here is the gauge symmetry. Suppose we consider the determi-
nant of the operator in eqn. (5.149). A straightforward computation shows that
this determinant vanishes:

—0 + 3p9° 900"

590 g | =0 (5.152)

In linear algebra, this would be a signal that the matrix was not invertible, the
matrix equivalent of dividing by zero. It also presents a problem here. The
problem is not that the operator is not invertible (none of the Green function
equations are invertible when the constraints they impose are fulfilled, since
they correspond precisely to a division by zero), but rather that it implies no
constraint at all. In the case of a scalar field, we have the operator constraint, or
its momentum-space form:

—R*0 +m*ct =0
PPt +m*ct =0. (5.153)
In the vector case, one has
det[-18, 4 9,8"] =0, (5.154)

but this is an identity which is solved for every value of the momentum. Thus,
the Green function in eqn. (5.151) supplies an infinite number of solutions for
A, for every J, one for each unrestricted value of k, which makes eqn. (5.151)
singular.

The problem can be traced to the gauge symmetry of the field A, (x). Under
a gauge transformation, A, — A, + d,s, but

[—08, +9,0"] (3ys) =0 (5.155)

10 Note that the operator has one index up and one index down, thereby mapping contravariant
eigenvectors to contravariant eigenvectors
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108 5 Classical field dynamics

for any function s(x). It can be circumvented by breaking the gauge symmetry
in such a way that the integral over k in eqn. (5.151) is restricted. A convenient
choice is the so-called Lorentz gauge condition

9, A" = 0. (5.156)

This can be enforced by adding a Lagrange multiplier to the Maxwell action,
S — f(dx) LFWF —JFA, + L,f‘(aMA )? (5.157)
4[1/0 Qv 123 2a 0 I ’ :
so that eqn. (5.149) is modified to
1
[—D 8, + (1 — a) 8,‘8”} At (x)=J". (5.158)

It may now be verified that the determinant of the operator no longer vanishes
for all «r; thus, a formal constraint is implied over the k,,, and the Green function
may be written

k.

8y k,
k4

D,y (x,x') = cptg / (dk)et— [— +@—1)

2 ] . (5.159)
This constraint is not a complete breakage of the gauge symmetry, since one
may gauge transform eqn. (5.156) and show that

0, A" — 9, A" +Ts(x) =0. (5.160)
Thus, the gauge condition still admits restricted gauge transformations such that
Os(x) =0. (5.161)

However, this modification is sufficient to obtain a formal Green function, and
so the additional gauge multi-valuedness is often not addressed.

5.8 Principal values and Kramers—Kronig relations

Green functions which satisfy retarded (or advanced) boundary conditions
satisfy a special pair of Fourier frequency-space relations, called the Kramers—
Kronig relations (these are also referred to as Bode’s law in circuit theory),
by virtue of the fact that all of their poles lie in one half-plane (see figure
5.5). These relations are an indication of purely causal or purely acausal
behaviour. In particular, physical response functions satisfy such relations,
including the refractive index (or susceptibility, in non-magnetic materials) and
the conductivity.
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5.8 Principal values and Kramers—Kronig relations 109

Fig. 5.5. Contour in the complex plane for the Kramers—Kronig relations.

Cauchy’s integral formula states that the value of a function G(w), which is
analytic at every point within and on a closed curve C, and is evaluated at a point

o = z, is given by the integral around the closed loop C of

f @) _ 2riGe), (5.162)
cw—1Z

If a point P lies outside the closed loop, the value of the integral at that point is
zero. Consider then a field G ( —¢’) which satisfies retarded boundary conditions

d : ,
Git—1t)= / Lm0t G (), (5.163)
2
The Fourier transform G (w), where

G(w) = / d(t — e Gt — 1)

is analytic in the upper half-plane, as in figure 5.5, but has a pole on the real
axis. In the analytic upper region, the integral around a closed curve is zero, by

(5.164)

Cauchy’s theorem:

7{ Gdo _ (5.165)
c W—2
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110 5 Classical field dynamics

where we assume that G(z) has a simple pole at = z. We can write the
parts of this integral in terms of the principal value of the integral along the
real axis, plus the integral around the small semi-circle enclosing the pole. The
integral over the semi-circle at infinity vanishes over the causal region, since
exp(iw(t — t')) converges if t — t' > 0 and w has a positive imaginary part.

Around the semi-circle we have, lettingw — z = ¢ el

% G(w)dw , /” G(ee¥)iee?dn
——— = —lim —_—
sc W —2 e—>0 Jo eel?
= —in(ee” +2)
e—0
= —inG(z). (5.166)
Then we have
G(w)d * G(w)d
f Glwdo _ P/ G@do 6@ =o. (5.167)
c w—2Z2 o0 W —1Z

The first term on the left hand side is the so-called principal value of the integral
along the real axis. For a single pole, the principal value is defined strictly by

the limit
+00 pi—€ 00
P/ = lim {/ +/ } , (5.168)
—00 =0 /-0 i+€

which approaches the singularity from equal distances on both sides. The
expression may be generalized to two or more poles by arranging the limits
of the integral to approach all poles symmetrically. Thus, if we now write the
real and imaginary parts of G(w) explicitly as

G(z) = Gr(2) +1G1(2), (5.169)

and substitute this into eqn. (5.167), then, comparing real and imaginary parts

we have:
* G d
pf M = —7G1(2)

00 w—Zz
* Gi(w)d

P/ Gilw)do - o). (5.170)
oo W —7Z

These are the so-called Kramers—Kronig relations. They indicate that the
analyticity of G(r — ') implies a relationship between the real and imaginary
parts of G (¢t — t').

The generalization of these expressions to several poles along the real axis
may be written

P /w Gir(@)do Y 7 Gra2). (5.171)

00 w—2z poles
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5.9 Representation of bound states in field theory 111

The integral along the real axis piece of the contour may be used to derive an
expression for the principal value of 1/w. From eqn. (5.167), we may write

! = PL—inS(a)—z). (5.172)
w—z w—7z

This relation assumes that we have integrated along the real axis in a positive
direction, avoiding a single pole on the real axis by passing above it (or,
equivalently, by pushing the pole into the lower half-plane by an infinitesimal
amount i€). Apart from these assumptions, it is quite general. It does not make
any other assumptions about the nature of G(w), nor does it depend on the
presence of any other poles which do not lie on the real axis. It is a property
of the special contour segment which passes around one pole. Had the contour
passed under the pole instead of over it, the sign of the second term would have
been changed. These results can be summarized and generalized to several poles
on the real axis, by writing

1
w—z ki€

1
=P méd(w —z;), 5.173
w_Z:FJZ (@—z)) (5.173)

where z is a general point in the complex plane, z; are the poles on the real axis
and € — 0 is assumed. The upper sign is that for passing over the poles, while
the lower sign is for passing under.

5.9 Representation of bound states in field theory

Bound states are states in which ‘particles’ are completely confined by a
potential V (x). Confinement is a simple interaction between two different fields:
a dynamical field ¥ (x) and a static confining field V (x). The way in which one
represents bound states in field theory depends on which properties are germane
to the description of the physical system. There are two possibilities.

The first alternative is the approach traditionally used in quantum mechanics.
Here one considers the potential V (x) to be a fixed potential, which breaks
translational symmetry, e.g.

2
(—h—V2 + V(X)) Y(x) = i0,¢ (x). (5.174)
2m

One then considers the equation of motion of ¥ (x) in the rest frame of this
potential and solves it using whatever methods are available. A Green function
formulation of this problem leads to the Lippman—Schwinger equation for
example (see section 17.5). In this case, the dynamical variable is the field,
which moves in an external potential and is confined by it, e.g. electrons moving
in the spherical hydrogen atom potential.
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112 5 Classical field dynamics

A second possibility is to consider bound states as multi-level, internal
properties of the dynamical variables in question. For instance, instead of
formulating the motion of electrons in a hydrogen atom, one formulates the
motion of hydrogen atoms with internal electron levels which can be excited.
To do this, one introduces multiplet states (an index A on the field and on the
constant potential), e.g.

2
<—h—V2 + VA) Ya(x) =10, a(x). (5.175)
2m

This is an effective theory in which one takes the average value of the potential
V4 at N different levels, where A = 1, ..., N. The values of V, signify the
energy differences between levels in the atom. The field ¥4 now represents
the whole atom, not the electron within in. Clearly, all the components of 14
move together, according to the same equation of motion. The internal indices
have the character of a broken internal ‘symmetry’. This approach allows one to
study the dynamics and kinematics of hydrogen atoms in motion (rather than the
behaviour of electrons in the rest frame of the atom). Such a study is of interest
when considering how transitions are affected by sources outside the atom. An
example of this is provided by the classic interaction between two levels of a
neutral atom and an external radiation field (see section 10.6.3). This approach
is applicable to laser cooling, for instance, where radiation momentum has a
breaking effect on the kinetic activity of the atoms.
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6

Statistical interpretation of the field

6.1 Fluctuations and virtual processes

Although it arises naturally in quantum field theory from unitarity, the Feynman
Green function does not arise naturally in classical field theory. It contains
explicitly acausal terms which defy our experience of mechanics. It has special
symmetry properties: it depends only on |x — x'|, and thus distinguishes no
special direction in space or time. It seems to characterize the uniformity of
spacetime, or of a physical system in an unperturbed state.

The significance of the Feynman Green function lies in the effective under-
standing of complex systems, where Brownian fluctuations in bulk have the
macroscopic effect of mixing or stirring. In field theory, its use as an intuitive
model for fluctuations allows the analysis of population distributions and the
simulation of field decay, by spreading an energy source evenly about the
possible modes of the system.

6.1.1 Fluctuation generators: Gg(x, x') and Gg(x, x")

The Feynman Green function is related to the Green function for Euclidean
space. Beginning with the expression in eqn. (5.99), one performs an anti-
clockwise rotation of the integration contour (see figure 5.3):

KE = iko. (6.1)

There are no obstacles (poles) which prevent this rotation, so the two expressions
are completely equivalent. With this contour definition the integrand is positive
definite and no poles are encountered in an integral over Kog:

1 1
— )
—k§+k2+m2—1e k§E+k2+m2

(6.2)

There are several implications to this equivalence between the Feynman Green
function and the Euclidean Green function. The first is that Wick rotation to

113
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114 6 Statistical interpretation of the field

Euclidean space is a useful technique for evaluating Green function integrals,
without the interference of poles and singularities. Another is that the Euclidean
propagator implies the same special causal relationship between the source and
the field as does the Feynman Green function. In quantum field theory, one
would say that these Green functions formed time-ordered products.

In the classical theory, the important point is the spacetime symmetry of the
Green functions. Owing to the quadratic nature of the integral above, it is
clear that both the Feynman and Euclidean Green functions depend only on the
absolute value of |x —x'|. They single out no special direction in time. Physically
they represent processes which do not develop in time, or whose average effect
over an infinitesimal time interval is zero.

These Green functions are a differential representation of a cycle of emission
and absorption (see below). They enable one to represent fluctuations or virtual
processes in the field which do not change the overall state. These are processes
in which an excitation is emitted from a source and is absorbed by a sink over
a measurable interval of time.! This is a doorway to the study of statistical
equilibria.

Statistical (many-particle) effects are usually considered the domain of quan-
tum field theory. their full description, particularly away from equilibrium,
certainly requires the theory of interacting fields, but the essence of statistical
mechanics is contained within classical concepts of ensembles. The fact that
a differential formulation is possible through the Green function has profound
consequences for field theory. Fluctuations are introduced implicitly through the
boundary conditions on the Green functions. The quantum theory creates a more
elaborate framework to justify this choice of boundary conditions, and takes it
further. However, when it comes down to it, the idea of random fluctuations
in physical systems is postulated from experience. It does not follow from any
deeper physical principle, nor can it be derived. Its relationship to Fock space
methods of counting states is fascinating though. This differential formulation
of statistical processes is explored in this chapter.?

6.1.2 Correlation functions and generating functionals

The Feynman (time-ordered) Green function may be obtained from a generating
functional W which involves the action. From this generating functional it
is possible to see that a time-translation-invariant field theory, expressed in
terms of the Feynman Green function, is analytically related to a statistically

I Actually, almost all processes can be studied in this way by assuming that the field tends to a
constant value (usually zero) at infinity.

21n his work on source theory, Schwinger [118, 119] constructs quantum transitions and
statistical expectation values from the Feynman Green function A4, using the principle of
spacetime uniformity (the Euclidean hypothesis). The classical discussion here is essentially
equivalent to his treatment of weak sources.
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6.1 Fluctuations and virtual processes 115

weighted ensemble of static systems. The action S[¢ (x)] is already a generating
functional for the mechanics of the system, as noted in chapter 4. The additional
generating functional W[J] may be introduced in order to study the statistical
correlations in the field. This is a new concept, and it requires a new generating
functional, the effective action. The effective action plays a central role in
quantum field theory, where the extension to interacting fields makes internal
dynamics, and thence the statistical interpretation, even more pressing.

We begin by defining averages and correlated products of the fields. This
is the route to a statistical interpretation. Consider a field theory with fields
¢*, ¢ and action S®. The superscript here denotes the fact that the action
is one for free fields and is therefore of purely quadratic order in the fields. In
the following sections, we use the complex field ¢ (x) to represent an arbitrary
field. The same argument applies, with only irrelevant modifications, for general
fields. We may write

59 = [(@0) 9" 0une”, 63)
where the Gaussian weighted average, for statistical weight p = exp(iS/s) is
then defined by

Tr(oF)
(FIgD) = ——
TP
[ dulg1F[glets” 6.4)
C [dulgle® '

where s is an arbitrary scale with the dimensions of action. In quantum field
theory, it is normal to use s = 7, but here we keep it general to emphasize that
the value of this constant cancels out of relevant formulae at this classical level.
Do not be tempted to think that we are now dealing with quantum field theory,
simply because this is a language which grew up around the second quantization.
The language is only a convenient mathematical construction, which is not tied
to a physical model. In this section, we shall show that the Gaussian average
over pairs of fields results in the classical Feynman Green function. Consider
the generating functional

z[1. 7] = f du[p, ¢']er (@197 Oasot 0" Ia—rj"] (6.5)

which bears notable similarities to the classical thermodynamical partition
function. From the definitions above, we may write

zZ[J,J7 . .
—z[[o, O]] = <6Xp (—; / (dx)p ™ Js — j; f (dx)J;¢>A> > (6.6)
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116 6 Statistical interpretation of the field

where the currents J4 and J2 are of the same type as ¢* and ¢ 5, respectively.
The effective action, as a function of the sources W[J, J'], is defined by

exp <1W[J, JT]) =z[J.J]. (6.7)
N

thus W[J, J'] is like the average value of the action, where the average is
defined by the Gaussian integral. Now consider a shift of the fields in the action,
which diagonalizes the exponent in eqn. (6.6):

@ + KMNOup(@® + LB) — KAD,5L"
= ¢TA@AB¢B + ¢M@A3LB + KA@AB¢B- (6.8)

The right hand side of this expression is the original exponent in eqn. (6.5),
provided we identify

OupL(x) = JA(x) (6.9)

= LA(x)=/(dx/)(@_l)AB(x,x')JB(x/) (6.10)
and

KA (x)Oup = J}(x) (6.11)

= KA(x):/(dx/)J;(x/)(@—l)AB(x,x/), (6.12)

where [(dx')O~' 48Oy = §4.. With these definitions, it follows that
K*O5L" = /(dx)(dx’) JHO™HAE gy (6.13)

and so

Z[J,J = /dﬂ[¢ ¢T] e%f(dx)|:(¢+A+KA)@AB(¢B+LB)—JZ(@_I)ABJB:I
(6.14)

We may now translate away L* and K#, assuming that the functional measure
is invariant. This leaves

Z[J, 7] =exp <—§/(dx)(dx’) Jj,(@‘)ABJB) Z[0,0]  (6.15)
or

WIJ,J=— / (dx)(dx") JL (O~ J5 + const. (6.16)
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6.1 Fluctuations and virtual processes 117

By differentiating W[J, J¥] with respect to the source, we obtain

T SW A
(M) = —— = is/(dx’)ﬂ(o—l)“ (6.17)
¢ 87 (x) 4
swW R
By = =is | (dx) (O H*EJ 6.18
(%) 57500) IS/(X)( )" T (6.18)
. 8w
o™y =is—— = (6.19
e =is o )
82w
9P =is——— =0 6.20
(p7¢") YA (6.20)
82w A
(¢"9™) =is—— =1is(0~H"* (6.21)
8J18J5
One may now identify (@_I)AB as the inverse of the operator in the quadratic

part of the action, which is clearly a Green function, i.e.
(¢"9™") =isG P (x, x'). (6.22)

Moreover, we have evaluated the generator for correlations in the field W[J].
Returning to real scalar fields, we have

WiJ] = —% /(dX)(dX’) Ja(x)GP (x, x") T (x"). (6.23)
We shall use this below to elucidate the significance of the Green function for
the fluctuations postulated in the system. Notice that although the generator, in
this classical case, is independent of the scale s, the definition of the correlation
function in eqn. (6.21) does depend on this scale. This tells us simply the
magnitude of the fluctuations compared with the scale of W[J] (the typical
energy scale or rate of work in the system over a time interval). If one takes
s = h, we place the fluctuations at the quantum level. If we take s ~ B,
we place fluctuations at the scale of thermal activity k7.> Quantum fluctuations
become unimportant in the classical limit # — 0; thermal fluctuations become
unimportant in the low-temperature limit § — co. At the level of the present
discussion, the results we can derive from the correlators are independent of
this scale, so a macroscopic perturbation would be indistinguishable from a
microscopic perturbation. It would be a mistake to assume that this scale were
unimportant however. Changes in this scaling factor can lead to changes in
the correlation lengths of a system and phase transitions. This, however, is the
domain of an interacting (quantum) theory.

3 These remarks reach forward to quantum field theories; they cannot be understood from the
simple mechanical considerations of the classical field. However they do appeal to one’s
intuition and make the statistical postulate more plausible.
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118 6 Statistical interpretation of the field

We have related the generating functional W[J] to weighted-average products
over the fields. These have an automatic symmetry in their spacetime arguments,
so it is clear that the object GA8 (x, x) plays the role of a correlation function for
the field. The symmetry of the generating functional alone implies that ((5*1)’7
must be the Feynman Green function. We shall nevertheless examine this point
more closely below.

A note of caution to end this section: the spacetime symmetry of the Green
function follows from the fact that the integrand in

ik(x—x")

Gx,x) = f (dk);: (6.24)

e
is a purely quadratic quantity. A correlator must depend only on the signless
difference between spacetime events |x — x|, if it is to satisfy the relations
in the remainder of this section on dissipation and transport. If the spectrum
of excitations were to pick up, say, an absorbative term, which singled out a
special direction in time, this symmetry property would be spoiled, and, after an
infinitesimal time duration, the Green functions would give the wrong answer
for the correlation functions. In that case, it would be necessary to analyse
the system more carefully using methods of non-equilibrium field theory. In
practice, the simple formulae given in the rest of this chapter can only be applied
to derive instantaneous tendencies of the field, never prolonged instabilities.

6.1.3 Symmetry and causal boundary conditions

There are two Green functions which we might have used in eqn. (6.21) as the
inverse of the Maxwell operator; the retarded Green function and the Feynman
Green function. Both satisfy eqn. (5.62). The symmetry of the expression

W = —% /(dx)(dx’)](x)G(x, x"J(x") (6.25)

precludes the retarded function however. The integral is spacetime-symmetrical,
thus, only the symmetrical part of the Green function contributes to the integral.
This immediately excludes the retarded Green function, since

W, = —% /(dx)(dx/)l(x)Gr(x,x/)J(x’)
1 _
=-3 /(dx)(dx/)J(x)[G”)(x,x’) +Gx, xHJT (X))

= _% /(dx)(dx’)l(x)[G(+)(x,x’) — GV, )T ()
o (6.26)
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6.1 Fluctuations and virtual processes 119

where the last line follows on re-labelling x, x’ in the second term. This relation
tells us that there is no dissipation in one-particle quantum theory. As we shall
see, however, it does not preclude dissipation by re-distribution of energy in
‘many-particle’ or statistical systems coupled to sources. See an example of this
in section 7.4.1. Again, the link to statistical systems is the Feynman Green
function or correlation function. The Feynman Green function is symmetrical
in its spacetime arguments. It is straightforward to show that

w —%f(dX)(dx’)J(X)GF(x,x/)J(x/)

:_%/ﬁuxwﬁJuﬁﬂLxﬁﬂfl (6.27)

The imaginary part of G (x, x') is
ImG(x, x") =2Im G (x, x'). (6.28)

6.1.4 Work and dissipation at steady state

Related to the idea of transport is the idea of energy dissipation. In the presence
of a source J, the field can decay due to work done on the source. Of course,
energy is conserved within the field, but the presence of fluctuations (briefly
active sources) allows energy to be transferred from one part of the field to
another; i.e. it allows energy to be mixed randomly into the system in a form
which cannot be used to do further work. This is an increase in entropy.

The instantaneous rate at which the field decays is proportional to the imagi-
nary part of the Feynman Green function. In order to appreciate why, we require
a knowledge of the energy—momentum tensor and Lorentz transformations, so
we must return to this in section 11.8.2. Nonetheless, it is possible to gain a
partial understanding of the problem by examining the Green functions, their
symmetry properties and the roles they play in generating solutions to the field
equations. This is an important issue, which is reminiscent of the classical theory
of hydrodynamics [53].

The power dissipated by the field is the rate at which field does work on
external sources,*

dw
S odr
Although we cannot justify this until chapter 11, let us claim that the energy of
the system is determined by

(6.29)

energy = —M . (6.30)

TR

4 Note that we use a small w for work since the symbol W is generally reserved to mean the
value of the action, evaluated at the equations of motion.
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120 6 Statistical interpretation of the field

So, the rate of change of energy in the system is equal to minus the rate at which
work is done by the system:

d dw 631)
— energy = ———. .
a T T
Let us define the action functional W by
sWw 6S[¢. J
sW._ 4Sl¢. J1 , (6.32)
oJ 8J  le=[GJ

where the minus sign is introduced so that this represents the work done by
the system rather than the energy it possesses. The object W clearly has the
dimensions of action, but we shall use it to identify the rate at which work is
done. Eqn. (6.32) is most easily understood with the help of an example. The
action for a scalar field is

8,8 = —/(dx) SJp(x), (6.33)

so, evaluating this at
o(x) = /(dx/) G(x,x)J(x), (6.34)
one may write, up to source-independent terms,
WIlJ] = —% /(dx)(dx’) J(x)Gg(x, x)J(x"). (6.35)

This bi-linear form recurs repeatedly in field theory. Schwinger’s source theory
view of quantum fields is based on this construction, for its spacetime symmetry
properties. Notice that it is based on the Feynman Green function. Eqn. (6.34)
could have been solved by either the Feynman Green function or the retarded
Green function. The explanation follows shortly. The work done over an
infinitesimal time interval is given by

dw
Aw =Im—. (6.36)
dr

Expressed in more useful terms, the instantaneous decay rate of the field is

/ dty (1) = —%ImW. (6.37)

The sign, again, indicates the difference between work done and energy lost.
The factor of y; is included because we need a scale which relates energy and
time (frequency). In quantum mechanics, the appropriate scale is x, = f. In
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6.1 Fluctuations and virtual processes 121

fact, any constant with the dimensions of action will do here. There is nothing
specifically quantum mechanical about this relation. The power is proportional
to the rate of work done. The more useful quantity, the power spectrum P (w) or
power at frequency o, is

P(w,t
/ dwl@D _ o, (6.38)
hw
giving the total power
P = / doP(w). (6.39)

We speak of the instantaneous decay rate because, in a real analysis of dissipa-
tion, the act of work being done acts back on all time varying quantities. Taking
the imaginary part of W to be the decay rate for the field assumes that the system
changes only adiabatically, as we shall see below.

6.1.5 Fluctuations

The interpretation of the field as a statistical phenomenon is made plausible
by considering the effect of infinitesimal perturbations to the field. This may
be approached in two equivalent ways: (i) through the introduction of linear
perturbations to the action, or sources

S S§— /(dx) Jo, (6.40)

where J is assumed to be weak, or (ii) by writing the field in terms of a
fluctuating ‘average’ part (¢) and a remainder part @,

¢(x) = (@ (x)) + ¢(x). (6.41)

These two constructions are equivalent for all dynamical calculations. This can
be confirmed by the use of the above generating functionals, and a change of
variable.

It is worth spending a moment to consider the meaning of the function W[J].
Although originally introduced as part of the apparatus of quantum field theory
[113], we find it here completely divorced from such origins, with no trace of
quantum field theoretical states or operators (see chapter 15). The structure
of this relation is a direct representation of our model of fluctuations or virtual
processes. W[J]is the generator of fluctuations in the field. The Feynman Green
function, in eqn. (6.25), is sandwiched between two sources symmetrically.
The Green function itself is symmetrical: for retarded times, it propagates a
field radiating from a past source to the present, and for advanced times it
propagates the field from the present to a future source, where it is absorbed.
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122 6 Statistical interpretation of the field

The symmetry of advanced and retarded boundary conditions makes W[J] an
explicit representation of a virtual process, at the purely classical level.’
The first derivative of the effective action with respect to the source is

sW
— = = (M), (6.42)

8J(x)
which implies that, for the duration of an infinitesimal fluctuation J # 0, the
field has an average value. If it has an average value, then it also deviates from
this value, thus we may write

¢ (x) i +o(x) (6.43)
X)=—— X), .
57 ¢

where ¢(x) is the remainder of the field due to J. The average value vanishes
once the source is switched off, meaning that the fluctuation is the momentary
appearance of a non-zero average in the local field. This is a smearing, stirring or
mixing of the field by the infinitesimal generalized force J. The rate of change
of this average is

SWIJ]

1) =55

= (P ()P () — (P () (B (x)). (6.44)
This is the correlation function C4p(x, x’), which becomes the Feynman Green
function as J — 0. It signifies the response of the field to its own fluctuations
nearby, i.e. the extent to which the field has become mixed. The correlation
functions become large as the field becomes extremely uniform. This is called
(off-diagonal®) long-range order.

The correlation function interpretation is almost trivial at the classical (free-
field) level, but becomes enormously important in the interacting quantum
theory.

Instantaneous thermal fluctuations Fluctuations have basically the same form
regardless of their origin. If we treat all thermal fluctuations as instantaneous,
then we may account for them by a Euclidean Green function; the fluctuations
of the zero-temperature field are generated by the Feynman Green function. In
an approximately free theory, these two are the same thing. Consider a thermal
Boltzmann distribution

Tr(p(x, ) (x)p (x)) = Tr(e™ P (@) (—w)). (6.45)

3 For detailed discussions of these points in the framework of quantum field theory, see the
original papers of Feynman [46, 47, 48] and Dyson [41]. The generator W[J] was introduced
by Schwinger in ref. [113].

6 <Off-diagonal’ refers to x # x’.
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6.1 Fluctuations and virtual processes 123
Since the average weight is e%/", and the Green function in momentum space
involves a factor exp(—iw(t — t’)), one can form a representation of the
Boltzmann exponential factor exp(— g E) by analytically continuing

t—t—ihp (6.46)
or
' — t +ihp. (6.47)

This introduces an imaginary time element such as that obtained by Wick
rotating to Euclidean space. It also turns the complex exponential into a real,
decaying exponential. If the real part of the time variable plays no significant
role in the dynamics (a static system), then it can be disregarded altogether. That
is why Euclidean spacetime is essentially equivalent to equilibrium thermody-
namics. However, from the spacetime symmetry of the correlation functions,
we should have the same result if we re-label ¢ and ¢’ so

Gt — 1t +ihp) = G(t' —t +ihp) (6.48)

or, in the Wick-rotated theory,

G(tg —tg + hB) = Gty — tg + A PB). (6.49)
This is only possible if
el@E(E—hf—1p) _ iwp(p—hB—Ik) (6.50)
or
efer = 1. (6.51)

From this; we deduce that the Euclidean Green function must be periodic in
imaginary time and that the Euclidean frequency

2
wp(n) = % n=0 +1 42, ... (6.52)

where wg(n) are called the Matsubara frequencies.

Thermal fluctuations in time Using the fluctuation model, we may represent
a system in thermal equilibrium by the same idealization as that used in
thermodynamics. We may think of the source and sink for thermal fluctuations
as being a large reservoir of heat, so large that its temperature remains constant
at T = 1/kfB, even when we couple it to our system. The coupling to the heat
bath is by sources. Consider the fluctuation model as depicted in figure 6.1.
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124 6 Statistical interpretation of the field

O - o O ¥
Now
() )
_G(X»X P) G(x,x )
emission re-absorption

Fig. 6.1. Thermal fluctuations occur when the source is a heat reservoir at constant
temperature.

Since the fluctuation generator is W[J], which involves

1
Wi =3 [@0@) S Grtr ) )
~ J(x) [-GP (w)b(past) + G (w)d (future)| J (x"),  (6.53)

then, during a fluctuation, the act of emission from the source is represented
by —G™(w) and the act of re-absorption is represented by G'~)(w). In other
words, these are the susceptibilities for thermal emission and absorption. In
an isolated system in thermal equilibrium, we expect the number of fluctuations
excited from the heat bath to be distributed according to a Boltzmann probability
factor [107]:

emission —GP(w)

— = = Pl (6.54)
absorption GO (w)

We use Ao for the energy of the mode with frequency w by tradition, though 7
could be replaced by any more appropriate scale with the dimensions of action.
This is a classical understanding of the well known Kubo—Martin—Schwinger
relation [82, 93] from quantum field theory. In the usual derivation, one makes
use of the quantum mechanical time-evolution operator and the cyclic property
of the trace in eqn. (6.45) to derive this relation for a thermal equilibrium. What
makes these two derivations equivalent is the principle of spacetime uniformity
of fluctuations. The argument given here is identical to Einstein’s argument for
stimulated and spontaneous emission in a statistical two-state system, and the
derivation of the well known A and B coefficients. It can be interpreted as the
relative occupation numbers of particles with energy Zw. Here, the two states

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core
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Field .
emission absorption

heat bath

Fig. 6.2. Contact with a thermodynamic heat bath. Fluctuations represent emission
and absorption from a large thermal field.

are the heat bath and the system (see figure 6.2). We can use eqn. (6.54) to find
the thermal forms for the Wightman functions (and hence all the others). To do
so we shall need the extra terms X (k) mentioned in eqn. (5.41). Generalizing
eqns. (5.66), we write,

G (k) = —2mi[0 (ko) + X18(p*c® + m>c?)
G (k) = 2mi[0(—ko) + Y18(pc? + m*c*) (6.55)

with X and Y to be determined. The commutator function G(x, x') represents
the difference between the emission and absorption processes, which cannot
depend on the average state of the field since it represents the completeness
of the dynamical system (see section 14.1.8 and eqn. (5.73)). It follows that
X =Y. Then, using eqn. (6.54), we have

0(w) + X = e"P[o(~w) + X] (6.56)
and hence
X"l — 1) = 0(w), (6.57)
since 6 (—w)ef” = 0. Thus, we have
X =0(0) f(w), (6.58)

where

flo) = go— (6.59)

1
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126 6 Statistical interpretation of the field

This is the Bose—Einstein distribution. From this we deduce the following
thermal Green functions by re-combining G® (k):

G (k) = —27mi0 (ko)[1 + f (ko)1 (p2c? + m>c*) (6.60)

Ge(k) = —+ 2if (Jkol)S(p*c® + m*c*)0 (ko).

(6.61)

p2C2 + mict* —

For a subtlety in the derivation and meaning of eqn. (6.59), see section 13.4.

The additional mixture of states which arise from the external (boundary)
conditions on the system X thus plays the role of a macrostate close to steady
state. Notice that the retarded and advanced Green functions are independent of
X. This must be the case for unitarity to be preserved.

6.1.6 Divergent fluctuations: transport

The fluctuations model introduced above can be used to define instantaneous
transport coefficients in a statistical system. Long-term, time-dependent ex-
pressions for these coefficients cannot be obtained because of the limiting
assumptions of the fluctuation method. However, such a non-equilibrium
situation could be described using the methods of non-equilibrium field theory.

Transport implies the propagation or flow of a physical property from one
place to another over time. Examples include

e thermal conduction,
e clectrical conduction (current),
e density conduction (diffusion).

The conduction of a property of the field from one place to another can only be
accomplished by dynamical changes in the field. We can think of conduction as
a persistent fluctuation, or a fluctuation with very long wavelength, which never
dies. All forms of conduction are essentially equivalent to a diffusion process
and can be analysed hydrodynamically, treating the field as though it were a
fluid.

Suppose we wish to consider the transport of a quantity X: we are therefore
interested in fluctuations in this quantity. In order to generate such fluctuations,
we need a source term in the action which is generically conjugate to the
fluctuation (see section 14.5). We add this as follows:

S— 85— f(dx)X - F, (6.62)

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

6.1 Fluctuations and virtual processes 127

and consider the generating functional of fluctuations W[ F] as a function of the
infinitesimal source F'(x); Taylor-expanding, one obtains
SWIO0
[0] Fo)
SF(x)

SW[F] = W[0] + /(dx)

§2W10] .
/(dx)(d NYee————Fx)§F(x")+---. (6.63)

SF(x)8F(x)
Now, since
WIF] = /(dX)(dx/) F)(X ()X (x) F(x"), (6.64)
we have the first few terms of the expansion
WI[0]=0

SWI0]

(SF(x) = (X(x))

MY _Lixwxw)) (6.65)

SF()SF(x)

Thus, linear response theory gives us, generally,

(X (x)) = / (dx) (X (X)X () F(x'), (6.66)
or
SX() i /
SEC) =7 (X(x)X (x)). (6.67)

Since the correlation functions have been generated by the fluctuation generator
W, they satisfy Feynman boundary conditions; however, in eqn. (6.81) we
shall derive a relation which may be used to relate this to the linear response
of the field with retarded boundary conditions. It remains, of course, to
express the correlation functions of the sources in terms of known quantities.
Nevertheless, the above expression may be used to determine the transport
coefficients for a number of physical properties. As an example, consider the
electrical conductivity, as defined by Ohm’s law,

Ji = O'ijEi. (668)
If we write E; ~ 0,A; in a suitable gauge, then we have
],(a)) = O'ijCl)Aj (Cl)), (669)
or
8J;
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128 6 Statistical interpretation of the field

From eqn. (6.67), we may therefore identify the transport coefficient as the limit
in which the microscopic fluctuations’” wavelength tends to infinity and leads to
a lasting effect across the whole system,

0ij(@) = lim %ui (@), (~w)). (6.71)

The evaluation of the right hand side still needs to be performed. To do this,
we need to know the dynamics of the sources J; and the precise meaning of the
averaging process, signified by (. ..). Given this, the source method provides us
with a recipe for calculating transport coefficients.

In most cases, one is interested in calculating the average transport coeffi-
cients in a finite temperature ensemble. Thermal fluctuations may be accounted
for simply by noting the relationship between the Feynman boundary conditions
used in the generating functional above and the retarded boundary conditions,
which are easily computable from the mechanical response. We make use of
eqn. (6.54) to write

G(t, 1) = -0 —1t)[GP + GT]
=—0(t —t)GP [1 —e"P]. (6.72)
The retarded part of the Feynman Green function is
Gr=—0(t —t)GPo(t — 1), (6.73)
so0, over the retarded region,
G.(x,x") = (1 — e ™) Gp(x, x'), (6.74)
giving

_ ~—hpw
0yj(@) = lim %m (@) (~0)), (6.75)

for the conductivity tensor, assuming a causal response between source and
field. The formula in eqn. (6.75) is one of a set of formulae which relate the
fluctuations in the field to transport coefficients. The strategy for finding such
relations is to identify the source which generates fluctuations in a particular
quantity. We shall return to this problem in general in section 11.8.5.

6.1.7 Fluctuation dissipation theorem

In a quasi-static system, the time-averaged field may be defined by

1 +T/2
@) == / ¢ ()dr. 6.76)
-T2
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6.1 Fluctuations and virtual processes 129

From the generating functional in eqn. (6.5), we also have

L SWLJ]
(p(x)) = 1h—51(x) , (6.77)
and further
don) - _ _i<¢(x)¢(x/)> = Im Gg(x, x") (6.78)
oI |, h . '

The field may always be causally expressed in terms of the source, using the
retarded Green function in eqn. (6.76), provided the source is weak so that higher
terms in the generating functional can be neglected; thus

1 +T)/2
(@) = = /(dx/)Gr(x, x')J (x")dr. (6.79)
T Jierp
Now, using eqns. (6.78) and (6.79), we find that
° 5¢() Im 3, Gr(x, x) 1G( ) (6.80)
o = —Ilm ) = L Urx, . .
RE A St T

Thus, on analytically continuing to Euclidean space,
G (w) = —hpw Gg(w). (6.81)

This is the celebrated fluctuation dissipation theorem. It is as trivial as it is
profound. It is clearly based on assumptions about the average behaviour of
a statistical system over macroscopic times 7', but also refers to the effects of
microscopic fluctuations over times contained in x — x’. It relates the Feynman
Green function to the retarded Green function for a time-averaged field; i.e. it
relates the correlation function, which measures the spontaneous fluctuations

p=¢— () (6.82)

in the field, to the retarded Green function, which measures the purely mechan-
ical response to an external source. The fluctuations might be either thermal or
quantum in origin, it makes no difference. their existence is implicitly postulated
through the use of the correlation function. Thus, the truth or falsity of this
expression lies in the very assumption that microscopic fluctuations are present,
even though the external source J — 0 on average (over macroscopic time 7).
This requires further elaboration.

In deriving the above relation, we have introduced sources and then taken the
limit in which they tend to zero. This implies that the result is only true for an
infinitesimal but non-zero source J. The source appears and disappears, so that
it is zero on average, but it is present long enough to change the distribution
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of modes in the system, little by little. An observer who could resolve only
macroscopic behaviour would therefore be surprised to see the system changing,
apparently without cause. This theorem is thus about the mixing of scales.

The fluctuation dissipation theorem tells us that an infinitesimal perturbation
to the field, / — 0, will lead to microscopic fluctuations, which can decay by
mechanical response (mixing or diffusion). The decay rate may be related to the
imaginary part of the correlation function, but this gives only an instantaneous
rate of decay since the assumptions we use to derive the expression are valid
only for the brief instant of the fluctuation.’

The Feynman Green function seems to have no place in a one-particle
mechanical description, and yet here it is, at the classical level. But we have
simply introduced it ad hoc, and the consequences are profound: we have
introduced fluctuations into the system. This emphasizes the importance of
boundary conditions and the generally complex nature of the field.

6.2 Spontaneous symmetry breaking

Another aspect of fluctuating statistical theories, which arises in connection with
symmetry, is the extent to which the average state of the field, (¢), displays
the full symmetry afforded it by the action. In interacting theories, collective
effects can lead to an average ordering of the field, known as long-range order.
The classic example of this is the ferromagnetic state in which spin domains
line up in an ordered fashion, even though the action allows them to point
in any direction, and indeed the fluctuations in the system occur completely
at random. However, it is energetically favourable for fluctuations to do this
close to an average state in which all the spins are aligned, provided the
fluctuations are small. Maximum stability is then achieved by an ordered state.
As fluctuations grow, perhaps by increasing temperature, the stability is lost and
a phase transition can occur. This problem is discussed in section 10.7, after the
chapters on symmetry.

7 The meaning of this ‘theorem’ for Schwinger’s source theory viewpoint is now clear [119].
Spacetime uniformity in the quantum transformation function tells us that the Green function
we should consider is the Feynman Green function. The symmetry of the arguments
tells us that this is a correlation function and it generates fluctuations in the field. The
infinitesimal source is a model for these fluctuations. Processes referred to as the decay of
the vacuum in quantum field theory are therefore understood in a purely classical framework,
by understanding the meaning of the Feynman boundary conditions.

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

7

Examples and applications

To expose the value of the method in the foregoing chapters, it is instructive to
apply it to a number of important and well known physical problems. Through
these examples we shall see how a unified methodology makes the solution of
a great many disparate systems essentially routine. The uniform approach does
not necessarily convey with it any automatic physical understanding, but then
no approach does. What we learn from this section is how many problems can
be reduced to the basics of ‘cause followed by effect’, or, here, ‘source followed
by field’.

7.1 Free particles

Solving Newton’s law F = ma using a Green function approach is hardly to
be recommended for any practical purpose; in fact, it is a very inefficient way
of solving the problem. However, it is useful to demonstrate how the Green
function method can be used to generate the solution to this problem. This
simple test of the theory helps to familiarize us with the working of the method
in practice. The action for a one-dimensional-particle system is

|5
S:/dt —me —Fx¢. (7.1)

The variation of the action leads to

8§ = /dt {mx — F}éx + A(mx)éx =0, (7.2)
which gives us the equation of motion
F =mx (7.3)
and the continuity condition
A(mx) =0, (7.4)
131
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which is the conservation of momentum. The equation of motion can be written
in the form of ‘operator acting on field equals source’,

Dx =J, (7.5)
by rearranging
82 x(t) = F/m. (7.6)

Clearly, we can integrate this equation directly with a proper initial condition
x(to) = xo, X(ty) = v, to give

F
x(t) — xg = %(t—to)-l-v(t —1p). (7.7)

But let us instead try to use the Green function method to solve the problem.
There are two ways to do this: the first is quite pointless and indicates a
limitation of the Green function approach, mentioned in section 5.2.4. The
second approach demonstrates a way around the limitation and allows us to see
the causality principle at work.

Method 1 The operator on the left hand side of eqn. (7.6) is 83, so we define a
Green function

3G, 1) =8(,1). (7.8)

As usual, we expect to find an integral expression by Fourier transforming the
above equation:

do e—iw(z—t’)

Git—t)= (7.9

2  —w?

This expression presents us with a problem, however: it has a non-simple pole,
which must be eliminated somehow. One thing we can do is to re-write the

integral as follows:
’ ~ > dow —iwt
Gt—t)= [dt | dt | — e,
2

= /dffdz”a(f), (7.10)

where f = t — t’. It should be immediately clear that this is just telling us to
replace the Green function with a double integration (which is how one would
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7.1 Free particles 133

normally solve the equation). We obtain two extra, unspecified integrals:
x() = fdt’ G(t,t"YF/m

= /dfdfdt’ 5t —tF/m

_ / d7d7 F/m

= /df[F/m(t — 1) +v]
F 2

=— (@ =ty + vt —1t) + xp. (7.11)
2m

So, the result is the same as that obtained by direct integration and for the
same reason: the Green function method merely adds one extra (unnecessary)
integration and re-directs us to integrate the equation directly. The problem here
was that the denominator contained a non-simple pole. We can get around this
difficulty by integrating it in two steps.

Method 2 Suppose we define a Green function for the linear differential operator

0, g(t, 1) =68(t,1). (7.12)

From section A.2, in Appendix A, we immediately recognize this function as the
Heaviside step function. (We could take the Fourier transform, but this would
only lead to an integral representation of the step function.) The solution has
advanced and retarded forms

&, 1) =0(—1)
ga(t, 1)y =—60(" —1). (7.13)

Now we have an integrable function, which allows us to solve the equation in
two steps:

9, x(t) = /dt/ g(t, 1) F/m
F / / !/
=—@{—t)+ 0, x(t) (t >1). (7.14)
m
Then, applying the Green function again,
/ / F !/ /
x(t) = /dl‘ gt —1) [;(f — 1)+ 9, x(t )]

F
=—(t —10)> + vt — 1p) + xo. (7.15)
2m
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Again we obtain the usual solution, but this time we see explicitly the causality
inferred by a linear derivative. The step function tells us that the solution only
exists for a causal relationship between force F and response x (7).

7.1.1 Velocity distributions

In a field of many particles, there is usually a distribution of velocities or
momenta within the field. In a particle field this refers to the momenta p; of
individual localizable particles. In other kinds of field there is a corresponding
distribution of wavenumbers k; of the wave modes which make up the field.
The action describes the dynamics of a generic particle, but it does not capture
the macroscopic state of the field. The macrostate is usually described in terms
of the numbers of components (particles or modes) with a given momentum or
energy (the vector nature of momentum is not important in an isotropic plasma).

The distribution function f is defined so that its integral with respect to the
distribution parameter gives the number density or particles per unit volume. We
use a subscript to denote the control variable:

N = /d"k fi(K)
= /dnp fr(P)
= /d”v fo(V). (7.16)

This distribution expresses averages of the field. For example, the average
energy is the weighted average of the energies of the different momenta:

1
(E) = N/ d"k fr(K)E (k). (7.17)

7.2 Fields of bound particles

A field of particles, sometimes called a plasma when charged, is an effective
field, formed from the continuum approximation of discrete particles. Its
purpose is to capture some of the bulk dynamics of material systems; it should
not be confused with the deeper description of the atoms and their sub-atomic
components in terms of fundamental fields which might focus on quite different
properties, not relevant for the atoms in a bulk context. The starting point for
classical analyses of atomic systems coupled to an electromagnetic field is the
idea that matter consists of billiard-ball atoms with some number density py,
and that the wavelength of radiation is long enough to be insensitive to the
particle nature of the atoms. The only important fact is that there are many
particles whose combined effect in space is to act like a smooth field. When
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7.2 Fields of bound particles 135

perturbed by radiation (which we shall represent as an abstract source J;) the
particles are displaced by a spatial vector s' where i = 1,2, ..., n. The action
for this system may be written

1 / : I, 1 5, ) ; }
Ser = — [ (dx) { —=ms” + —ks” —myss — J's; ¢ . (7.18)
o 2 2
This requires some explanation. The factor of the spatial volume of the total sys-
tem, oy, reflects the fact that this is an effective average formulation. Dividing
by a total scale always indicates an averaging procedure. As an alternative to
using this explicit value, we could use the average density, p = m /oy, and other
parameter densities to express the action in appropriate dimensions. The first
term is a kinetic energy term, which will describe the acceleration of particles
in response to the forcing term Ji. The second term is a harmonic oscillator
term, which assumes that the particles are bound to a fixed position s; = 0, just
as electrons are bound to atoms or ions are bound in a lattice. The effective
spring constant of the harmonic interaction is «. Because s'(x) represents the
displacement of the particles from their equilibrium position, we use the symbol
s' rather than x', since it is not the position which is important, but the deviation
from equilibrium position. The dimensions of s’ (x) are position divided by the
square-root of the density because of the volume integral in the action, and s’ (x)
is a function of x* because the displacement could vary from place to place and
from time to time in the system. The final term in eqn. (7.18) is a term which will
provide a phenomenological damping term for oscillations, as though the system
were leaky or had friction. As we have already discussed in section 4.2, this kind
of term is not well posed unless there is some kind of boundary in the system
which can leak energy. The term is actually a total derivative. Nevertheless,
since this is not a microscopic fundamental theory, it is possible to make sense
of this as an effective theory by ‘fiddling’ with the action. This actually forces
us to confront the reason why such terms cannot exist in fundamental theories,
and is justifiable so long as we are clear about the meaning of the procedure.
The variation of the action is given, after partial integration, by

1 .
58S = — /(dx) {ms; + ks; —mys; + mys; — J;} 8s'
Ox

1 )
+ — / do [ms; +mys;]8s'. (7.19)
oy

The terms containing y clearly cancel, leaving only a surface term. But suppose
we divide the source into two parts:

J=J 4 (7.20)
where J), is postulated to satisfy the equation

—mys' = . (7.21)
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This then has the effect of preventing the frictional terms from completely
disappearing. Clearly this is a fiddle, since we could have simply introduced
a source in the first place, with a velocity-dependent nature. However, this
is precisely the point. If we introduce a source or sink for the energy of the
system, then it is possible to violate the conservational properties of the action
by claiming some behaviour for J/ which is not actually determined by the
action principle. The lesson is this: if we specify the behaviour of a field rather
than deriving it from the action principle, we break the closure of the system
and conservation laws. What this tells us is that dissipation in a system has to
come from an external agent; it does not arise from a closed mechanical theory,
and hence this description of dissipation is purely phenomenological. Taking
eqn. (7.21) as given, we have the equation of motion for the particles

ms' —mys' + ks = JY’, (7.22)
with continuity condition
A (ms +mys) =0. (7.23)

It is usual to define the natural frequency @j = k/m and write

i

‘ J
0 — 73 + o))’ (x) = - (7.24)

If we consider a plane wave solution of the form

s(x) = / (dk) el®ix' =g ), (7.25)
then we may write
, Ji(k
(—* +iyw+ of)s' (k) = 5 ). (7.26)
m

From this we see that the Green function G;;(x, x") for st(x) is

ei(kixi —wt)

(—? +iyow+od)

G,’j(x, )C/) = (Sij / (dk) (727)
As long as the integral contains both positive and negative frequencies, this
function is real and satisfies retarded boundary conditions. It is often referred to
as the susceptibility, x;;. In a quantum mechanical treatment, fiwg = E> — E| is
the difference between two energy levels.

Notice that the energy density

PE = / Ei(x)Gyj(x, X')E;(x') (dx') (7.28)
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7.3 Interaction between matter and radiation 137

cannot be expressed in terms of a retarded Green function, since the above
expression requires a spacetime symmetrical Green function. The Feynman
Green function is then required. This indicates that the energy of the field
is associated with a statistical balance of virtual processes of emission and
absorption, rather than simply being a process of emission. In general, the
interaction with matter introduces an imaginary part into the expression for the
energy, since the Green function idealizes the statistical processes by treating
them as steady state, with no back-reaction. It thus implicitly assumes the
existence of an external source whose behaviour is unaffected by the response
of our system. The energy density reduces to E? in the absence of material
interactions and the result is then purely real.

7.3 Interaction between matter and radiation

Classical field theory is normally only good enough to describe non-interacting
field theories. A complete description of interactions requires the quantum
theory. The exception to this rule is the case of an external source. In
electromagnetism we are fortunate in having a system in which the coupling
between matter and radiation takes on the form of a linear external source J*,
so there are many systems which behave in an essentially classical manner.

7.3.1 Maxwell’s equations

The interaction between matter and radiation begins with the relativistically
invariant Maxwell action

S = dx LF‘WF —JFA . 7.29
/( ){4#0 ’ u} (7.29)

The variation of the action,
5S:=‘/kdx){(aﬂéAV)Fﬁv—-J“SAM}
=l/kdo{SAWeQMFpQ——J“SAM}+1/cbﬂ{8A”FpA
=0, (7.30)

leads immediately to the field equations for the electromagnetic field interacting
with charges in an ambient vacuum:

0 F"' = —poJ”. (7.31)
The spatial continuity conditions are

AF;, =0, (7.32)
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or

AB; =0. (7.33)

7.3.2 Electromagnetic waves
In the Lorentz gauge, 0" A, = 0, Maxwell’s equations (7.31) reduce to
—0A, = J,. (7.34)
The solution to this equation is a linear combination of a particular integral
with non-zero J, and a complementary function with J, = 0. The free-field
equation,

—0A, =0, (7.35)

is solved straightforwardly by taking the Fourier transform:

A, (x) = / dk ek A (k) (7.36)
H - (27 )n+1 AT :

Substituting into the field equation, we obtain the constraint
2
2 w i
X K) = K = ko, = (——2 T k,-> o, 7.37)
c

This is the result we found in eqn. (2.52), obtained only slightly differently. The
retarded and Feynman Green functions for the field clearly satisfy

—0 Dyy(x, x") = guvcd(x, x'). (7.38)

Thus, the solution to the field in the presence of the source is, by analogy with
eqn. (5.41),

Ay (x) = /(dx/)D,w(x,x/)J”(x’)
. |1
= / (dk) elfn =) [ﬁ +X(k)5(k2)] J(x), (7.39)

where X (k) is an arbitrary and undetermined function. In order to determine
this function, we need to make some additional assumptions and impose some
additional constraints on the system.
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7.3 Interaction between matter and radiation 139

7.3.3 Dispersion and the Faraday effect

When linearly polarized electromagnetic waves propagate through a magnetized
medium, in the direction of the applied magnetization, the plane of polarization
becomes rotated in an anti-clockwise sense about the axis of propagation by an
amount proportional to z, where z is the distance travelled through the medium.
The angle of rotation

¥ = VBz, (7.40)

where B is the magnetic field and V is Verdet’s constant, the value of which
depends upon the dielectric properties of the material. This phenomenon is
important in astronomy in connection with the polarization of light from distant
stars. It is also related to optical activity and the Zeeman effect.

Classical descriptions of this effect usually involve a decomposition of the
electric field vector into two contra-rotating vectors which are then shown
to rotate with different angular velocities. The sum of these two vectors
represents the rotation of the polarization plane. An alternative description can
be formulated in complex coordinates to produce the same result more quickly
and without prior assumptions about the system.

Let us now combine some of the above themes in order to use the action
method to solve the Faraday system. Suppose we have a particle field, s (x), of
atoms with number density py, which measures the displacement of optically
active electrons —e from their equilibrium positions, and a magnetic field B =
B3, which points along the direction of motion for the radiation. In the simplest
approximation, we can represent the electrons as being charges on springs with
spring constant «. As they move, they generate an electric current density

Ji = —e,ONS‘,‘. (741)

Since the Faraday effect is about the rotation of radiation’s polarization vector
(which is always perpendicular to the direction of motion x3), we need only s
fori = 1, 2. The action then can be written

1 1 1 4 . .
S=— f(dx) {—Em(ats)(ats) + EeBeijs’(B,s) + ks's; — J’s,-} .
Ox
(7.42)
Here, J' is an external source which we identify with the radiation field

Ji(x) = —eE'(x) = —SF‘” (x). (7.43)

As is often the case with matter—radiation interactions, the relativistically
invariant electromagnetic field is split into E‘, B' by the non-relativistically
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invariant matter field s'. The field equations are now obtained by varying the
action with respect to 8s*:

§S = /(dx) {ms, + eBeiij + ks — Ji} Ss'

+ f do [ms; + eBe;;s’] 8s'. (7.44)
Thus, the field equations are

msl + eBGl'j.S"j + K8 = Ji = —BEi, (745)
and continuity of the field requires

A(eBe;js’) = 0. (7.46)

The first of these is simply the conservation of momentum for the electrons.
The latter tells us that any sudden jumps in the magnitude of magnetic field
must be compensated for by a sudden jump in the amplitude of the transverse
displacement.

If we compare the action and the field equations with the example in section
7.2, it appears as though the magnetic field has the form of a dissipative term.
In fact this is not the case. Magnetic fields do no work on particles. The crucial
point is the presence of the anti-symmetric matrix ¢;; which makes the term well
defined and non-zero.

Dividing eqn. (7.45) through by the mass, we can defined the Green function
for the s’ (x) field:

d? eB
— 4wl |8 + —e€ii | Gir(x, x') = 8 (x, x) (7.47)
dr2 0 ij m ij Jk\A s — Oik\A, s .

where a)g = Kk /m, so that the formal solution for the field is

si(x) = /(dx’)G,-j(x,x/)Jj(x/). (7.48)

Since we are interested in coupling this equation to an equation for the radiation
field J;, we can go no further. Instead, we turn to the equation of motion (7.34)
for the radiation. Because of the gauge freedom, we may use a gauge in which
Ap = 0, this simplifies the equation to
—OA; = no, ie
E;, = —0,A;. (7.49)

Thus, using the Green function D;;(x, x'),

—0 D;j(x, x") = 8;; c8(x, x"), (7.50)
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for A;(x), we may write the solution for the electric field formally as

Ei(x) = —pod; /(dX’)Dij(x,X’)(—EPNS'J'(X’)) = —Ji/e. (7.51)

This result can now be used in eqn. (7.45), giving

d? eBw
|:(d2+w0)5”+ ']sj(x)=

€2 /! N
——pio O / (dx") D ji (x, x)5*. (7.52)

Operating from the left with — N , we have

d? Bw e? .
(_D) dr 12 + wo 81] + —€;; Sj(X) = _gpN/LOSi' (753)
This is a matrix equation, with a symmetric part proportional to §;; and an anti-
symmetric part proportional to €;;. If we take plane wave solutions moving
along the x3 = z axis,

) dn+1k
s'(x) = Gyt ———eikTen i (ks ()
i dn+1k i(k;z—wt) i

for the dispersion relation x implied by eqn. (7.53), eqn. (7.53) implies that the
wavenumber k, must be a matrix in order to find a solution. This is what will
lead to the rotation of the polarization plane for E;. Substituting the above form
for s'(x) into eqn. (7.53) leads to the replacements 9, — ik, and 9, — —iw.
Thus the dispersion relation is

5 w? eBw e’ 5
k2 — = | | (o + )8 + —€ij | — —pnpow® 8 =0,
c? m
(7.55)
or re-arranging,

2
i e PN [(@° + 00)8 + %€

2 _ @ B
G = | T e - ey

(7.56)

This only makes sense if the wavenumber £, is itself a matrix with a symmetric
and anti-symmetric part:

kyij = kéij + ke (7.57)
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It is the anti-symmetric part which leads to a rotation of the plane of polarization.
In fact, k, has split into a generator of linear translation k plus a generator or
rotations k about the z axis:

— 1 0 ~ 0 1
kz=kx(0 1)+kx<_1 O)' (7.58)
The exponential of the second term is
cos(kz)  sin(kz)
< - , 7.59
( —sin(kz) cos(kz) ) (7.59)

50 k is the rate of rotation. Using a binomial approximation for small B, we can
write simply

. 2‘:15 PN
I o) (R (70
Verdet’s constant is defined by the phenomenological relation,
kz = V Bz, (7.61)
so we have
Ne'w” (7.62)

- 2m?cep| (w2 — w?)? — (eBw/m)?|

7.3.4 Radiation from moving charges in n = 3: retardation

The derivation of the electromagnetic field emanating from a charged particle
in motion is one of the classic topics of electrodynamics. It is an important
demonstration of the Green function method for two reasons. First of all, the
method of Green functions leads quickly to the answer using only straightfor-
ward algebraic steps. Prior to the Green function method, geometrical analyses
were carried out with great difficulty. The second reason for looking at this
example here is that it brings to bear the causal or retarded nature of the physical
field, i.e. the property that the field can only be generated by charge disturbances
in the past. This retardation property quickly leads to algebraic pitfalls, since the
dynamical variables become defined recursively in term of their own motion in
a strange-loop. Unravelling these loops demonstrates important lessons.

We begin by choosing the Lorentz gauge for the photon propagator with o =
1. This choice will give the result for the vector potential in a form which is most
commonly stated in the literature. Our aim is to compute the vector potential
A, (x), and thence the field strength F),,, for a particle at position x,,(¢) which
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is in motion with speed v = 9,X,(¢). The current distribution for a point particle
is singular, and may be written

JH =qgcph 8" (x — x,(1)). (7.63)

The vector potential is therefore, in terms of the retarded propagator,

Au(x) = uo/(dx’) Gr(x, x)J,(x)
8 (C(t/ - tret))

q /! / /
=——11Wd (s S (x' —x,(), (7.64
4neoc/(X)ﬂ() X (X' —x,(1)), (7.64)
where the retarded time is defined by ., = t — |x—x'| /c. Performing the integral

over x* in the presence of the delta function sets t' —

Au(x) =

q f doy ﬁﬂ (tret)d (X —Xp (tret)) ‘ (7.65)

TTE€QC |x — x/|

Here x is a free continuous coordinate parameter, which varies over all space
around the charge, and X, () is the retarded trajectory of the charge g. We may
now perform the remaining integral. Here it is convenient to change variables.
Let

/ddx/ﬁ(X’—Xp(tret)) = fd0r5(r)|1|, (7.66)
where J = det J;; and

Jl.]_.l = ai/r]' = af(x/ - xp(tret))j
8x;, Olret

Otrer Oxi'’

= &ij (7.67)
is the Jacobian of the transformation. At this stage, f. is given by t,,, = ¢ —
|x — X'|/c, i.e. it does not depend implicitly on itself. After the integration we
are about to perform, it will. We complete the integration by evaluating the

Jacobian:
a,'/l‘rf:t = r_l
C
-1 Vj .
Jij = 8ij — ?/ri
detJ;' = (1—pB'F)| . (7.68)

Tret

The last line uses the fact that r; depends only on x;, not on x; for i # j. In this

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

144 7 Examples and applications

instance, the determinant becomes 1 + Tr(Jl.J_.l), giving

q /d rI ﬂu(tret)g(r)

dmegc X — X, (fre) — 1

qBu(trer)

 dwegck|x — x|

Aulx) =

(7.69)

where k = (1 — B - I), and all quantities (including « itself) are evaluated at
trer. If we define the light ray r# as the vector from x, to x, then r* = (r,r)
and r = |r|, since, for a ray of light, r = ¢cAt = ¢ x r/c. Finally, noting that

rk = —rkp,, we have the Liénard—Wiechert potential in the Lorentz gauge,
—-q ,Bu
A = —_— . 7.70
u) 4megc (’”Mﬁu>tra ( )

To proceed with the evaluation of the field strength F),,, or equivalently the
electric and magnetic fields, it is useful to derive a number of relations which
conceal subtleties associated with the fact that the retarded time now depends
on the position evaluated at the retarded time. In other words, the retarded time
trer Satisfies an implicit equation

Ix — Xp(tret)| —y r

- —. (7.71)
c c

tret =

The derivation of these relations is the only complication to this otherwise purely
algebraic procedure. Differentiating eqn. (7.71) with respect to #,;, we obtain

t .
1= r B (¢,
T + 7' Bi (trer)
O (tre)) = k™ t (7.72)
Moreover,
1
(Oitrer) = —;(3#), (7.73)
(0;r) = 03,/ rir;
= @r)), (7.74)
0xp .
(air./) = 8ij — at_re:(aitret)
= &ij + B;(9ir) (7.75)
(Orj) = gij + B;F* (dire). (7.76)

The last line cannot be simplified further; however, on substituting eqn. (7.76)
into eqn. (7.74), it is straightforward to show that

@r)(1 = F-p)°) =l + - B), (1.77)
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and thus

(o) = . (1.78)
K
This may now be substituted back into eqn. (7.75) to give
Bi#:
(@) = gij + JT (7.79)

Continuing in the same fashion, one derives the following relations:

(o) = "
«
Gory = -2
K
7
(@) =
K
@) = gij + ,szr
(B0B) = —
K
’,;iaj
3 B;) = ——

Ao (rK) =%(,32—f'-/8—a-r)
3 (rk) = % (1-B+a-1)— B, (7.80)

where we have defined o, = 38, = (0, v/c?). The field strength tensor may
now be evaluated. From eqn. (7.70) one has

Fu, =0,A,—0,A,

— q a,u,Bv - avﬁu _ (ﬁuau - ﬁMaU)(rK) ) (781)
4 egc rk r2i?
And, noting that §y = —1 is a constant, we identify the three-dimensional
electric and magnetic field vectors:
E; =cFj
_ =49 [ 3Bi _ (Bido — Pod) (1K)
4rey | 1K r2i?
—q [  (Bi—1F) 2
_ el - 1— . 7.82
e [Kzr + S (T (= ) (7.82)
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1
B; = Eeiijjk
q ;B (Brd;)(rc)

= €ijk -
drege | i r2k?

_ _q A ak ﬂk 2

= mﬂjki’j |:? + r2K3 (Ol T+ (1 - ﬁ ))] (783)
! rE
c jkj Lk
1

= —(t x E),. (7.84)
c

From these relations, it is clear that the magnetic field is perpendicular to both
the light ray r and the electric field. The electric field can be written as a sum of
two parts, usually called the radiation field and the near field:

9 o (B —7)(a-T)
irad — 47'[6()6‘ |:K2F + —K3}" :| (785)
_ 4 (B — 7)) (1 — B7)
Einear - 47'[6()6 |: r2/<3 :| . (786)

The near field falls off more quickly than the long-range radiation field. The
radiation field is also perpendicular to the light ray r. Thus, the far-field electric
and magnetic vectors are completely transverse to the direction of propagation,
but the near-field electric components are not completely transverse except at
very high velocities § ~ 1. Note that all of the vectors in the above expressions
are assumed to be evaluated at the retarded time.

Owing to their special relationship, the magnitude of the magnetic and electric
components are equal up to dimensional factors:

|E|> = ¢?|B|>. (7.87)
Finally, the rate of work or power expended by the field is given by Poynting’s
vector,
S,‘ = GijkEij
= (10¢) '€k E;(F x E);
= €oC€ijk E j(€tim 1 Em)
S = —¢oc(E - E)r. (7.88)

7.4 Resonance phenomena and dampening fields

In the interaction between matter and radiation, bound state transitions lead to
resonances, or phenomena in which the strength of the response to a radiation
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field is amplified for certain frequencies. Classically these special frequencies
are the normal modes of vibration for spring-like systems with natural frequency
wp; quantum mechanically they are transitions between bound state energy
levels with a definite energy spacing wy = (E, — E — 1)/h. The examples
which follow are all cases of one mathematical phenomenon which manifests
itself in several different physical scenarios. We see how the unified approach
reveals these similarities.

7.4.1 Cherenkov radiation

The radiation emitted by charged particles which move in a medium where
the speed of light is less than the speed of the particles themselves is called
Cherenkov radiation. The effect was observed by Cherenkov [25] and given
a theoretical explanation by Tamm and Frank [127] within the framework
of classical electrodynamics. The power spectrum of the radiation may be
calculated with extraordinary simplicity using covariant field theory [122].
Using the covariant formulation in a material medium from section 21.2.4
and adapting the expression in eqn. (5.118) for the Maxwell field, we have the
Feynman Green function in the Lorentz—Feynman « = 1 gauge, given by

—i o . /nw o
Dp(x,x') = —/ dw sin (—|x—x’|>e iwlt—t']
2.2 /
drc?|x — X' Jo c

(7.89)

where n is the refractive index of the medium. Note that this index is assumed
to be constant here, which is not the case in media of interest. One should
really consider n = n(w). However, the expressions generated by this form will
always be correct in w space for each value of w, since the standard textbook
assumption is to ignore transient behaviour (z-dependence) of the medium. We
may therefore write the dissipation term as

W = pofte f (dx)(dx")J*(x) D, (x, x) IV (1), (7.90)

and we are interested in the power spectrum which is defined by

Plw) 2. dw
do——— = —Im—. (7.91)
w h dr

Substituting in expressions for J, 1, We obtain

: /
Moptr SIN("2[X — X|)

c?|x — x|

1 /
ImW = ) / dw (dx)(dx")

x cos(wlt —t')J*J,, (7.92)
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from which we obtain

w sin(22|x — x’
P(w) = —M/dox(dx’)M cos(wlt — 1)
472n? n?x — x|

n?
X [D(X),O(x/) - ;J’ (x)Ji (X’)] - (793
The current distribution for charged particles moving at constant velocity is

p =qd8(x — Vi)
J'=qu's(x — vi); (7.94)

thus we have

2 00
Pw. 1) = Q—ZM (1 _ W) / sin(nBor) cos(wr)dr

4r c ~
0 nB < 1
= % P«Oﬂcrwﬁ (1 _ nzlﬂz ) I’l,B > 1 . (795)

This is the power spectrum for Cherenkov radiation, showing the threshold
behaviour at n8 = 1. We have derived the Cherenkov resonance condition
for charges interacting with electromagnetic radiation. The Cherenkov effect is
more general than this, however. It applies to any interaction in which particles
interact with waves, either transverse or longitudinal.

7.4.2 Cyclotron radiation

Cyclotron, or synchrotron, radiation is emitted by particles accelerated by a
homogeneous magnetic field. Its analysis proceeds in the same manner as that
for Cherenkov radiation, but with a particle distribution executing circular rather
than linear motion. For the current, one requires

p =q8(x —Xo)
J' = qv'8(x — Xg), (7.96)

where X is the position of the charged particle. Since the electromagnetic field
is not self-interacting, the Green function for the radiation field is not affected by
the electromagnetic field in the absence of a material medium. In the presence
of a polarizable medium, there is an effect, but it is small. (See the discussion
of Faraday rotation.)
The force on charges is
dp;
Fi=—--=a0xB)
= qFjv’, (7.97)
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and, since this is always perpendicular to the motion, no work is done; thus the
energy is a constant of the motion:

£ _ 0 (7.98)
da '
The generic equation of circular motion is
L 0x V) (7.99)
— = (w XYV);, .
dr

which, in this case, may be written as
dv;
i i\/1—;,82(V x B);, (7.100)
dr m
where p; = mv;/y/1 — B% and B; = v;/c. Thus, the angular frequency of orbit
is the Larmor frequency,

Bi Bi 2
o =17 /1_522_%, (7.101)
m

which reduces to the cyclotron frequency, w. >~ eB/m, in the non-relativistic
limit B; — 0. The radius of revolution is correspondingly

ol mep
© |g|B{1-p

The primary difficulty in analysing this problem is a technical one associated
with the circular functions. Taking boundary conditions such that the particle
position is given by

(7.102)

x1(t) = R cos(wt)
x2(t) = R sin(wt)
x3(t) =0, (7.103)

one finds the velocity

v1(t) = —Rw sin(wt)
v2(t) = Rw cos(wt)
v3(t) = 0. (7.104)

This may be substituted into the current in order to evaluate the power spectrum.
This is now more difficult: one can use an integral representation of the delta
function, such as the Fourier transform; this inevitably leads to exponentials
of sines and cosines, or Bessel functions. We shall not pursue these details of
evaluation here. See ref. [121] for further study of this topic.
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7.4.3 Landau damping

Landau damping is the name given to the dissipative mixing of momenta in
any particle field or plasma which interacts with a wave. The phenomenon of
Landau damping is quite general and crops up in many guises, but it is normally
referred to in the context of the interaction of a plasma with electromagnetic
waves. In a collisionless plasma (no scattering by self-interaction), there is still
scattering by the interaction of plasma with the ambient electromagnetic field,
similar to the phenomenon of stimulated absorption/emission. However, any
linear perturbation or source can cause the energy in one plasma mode to be re-
channelled into other modes, thus mixing the plasma and leading to dissipation.
All one needs is a linear interaction between the waves and the plasma field, and
a resonant amplifier, which tends to exaggerate a specific frequency.

In simple terms, a wave acts like a sinusoidal potential which scatters and
drags the particle field. If the phase of the field is such that it strikes the upward
slope of the wave, it is damped or reflected, losing energy. If the phase is such
that the field ‘rolls down’ the downward slope of the wave, it is enhanced and
gains energy. In a random system, the average effect is to dissipate or to dampen
the field so that all particles or field modes tend to become uniform. In short,
Landau damping is the re-organization of energy with the modes of a field due
to scattering off wavelets of another field.

Let us consider an unbound particle displacement field with action

1 1 ,
S=— /(dx) {——m$2 — Jlsi} , (7.105)
Oy 2
coupled through the current J; to the electromagnetic field. The position of a
particle is
=% 4+8x =% 45, (7.106)
and its velocity is
i =70 + dv. (7.107)

The velocity of a free particle is constant until the instant of its infinitesimal
perturbation by a wave, so we write

X =, (7.108)
so that
ky x" = kix' — ot = kis' + (kiv' — o)t (7.109)

The perturbation is found from the solution to the equation of motion:

st = /(dx)G"f(x, x)VE;(x"), (7.110)
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or
syl = 4 El expi (kis' + (kv — o)t + yr1)
UV = — K€ -
m ikiv' —w) £y
‘ El expi (kis' + (k' — w)t £+ yt
g — 9 ge Fooxi( ( ity (7.111)
m

[i(kv —w) £y

An infinitesimal regulating parameter, y, is introduced here in order to define a
limit in what follows. This has causal implications for the system. It means that
the field either grows from nothing in the infinite past or dissipates to nothing
in the infinite future. This is reflected by the fact that its sign determines the
sign of the work done. Eventually, we shall set y to zero. The work done by
this interaction between the charged particle ¢ and the electric field E' is ¢ E;x".
The rate of work is

d : : 4
a5 [Eix'] = q0,E; x' + E;v'. (7.112)

The two terms signify action and reaction, so that the total rate of work is zero,
expressed by the total derivative. The second term is the rate of work done
by the charge on the field. It is this which is non-zero and which leads to the
dampening effect and apparent dissipation. Following Lifshitz and Pitaevskii
[90], we calculate the rate of work per particle as follows,

W Re qu
— = R€ qv;
dr g

=Re g0 4+ 8v')E(t,X +5)
=Re g0 + 8V )(Ei(t,X) + 3, E;i(t,x)s +---). (7.113)

To first order, the average rate of work is thus

d ) .
<d—1:’> = Re ¢7;{(3;E;)s') + Re q(8v' E;)
1 — *\ 1 1 [ %
= iqvi(ajEi )st + EqSU’Ei . (7.114)
Here we have used the fact that
1
Re A = E(A+A*) (7.115)

and

1 1
(ReA-ReB) = 2(AB" + A"B) = -Re (AB"), (7.116)
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since terms involving A% and B? contain e?’ average to zero over time (after

setting y — 0). Substituting for s' and §v’, we obtain

<dw> B q* ; iv;k; n Sij
dr | 2m litkv' —w) £ y2 [k —w) £ y]]"
(7.117)

The tensor structure makes it clear that the alignment, k;, and polarization, Ej, of
the electric wave to the direction of particle motion, v;, is important in deciding
the value of this expression. Physically, one imagines a wave (but not a simple
transverse wave) moving in direction k; and particles surfing over the wave in a
direction given by v;. The extent to which the wave offers them resistance, or
powers them along, decides what work is done on them. For transverse wave
components, k' E; = 0, the first term vanishes. From the form of eqn. (7.117)
we observe that it is possible to write

2 m
<dw>=q—EE d [ £y knv™) ] (7.118)

dr [ 2m T dkvy) |Likiv — w) £ ]
and, using
. 14
lim =mé(z 7.119
2 (2) ( )
we have
dw q>m d : .
—)=4+— E,E; kiv")é(k: v — w). 7.120
<dt> o BT iy (v 0k = @) (7.120)

To avoid unnecessary complication, let us consider the contribution to this
which is most important in the dampening process, namely a one-dimensional
alignment of k; and v;:

dw\ _ &m oo 4 sk 7.121
<E>_ ﬁ \|| m( v) §(kv — w). (7. )

This expression is for one particle. For the whole particle field we must perform
the weighted sum over the whole distribution, f(w), giving the total rate of
work:

dr m d(kv)

2
= :Fq i |Ey? /dwd];i)a)) (kv)8 (kv — w)

m

2
<dW>: + L7 P fda) Flo) —3 v (kv — )

Zpiw df(w)
_ :Fq p |E|||2 f
2m dw

(7.122)

v=w/k
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The integral over the delta function picks out contributions when the velocity
of particles, v;, matches the phase velocity of the electromagnetic wave, w/k;.
This result can now be understood either in real space from eqn. (7.114) or
in momentum space from eqn. (7.122). The appearance of the gradient of the
electric field in eqn. (7.114) makes it clear that the dissipation is caused as a
result of motion in the potential of the electric field. Eqn. (7.122) contains
df/dw, for frequencies where the phase velocity is in resonance with the
velocity of the particles within the particle field; this tells us that particles with
v < w/k gain energy from the wave, whereas v > w/k lose energy to it (y > 0).
The electric field will be dampened if the shape of the distribution is such that
there are more particles with v < w/k than with v > w/k. This is typical for
long-tailed distributions like thermal distributions.
This can be compared with the discussion in section 6.1.4.

7.4.4 Laser cooling

Another example of resonant scattering with many experimental applications is
the phenomenon of laser cooling. This can be thought of as Landau damping for
neutral atoms, using the dipole force as the breaking agent. We shall consider
only how the phenomenon comes about in terms of classical fields, and sketch
the differences in the quantum mechanical formulation. By now, this connection
should be fairly familiar. The shift in energy of an electromagnetic field by virtue
of its interaction with a field of dipoles moving at fractional speed B is the work
done in the rest frame of the atom,

AW = —1 / doy P(x) - E(x)

2

2
-4 / (dx")do, E'(x)G’ (x, xVE/ (x"), (7.123)
2m /

where
(1= B2 — yd, + k)Gl (x, x') = 8 c8(x, x') (7.124)

(see eqn. (2.88)), and therefore the dipole force F on each atom may be deduced
from dW = F - dr. The imaginary part of the energy is the power exchanged
by the electromagnetic field, which is related to the damping rate or here the
cooling rate of the atoms. The force on an atom is the gradient of the real part
of the work:

X

2
Fl = _;I_m / do, 9 |:Ej(x) / (dx") Gfk(x,x/)Ek(x/)]. (7.125)

If we consider a source of monochromatic radiation interacting with the particle
field (refractive index n'),

E'(x) = E} " = E} eix=, (7.126)

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

154 7 Examples and applications

Table 7.1. Doppler effect on momentum.

Resonance-enhanced  Parallel ~ Anti-parallel

(diagonal) kiBi >0 kiBi <0
wpg > Wy FB <0 Fp >0
wp < Wy FB =0 Fp <0

where the frequency o is unspecified but satisfies k>c? = nw?, then we have

2

; q i (kK ) +ix' (K k)
F = ——EOPN/de 0;

2m —wf9 + a)(z) +iyw
2 i2kx
q 2 / ©
=——F do, 0; —. 7.127
2m 0PN —w% + a)% +iyw ( )

This expression contains forward and backward moving photons of fixed
frequency, w, and wavenumber, k;. The sign of the force acting on the atoms
depends on the frequency relative to the resonant frequency, wy, and we are
specifically interested in whether the force acts to accelerate the atoms or
decelerate them relative to their initial velocity. The fact that atoms in the
particle field move in all directions on average means that some will expe-
rience Doppler blue-shifted radiation frequencies and others will experience
red-shifted frequencies, relative to the direction of photon wavevector, k'. In
effect, the Doppler effect shifts the resonant peak above and below its stationary
value making two resonant ‘side bands’. These side bands can lead to energy
absorption. This is best summarized in a table (see table 7.1).

As the velocity component, v* = ,Blc of a particle field increases, the value
of 1 — g ki either increases (when k and B’ point in opposing directions) or
decreases (when k and B point in the same direction). The component of
velocity in the direction of the photons, E', is given by k’ﬂl, and its sign has
two effects. It can bring wg closer to or further from the resonant frequency, wo,
thus amplifying or attenuating the force on the particles. The force is greater
for those values which are closest to resonance. It also decides whether the sign
of the force is such that it tends to increase the magnitude of B’ or decrease the
magnitude of B'. It may be seen from table 7.1 that the force is always such as to
make the velocity tend to a value which makes wg = wy. Thus by sweeping the
value of w from a value just above resonance to resonance, it should be possible
to achieve B° — 0. The lowest attainable temperature according to this simple
model is limited by the value of w.

In order to reduce all of the components of the velocity to minimal values, it is
desirable to bathe a system in crossed laser beams in three orthogonal directions.
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Such laser beams are called optical molasses, a kind of quagmire for resonant
particle fields. Clearly, systems with a low-frequency resonance are desirable in
order to push the magnitude of 8 down to a minimum. The rate of energy loss
is simply the damping constant, y .

7.5 Hydrodynamics

The study of the way in which bulk matter fields spread through a system is
called hydrodynamics. Because it deals with bulk matter, hydrodynamics is a
macroscopic, statistical discussion. It involves such ideas as flow and diffusion,
and is described by a number of essentially classical phenomenological equa-
tions.

7.5.1 Navier—Stokes equations

The Navier-Stokes equations are the central equations of fluid dynamics. They
are an interesting example of a vector field theory because they can be derived
from an action principle in two different ways. Fluid dynamics describes a
stationary system with a fluid flowing through it. The velocity is a function
of position and time, since the flow might be irregular; moreover, because the
fluid flows relative to a fixed pipe or container, the action is not invariant under
boosts.

Formulation as a particle field Using a ‘microscopic’ formulation, we can treat
a fluid as a particle displacement field without a restoring force (spring tension
zero). We begin by considering such a field at rest:

S = /(dx) {%p&z — %n(aisf) Py (@5.) + s'(F; — aip)} . (7.128)

Notice the term linear in the derivative which is dissipative and represents the
effect of a viscous frictional force (see section 7.2). n is the coefficient of
viscosity. In this form, the equations have made an assumption which relates
bulk and shear viscosity, leaving only a single effective viscosity. This is the
form often used experimentally. Varying the action with respect to s’ leads to
the field equation

—p5i +n V35 + F,— 8P =0. (7.129)
Or, setting v; = §;,
oV —n Vv + 8P = F,. (7.130)

This is the equation of a velocity field at rest. In order to boost it into a moving
frame, we could re-define positions by x; — x; — v;¢, but it is more convenient
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to re-define the time coordinate to so-called retarded time (see section 9.5.2).
With this transformation, we simple replace the time derivative for v’ by

e & +v' 9. (7.131)

This gives

d
v —n Vv + 8P =F,. (7.132)
dtret

0

In fluid dynamics, this derivative is sometimes called the substantive derivative;
it is just the total derivative relative to a moving frame. This transformation of
perspective introduces a non-linearity into the equation which was not originally
present. It arises physically from a non-locality in the system; i.e. the fact that
the velocity-dependent forces at a remote point lead to a delayed effect on the
velocity at local point. Put another way, the velocity at one point interacts
with the velocity at another point because of the flow, just as in a particle
scattering problem. In particle theory parlance, we say that the velocity field
scatters off itself, or is self-interacting. It would have been incorrect to apply
this transformation to the action before variation since the action is a scalar and
was not invariant under this transformation, thus it would amount to a change
of the physics. Since the action is a generator of constraints, it would have
additional consequences for the system, as we shall see below.

Formulation as an effective velocity field The description above is based upon
a microscopic picture of a fluid as a collection of particles. We need not think
like this, however. If we had never built a large enough microscope to be able to
see atoms, then we might still believe that a fluid were a continuous substance.
Let us then formulate the problem directly in terms of a velocity field. We may
write the action

S = ‘L'/(dx) {—%,0 v 3 v +%n(3ivj)(3ivj) — V' (F; —a,-P)}. (7.133)

The constant scale t has the dimensions of time and is necessary on purely
dimensional grounds. The fact that we need such an arbitrary scale is an
indication that this is just an average, smeared out field theory rather than a
microscopic description. It has no physical effect on the equations of motion
unless we later attempt to couple this action to another system where the same
scale is absent or different. Such is the nature of dimensional analysis. The
linear derivatives in the action are symmetrized for the reasons discussed in
section 4.4.2. Varying this action with respect to the velocity v’, and treating p
as a constant for the time being, leads to

pdvi —n Vv + 8P =F,. (7.134)
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Changing to retarded time, as before, we have the Navier—Stokes equation,
0 dvi + pv/ (djv;) —n Vv + 8P = F,. (7.135)

Again, it would be incorrect to transform the action before deriving the field
equations, since the action is a scalar and it is not invariant under this transfor-
mation.

Consider what would have happened if we had tried to account for the
retardation terms in the action from the beginning. Consider the action

1 .~ | | .
S=r1 /(dx){—ip v' o v+ 5,0 v' (Bv)v! — 5/0 0 (v'v)v;

+%n(8"vf)(8iv,-)—v"(ﬂ —aiP)}. (7.136)

The action is now non-linear from the beginning since it contains the same
retardation information as the transformed eqn. (7.132). The derivatives are
symmetrized also in spatial directions. The variation of the action is also more
complicated. We shall now let p depend on x. After some calculation, variation
with respect to v’ leads to an equation which can be separated into parts:
j 1 2
(0:p)vi + pvi(9;v7) + 5(81‘,0)0 =0
o (3v) + pv/dv; —n Vv + 8P = F,. (7.137)

The first of these occurs because the density is no longer constant; it is
tantalizingly close to the conservation equation for current

—3p = 8 (pv'), (7.138)

but alas is not quite correct. The equations of motion (7.137) are almost the
same as before, but now the derivative terms are not quite correct. Instead of

v/ ;v (7.139)
we have the symmetrical
v/ 9;v;. (7.140)

This result is significant. The terms are not unrelated. In fact, since we can
always add and subtract a term, it is possible to relate them by

v/ 9,0 = v/ (8v)) + v/ (90 — v)). (7.141)

The latter term is the curl of the velocity. What this means is that the two terms
are equivalent provided that the curl of the velocity vanishes. It vanishes in
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the absence of eddies or other phenomena which select a preferred direction
in space or time. This is indicative of the symmetry of the action. Since the
action was invariant under space and time reversal, it can only lead to equations
of motion with the same properties. Physically, this restriction corresponds to
purely irrotational flow. Notice how the symmetry which is implicit in the action
leads directly to a symmetry in the field equations. The situation was different
in our first formulation, where we chose to transform the action to retarded time
(an intrinsically asymmetrical operation).

The problem of an x-dependent density p is not resolvable here. The
fundamental problem is that the flow equation is not reversible, whereas the
action would like to be. If we omit the non-linear terms, the problem of
finding an action which places no restriction on p is straightforward, though
not particularly well motivated. We shall not pursue this here. The lesson
to be learned from this exercise is that, because the action is a scalar, the
action principle will always tend to generate field equations consistent with the
symmetries of the fields it is constructed from. Here we have tried to generate
a term v/d;v; from an action principle, but the infinitesimal variation of this
term led to new constraints since action is spacetime-reflection-invariant. The
problem of accommodating an x-dependent density is confounded by these
other problems. In short, non-covariant analyses do not lend themselves to a
covariant formulation, but should be obtained as a special case of a more well
defined problem as in the first method.

7.5.2 Diffusion

Let us consider the rate at which conserved matter diffuses throughout a system
when unencumbered by collisions. Consider a matter current, J,, whose
average, under the fluctuations of the system, is conserved:

3,(J") =0. (7.142)

We need not specify the nature of the averaging procedure, nor the origin of the
fluctuations here. Phenomenologically one has a so-called constitutive relation
[53], which expresses a phenomenological rate of flow in terms of local density
gradients:

(Ji) = =Dai{p). (7.143)
Substituting this into the conservation equation gives
(8, — DV?)(p) = 0. (7.144)

This is a diffusion equation, with diffusion coefficient D. If we multiply this
equation by the positions squared, x2, and integrate over the entire system,

/do x2(3, — DVH(p) =0, (7.145)
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we can interpret the diffusion constant in terms of the mean square displacement
of the field. Integrating by parts, and assuming that there is no diffusion at the
limits of the system, one obtains

9, (x?) —2D ~ 0, (7.146)
or
(x*) ~2Dr, (7.147)

which indicates that particles diffuse at a rate of ~/2D metres per unit time.
Notice that, since D characterizes the diffusion of averaged quantities, it need
not be a constant. We shall think of it as a slowly varying function of space and
time. The variation, however, must be so slow that it is effectively constant over
the dominant scales of the system. We shall derive a Kubo-type relation for this
quantity [53].

From eqn. (7.144), we may solve

d"kdw

(p)(x) = Wei<k"‘—w’)p<k) 8(—iw — DK?), (7.148)
or
GH (k) = m. (7.149)
Thus
() (x) = %ei””"%(k» (7.150)

To determine the effect of fluctuations in this system, consider adding an
infinitesimal source,

(3, — DVH(p) = F. (7.151)

The purely mechanical retarded response to F gives us the following relation:

P = [ @) Gxx) W), (7.152)
where the retarded Green function may be evaluated by analogy with eqn. (5.77)

d’kdew . 1 1

G ’ N — i(k-x—wt) _
()= | ©+iDK —ic  —iDK’ +ie
)
_ d"kdo 4y —-21Dk . (7.153)
Q2m)rtl (w — i€)? + D2k*
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From eqn. (6.67) we have

(p) = % f (dx) {p(x)p(x) F(x), (7.154)
where

. 2
p(xX)p(x)) = = —iImGg(x, x'). (7.155)

(

h SF?
The Feynman Green function may be evaluated using the phase, or weight
exp(iS/h), by analogy with eqn. (5.95):

Gg(x, x") :f ¢"kdo glkx—en ! - !
e (271 w+iDk? —ie @ —iDK? + ie
d"'kdw . —2iDK?
— et 1(k-x—wt)—' 7.1
(27‘[)”"‘1 © wz + D2k4 — e ( 56)

For thermal or other distributions it will be somewhat different. We may now

compare this (in momentum space) with the linear response equation:
2Dk’

w* + D?k*

Thus, eliminating the source from both sides of this equation, we may define

the instantaneous ‘D.C.” (w — 0) diffusion constant, given by the Kubo-type
relation,

(p)(k) = ImGr(k)F = (7.157)

. . w?
(D(w — 0)) = al)ll)‘% (lll_r)l(l) F GF(k)> . (7.158)

If we take Gy from eqn. (7.156), we see the triviality of this relation for purely
collisionless quantum fluctuations of the field, (p). By taking the fluctuation
average to be exp(iS/#4), we simply derive a tautology. However, once we
switch on thermal fluctuations or quantum interactions (for which we need to
know about quantum field theory), the Feynman Green function picks up a
temperature dependence and a more complicated analytical structure, and this
becomes non-trivial; see eqn. (6.61). Then it becomes possible to express D in
terms of independent parameters, rather than as the phenomenological constant
in eqn. (7.143).

7.5.3 Forced Brownian motion

A phenomenological description of Brownian motion for particles in a field is
given by the Langevin model. Newton’s second law for a particle perturbed by
random forces may be written in the form

dv’

mE =F —av', (7.159)
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where v is the velocity of a particle in a field and « is a coefficient of
friction, by analogy with Stokes’ law. This equation clearly expresses only a
statistical phenomenology, and it cannot be derived from an action principle,
since it contains explicitly velocity-dependent terms, which can only arise
from statistical effects in a real dynamical system. The forcing term, F', is a
random force. By this, we mean that the time average of this force is zero,
i.e. it fluctuates in magnitude and direction in such a way that its time average
vanishes:

i+T/2
(F(t)) = ?/ R F@)dr =0. (7.160)
i-T

We may solve this equation simply, in the following ways.
Green function approach Consider the general solution of

= £ (7.161)
Cla u = f , .

where a and b are positive constants. Using the method of Green functions, we
solve this in the usual way. Writing this in operator/source form,

d
<a5+b)u = f(1), (7.162)
we have the formal solution in terms of the retarded Green function
u(t) = /dt/Gr(t, ) f(), (7.163)
where
d , /
a5+b G.(t,t) =68, 1). (7.164)
Taking the Fourier transform, we have
dw e—iw(z—t’)
G(t—-th= [ ———. 7.165
lf = 1) on (—iaw + b) ( )
This Green function has a simple pole for t —¢' > 0 at w = —ib/a, and the

contour is completed in the lower half-plane for @, making the semi-circle at
infinity vanish. The solution for the field u(¢) is thus

(t) B /d /dw e—m)(t 7) ( )
“ " 2 Gaw
=/ d‘L'— —2711( ! ea(r t)f(‘f))
oo 2T

= l/ dr f(r)ed™™. (7.166)
al_

oo
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The lower limit of the integral is written as minus infinity since we have not
specified the time at which the force was switched on, but we could replace this
by some finite time in the past by specifying boundary conditions more fully.

Differential equation approach Although the Green function method is straight-
forward and quite simple, this eqn. (7.161) can also be solved by an alternative
method. When f(#) = 0 it is solved by separation of variables, giving

du b

— = ——1U

dr a
u(t) = uge~ 4, (7.167)

for some constant u#(. This is therefore the complementary function for the
differential equation. If the forcing term f (¢) is non-zero, this hints that we can
make the equation integrable by multiplying through by the integrating factor

exp(—bt/a).
d by 1 du by
o (ea u(t)) = (aa + bu(t)) ed

edlu(r) = 1/ dr f(r)ed
a

0

u(t) = 1/ dr f(r)ed™. (7.168)
aJo

This is exactly analogous to making a gauge transformation in electrodynamics.
Note that, since the integral limits are from O to ¢, u(#) cannot diverge unless
f () diverges. The lower limit is by assumption. The general solution to
eqn. (7.161) is therefore given by the particular integral in eqn. (7.168) plus
an arbitrary constant times the function in eqn. (7.167). The solutions are
typically characterized by exponential damping. This reproduces the answer
in eqn. (7.166) marginally more quickly than the tried and trusted method of
Green functions. This just goes to show that it never does any harm to consider
alternative methods, even when in possession of powerful methods of general
applicability.

Diffusion and mobility Langevin’s equation plays a central role in the kinetic
theory of diffusion and conduction. Let x' = v, then, multiplying through by
x, we have

dr _ Cl( () —x2 | = ¢ + xF(t) (7.169)
mx dl‘ =m dt XX X = oxXx X . .
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Taking the kinetic (ensemble) average of both sides, and recalling that the
fluctuating force has zero average, we have that

d d
m<5(xX)> :mE(XX) = kT — a{xx), (7.170)
where we have used the result from kinetic theory (the equi-partition theorem)
that %m()'cz) = %kT. We can solve this to give

kT
(xx)y = Ce™/m 4 . (7.171)
o
At large times, the first of these terms decays and the system reaches a steady
state. We may integrate this to give
) 2kT
(x%) = —t. (7.172)
o
This tells us the mean square position. By comparing this to the diffusion
equation in eqn. (7.146) we find the effective diffusion coefficient

kT

D=—. (7.173)
o

A related application is that of electrical conduction. Consider the same

diffusion process for charges e in a uniform electric field £. The average of

the Langevin equation is now
d(v)
m
dr
since (F) = 0. In a steady state, the average acceleration is also zero, even

though microscopically there might be collisions which cause fluctuations in
the velocity. Thus we have, at steady state,

=eE —a{v'), (7.174)

eE' = a(v'). (7.175)
We define the mobility, i, of the charges, for an isotropic system, as

() e
=— = —. 7.176
w=—Fpr =7 ( )

The mobility is related to the diffusion constant by the Einstein relation

r_ (7.177)

D kT
In an anisotropic system, there might be different coefficients for diffusion and
mobility in different directions. Then, eqn. (7.176) would become a tensor
relation, u;; Evi/Ej.
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164 7 Examples and applications

7.6 Vortex fields in 2 + 1 dimensions

Although one generally avoids speaking of particulate matter in field theory,
since classically it is used to describe mainly smooth, continuous fields, there are
occasions on which the solutions to the equations of motion lead unambiguously
to pointlike objects. One such situation is the case of vortices.

Vortices are charged, singular objects which arise in some physical systems
such as the non-linear Schrodinger equation. Vortices have the property that
they acquire a phase factor, by an Aharonov—Bohm-like effect, when they wind
around one another. They can usually be thought of as pointlike objects which
are penetrated by an infinitely thin line of magnetic flux. In 2 4+ 1 dimensions,
vortices are also referred to as anyons, and have a special relationship with
Chern—Simons field theories. It might seem strange that a field variable ¢ (x),
which covers all of space and time, could be made to represent such singular
objects as vortices. As we shall see in the following example, this is made
possible precisely by the singular nature of Green functions.

Consider a field, ¢ (x), representing pointlike objects in two spatial dimen-
sions with coordinates denoted for simplicity by r = (x,y). We define the
winding angle, 6, between any two pointlike objects in the field by

/

A —
O(r —r') = tan! 2t 22
Ax x —x'

(7.178)

Notice that O(r — ') is a function of coordinate differences between pairs of
points. We shall, in fact, relate this winding angle to the Green function g (x, x'),
for the Laplacian in two dimensions, which was calculated in section 5.4.4.

7.6.1 A vortex model

The study of Chern—Simons theories is motivated principally by two observa-
tions: namely that important aspects of the quantum Hall effect are described
by a Chern—Simons theory, and that a viable theory of high-temperature super-
conductivity should be characterized by a parity-violating, anti-ferromagnetic
state. Symmetry considerations lead to an action which does not possess
space-reflection symmetry. The Chern—Simons action fits this prescription.
These two physical systems are also believed to be essentially two-dimensional,
planar systems.

In its most primitive form, the action for the Chern—Simons model may be
written in (2 4+ 1) dimensional flat spacetime as

A 1
S = /dtdzx ((D“CD)T(D,AD) + m*®? + 6<1>“ + E/LEW)‘AM&,A;) .

(7.179)
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7.6 Vortex fields in 2 + 1 dimensions 165

The equation of motion is thus

%MWFM = J" (7.180)
The gauge-invariant current, J#, is introduced for convenience and represents
the interaction with the matter fields arising from the gauge-covariant derivatives
in eqn. (7.179). We shall not consider the full dynamics of this theory here;
rather, it is interesting to see how the singular vortex phenomenon is reflected in
the field variables.

7.6.2 Green functions

The basic Green function we shall use in the description of two-dimensional
vortices is the inverse Laplacian which was derived in section 5.4.4, but it
is also useful to define and elaborate on some additional symbols which are
encountered in the literature. We shall use the symbol 7/ as an abbreviation for
the coordinate difference Ar’ = Ax’ = x' — x%/, and the symbol Ar for the
scalar length of this vector. Some authors define a Green function vector by

G(r—r)=¢€"d;gr —r)
_ P
20 r—r’

(7.181)

where 7 is a unit vector along r — r’. The two-dimensional curl of this function
is thus

VxG(r)=€"9,G;(r —r)
= eejdideg(r —r)
=~V —1)
=8(r —7'). (7.182)

In other words, G*(r — r’) is the inverse of the curl operator.

7.6.3 Relationship between 6 (r —r’) and g(r — r’)

To obtain a relationship between the coordinates and the winding function 6(r),
we note that

, sinf(r —r')
ditan0(r —r') =9, | ———

cosB(r —r’)
= 3,0(r —r') sec>O(r —r')
= 3;0(r —r')(1 + tan*O(r — r')). (7.183)
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From eqn. (7.178), this translates into
A
(%)
00 = ————

2
o (2)
Ax(9;Ay) — Ay(diAx)

72

i

= —€jj 7 (7184)

This last form is significant since the logarithm has a similar property, namely

A

eij8j1n|r—r’|:6ijrijr/, (7.185)

and thus we immediately have the relationship:
1
—2—(8,-9(r —r))=G(r) = —€;0;8(r —r'). (7.186)
14

It is understood that partial derivatives acting on » — r’ act on the first argument
r.

7.6.4 Singular nature of O(r — r')

The consistency of the above relations supplies us with an unusual, and perhaps
somewhat surprising relation, namely

€1%0;0(r —r') =21 8(r — 1) (7.187)
or
[01, 3210(r — ') =278(r —1'). (7.188)

This relation tells us that the partial derivatives do not commute when acting on
the function 6(r). This is the manifestation of a logarithmic singularity in the
field, or, physically, the non-triviality of the phase accrued by winding vortices
around one another. Although the field is formally continuous, it has this non-
analytical property at every point.

Using complex coordinates z = x! +ix? and conjugate variables Z, the above
discussion leads to the relations in complex form:

3.2 = 3.9 Inz|?
= w8(|z]). (7.189)
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Part 2
Groups and fields
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3

Field transformations

The previous chapters take a pragmatic, almost engineering, approach to the
solution of field theories. The recipes of chapter 5 are invaluable in generating
solutions to field equations in many systems, but the reason for their effective-
ness remains hidden. This chapter embarks upon a train of thought, which lies
at the heart of the theory of dynamical systems, which explain the fundamental
reasons why field theories look the way they do, how physical quantities are
related to the fields in the action, and how one can construct theories which give
correct answers regardless of the perspective of the observer. Before addressing
these issues directly, it is necessary to understand some core notions about
symmetry on a more abstract level.

8.1 Group theory

To pursue a deeper understanding of dynamics, one needs to know the language
of transformations: group theory. Group theory is about families of transforma-
tions with special symmetry. The need to parametrize symmetry groups leads
to the idea of algebras, so it will also be necessary to study these.

Transformations are central to the study of dynamical systems because all
changes of variable, coordinates or measuring scales can be thought of as
transformations. The way one parametrizes fields and spacetime is a matter of
convenience, but one should always be able to transform any results into a new
perspective whenever it might be convenient. Even the dynamical development
of a system can be thought of as a series of transformations which alter the
system’s state progressively over time. The purpose of studying groups is
to understand the implications posed by constraints on a system: the field
equations and any underlying symmetries — but also the rules by which the
system unfolds on the background spacetime. In pursuit of this goal, we shall
find universal themes which enable us to understand many structures from a few
core principles.

169
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170 8 Field transformations

8.1.1 Definition of a group

A group is a set of objects, usually numbers or matrices, which satisfies the
following conditions.

(1) There is a rule of composition for the objects. When two objects in a
group are combined using this rule, the resulting object also belongs to
the group. Thus, a group is closed under the action of the composition
rule. If @ and b are two matrices, then a - b # b - a is not necessarily true.
Ifa-b = b-a, the group is said to be Abelian, otherwise it is non-Abelian.

(2) The combination rule is associative, i.e. (a-b)-c =a - (b - ¢).

(3) The identity element belongs to the set, i.e. an object which satisfies
a-I=a.

(4) Every element a in the set has a right-inverse a~!, such thata™' -a = 1.

A group may contain one or more sub-groups. These are sub-sets of the whole
group which also satisfy all of the group axioms. Sub-groups always overlap
with one another because they must all contain the identity element. Every
group has two trivial or improper sub-groups, namely the identity element and
the whole group itself. The dimension of a group dg is defined to be the
number of independent degrees of freedom in the group, or the number of
generators required to represent it. This is most easily understood by looking
at the examples in the next section. The order of a group Og is the number of
distinct elements in the group. In a continuous group the order is always infinite.

If the ordering of elements in the group with respect to the combination rule
matters, i.e. the group elements do not commute with one another, the group is
said to be non-Abelian. In that case, there always exists an Abelian sub-group
which commutes with every element of the group, called the centre. Schur’s
lemma tells us that any element of a group which commutes with every other
must be a multiple of the identity element. The centre of a group is usually a
discrete group, Zy, with a finite number, N, of elements called the rank of the

group.

8.1.2 Group transformations

In field theory, groups are used to describe the relationships between compo-
nents in a multi-component field, and also the behaviour of the field under
spacetime transformations. One must be careful to distinguish between two
vector spaces in the discussions which follow. It is also important to be very
clear about what is being transformed in order to avoid confusion over the
names.
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8.1 Group theory 171

e Representation space. This is the space on which the group trans-
formations act, or the space in which the objects to be transformed
live. In field theory, when transformations relate to internal symmetries,
the components of field multiplets (¢, ¢2, ..., ¢4,) are the coordinates
on representation space. When transformations relate to changes of
spacetime frame, then spacetime coordinates are the representation space.

e Group space. This is an abstract space of dimension di. The dimension
of this space is the number of independent transformations which the

group is composed of. The coordinates (6, 65, ..., 6,,) in this space are
measured with respect to a set of basis matrices called the generators of
the group.

Since fields live on spacetime, the full representation space of a field consists
of spacetime (i, v indices) combined with any hidden degrees of freedom: spin,
charge, colour and any other hidden labels or indices (all denoted with indices
A, B, a, b, «, §) which particles might have. In practice, some groups (e.g. the
Lorentz group) act only on spacetime, others (e.g. SU(3)) act only on hidden
indices. In this chapter, we shall consider group theory on a mainly abstract
level, so this distinction need not be of concern.

A field, ¢ (x), might be a spacetime-scalar (i.e. have no spacetime indices),
but also be vector on representation space (have a single group index).

¢1(x)

$2(x)

¢ (xX)a = 8.1)

Ba (1)

The transformation rules for fields with spacetime (coordinate) indices are
therefore

¢ —> ¢
A, — U/ A,
g = ULUN gy, (8.2)
and for multiplet transformations they are
¢t > Uap ¢*
Al — Uy A
gl’jv — Upp gfv. (8.3)

All of the above have the generic form of a vector v with Euclidean components

v4 = v, transforming by matrix multiplication:

v— Uy, (8.4)
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172 8 Field transformations

or
v = U4 P, (8.5)

Thelabel A =1, ..., dg, where dp is the dimension of the representation. Thus,
the transformation matrix U is a dg X dg matrix and v is a dg-component column
vector. The group space is Euclidean, so raised and lowered A, B indices are
identical here.

Note that multiplet indices (those which do not label spacetime coordinates)
for general group representations G g are labelled with upper case Latin charac-

ters A, B = 1, ..., dg throughout this book. Lower case Latin letters a,b =
1,...,dg are used to distinguish the components of the adjoint representation
Gadj-

In general, the difference between a representation of a group and the group
itself is this: while a group might have certain unique abstract properties which
define it, the realization of those properties in terms of numbers, matrices or
functions might not be unique, and it is the explicit representation which is
important in practical applications. In the case of Lie groups, there is often a
variety of possible locally isomorphic groups which satisfy the property (called
the Lie algebra) that defines the group.

8.1.3 Use of variables which transform like group vectors

The property of transforming a dynamical field by simple matrix multiplication
is very desirable in quantum theory where symmetries are involved at all
levels. It is a direct representation of the Markov property of physical law. In
chapter 14, it becomes clear that invariances are made extremely explicit and
are algebraically simplest if transformation laws take the multiplicative form in
eqn. (8.5).

An argument against dynamical variables which transform according to group
elements is that they cannot be observables, because they are non-unique.
Observables can only be described by invariant quantities. A vector is, by
definition, not invariant under transformations; however, the scalar product of
vectors is invariant.

In classical particle mechanics, the dynamical variables ¢g(¢) and p(¢) do
not transform by simple multiplication of elements of the Galilean symmetry.
Instead, there is a set of eqns. (14.34) which describes how the variables change
under the influence of group generators. Some would say that such a formulation
is most desirable, since the dynamical variables are directly observable, but the
price for this is a more complicated set of equations for the symmetries.

As we shall see in chapter 14, the quantum theory is built upon the idea that
the dynamical variables should transform like linear combinations of vectors on
some group space. Observables are extracted from these vectors with the help
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8.2 Cosets and the factor group 173

of operators, which are designed to pick out actual data as eigenvalues of the
operators.

8.2 Cosets and the factor group
8.2.1 Cosets

Most groups can be decomposed into non-overlapping sub-sets called cosets.
Cosets belong to a given group and one if its sub-groups. Consider then a group
G of order Og, which has a sub-group H of order Oy. A coset is defined by
acting with group elements on the elements of the sub-group. In a non-Abelian
group one therefore distinguishes between left and right cosets, depending on
whether the group elements pre- or post-multiply the elements of the sub-group.
The left coset of a given group element is thus defined by

GH ={GH,,GH,, ...,GHy,} (8.6)
and the right coset is defined by
HG ={H,G, H,G, ..., H,,G}. (8.7)

The cosets have order Oy and one may form a coset from every element of G
which is not in the sub-group itself (since the coset formed by a member of the
coset itself is simply that coset, by virtue of the group axioms). This means that
cosets do not overlap.

Since cosets do not overlap, one can deduce that there are Og — Oy distinct
cosets of the sub-group. It is possible to go on forming cosets until all these
elements are exhausted. The full group can be written as a sum of a sub-group
and all of its cosets.

where p is some integer. The value of p can be determined by counting the
orders of the elements in this equation:

O6=0+0x+0g+---+0y =(p+1)O04. (8.9)
Thus,
Og = (p+ 1) O0y. (8.10)

Notice that the number of elements in the sub-group must be a factor of the
number of elements in the whole group. This is necessarily true since all cosets
are of order Oy.
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174 8 Field transformations

8.2.2 Conjugacy and invariant sub-groups

If g, is an element of a group G, and g is another element, then g. defined by

e =888, (8.11)

is said to be an element of the group G which is conjugate to g;. One can form
conjugates from every other element in the group. Every element is conjugate
to itself since

g=1IgI". (8.12)

Similarly, all elements in an Abelian group are conjugate only to themselves.
Conjugacy is a mutual relationship. If g; is conjugate to g, then g, is conjugate
to g1, since

gi=ggg"

o=g"ag"H" (8.13)

If g, is conjugate to g, and g, is conjugate to g3, then g; and g3 are also
conjugate. This implies that conjugacy is an equivalence relation.

Conjugate elements of a group are similar in the sense of similarity transfor-
mations, e.g. matrices which differ only by a change of basis:

A=AMA" (8.14)

The conjugacy class of a group element g is the set of all elements conjugate to
g:

{1g1™", gigg7". 288" ...} (8.15)

A sub-group H of G is said to be an invariant sub-group if every element of the
sub-group is conjugate to another element in the sub-group:

H. =GHG '=H. (8.16)

This means that the sub-group is invariant with respect to the action of the group,
or that the only action of the group is to permute elements of the sub-group. It
follows trivially from eqn. (8.16) that

GH = HG, (8.17)

thus the left and right cosets of an invariant sub-group are identical. This means
that all of the elements within H commute with G. H is said to belong to the
centre of the group.
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8.2 Cosets and the factor group 175

8.2.3 Schur’s lemma and the centre of a group

Schur’s lemma states that any group element which commutes with every other
element of the group must be a multiple of the identity element. This result
proves to be important in several contexts in group theory.

8.2.4 The factor group G/H

The factor group, also called the group of cosets is formed from an invariant
sub-group H of a group G. Since each coset formed from H is distinct, one can
show that the set of cosets of H with G forms a group which is denoted G/H.
This follows from the Abelian property of invariant sub-groups. If we combine
cosets by the group rule, then

Hgy-Hg=HHg g =H(g - &,) (8.18)
since H - H = H. The group axioms are satisfied.
(1) The combination rule is the usual combination rule for the group.

(2) The associative law is valid for coset combination:
(Hg1-Hgy) - Hgs = H(g1-82) - Hgs = H((g1- 82) - g&3)- (8.19)

(3) The identity of G/H is H - I.
(4) The inverse of Hg is Hg™'.

The number of independent elements in this group (the order of the group) is,
from eqn. (8.10), p + 1 or Og/Op. Initially, it might appear confusing from
eqn. (8.7) that the number of elements in the sub-group is in fact multiplied
by the number of elements in the group, giving a total number of elements in
the factor group of Og x Op. This is wrong, however, because one must be
careful not to count cosets which are similar more than once; indeed, this is
the point behind the requirement of an invariant sub-group. Cosets which are
merely permutations of one another are considered to be equivalent.

8.2.5 Example of a factor group: SU(2)/Z,

Many group algebras generate groups which are the same except for their
maximal Abelian sub-group, called the centre. This virtual equivalence is
determined by factoring out the centre, leaving only the factor group which
has a trivial centre (the identity); thus, factor groups are important in issues
of spontaneous symmetry breaking in physics, where one is often interested in
the precise group symmetry rather than algebras. As an example of a factor
group, consider SU (2). The group elements of SU (2) can be parametrized in
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176 8 Field transformations

terms of dg = 3 parameters, as shown in eqn. (8.131). There is a redundancy in
these parameters. For example, one can generate the identity element from each
of the matrices g;(6;), g2(6»), g3(03) by choosing 64 to be zero.

A non-trivial Abelian sub-group in these generators must come from the
diagonal matrix g3(63). Indeed, one can show quite easily that g; commutes with
any of the generators for any 84 = 0, if and only if exp(iéég) = exp(—i%eg) =
+1. Thus, there are two possible values of 65, arising from one of the generators;
these lead to an Abelian sub-group, and the group elements they correspond to

are:
1 0 -1 0

which form a 2 x 2 representation of the discrete group Z,. This sub-group is
invariant, because it is Abelian, and we may therefore form the right cosets of
H for every other element of the group:

H-H={1 6 -1}
H-g101) ={g10), —g1(61)}
H-g1(8) ={g16) . —g1(0))}
H-g10)) ={g10)), =16}

H - g:(60h) = {g2(600) , —g2(02)}
H - g:(65) = {£2(05) , —82(65)}

H - g3(603) = {g3(63) , —g2(03)}
(8.21)

The last line is assumed to exclude the members of g3, which generate H, and
the elements of g; and g,, which give rise to the identity in Z,, are also excluded
from this list. That is because we are listing distinct group elements rather than
the combinations, which are produced by a parametrization of the group.

The two columns on the right hand side of this list are two equivalent copies
of the factor group SU (2)/Z,. They are simply mirror images of one another
which can be transformed into one another by the action of an element of Z.
Notice that the full group is divided into two invariant pieces, each of which has
half the total number of elements from the full group. The fact that these coset
groups are possible is connected with multiple coverings. In fact, it turns out
that this property is responsible for the double-valued nature of electron spin,
or, equivalently, the link between the real rotation group SO (3) (dg = 3) and
the complexified rotation group, SU (2) (dg = 3).
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8.3 Group representations 177

8.3 Group representations

A representation of a group is a mapping between elements of the group and
elements of the general linear group of either real matrices, GL(n, R), or
complex matrices, GL(n, C). Put another way, it is a correspondence between
the abstract group and matrices such that each group element can be represented
in matrix form, and the rule of combination is replaced by matrix multiplication.

8.3.1 Definition of a representation G g

If each element g of a group G can be assigned a non-singular dg x dg matrix
Ur(g), such that matrix multiplication preserves the group combination rule

812 = 81 82,
Ur(g12) = Ur(g1 - g2) = Ur(g1) Ur(g2), (8.22)

then the set of matrices is said to provide a dg dimensional representation of
the group G. The representation is denoted collectively G and is composed
of matrices Ug. In most cases we shall call group representations U to avoid
excessive notation.

8.3.2 Infinitesimal group generators

If one imagines a continuous group geometrically, as a vector space in which
every point is a new element of the group, then, using a set of basis vectors, it is
possible to describe every element in this space in terms of coefficients to these
basis vectors. Matrices too can be the basis of a vector space, which is why
matrix representations are possible. The basis matrices which span the vector
space of a group are called its generators.

If one identifies the identity element of the group with the origin of this
geometrical space, the number of linearly independent vectors required to reach
every element in a group, starting from the identity, is the dimension of the
space, and is also called the dimension of the group d;. Note that the number
of independent generators, dg, is unrelated to their size di as matrices.

Thus, given that every element of the group lies in this vector space, an
arbitrary element can be described by a vector whose components (relative to the
generator matrices) uniquely identify that element. For example, consider the
group SU (2), which has dimension d; = 3. In the fundamental representation,
it has three generators (the Pauli matrices) with dg = 2:

L/0 1 1L/0 —i L1 0
A general point in group space may thus be labelled by a ds dimensional vector

(61, 02, 63):
O=00T1+6, T, +6;Ts5. (8.24)
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178 8 Field transformations

A general element of the group is then found by exponentiating this generalized
generator:

Ur = exp(i0). (8.25)

Uk is then a two-dimensional matrix representation of the group formed from
two-dimensional generators. Alternatively, one may exponentiate each gener-
ator separately, as in eqn. (8.131) and combine them by matrix multiplication
to obtain the same result. This follows from the property that multiplication of
exponentials leads to the addition of the arguments.

For continuous groups generally, we can formalize this by writing a Taylor
expansion of a group element U (9) about the identity I = U (0),

da U
U®a) =) 04 (E)

A=1

e (8.26)

64=0

where dg is the dimension of the group. We can write this

dg
1
U©)=UO) + ) 04Ta+ 50405TaTp + - + 00

A=1

dg
1
=1+ 0aTa+ ;0405 TaTs + - + 0@, (8.27)

A=1
oo (U
47\ 90,

T4 is a matrix generator for the group.

where

(8.28)

QA:().

8.3.3 Proper group elements

All infinitesimal group elements can be parametrized in terms of linear com-
binations of generators T4; thus, it is normal for group transformations to be
discussed in terms of infinitesimal transformations. In terms of the geometrical
analogy, infinitesimal group elements are those which are very close to the
identity. They are defined by taking only terms to first order in 6 in the sum
in eqn. (8.27). The coefficients 64 are assumed to be infinitesimally small, so
that all higher powers are negligible. This is expressed by writing

U@0) =U(0) 4 0604T4, (8.29)

with an implicit summation over A. With infinitesimal transformations, one
does not get very far from the origin; however, the rule of group composition
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8.3 Group representations 179

may be used to build (almost) arbitrary elements of the group by repeated
application of infinitesimal elements. This is analogous to adding up many
infinitesimal vectors to arrive at any point in a vector space.

We can check the consistency of repeatedly adding up N group elements by
writing 664 = 64/N, combining U (0) = U(80)N and letting N — oo. In this
limit, we recover the exact result:

80 )

which is consistent with the series in eqn. (8.27). Notice that the finite group
element is the exponential of the infinitesimal combination of the generators. It
is often stated that we obtain a group by exponentiation of the generators.

It will prove significant to pay attention to another form of this exponentiation
in passing. Eqn. (8.30) may also be written

0
U(@®) =exp (1/ TAdG;‘) . (8.31)
0
From this we note that
ou®) .
=iT, U(H), (8.32)
00,4
and hence
dU
o =1T4d6 =T. (8.33)

This quantity, which we shall often label I' in future, is an infinitesimal linear
combination of the generators of the group. Because of the exponential form, it
can also be written as a differential change in the group element U (6) divided
by the value of U(6) at that point. This quantity has a special significance in
geometry and field theory, and turns up repeatedly in the guise of gauge fields
and ‘connections’.

Not all elements of a group can necessarily be generated by combining
infinitesimal elements of the group. In general, it is only a sub-group known
as the proper group which can be generated in this way. Some transformations,
such as reflections in the origin or coordinate reversals with respect to a
group parameter are, by nature, discrete and discontinuous. A reflection is
an all-or-nothing transformation; it cannot be broken down into smaller pieces.
Groups which contain these so-called large transformations are expressible as a
direct product of a connected, continuous group and a discrete group.
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180 8 Field transformations

8.3.4 Conjugate representations

Given a set of infinitesimal generators, T4, one can generate infinitely many
more by similarity transformations:

T4 > ATA AL (8.34)

This has the effect of generating an equivalent representation. Any two
representations which are related by such a similarity transformation are said
to be conjugate to one another, or to lie in the same conjugacy class. Conjugate
representations all have the same dimension dg.

8.3.5 Congruent representations

Representations of different dimension dy also fall into classes. Generators
which exponentiate to a given group may be classified by congruency class. All
group generators with different dg exponentiate to groups which are congruent,
modulo their centres, i.e. those which are the same up to some multiple covering.
Put another way, the groups formed by exponentiation of generators of different
dp are identical only if one factors out their centres.

A given matrix representation of a group is not necessarily a one-to-one
mapping from algebra to group, but might cover all of the elements of a group
one, twice, or any integer number of times and still satisfy all of the group
properties. Such representations are said to be multiple coverings.

A representation Uy and another representation Uy lie in different congru-
ence classes if they cover the elements of the group a different number of times.
Congruence is a property of discrete tiling systems and is related to the ability
to lay one pattern on top of another such that they match. It is the properties of
the generators which are responsible for congruence [124].

8.4 Reducible and irreducible representations

There is an infinite number of ways to represent the properties of a given group
on a representation space. A representation space is usually based on some
physical criteria; for instance, to represent the symmetry of three quarks, one
uses a three-dimensional representation of SU (3), although the group itself is
eight-dimensional. It is important to realize that, if one chooses a large enough
representation space, the space itself might have more symmetry than the group
which one is using to describe a particular transformation. Of the infinity
of possible representations, some can be broken down into simpler structures
which represent truly invariant properties of the representation space.
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8.4 Reducible and irreducible representations 181

8.4.1 Invariant sub-spaces

Suppose we have a representation of a group in terms of matrices and vectors;
take as an example the two-dimensional rotation group SO (2), with the repre-
sentation

cosf  sind
U= ( —sinf® cosé )’ (8.35)

so that the rotation of a vector by an angle 6 is accomplished by matrix

multiplication:
X} cosf sinf X1
(Xé >_( —sinf cos6 )(x3 ) (8.36)

It is always possible to find higher-dimensional representations of the same
group by simply embedding such a group in a larger space. If we add an extra
dimension x3, then the same rotation is accomplished, since x; and x; are altered
in exactly the same way:

x| cosf; sinf; O X1
x, | =| —sinf; sinf; 0 x . (8.37)
x} 0 0 1 X3

This makes sense: it is easy to make a two-dimensional rotation in a three-
dimensional space, and the same generalization carries through for any number
of extra dimensions. The matrix representation of the transformation has zeros
and a diagonal 1, indicating that nothing at all happens to the x; coordinate. It
is irrelevant or ignorable:

cosf3 sinf; O
U=]| —sinbf; sinf; 0 |. (8.38)
0 0 1

A six-dimensional representation would look like this:

x| cosfs sinfs 0 0 0 0 X

Xx) _sinB; sinf; 0 0 0 O x5

x} 0 0 100 0 X3

|7 0 0 0100 x4 (8.39)
%, 0 0 00 1 0 Xs

; 0 0 00 0 1 X6

X6

The matrix has a block-diagonal form. These higher-dimensional represen-
tations are said to be reducible, since they contain invariant sub-spaces, or
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182 8 Field transformations

coordinates which remain unaltered by the group. In the six-dimensional case
above, the 6 x 6 matrix factorizes into a direct sum of block-diagonal pieces: a
2 x 2 piece, which is the actual S O(2) part, and a trivial four-dimensional group
composed of only the identity /4. The direct sum is written

SO2)s =502), @ Iy (8.40)

When a matrix has the form of eqn. (8.39), or is related to such a form by a
similarity transformation

ATV U A, (8.41)

it is said to be a completely reducible representation of the group. In block-
diagonal form, each block is said to be an irreducible representation of the
group. The smallest representation with all of the properties of the group
intact is called the fundamental representation. A representation composed
of dg x dg matrices, where dg is the dimension of the group, is called the
adjoint representation. In the case of SO(3), the fundamental and adjoint
representations coincide; usually they do not.

Whilst the above observation might seem rather obvious, it is perhaps less
obvious if we turn the argument around. Suppose we start with a 6 x 6 matrix
parametrized in terms of some group variables, 64, and we want to know which
group it is a representation of. The first guess might be that it is an irreducible
representation of O(6), but if we can find a linear transformation A which
changes that matrix into a block-diagonal form with smaller blocks, and zeros
off the diagonal, then it becomes clear that it is really a reducible representation,
composed of several sub-spaces, each of which is invariant under a smaller

group.

8.4.2 Reducibility

The existence of an invariant sub-space S in the representation space R implies
that the matrix representation G is reducible. Suppose we have a representation
space with a sub-space which is unaffected by the action of the group. By
choosing coordinates we can write a group transformation g as

Xr \ _ ([ A(g®) B(g) Xr
(X’s)‘< 0 C<g>)<xs)’ (8.42)

which shows that the coordinates X s belonging to the sub-space are independent
of the remaining coordinates X . Thus no matter how Xy are transformed, X
will be independent of this. The converse is not necessarily true, but often is.

Our representation,
A B
Ur(g) = < (()g) cg; ) (8.43)
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8.5 Lie groups and Lie algebras 183

satisfies the group composition law; thus,

oo = (57 250 ) (6 28))

A A A B B C
( (81) A(g2) A(g1)B(g2) + B(g1) <g2>) 544

0 C(gnC(g2)
Comparing this with the form which a true group representation would have:
A(g1-8) B(gi-g)
) 8.45
( 0 Clgi-g) (845

one sees that A and C also form representations of the group, of smaller size.
B does not, however, and its value is constrained by the condition B(g; - g2) =
A(g1)B(g2) + B(g1)C(g2). A representation of this form is said to be partially
reducible.

If B = 0 in the above, then the two sub-spaces decouple: both are invariant
under transformations which affect the other. The representation is then said
to be completely reducible and takes the block-diagonal form mentioned in the
previous section.

8.5 Lie groups and Lie algebras

Groups whose elements do not commute are called non-Abelian. The com-
mutativity or non-commutativity of the group elements U (6) follows from
the commutation properties of the generators 7, as may be seen by writing
the exponentiation operation as a power series. In a non-Abelian group the
commutation relations between generators may be written in this form:

[Ty, Tp] = Cap. (846)

A special class of groups which is interesting in physics is the Lie groups, which
satisfy the special algebra,

[T, T,] = —if, T.. (8.47)

S 18 a set of structure constants, and all the labels a, b, ¢ run over the group
indices from 1, ..., dg. Eqn. (8.47) is called a Lie algebra. It implies that the
matrices which generate a Lie group are not arbitrary; they are constrained to
satisfy the algebra relation. The matrices satisfy the algebraic Jacobi identity

[T [T?, TN+ [T?, [T¢, T*N + [T€, [T%, T"]) = 0. (8.48)

Many of the issues connected to Lie algebras are analogous to those of the
groups they generate. We study them precisely because they provide a deeper
level of understanding of groups. One also refers to representations, equivalence
classes, conjugacy for algebras.
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184 8 Field transformations

8.5.1 Normalization of the generators

The structure of the dg x dg dimensional matrices and the constants f,;,. which
make up the algebra relation are determined by the algebra relation, but the
normalization is not. If we multiply 7 and f,, by any constant factor, the
algebra relation will still be true. The normalization of the generators is fixed
here by relating the trace of a product of generators to the quadratic Casimir
invariant:

Tr(T3Tp) = L(GR)8™, (8.49)

where I, is called the Dynkin index for the representation Gr. The Dynkin
index may also be written as

dr
L(GR) = d_C2(GR) (8.50)
G

where dg is the dimension (number of rows/columns) of the generators in
the representation Gg, and dg is the dimension of the group. C,(Gyg) is the
quadratic Casimir invariant for the group in the representation, Gg: C>(GR)
and I,(G) are constants which are listed in tables for various representations
of Lie groups [96]. d is the same as the dimension of the adjoint representation
of the algebra G,gqj, by definition of the adjoint representation. Note, therefore,
that 5(Gagj) = C2(Gagj)-

The normalization is not completely fixed by these conditions, since one
does not know the value of the Casimir invariant a priori. Moreover, Casimir
invariants are often defined with inconsistent normalizations, since their main
property of interest is their ability to commute with other generators, rather
than their absolute magnitude. The above relations make the Casimir invariants
consistent with the generator products. To complete the normalization, it is usual
to define the length of the longest roots or eigenvalues of the Lie algebra as 2.
This fixes the value of the Casimir invariants and thus fixes the remaining values.
For most purposes, the normalization is not very important as long as one is
consistent, and most answers can simply be expressed in terms of the arbitrary
value of C,(Gg). Thus, during the course of an analysis, one should not be
surprised to find generators and Casimir invariants changing in definition and
normalization several times. What is important is that, when comparisons are
made between similar things, one uses consistent conventions of normalization
and definition.

8.5.2 Adjoint transformations and unitarity

A Lie algebra is formed from the d; matrices 7 which generate a Lie group.
These matrices are dg x di matrices which act on the vector space, which
has been denoted representation space. In addition, the d; generators which
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8.5 Lie groups and Lie algebras 185

fulfil the algebra condition form a basis which spans the group space. Since
the group is formed from the algebra by exponentiation, both a Lie algebra A
and its group G live on the vector space referred to as group space. In the case
of the adjoint representation Gr = G,qj, the group and representation spaces
coincide (dg = dg, a,b,c < A, B, C). The adjoint representation is a direct
one-to-one mapping of the algebra properties into a set of matrices. It is easy to
show that the structure constants themselves form a representation of the group
which is adjoint. This follows from the Jacobi identity in eqn. (8.48). Applying
the algebra relation (8.47) to eqn. (8.48), we have

[Ta, _ibe‘de] + [Tb, _ifcade] + [TC, _ifaded] = 0. (851)

Using it again results in

[_fbcdfade _ fead phde _ fabdfcde] T¢ —0. (8.52)
Then, from the coefficient of 7¢, making the identification,
[T) e = 1fhc (8.53)
it is straightforward to show that one recovers
[T, T?] = —ifebdTe, (8.54)

Thus, the components of the structure constants are the components of the
matrices in the adjoint representation of the algebra. The representation is
uniquely identified as the adjoint since all indices on the structure constants
run over the dimension of the groupa,b =1, ..., dg.

The group space to which we have been alluding is assumed, in field
theory, to be a Hilbert space, or a vector space with a positive definite metric.
Representation space does not require a positive definite metric, and indeed, in
the case of groups like the Lorentz group of spacetime symmetries, the metric
in representation space is indefinite. The link between representation space and
group space is made by the adjoint representation, and it will prove essential
later to understand what this connection is.

Adjoint transformations can be understood in several ways. Suppose we take
a group vector v which transforms by the rule

U/a = adjab vb, (855)
where
Ui = exp (i@“ &) (8.56)

It is also possible to represent the same transformation using a complete set of
arbitrary matrices to form a basis for the group space. For the matrices we shall
choose the generators Tk, is an arbitrary representation

Vi = 0" TS, (8.57)
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186 8 Field transformations

If we assume that the v* in eqns. (8.55) and (8.57) are the same components,
then it follows that the transformation rule for Vx must be written

Ve =0T = Ug' Vg Ug, (8.58)
where
Ugr = exp (i@“ T,‘;) . (8.59)

This now has the appearance of a similarity transformation on the group space.
To prove this, we shall begin with the assumption that the field transforms as in
eqn. (8.58). Then, using the matrix identity

exp(A)Bexp(—A) = B+ [A, B]+ %[A, [A, B]] +
1

it is straightforward to show that
i al ga ab 1 ca pbs
Ve = v {5 — O} + 00 F LS +

—59;,9 Oa f29 <9 FP7 + }T,g, (8.61)

where the algebra commutation relation has been used. In our notation, the
generators of the adjoint representation may written

(T =if?, (8.62)
and the structure constants are real. Eqn. (8.61) may therefore be identified as
Vi' = v (Uag) T (8.63)
where
U.gj = exp(if“ a”é]) (8.64)
If we now define the components of the transformed field by
Ve =v"“Tg, (8.65)
in terms of the original generators, then it follows that
V" = (Uygy)% 0" (8.66)

We can now think of the set of components, v* and v, as being grouped into
dg-component column vectors v and v/, so that

V = UyiVv. (8.67)
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8.5 Lie groups and Lie algebras 187

Thus, we see that the components of a group vector, v“, always transform
according to the adjoint representation, regardless of what type of basis we
use to represent them. To understand the significance of this transformation
rule, we should compare it with the corresponding tensor transformation rule in
representation space. If we use the matrix

Ur = [Url% (8.68)

where A, B = 1,...,dg, as a transformation of some representation space
vector ¢ or tensor [VR]AB, then, by considering the invariant product

' Vrd — (Up)T UVRU™ (Ug), (8.69)
we find that the transformation rule is the usual one for tensors:

¢t =U% ¢° (8.70a)
Vag = ULU% Vep. (8.70b)

The transformation rule (8.58) agrees with the rule in eqn. (8.70b) provided
ut=u"". (8.71)

This is the unitary property, and it is secured in field theory also by the use
of a Hilbert space as the group manifold. Thus, the form of the adjoint
transformation represents unitarity in the field theory, regardless of the fact that
the indices A, B might have an indefinite metric.

The object Vg, which transforms like U~'V U, signifies a change in the
disposition of the system. This form is very commonly seen; for example, in
dynamical changes:

au¢ - 8M(U¢) = (auU)¢ + U(au¢)
= U@, +T,)¢ (8.72)

where
r,=U",U. (8.73)

This object is usually called a ‘connection’, but, in this context, it can be viewed
as an expression of a change in the dynamical configuration, of the internal
constraints on a system. In the following two chapters, we shall see examples of
these transformations, when looking at the Lorentz group and gauge symmetries
in particular.
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188 8 Field transformations

8.5.3 Casimir invariants

From the Lie algebra relation in eqn. (8.47), it is straightforward to show that
the quadratic sum of the generators commutes with each individual generator:

[T T*T"] = T* TP T? — TPTb T*
— TOTPT — TP (TOT? i febeT¢)
— [T%, T’ T — ifabe 7T
— _j fabe[TeTE 4 TPTC
=0. (8.74)
The last line follows since the bracket is a symmetric matrix, whereas the
structure constants are anti-symmetric. In fact, the quadratic sum of the

generators is proportional to the identity matrix. This follows also from Schur’s
lemma:

1
TT* = — C2(Gp) I, (8.75)
dg
or

1
fhe fe = % C2(Gag)8%. (8.76)

8.5.4 Sub-algebra

Just as groups have sub-groups, algebras have sub-algebras. A sub-set, H, of an
algebra, A, is called a linear sub-algebra of A if H is a linear sub-space of the
group space and is closed with respect to the algebra relation. i.e. for any matrix
elements of the sub-algebra &y, h, and h3, one has

(11, 2] = —if}, 15 (8.77)
This is a non-Abelian sub-algebra. Sub-algebras can also be Abelian:

[h1, hy] = 0. (8.78)

8.5.5 The Cartan sub-algebra

The Cartan sub-algebra is an invariant sub-algebra whose elements generate the
centre of a Lie group when exponentiated. This sub-algebra has a number of
extremely important properties because many properties of the group can be
deduced directly from the sub-set of generators which lies in the Cartan sub-
algebra.
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8.5 Lie groups and Lie algebras 189

The generators of the Cartan sub-algebra commute with one another but not
necessarily with other generators of the group. Since the Cartan sub-algebra
generates the centre of the group (the maximal Abelian sub-group) under
exponentiation, Schur’s lemma tells us that the group elements found from these
are diagonal and proportional to the identity matrix. The Cartan sub-algebra is
the sub-set the group generators 7“ which are simultaneously diagonalizable in
a suitable basis. In other words, if there is a basis in which one of the generators,
T, is diagonal, then, in general, several of the generators will be diagonal in the
same basis. One can begin with a set of generators, T, in a representation, G,
and attempt to diagonalize one of them using a similarity transformation:

T — AT A" (8.79)

The same transformation, A, will transform a fixed number of the matrices into
diagonal form. This number is always the same, and it is called the rank of
the group or rank(G). The diagonalizable generators are denoted H', where
i = 1,...,rank(G). These form the Cartan sub-algebra. Note that, in the case
of the fundamental representation of SU (2), the third Pauli matrix is already
diagonal. This matrix is the generator of the Cartan sub-algebra for SU(2) in
the dg = 2 representation. Since only one of the generators is diagonal, one
concludes that the rank of SU (2) is 1.

8.5.6 Example of diagonalization

The simplest example of a Cartan sub-algebra may be found in the generators
of the group SO (3) in the fundamental representation, or identically of SU (2)
in the adjoint representation. These matrices are well known as the generators
of rotations in three dimensions, and are written:

00 0
T'=1 0 0 —i
0i 0
0 0 i
=1 0 0 0
-i 00
0 -1 0
=1 0 0 (8.80)
0 0 0

To find a basis which diagonalizes one of these generators, we pick 7' to
diagonalize, arbitrarily. The self-inverse matrix of eigenvectors for 7! is easily
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found. It is given by

-1 0 0
I

A= N K (8.81)
i -1
NN

Constructing the matrices A~!T“A, one finds a new set of generators,

00 0
T'=1 01 0
0 0 —1
0 1 i
1
=—1| 1 0
“/E —1 0 0
1 0 1 1
3 .
5= — | —i 0 (8.82)

S
_
(@)
(e}

Since only one of these is diagonal, rank rank SU(2) = 1. Equally, we could
have chosen to diagonalize a different generator. This would then have had
the same eigenvalues, and it would have been the generator of the Cartan sub-
algebra in an alternative basis. None of the generators are specially singled out
to generate the sub-algebra. The diagonalizability is an intrinsic property of the
algebra.

8.5.7 Roots and weights

The roots and weights of algebra representations are proportional to eigenvalues
of the Cartan sub-algebra generators for different dz. The roots are denoted o
and the weights are denoted A4. Because the algebra relation ensures exactly dg
independent vectors on the group space, there are dg independent eigenvalues
to be found from the generators.! We shall explore the significance of these
eigenvalues in the next section.

! This might seem confusing. If one has rank(G) simultaneously diagonalizable dg x dg
matrices, then it seems as though there should be dg x rank(G) eigenvalues to discern. The
reason why this is not the case is that not all of the generators are independent. They are
constrained by the algebra relation. The generators are linearly independent but constrained
through the quadratic commutator condition
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8.5 Lie groups and Lie algebras 191

For generators of the Cartan sub-algebra, H}, in a representation Gg, the
weights are eigenvalues:

Hp = A : (8.83)

The name root is reserved for an eigenvalue of the adjoint representation:

i
o

i= ; . (8.84)

The significance of the adjoint representation is that it is a direct one-to-one
mapping of intrinsic algebra properties. The roots have a special significance
too: the algebra can be defined purely in terms of its roots. The diagonal basis
we have referred to above is a step towards showing this, but to see the true
significance of the root and weights of an algebra, we need to perform another
linear transformation and construct the Cartan—Weyl basis.

8.5.8 The Cartan—Weyl basis

The Cartan—Weyl basis is one of several bases in which the generators of
the Cartan sub-algebra are diagonal matrices. To construct this basis we can
begin from the diagonal basis, found in the previous section, and form linear
combinations of the remaining non-diagonal generators. The motivation for this
requires a brief theoretical diversion.

Suppose that ® and @ are arbitrary linear combinations of the generators of a
Lie algebra. This would be the case if ® and & were non-Abelian gauge fields,
for instance

®=0,T¢
b =¢,T° (8.85)
where a = 1, ..., dg. Then, consider the commutator eigenvalue equation
(O, P] =ad, (8.86)

where « is an eigenvalue for the ‘eigenvector’ ®. If we write this in component
form, using the algebra relation in eqn. (8.47), we have

0@ fupeT¢ = a iy T'. (8.87)
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192 8 Field transformations

Now, since the T are linearly independent we can compare the coefficients of
the generators on the left and right hand sides:

(@ fof — a8, )" = 0. (8.88)

This equation has non-trivial solutions if the determinant of the bracket vanishes,
and thus we require

det|¢? f,,f — a8, | =0. (8.89)

For a d; dimensional Lie algebra this equation cannot have more than dg
independent roots, «. Cartan showed that if one chooses ® so that the secular
equation has the maximum number of different eigenvalues or roots, then only
zero roots o« = 0 can be degenerate (repeated). If « = 0 is r-fold degenerate,
then r is the rank of the semi-simple Lie algebra.

The generators associated with zero eigenvalues are denoted H', where i =
1, ..., rank(G) and they satisfy

[0/H/, H] =0, (8.90)

i.e. they commute with one another. The remaining generators, which they do
not commute with are written E,, for some non-zero «, and they clearly satisfy

[6/H’, E,] = a E,. (8.91)

We can think of the roots or eigenvalues as vectors living on the invariant sub-
space spanned by the generators H'. The components can be found by allowing
the H' to act on the E,. Consider
(6/H', [H;, E,]] = [6'H', HiE,] — [/ H', EoH;]
= a[H', E,]. (8.92)
This result can be interpreted as follows. If E, is an ‘eigenvector’ associated
with the eigenvalue «, then there are rank(G) eigenvectors [H', E,] belonging

to the same eigenvalue. The eigenvectors must therefore each be proportional to
E,:

[H', E,) = ' Eq, (8.93)
and the components of the vector are defined by
a=a 6. (8.94)

This relation defines the components of a root vector on the invariant Cartan
sub-space. Comparing eqn. (8.93) with the algebra relation in eqn. (8.47),

b= 80 (8.95)

ia
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8.5 Lie groups and Lie algebras 193

Finally, by looking at the Jacobi identity,
[0, [Ea, Egll + [Eq, [Eg, O] + [E, [0, Eq]] = 0, (8.96)
we find that
[0, [Eq, Egl]l = (a + B)[Eq, Egl. (8.97)

This means that [E,, Eg] is the eigenvector associated with the root (a + B),
provided that « + 8 # 0. If « + B = O then, since the zero eigenvalues are
associated with H?, we must have

(B, E_o] = f, o H,
=ao; H'. (8.98)
This shows how the E, act as stepping operators, adding together solutions to

the eigenvalue equation. It also implies that if there is a zero root, then there
must be pairs of roots o, —«. In summary,

[Hi:Eoz]:ai Ea
[Eou E—a] = ai Hi

What is the physical meaning of the root vectors? The eigenvalue equation is
an equation which tells us how many ways one generator of transformations
maps to itself, up to a scalar multiple under the action of the group. The
H are invariant sub-spaces of a symmetry group because they only change
the magnitude of a symmetry state, not its character. In other words, the
Cartan sub-algebra represents the number of simultaneous labels which can be
measured or associated with a symmetry constraint. Labels represent physical
properties like spin, momentum, energy, etc. The stepping operators for a given
representation of the group determine how many independent values of those
labels can exist based on symmetry constraints. This is the number of weights in
a stepping chain. In the case of rotations, the root/weight eigenvalues represent
the spin characteristics of particles. A system with one pair of weights (one
property: rotation about a fixed axis) in a dg = 2 representation can only be in
a spin up or spin down state because there are only two elements in the stepping
chain. A dr = 3 representation has three elements, so the particle can have spin
up down or zero etc.

The Chevalley normalization of generators is generally chosen so as to make
the magnitude of the longest root vectors equal to («, o) = /%o = 2.
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194 8 Field transformations

8.5.9 Group vectors and Dirac notation

In quantum mechanics, Dirac introduced a notation for the eigenvectors of an
operator using bra and ket notation. Dirac’s notation was meant to emphasize
the role of eigenvectors as projection operators which span a vector space.
Dirac’s notation is convenient since it is fairly intuitive and is widely used in
the physics literature. An eigenvector is characterized by a number of labels,
i.e. the eigenvalues of the various operators which share it as an eigenvector.

If we label these eigenvalues «, 8, ... and so on, then we may designate the
eigenvectors using a field or eigenfunction
Vo B),... (8.99)

or in Dirac notation as a ket:
lotis Bjs oo o) (8.100)

Notice that, in Dirac’s notation, the redundant symbol ¥ is removed, which
helps to focus one’s attention on the relevant labels: the eigenvalues themselves.
The operators which have these eigenfunctions as simultaneous eigenvectors
then produce:

Ai Yo ... = i Yo, p;....
Bj Yo ;... = Bj Vo, 8;... (i, j not summed), (8.101)
or, equivalently,
Ailai, Bj,...) =i lai, B, ...)
Bjla;, Bj,...) =Bjla, Bj,...) (i, j not summed). (8.102)
In most physical problems we are interested in group spaces with a positive

definite metric, i.e. Hilbert spaces. In that case, the dual vectors are written as a
Hermitian conjugate:

Vaip. (8.103)
or in Dirac notation as a bra:
(a, B, ... (8.104)
The length of a vector is then given by the inner product
(i, Bjlag, Br) = 1//;_,/3/_ VYar,p = 0irdj1 X length. (8.105)

The eigenvectors with different eigenvalues are orthogonal and usually normal-
ized to unit length.

The existence of simultaneous eigenvalues depends on the existence of
commuting operators. Operators which do not commute, such as x’, p/ and
group generators, 7%, T?, can be assigned eigenvectors, but they are not all
linearly independent; they have a projection which is a particular group element:

(x|p) = e P/, (8.106)
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8.5 Lie groups and Lie algebras 195

8.5.10 Example: rotational eigenvalues in three dimensions

In this section, we take a first look at the rotation problem. We shall return
to this problem in chapter 11 in connection with angular momentum and
spin. The generators of three-dimensional rotations are those of SO(3), or
equivalently su(2) in the adjoint representation. The generators are already
listed in eqns. (8.80). We define

T? = T°T°
Er =T, FiT3
H=T. (8.107)

In this new basis, the generators satisfy the relation
[H,EL]=%E;. (8.108)
The stepping operators are Hermitian conjugates:
El=E._. (8.109)

The generator H labels a central generator, or invariant sub-space, and cor-
responds to the fact that we are considering a special axis of rotation. The
eigenvalues of the central generator H are called its weights and are labelled
Ac

H|A:) = AclA,). (8.110)

|A.) is an eigenvector of H with eigenvalue A.. The value of the quadratic
form, T2, is also interesting because it commutes with H and therefore has its
own eigenvalue when acting on H'’s eigenfunctions, which is independent of c.
It can be evaluated by expressing T2 in terms of the generators in the new basis:

E+E_ = T22 + T32 - i[TZ’ T3]
E_E, =T} + T} +ilT, T3], (8.111)

so that, rearranging and using the algebra relation,

T*=E_E, + T} —i[Ty, T3]
=E_E,+ T} —i(—iTy)
=E_E,+H(H+1), (8.112)

where we have identified 77 = H in the last line. By the analogous procedure
with =+ labels reversed, we also find

T>=E,E_+H(H-1). (8.113)
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196 8 Field transformations

These forms allow us to evaluate the eigenvalues of 72 for two of the eigen-
functions in the full series. To understand this, we note that the effect of the £
generators is to generate new solutions step-wise, i.e. starting with an arbitrary
eigenfunction |A.) they generate new eigenfunctions with new eigenvalues.
This is easily confirmed from the commutation relation in eqn. (8.108), if
we consider the ‘new’ eigenvector E.|A.) from |A.) and try to calculate the
corresponding eigenvalue:

H E: |A:) = (E+H +[H, Ti]) |A.)
= (E+tH £ E1) |A.)
= (Ac £ D) EL|A,). (8.114)

We see that, given any initial eigenfunction of H, the action of E is to produce
a new eigenfunction with a new eigenvalue, which differs by £1 from the
original, up to a possible normalization constant which would cancel out of this
expression:

EL|A:) oc|Ac £ 1). (8.115)

Now, the number of solutions cannot be infinite because the Schwarz (triangle)
inequality tells us that the eigenvalue of 72 (whose value is not fixed by the
eigenvalue of H, since T2 and T¢ commute) must be bigger than any of the
individual eigenvalues 7:

(AJJELE_+ E_E; + H?|A.) > (AJH?A,), (8.116)

so the value of H acting on |A.) must approach a maximum as it approaches
the value of 72 acting on |A.). Physically, the maximum value occurs when
all of the rotation is about the a = 1 axis corresponding to our chosen Cartan
sub-algebra generator, 7| = H.

In other words, there is a highest value, A .x, and a lowest eigenvalue, A pip.
Now eqns. (8.112) and (8.113) are written in such a way that the first terms
contain F., ready to act on any eigenfunction, so, since there is a highest and
lowest eigenvalue, we must have

Ey|Ama) =0
E_|Ann) =0. (8.117)
Thus,
T? Amax) = Amax(Amax + 1) [Amax), (8.118)
and
T* Amin) = Amin(Amin — 1) [Amin).- (8.119)
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8.5 Lie groups and Lie algebras 197

From these two points of reference, we deduce that
Amax(Amax + 1) = Amin(Amin = D. (8120)

This equation has two solutions, Ay, = Amax + 1 (Which cannot exist, since
there is no solution higher than A,,x by assumption), and

Amax = _Amina (8121)
thus
T? = Apax(Apmax + 1) L. (8.122)

The result means that the value T2 is fixed by the maximum value which H can
acquire. Strangely, the value is not A2 (all rotation about the 1 axis), which
one would expect from the behaviour of the rotation group. This has important
implications for quantum mechanics, since it is the algebra which is important
for angular momentum or spin. It means that the total angular momentum can
never be all in one fixed direction. As A, — oo the difference becomes
negligible.

The constant of proportionality in eqn. (8.115) can now be determined from
the Hermitian property of the stepping operators as follows. The squared norm
of E.|A.) may be written using eqn. (8.112)

|ELIAD = (AclE_EL|A)
= (A |T?* — H(H + DIA,)
= Amax(Amax + 1) — Ac(Ac + 1)
= (Amax — Ac) (Amax + A+ 1). (8.123)

Thus,

E+|AC> = \/(Amax - Ac)(Amax + Ac + l)lAc + 1)
E_|Ac) =V (Amax + A) (Amax — Ac + D|A: — 1). (8.124)

Eqn. (8.121), taken together with eqn. (8.114), implies that the eigenvalues are
distributed symmetrically about A, = 0 and that they are separated by integer
steps. This means that the possible values are restricted to

1 3
Ac=0,:i:§,j:1,j:§,j:2,...,j:Amax. (8.125)
There are clearly 2Anmax + 1 possible solutions. In the study of angular
momentum, Ay, iS called the spin up to dimensional factors (%). In group
theory, this is referred to as the highest weight of the representation. Clearly,
this single value characterizes a key property of the representation.
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198 8 Field transformations

What the above argument does not tell us is the value of An.. That is
determined by the dimension of the irreducible representation which gives rise
to rotations. In field theory the value of A ,,x depends, in practice, on the number
of spacetime indices on field variables. Since the matrices for rotation in three
spatial dimensions are fixed by the spacetime dimension itself, the only freedom
left in transformation properties under rotations is the number of spacetime
indices which can be operated on by a rotational transformation matrix. A
scalar (no indices) requires no rotations matrix, a vector (one index) requires
one, a rank 2-tensor requires two and so on. The number of independently
transforming components in the field becomes essentially blocks of 2Ax + 1
and defines the spin of the fields.

8.6 Examples of discrete and continuous groups

Some groups are important because they arise in field theory with predictable
regularity; others are important because they demonstrate key principles with a
special clarity.

8.6.1 GL(N, C): the general linear group

The group of all complex N x N, non-singular matrices forms a group. This
group has many sub-groups which are important in physics. Almost all physical
models can be expressed in terms of variables which transform as sub-groups of
this group.

(1) Matrix multiplication combines non-singular matrices into new non-
singular matrices.

(2) Matrix multiplication is associative.

(3) The identity is the unit matrix

(8.126)

SO O =
—
- o O O

1
0
(4) Every non-singular matrix has an inverse, by definition.

The representation space of a collection of matrices is the vector space on which
the components of those matrices is defined. Since matrices normally multiply
vectors, mapping one vector, v#, onto another vector, v'*,

vy — v = Uyp v, (8.127)
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8.6 Examples of discrete and continuous groups 199

it is normal to think of these matrices as acting on group vectors. In field
theory, these transformations are especially important since the group vectors
are multiplets of fields, e.g.

¢1(x)

$2(x)

$(xX)a = , (8.128)

Bap (1)

where dy is the dimension of the representation, or the size of the dgp X dg
matrices. Note: the dimension of a representation (the number of components
in a multiplet) is not necessarily the same as the dimension of the group itself.
For example: a three-dimensional vector (dg = 3) might be constrained,
by some additional considerations, to have only an axial symmetry (group
dimension dg = 1, a single angle of rotation); in that case one requires a 3 x 3
representation of a one-dimensional group, since vectors in three dimensions
have three components.

8.6.2 U(N): unitary matrices

U (N) is the set of all unitary matrices of matrix dimension N. An N x N unitary
matrix satisfies

U'U=U"nU-=1, (8.129)

where I is the N x N unit matrix, i.e. U" = U~!. When n = 1, the matrices
are single-component numbers. An N x N matrix contains N2 components;
however, since the transpose matrix is related to the untransposed matrix by
eqn. (8.129), only half of the off-diagonal elements are independent of one
another. Moreover, the diagonal elements must be real in order to satisfy the
condition. This means that the number of independent real elements in a unitary
matrix is (N> — N)/2 complex plus N real means N2 real numbers. This is
called the dimension of the group. U (N) is non-Abelian for U > 1.

8.6.3 SU(N): the special unitary group

The special unitary group is the sub-group of U (N) which consists of all unitary
matrices with unit determinant. Since the requirement of unit determinant is an
extra constraint on the all of the independent elements of the group (i.e. the
product of the eigenvalues), this reduces the number of independent elements
by one compared with U(N). Thus the dimension of SU(N) is N?> — 1 real
components. SU(N) is non-Abelian for N > 1. SU(N) has several simple
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properties:
C2(Gug)) = N
dg=N*—1
dp =N
N? -1
C(Gy) = N (8.130)

where C,(G) is the quadratic Casimir invariant in representation G, dg is
the dimension of the group, and dr is the dimension of the fundamental
representation R — F.

8.6.4 SU(2)

The set of 2 x 2 unitary matrices with unit determinant has N> — 1 = 3 elements
for n = 2. Up to similarity transformations, these may be written in terms of
three real parameters (61, 6, 6»):

lg isin (Lo
g1 = COS(ZI ) lsm(f ) (8.131a)
1sin (591) cos (501
Lg in (Lo
o = 005(212) Sm(zl ’) (8.131b)
— sin (592) cos (592)
ei%Q 0
s={", } il ) (8.131c)

These matrices are the exponentiated Pauli matrices e2%. Using this basis,
any element of the group may be written as a product of one or more of these
matrices with some 6;.

8.6.5 U(1): the set of numbers z : |z|> = 1

The set of all complex numbers U = ¢! with unit modulus forms an Abelian
group under multiplication:

(1) ei91 ei92 — ei(91+92)‘
(2) (ei91 ei92) ei93 — ei@] (ei92 ei93)'
(3) ei9 eiO — eiQ‘

(4) U™' = U*since el? e =¢l0 = 1.
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8.6 Examples of discrete and continuous groups 201

The representation space of this group is the space of complex scalars ®, with
constant modulus:

D — (UD)'UD = &*U*U d = d* . (8.132)

This group is important in electromagnetism; it is this symmetry group of
complex phases which is connected to the existence of a conserved electrical
charge.

8.6.6 Zy: the Nth roots of unity

The N'th roots of unity form a sub-group of U (1). These complex numbers may
be written in the form exp(27i%), for p = 0,..., N — 1. The group Zy is
special because it is not infinite. It has exactly NV discrete elements. The group
has the topology of a circle, and the elements may be drawn as equi-distant
points on the circumference of the unit circle in the complex plane. Zy is a
modulo group. Its elements satisfy modulo N arithmetic by virtue of the multi-
valuedness of the complex exponential. The group axioms are thus satisfied as
follows:

(1) exp (27ti %) exp (271i %) = exp (271i %”) = exp (2711 [%”, + m]),
where N, m, p are integers;

(2) follows trivially from U (1);
(3) follows trivially from U (1);

(4) the inverse exists because of the multi-valued property that

exp (—2ni£) —exp (27iX =2 (8.133)
N N
Thus when p = N, one arrives back at the identity, equivalent to p = 0.

The representation space of this group is undefined. It can represent translations
or shifts along a circle for a complex scalar field. Z; is sometimes thought of
as a reflection symmetry of a scalar field, i.e. Z, = {1, —1} and ¢ — —¢. An
action which depends only on ¢ has this symmetry.

Usually Zy is discussed as an important sub-group of very many continuous
Lie groups. The presence of Zy as a sub-group of another group usually
signifies some multi-valuedness or redundancy in that group. For example,
the existence of a Z, sub-group in the Lie group SU(2) accounts for the
double-valued nature of electron spin.
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202 8 Field transformations

8.6.7 O(N): the orthogonal group

The orthogonal group consists of all matrices which satisfy
U'u =1 (8.134)

under normal matrix multiplication. In other words, the transpose of each matrix
is the inverse matrix. All such matrices are real, and thus there are (N> —N)/2+
n = N(N + 1)/2 real components in such a matrix. This is the dimension of the
group. The orthogonal group is non-Abelian for N > 2 and is trivial forn = 1.

The special orthogonal group is the sub-group of O(N) which consists of
matrices with unit determinant. This reduces the dimension of the group by one,
giving N(N — 1)/2 independent components.

8.6.8 SO(3): the three-dimensional rotation group

This non-Abelian group has three independent components corresponding to
rotations about three-independent axes in a three-dimensional space. The group
elements may be parametrized by the rotation matrices g; about the given axis i:

1 0 0
U, =1 0 cosH sin6; (8.135)
0 —sinf; cos6;

costh 0 —sinb,
U, = 0 1 0 (8.136)
sind, 0 cos6,

cosf; sinfz O
U,=| —sinf; sinf; 0 |. (8.137)
0 0 1

The representation space of this group is a three-dimensional Euclidean space
and the transformations rotate three-dimensional vectors about the origin, pre-
serving their lengths but not their directions. Notice that these matrices do not
commute; i.e. a rotation about the x axis followed by a rotation about the y axis,
is not the same as a rotation about the y axis followed by a rotation about the x
axis.

8.6.9 SO(2): the two-dimensional rotation group

This group has only one element, corresponding to rotations about a point in a
plane. Any element of SO (2) may be written in the form

cosf sin6
U= ( —sinf® cosf ) (8.138)
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8.7 Universal cover groups and centres 203

The representation space of this group is a two-dimensional Euclidean space,
and the transformation rotates two-component vectors about the origin. Notice
how the matrices parametrizing S O(3) are simply rotations of SO (2) embedded
in a three-dimensional framework.

8.7 Universal cover groups and centres

We know that groups can contain other groups, as sub-groups of the whole,
and therefore that some are larger than others. The universal cover group is
defined to be a simply connected group which contains an image of every point
in a given Lie group. If we consider an arbitrary Lie group, in general it will
have companion groups which are locally the same, but globally different. The
best known example of this is the pair SU(2) and SO (3), which are locally
isomorphic, but globally different. In fact SU (2) contains two images of SO (3)
or covers it twice, or contains two equivalent copies of it. Taking this a step
further, if three groups have the same local structure, then they will all be sub-
groups of the universal cover groups.

If we begin with a Lie algebra, it is possible to exponentiate the generators of
the algebra to form group elements:

O =0T" > G =¢°. (8.139)

The group formed by this exponentiation is not unique; it depends on the
particular representation of the algebra being exponentiated. For instance,
the 2 x 2 representation of SU(2) exponentiates to SU (2), while the 3 x 3
representation of SU (2) exponentiates to SO(3). Both of these groups are
locally isomorphic but differ in their centres. In the case of SU(2) and SO (3),
we can relate them by factorizing out the centre of the universal cover group,

SUQ2)/Z, =S0O(3). (8.140)

From Schur’s lemma, we know that the centre of a group is only composed
of multiples of the identity matrix, and that, in order to satisfy the rules of group
multiplication, they must also have modulus one. It follows from these two facts
that any element of the centre of a group can be written

g =exp(£2rig/N)I, ¢g=0,...,N — 1. (8.141)

These elements are the Nth roots of unity for some N (in principle infinite, but
in practice usually finite). If we start off with some universal cover group then,
whose centre is Zy, there will be many locally isomorphic groups which can
be found by factoring out sub-groups of the centre. The largest thing one can
divide out is Zy itself, i.e. the whole centre. The group formed in this way is
called the adjoint group, and it is generated by the adjoint representation:

group

——— = adjoint group. (8.142)
centre of group
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204 8 Field transformations

Table 8.1. Some common Lie algebras and groups.

Algebra Centre Cover
Ay Zy SU(N —1)
By Z SON +1)
Cy Z Sp(2N)
Dy Z4 (Nodd) SO(2N)
Z, X Z, (Neven)
Es Z3 Es
Gy, Fy, Es  Z3

But it is not necessary to factor out the entire centre, one can also factor out a
sub-group of the full centre; this will also generate a locally isomorphic group.
For example, SU (8) has centre Zs. We can construct any of the following
locally isomorphic groups:

SU(B) SUB)/Zs SUB)/Z4 SU8)/Z,. (8.143)

Some well known Lie groups are summarized in table 8.1.

8.7.1 Centre of SU(N) is Zy

SU(N) is a simply connected group and functions as its own universal cover
group. As the set of N x N matrices is the fundamental, defining representation,
it is easy to calculate the elements of the centre. From Schur’s lemma, we know
that the centre must be a multiple of the identity:

ge=aly. (8.144)

where Iy is the N x N identity matrix. Now, SU(N) matrices have unit
determinant, so

det Iy =V = 1. (8.145)

Thus, the solutions for « are the Nth roots of unity, Zy.

8.7.2 Congruent algebras: N -ality

Since roots and weights of representations can be drawn as vectors in the Cartan
sub-space, different representations produce similar, but not identical, patterns.
Elements E, of the algebra step through chains of solutions, creating a laced
lattice-work pattern. Representations which exponentiate to the same group
have patterns which are congruent to one another [124].

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

8.7 Universal cover groups and centres 205

Congruence is a property of discrete sets. The correct terminology is
‘congruent to x modulo m’°. The property is simplest to illustrate for integers. x
is said to be conjugate to y modulo m if y — x is an integer multiple of m:

y=x—+km, (8.146)

for integer k, m. Congruence modulo m is an equivalence relation, and it sorts
numbers into classes or congruent sets. The patterns made by congruent sets
can be overlain consistently. The equivalence class, E,, is the set of all integers
which can be found from x by adding integer multiples m to it:
E, = {x + km | integer k}
={...,2m+x,—-m+x,x,x+m,x +2m,...}. (8.147)
There are exactly m different congruence classes modulo m, and these partition
the integers; e.g. for m = 4, we can construct four classes:
Ey={..,—8,-4,0,4,8,...}
Ei={..,-7,-3,1,59,...}
E,={..,-6,-2,2,6,10,...}
Ey={...,-5-1,3,7,11,...}. (8.148)
Lie algebra representations can also be classified into congruence classes.
Historically, congruence classes of SU(N) modulo N are referred to as N-ality
as a generalization of ‘triality’ for SU(3). Each congruence class has a label

q; g = 0 corresponds to no centre, or the adjoint congruence class. The well
known algebras contain the following values [56]:

n
g=Y (modn+1)  for A, (8.149)

k=1
qg=a, (mod 2) for B, (8.150)
qg=0o;+aoa3+as (mod 2) for C, (8.151)
q =01 — o+ o4 — s (mod 3) for Eg (8.152)
q = a4+ ag+ o7 (mod 2) for E; (8.153)
qg=0 for all representations of E7, Eg, Fy, G. (8.154)

In the special case of D,, the congruence classes require classification by a
two-component vector:
q1 = (y—1 + o, 200 + a3+ -+
4+ 20,2+ (n —2)a_1 +noty + -+ ) (mod 2) odd n
q» = (0p—1 + oy, 2000 + 203 + - - -
4+ 20,3+ (n — 2)a,,_1 + nay,) (mod 4) even n.
(8.155)
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206 8 Field transformations

The congruence is modulo the order of the centre. The algebra D, requires a
two-dimensional label, since its centre is two-dimensional. E7, Eg, F4, and G,
all have trivial centres, thus they all lie in a single class congruent to the adjoint.

8.7.3 Simple and semi-simple Lie algebras

A Lie algebra is simple if it has no proper invariant sub-algebras; i.e if only
one element (the identity) commutes with every other in the group. A simple
algebra is necessarily semi-simple. A semi-simple Lie algebra can be written in
block-diagonal form, as a direct sum of invariant sub-algebras, each of which is
a simple Lie algebra

A=A QA DA D - Ay, (8.156)

i.e. it factorizes into block-diagonal form with simple blocks. A semi-simple
algebra has no Abelian invariant sub-algebras.

8.8 Summary

The existence of a symmetry in a physical system means that it is possible to re-
label parameters of a model without changing its form or substance. Identify the
symmetries of a physical system and one can distinguish between the freedom
a system has to change and the constraints which hold it invariant: symmetries
are thus at the heart of dynamics and of perspective.

Symmetries form groups, and can therefore be studied with the group theory.
Since a symmetry means that some quantity R; does not change, when we vary
the action with respect to a parameter &, conservation of R is also linked to
the existence of the symmetry. All of the familiar conservation laws can be
connected to fundamental symmetries.

In the case of electromagnetism, Lorentz covariance was exposed just by
looking at the field equations and writing them in terms of (3 4 1) dimensional
vectors. The chapters which follow examine the transformations which change
the basic variables parametrizing the equations of motion, and the repercussions
such transformations have for covariance.
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Spacetime transformations

An important class of symmetries is that which refers to the geometrical dis-
position of a system. This includes translational invariance, rotational invariance
and boosts. Historically, covariant methods were inspired by the fact that the
speed of light in a vacuum is constant for all inertial observers. This follows
from Maxwell’s equations, and it led Einstein to the special theory of relativity
and covariance. The importance of covariance has since been applied to many
different areas in theoretical physics.

To discuss coordinate transformations we shall refer to figure 9.1, which
shows two coordinate systems moving with a relative velocity v = Bc. The
constancy of the speed of light in any inertial frame tells us that the line element
(and the corresponding proper time) must be invariant for all inertial observers.
For a real constant €2, this implies that

ds? = Q%ds"? = Q*(—c*dr? + dx - dx). 9.1)

This should not be confused with the non-constancy of the effective speed of
light in a material medium; our argument here concerns the vacuum only. This
property expresses the constancy, or x-independence, of c. The factor Q2 is
of little interest here as long as it is constant: one may always re-scale the
coordinates to absorb it. Normally one is not interested in re-scaling measuring
rods when comparing coordinate systems, since it only make systems harder to
compare. However, we shall return to this point in section 9.7.

For particles which travel at the speed of light (massless particles), one has
ds? = 0 always, or

dx

o =c (9.2)

Now, since ds? = 0, it is clearly true that Q?(x) ds? = 0, for any non-singular,
non-zero function Q(x). Thus the value of ¢ is preserved by a group of

207
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208 9 Spacetime transformations

g’

relative velocity

/V

Fig. 9.1. The schematic arrangement for discussing coordinate transformations. Co-
ordinate systems S(x) and S’(x’) are in relative motion, with speed v = Bc.

transformations which obey
ds”? = @ (x)ds?. (9.3)

This set of transformations forms a group called the conformal group.

If all particles moved at the speed of light, we would identify this group as
being the fundamental symmetry group for spacetime. However, for particles
not moving at ¢, the line element is non-zero and may be characterized by

X p 9.4)
— = B, .
dt

for some constant 8 = v/c. Since we know that, in any frame, a free particle
moves in a straight line at constant velocity, we know that 8 must be a constant

and thus
ds’> = ds? # 0. 9.5)

If it were possible for an x-dependence to creep in, then one could transform
an inertial frame into a non-inertial frame. The group of transformations which
preserve the line element in this way is called the inhomogeneous Lorentz group,
or Poincaré group.
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9.1 Parity and time reversal 209

In the non-relativistic limit, coordinate invariances are described by the so-
called Galilean group. This group is no smaller than the Lorentz group, but
space and time are decoupled, and the speed of light does not play a role at
all. The non-relativistic limit assumes that c — oo. Galilean transformations
lie closer to our intuition, but they are often more cumbersome since space and
time must often be handled separately.

9.1 Parity and time reversal

In an odd number of spatial dimensions (n = 2/+1), a parity, or space-reflection
transformation P has the following non-zero tensor components:

PY =1

P=-1, (9.6)
where 1 is not summed in the last line. When this transformation acts on another
tensor object, it effects a change of sign on all space components. In other words,
each spatial coordinate undergoes x' — —x’. The transformation A — —A is
the discrete group Z, = {1, —1}.

In an even number of spatial dimensions (n = 2[), this construction does not
act as a reflection, since the combination of an even number of reflections is not
a reflection at all. In group language, (Z,)** = {1}. It is easy to check that, in
two spatial dimensions, reflection in the x; axis followed by reflection in the x,
axis is equivalent to a continuous rotation. To make a true reflection operator in
an even number of space dimensions, one of the spatial indices must be left out.
For example,

P00=1
—1G=1,...,n=1)
Pi=+1 (i =n). 9.7)

9
I

The time reversal transformation in any number of dimensions performs the
analogous function for time coordinates:

7% = -1
T =1. 9.8)

1

These transformations belong to the Lorentz group (and others), and are
sometimes referred to as large Lorentz transformations since they cannot be
formed by integration or repeated combination of infinitesimal transformations.
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210 9 Spacetime transformations

9.2 Translational invariance

A general translation in space, or in time, is a coordinate shift. A scalar field
transforms simply:

P(x) => d(x + Ax). 9.9
The direction of the shift may be specified explicitly, by

Pt x") — ¢(t,x" + Ax')
o, x") — ¢t + A, x'). (9.10)
Invariance under such a constant shift of a coordinate is almost always a
prerequisite in physical problems found in textbooks. Translational invariance
is easily characterized by the coordinate dependence of Green functions. Since
the Green function is a two-point function, one can write it as a function of x
and x’ or in terms of variables rotated by 45 degrees, %ﬁ(x —x’) and «/Li (x+x).
These are more conveniently defined in terms of a difference and an average
(mid-point) position:
X=x-—-x")
1
X = E(x + x'). 9.11)
The first of these is invariant under coordinate translations, since

x—x'=x+a)— (x'+a). (9.12)

The second equation is not, however. Thus, in a theory exhibiting translational
invariance, the two-point function must depend only on x = x — x’.

9.2.1 Group representations on coordinate space

Translations are usually written in an additive way,
xH — x* +at, (9.13)

but, by embedding spacetime in one extra dimension, dg = (n + 1) 4+ 1, one can
produce a group vector formulation of the translation group:

(f)%<éf)(ﬁ». (9.14)

This has the form of a group vector multiplication. The final 1 in the column
vector is conserved and plays only a formal role. This form is common in
computer representations of translation, such as in computer graphics.
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9.2 Translational invariance 211

A representation of translations which is particularly important in quantum
mechanics is the differential coordinate representation. Consider an infinites-
imal translation a, = ¢€,. This transformation can be obtained from an
exponentiated group element of the form

U(e) = exp (i0"T*") (9.15)
by writing
U(e) = exp (i€, k) exp (i€, p*/ xn ) = (1 + i€, p°/ xn), (9.16)
where
Pu= Xnky=—1xr0,. 9.17)
The action of the infinitesimal group element is thus
> U x" = (1 + xpe’dpx") =x" +€’n) =x" +€". (9.18)
The reason for writing the generator,
T" = pu/ xn» (9.19)

in this form, is that p, is clearly identifiable as a momentum operator which
satisfies

[x, pl=1ix- (9.20)

Thus, it is the momentum divided by a dimensionful scale (i.e. the wavenumber
k,) which is the generator of translations. In fact, we already know this from
Fourier analysis.

The momentum operator closely resembles that from quantum mechanics.
The only difference is that the scale x; (with dimensions of action), which is
required to give p, the dimensions of momentum, is not necessarily 4. It is
arbitrary. The fact that /i is small is the physical content of quantum mechanics;
the remainder is group theory. What makes quantum mechanics special and
noticeable is the non-single-valued nature of the exponentiated group element.
The physical consequence of a small y; is that even a small translation will
cause the argument of the exponential to go through many revolutions of 2. If
Xn 1is large, then this will not happen. Physically this means that the oscillatory
nature of the group elements will be very visible in quantum mechanics, but
essentially invisible in classical mechanics. This is why a wavelike nature is
important in quantum mechanics.
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212 9 Spacetime transformations

9.2.2 Bloch’s theorem: group representations on field space

Bloch’s theorem, well known in solid state physics, is used to make predictions
about the form of wavefunctions in systems which have periodic potentials.
In metals, for instance, crystal lattices look like periodic arrays of potential
wells, in which electrons move. The presence of potentials means that the
eigenfunctions are not plane waves of the form

e, (9:21)

for any x, x’. Nevertheless, translational invariance by discrete vector jumps a;
is a property which must be satisfied by the eigenfunctions

Gt x +a) = U(a) (t,x) = e 5 ¢y (t, x). (9.22)

9.2.3 Spatial topology and boundary conditions

Fields which live on spacetimes with non-trivial topologies require boundary
conditions which reflect the spacetime topology. The simplest example of this
is the case of periodic boundary conditions:

p(x) =aop(x+ L), (9.23)

for some number «. Periodic boundary conditions are used as a model for
homogeneous crystal lattices, where the periodicity is interpreted as translation
by a lattice cell; they are also used to simulate infinite systems with finite
ones, allowing the limit L — oo to be taken in a controlled manner. Periodic
boundary conditions are often the simplest to deal with.

The value of the constant & can be specified in a number of ways. Setting it
to unity implies a strict periodicity, which is usually over-restrictive. Although
it is pragmatic to specify a boundary condition on the field, it should be noted
that the field itself is not an observable. Only the probability P = (¢, ¢) and
its associated operator P are observables. In Schrédinger theory, for example,
P = ¥*(x)¥ (x), and one may have ¥ (x + L) = e?®(x) and still preserve
the periodicity of the probability.

In general, if the field ¢ (x) is a complex field or has some multiplet symmetry,
then it need only return to its original value up to a gauge transformation; thus
o = U(x). For a multiplet, one may write

Ou(x +L)=ULx) Op(x). (9.24)

The transformation U is the exponentiated phase factor belonging to the
group of symmetry transformations which leaves the action invariant. This is
sometimes referred to as a non-integrable phase. Note that, for a local gauge
transformation, one also has a change in the vector field:

A (x + L) = BA,(x). (9.25)
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9.2 Translational invariance 213

This kind of transformation is required in order to obtain a consistent energy—
momentum tensor for gauge symmetric theories (see section 11.5). The value of
B depends now on the type of couplings present. From the spacetime symmetry,
a real field, A,, has only a Z, reflection symmetry, i.e. 8 = =1, which
corresponds heuristically to ferromagnetic and anti-ferromagnetic boundary
conditions. Usually 8 = 1 to avoid multiple-valuedness.

In condensed matter physics, conduction electrons move in a periodic poten-
tial of crystallized valence ions. The potential they experience is thus periodic:

V(x)=Vx+L), (9.26)
and it follows that, for plane wave eigenfunctions,
¢t x+ L) = UL) ¢i(t,%) = e'*" gy (1, %). 9.27)

This is a straightforward application of the scalar translation operator; the result
is known as Bloch’s theorem.

On toroidal spacetimes, i.e. those which have periodicities in several direc-
tions, the symmetries of the boundary conditions are linked in several directions.
This leads to boundary conditions called co-cycle conditions [126]. Such
conditions are responsible for flux quantization of magnetic fields in the Hall
effect [65, 85].

In order to define a self-consistent set of boundary conditions, it is convenient
to look at the so-called Wilson loops in the two directions of the torus, since they
may be constructed independently of the eigenfunctions of the Hamiltonian.
Normally this is presented in such a way that any constant part of the vector
potential would cancel out, giving no information about it. This is the co-cycle
condition, mentioned below. The Wilson line is defined by

W;(x) = Pexp {ig/ Aj dx;}, (9.28)
Xo

Jj not summed, for some fixed point Xy. It has an associated Wilson loop W; (L’j)
around a cycle of length L’j in the x; direction by

W;(x; + L)) = Wi(L)) Wi(x)). (9.29)

The notation here means that the path-dependent Wilson line W, (x) returns to
the same value multiplied by a phase W; (L’j, X) on translation around a closed
curve from x; to x; + L’j. The coordinate dependence of the phase usually
arises in the context of a uniform magnetic field passing through the torus. In
the presence of a constant magnetic field strength, the two directions of the torus
are closely linked, and thus one has

Wi + Ly, 1) = exp {iLyu + i) Ly | W g, ) (9.30)

Wa(uy, up + Ly) = exp {ichz}Wz(ul, us). (9.31)
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214 9 Spacetime transformations

At this stage, it is normal to demonstrate the quantization of flux by opening out
the torus into a rectangle and integrating around its edges:

Wi(uy + L) Wa(u)) W, () Wy ' (uy + Ly) = 1. (9.32)

This is known as the co-cycle condition, and has the effect of cancelling the
contributions to the ¢’s and thus flux quantization is found independently of
the values of ¢; due to the nature of the path. The most general consistency
requirement for the gauge field (Abelian or non-Abelian), which takes into
account the phases c;, has been constructed in ref. [18].

The results above imply that one is not free to choose, say, periodic boundary
conditions for bosons and anti-periodic boundary conditions for fermions in the
presence of a uniform field strength. All fields must satisfy the same consistency
requirements. Moreover, the spectrum may not depend on the constants, c;,
which have no invariant values. One may understand this physically by noting
that a magnetic field causes particle excitations to move in circular Landau
orbits, around which the line integral of the constant vector potential is null. The
constant part of the vector potential has no invariant meaning in the presence of
a magnetic field.

In more complex spacetimes, such as spheres and other curved surfaces,
boundary conditions are often more restricted. The study of eigenfunctions
(spherical harmonics) on spheres shows that general phases are not possible
at identified points. Only the eigenvalues 1 are consistent with a spherical
topology [17].

9.3 Rotational invariance: SO (n)

Rotations are clearly of special importance in physics. In n spatial dimensions,
the group of rotations is the group which preserves the Riemannian, positive
definite, inner product between vectors. In Cartesian coordinates this has the
well known form

X-y=x'y. (9.33)
The rotation group is the group of orthogonal matrices with unit determinant
SO (n). Rotational invariance implies that the Green function only depends on
squared combinations of this type:

G, x) =G ((x1 — x>+ (2 —x2)> 4+ + (x, —x))%) . (9.34)

The exception here is the Dirac Green function.
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9.3 Rotational invariance: SO (n) 215

9.3.1 Group representations on coordinate space

Three-dimensional rotations are generated by infinitesimal matrices:

00 O \
T'=10 0 —i
0 i O
0 0 i
T°=1 0 0 0
—~i 0 0 )
0 -1 0
=i 0 0 (9.35)
0 0 O
which satisfy a Lie algebra
[T;, T;] = i€jji T (9.36)

These exponentiate into the matrices for a three-dimensional rotation,
parametrized by three Euler angles,

1 0 0

R.=U,=| 0 cost; sinb; (9.37)
\ 0 —sinf; cos6H;

( cosf, 0 —sin6,

R, =U, = 0 1 0 (9.38)
sinfd, 0 cosbH,

cosf; sinf; O

R,=U,=| —sin6; sinf; 0 |. (9.39)
0 0 1
The rotation group is most often studied in » = 3 dimensions, for obvious

reasons, though it is worth bearing in mind that its properties differ quite
markedly with n. For instance, in two dimensions it is only possible to have
rotation about a point. With only one angle of rotation, the resulting rotation
group, SO(2), is Abelian and is generated by the matrix

0 i
T, = ( i ) . (9.40)
This exponentiates into the group element
cosf sinf
U= ( —sinf® cosf ) ’ ©.41)
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216 9 Spacetime transformations

A two-dimensional world can also be represented conveniently by adopting
complex coordinates on the Argand plane. In this representation, a vector is
simply a complex number z, and a rotation about the origin by an angle 6 is
accomplished by multiplying:

7 — e z. (9.42)

9.3.2 Eigenfunctions: circular and spherical harmonics

The eigenfunctions of the rotation operators form a set of basis functions which
span representation space. The rotational degrees of freedom in quantum fields
can be expanded in terms of these eigenfunctions.

Eigenfunctions in n = 2 In two dimensions, there is only a single axis of
rotation to consider. Then the action of the rotation operator 77 has the form

—19p |¢) = A |@h). (9.43)
This equation is trivially solved to give
|p) = elA?. (9.44)

In two spatial dimensions, there are no special restrictions on the value of A.
Notice that this means that the eigenfunctions are not necessarily single-valued
functions: under a complete rotation, they do not have to return to their original
value. They may differ by a phase:

| +27) =A@+ — ¢ NG (9.45)

where 6 = 2Am. In higher dimensions § must be unity because of extra
topological restrictions (see below).

Eigenfunctions in n = 3 The theory of matrix representations finds all of
the irreducible representations of the rotation algebra in n = 3 dimensions.
These are characterized by their highest weight, or spin, with integral and
half-integral values. There is another approach, however, which is to use a
differential representation of the operators. The advantage of this is that it is then
straightforward to find orthonormal basis functions which span the rotational
space.

A set of differential operators which satisfies the Lie algebra is easily
constructed, and has the form

T=rxiV, (9.46)
or

Tl‘ = ieijk Xj 8k. (947)
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9.3 Rotational invariance: SO (n) 217

This has the form of an orbital angular momentum operator L = rxp, and
it is no coincidence that it re-surfaces also in chapter 11 in that context with
only a factor of % to make the dimensions right. It is conventional to look for
the simultaneous eigenfunctions of the operators L; and L? by writing these
operators in spherical polar coordinates (with constant radius):

L, = i(sinqS dyg + cot6 cos ¢ 8¢)
L, = i(— cos ¢ dy + cotf sin ¢ 8¢)
Ly = —idy, (9.48)

and
L? = _La@ (sin6 dy) + LI} (9.49)
sin 6 sin?§ *
The eigenvectors and eigenvalues involve two angles, and may be defined by

L*|¢,6) = T%|$,6)
L3|¢,0) = Aclg, 0). (9.50)
The solution to the second equation proceeds as in the two-dimensional case,

with only minor modifications due to the presence of the other coordinates. The
eigenfunctions are written as a direct product,

|9, 0) = ©O)P(e), 9.51)
so that one may identify ®(¢) with the solution to the two-dimensional problem,
giving

|, 0) = O@O) el™e?. (9.52)

The values of A are not arbitrary in this case: the solution of the constraints
for the 6 coordinate imposes extra restrictions, because of the topology of a
three-dimensional space. Suppose we consider a rotation through an angle of
27 in the ¢ direction in the positive and negative directions:

| + 27) = ehe@+2m) _ oid gihet
|p — 27) = elfe@ 2T — g7 glhed, (9.53)

In two spatial dimensions, these two rotations are distinct, but in higher
dimensions they are not. This is easily seen by drawing the rotation as a circle
with an arrow on it (see figure 9.2). By flipping the circle about an axis in its
plane we can continuously deform the positive rotation into the negative one,
and vice versa. This is not possible in n = 2 dimensions. This means that they
are, in fact, different expressions of the same rotation. Thus,

e =0 = +1. (9.54)
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218 9 Spacetime transformations

Fig. 9.2. Exchange of particles in two and three spatial dimensions. In the plane,
there is only one rotation about the centre of mass which exchanges identical particles.
Clockwise and anti-clockwise are inequivalent. In three dimensions or greater, one may
rotate this plane around another axis and deform clockwise into anti-clockwise.

These two values are connected with the existence of two types of particle:
bosons and fermions, or

1
Ae=0.%7. %1 .., (9.55)

for integer m. Note that, in older texts, it was normal to demand the single-
valuedness of the wavefunction, rather than using the topological argument
leading to eqn. (9.54). If one does this, then only integer values of A. are
found, and there is an inconsistency with the solution of the group algebra.
This illustrates a danger in interpreting results based on coordinate systems
indiscriminately. The result here tells us that the eigenfunctions may be either
single-valued for integer A, or double-valued for half-integral A.. In quantum
mechanics, it is normal to use the notation

T =1(+1) (9.56)
A, =m. 9.57)
If we now use this result in the eigenvalue equation for L2, we obtain
Ld (G095 (leen— """ VYeo=o 9.58)
——— | sinf — — =0. .
sin6 do do sin® 0
Putting z = cos 8 in this equation turns it into the associated Legendre equation,
a2 i+ m 1 p_yg (9.59)
dz ¢ dz 1 —z2 o '
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9.4 Lorentz invariance 219

where P = ®(cos6). The solutions of the associated Legendre equation may
be found for integral and half-integral values of A, though most books ignore
the half-integral solutions. They are rather complicated, and their form is not
specifically of interest here. They are detailed, for instance, in Gradshteyn and
Ryzhik [63]. Since the magnitude of L3 cannot exceed that of L2, by virtue of
the triangle (Schwartz) inequality,

m* <11 +1), (9.60)
or
—l<m<I. (9.61)
The rotational eigenfunctions are
I, m) = Ny, P"(cos6)e™?, (9.62)
with normalization factor
Nim = (—l)m\/[214—; : %] (9.63)

These harmonic eigenfunctions reflect the allowed boundary conditions for
systems on spherical spacetimes. They also reflect particle statistics under the
interchange of identical particles. The eigenvalues of the spherical harmonics
are =1 in 3 4+ 1 dimensions, corresponding to (symmetrical) bosons and
(anti-symmetrical) fermions; in 2 + 1 dimensions, the Abelian rotation group
has arbitrary boundary conditions corresponding to the possibility of anyons, or
particles with ‘any’ statistics [83, 89].

9.4 Lorentz invariance
9.4.1 Physical basis

The Lorentz group is a non-compact Lie group which lies at the heart of
Einsteinian relativistic invariance. Lorentz transformations are coordinate
transformations which preserve the relativistic scalar product

xty, = —x"y0 +x'y, 9.64)
and therefore also the line element
ds? = g, dx"dx". (9.65)

Lorentz transformations include, like the Galilean group, translations, rotations
and boosts, or changes of relative speed. Under a linear transformation of x*,
we may write generally

= x"M =U"x" +a", (9.66)
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220 9 Spacetime transformations

where a* is a constant translation and

ax"
Ut =
Voo 9xY

(9.67)

is constant.

9.4.2 Lorentz boosts and rotations

A boost is a change of perspective from one observer to another in relative
motion to the first. The finite speed of light makes boosts special in Einsteinian
relativity. If we refer to figure 9.1 and consider the case of relative motion along
the x! axis, such that the two frames S and S’ coincide at x° = 0, the Lorentz
transformation relating the primed and unprimed coordinates may be written

X" =y = Bx") = x"cosha — x' sinhar

X' =y = Bx% = x' cosha — x’sinha

x? = x?

x” =3, (9.68)

where

y=1/v1-p

pi=v'/c
B =B Bi
o = tanh ™' B. (9.69)

The appearance of hyperbolic functions here, rather than, say, sines and cosines
means that there is no limit to the numerical values of the group elements.
The group is said to be non-compact. In matrix form, in (3 + 1) dimensional
spacetime we may write this:

y —yB 00 cosha —sinha 0 O
| =y v 0 0| | —sinha cosha O O
L&) = 0 0O 1 0| 0 0 1 0
0 0 01 0 0 0 1
(9.70)
where the ‘rapidity’ « = tanh™' 8. This may be compared with the explicit form
of a rotation about the x! axis:
1 0 O 0
01 O 0
LR) = 0 O cosf® —sinf ©.71)
0 O sinf® cosé
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9.4 Lorentz invariance 221

Notice that the non-trivial parts of these matrices do not overlap. This leads
to an important result, which we shall derive below, namely that rotations
and boosts are independent transformations which can be used to parametrize
general transformations.

The form of these matrix representations makes it clear that the n-dimensional
group of rotations, SO (n), is a sub-group with irreducible representations

L,,(R) = ( (1) 1?-- ) (9.72)
ij

and similarly that boosts in a single direction also form a sub-group. General
boosts in multiple directions do not form a group, however.

The form of a general boost can be derived as a generalization of the formulae
in eqns. (9.68) on the basis of general covariance. We can write a general form
based on figure 9.1 and eqns. (9.68)

dx” =y (dx® — B’ dx)
dx’’ = (c] 8+ ¢ ’Bﬁﬂ’) dx/ —y g dx°. (9.73)

The unknown coefficients label projection operators for longitudinal and trans-
verse parts with respect to the n-component velocity vector 8'. By squaring the
above expressions and using the invariance of the line element

— —(dx9? + (dx)? = —(dx")? + (dx)?, (9.74)
giving
—(dx")? = —p? ((dx*)? = 2(B'dx)dx’ + (B'dx;)?) (9.75)
and

(dx()/)z = (C% 8/'1( + (2C1C2 + C2) ﬁ]ﬂk) ’dxk

B2
20207,042 i 0
+ vy B(dx")” = 2y (c1 + c2) (B dx;)dx, (9.76)
one compares the coefficients of similar terms with the untransformed ds> to
obtain
Cc = 1
o=y—1 9.77)

Thus, in 1 + n block form, a general boost may be written as

y —J/,Bi
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222 9 Spacetime transformations

9.4.3 The homogeneous Lorentz group: SO(1, n)

It is convenient to divide the formal discussion of the Lorentz group into two
parts. In the first instance, we shall set the inhomogeneous term, a,,, to zero. A
homogeneous coordinate transformation takes the form

= x"M = LF X", (9.79)

where L, is a constant matrix. It does not include translations. After a
transformation of the line element, one has

ds’? = g;w (x")dx* dx"’

= gu(x)L" L" dx"dx". (9.80)
The metric must compensate for this change by transforming like this:
gu(x)=LJL} g, (x). (9.81)

This follows from the above transformation property. We can see this in matrix
notation by considering the constant metric tensor n,,, = diag(—1,1,1,1,...),
which must be invariant if the scalar product is to be preserved. In a Cartesian
basis, we have

XMy = XMy = nu (Lx)*(Ly)"
x'ny=(Lx)"n(Ly)
=x"LTyLy. (9.82)

Comparing the left and right hand sides, we have the matrix form of eqn. (9.81)
in a Cartesian basis:

n=L"nL. (9.83)

The matrices L form a group called the homogeneous Lorentz group. We
can now check the group properties of the transformation matrices L. The
existence of an associative combination rule is automatically satisfied since ma-
trix multiplication has these properties (any representation in terms of matrices
automatically belongs to the general linear group G (n, R)). Thus we must show
the existence of an inverse and thus an identity element. Acting on the left of
eqn. (9.83) with the metric

nL"nL=n*=I1=L""L, (9.84)
where [ is the identity matrix belonging to G L(n, R). Thus, the inverse of L is
L'=nL"y. (9.85)

In components we have
(LY =n** L’ n,, = LM (9.86)

Since the transpose matrix is the inverse, we can write the Lorentz group as
SO(1,3).
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9.4 Lorentz invariance 223

Dimension and structure of the group The symmetry in (n + 1)> components of
L, implies that not all of the components may be chosen independently. The
fact that only half of the off-diagonal components are independent means that
there are

_(n+D*—(n+1)

de 5

(9.87)

independent components in n+1 dimensions, given by the independent elements
of @, to be defined below. Another way of looking at this is that there are (n +
1)? components in the matrix L lf , but the number of constraints in eqn. (9.83)
limits this number. Eqn. (9.83) tells us that the transpose of the equation is
the same, thus the independent components of this equation are the diagonal
pieces plus half the off-diagonal pieces. This is turn means that the other half of
the off-diagonal equations represent the remaining freedom, or dimensionality
of the group. dg is the dimension of the inhomogeneous Lorentz group. The
components of

gpr/tyLvﬂ = Sap
may be written out in 1 + n form, u = (0, i) form as follows:
L%L% goo + LY, gij = goo

L%LE goo + L5L' ) g = 8io =0
LO%L° goo + LNL'; gij = gij. (9.88)

This leads to the extraction of the following equations:

(L? = 1+ LigLly
LoYL’ = LK Ly
LOLO + Ly LY = ¢;;. (9.89)

These may also be presented in a schematic form in terms of a scalar S, a vector
Vand an n x n matrix M:

s VI
7 1
giving
S$?=1+VV,
SV =vVTm
I=M"M+VV", (9.91)
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224 9 Spacetime transformations

It is clear from eqn. (9.90) how the n-dimensional group of rotations, SO (n),
is a sub-group of the homogeneous Lorentz group acting on only the spatial
components of spacetime vectors:

1 0
L"(R) = ( 0 R, ) (9.92)

Notice that it is sufficient to know that LOO = 1 to be able to say that a Lorentz
transformation is a rotation, since the remaining equations then imply that

M™™ = R'R =1, (9.93)

i.e. that the n-dimensional sub-matrix is orthogonal. The discussion of the
Lorentz group can, to a large extent, be simplified by breaking it down into
the product of a continuous, connected sub-group together with a few discrete
transformations. The elements of the group for which detL = 41 form a
sub-group which is known as the proper or restricted Lorentz group. From
the first line of eqn. (9.89) or (9.91), we have that L}, > 1 or L% < —1.
The group elements with LY > 1 and detL = +1 form a sub-group called
the proper orthochronous Lorentz group, or the restricted Lorentz group. This
group is continuously connected, but, since there is no continuous change of
any parameter that will deform an object with det L = 41 into an object with
det L = —1 (since this would involve passing through det L = 0), this sub-group
is not connected to group elements with negative determinants. We can map
these disconnected sub-groups into one another, however, with the help of the
discrete or large Lorentz transformations of parity (space reflection) and time
reversal.

Group parametrization and generators The connected part of the homogeneous
Lorentz group may be investigated most easily by considering an infinitesimal
transformation in a representation which acts directly on spacetime tensors, i.e.
a transformation which lies very close to the identity and whose representation
indices A, B are spacetime indices w, v. This is the form which is usually
required, and the only form we have discussed so far, but it is not the only
representation of the group, as the discussion in the previous chapter should
convince us. We can write such an infinitesimal transformation, L(¢), in terms
of a symmetric part and an anti-symmetric part, without loss of generality:

L(e) =1+ €(®+ o), (9.94)

where @ is an anti-symmetric matrix, and / and @ together form the symmetric
part. € is a vanishingly small (infinitesimal) number. Thus we write, with
indices,

LP(e) =8/ +e@ +3)). (9.95)
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9.4 Lorentz invariance 225

Note that, for general utility, the notation commonly appearing in the literature
is used here, but beware that the notation is used somewhat confusingly. Some
words of explanation are provided below. Substituting this form into eqn. (9.81)
gives, to first order in €,

Guv (X)L LY, = gos + €(@ps + Dp. + @p + @3p) + -+ + O(€).

(9.96)
Comparing the left and right hand sides of this equation, we find that
Opy = =Wy
Wy = —0,, =0. (9.97)

Thus, the off-diagonal terms in L(€) are anti-symmetric. This property survives
exponentiation and persists in finite group elements with one subtlety, which is
associated with the indefinite metric. We may therefore identify the structure of
a finite Lorentz transformation, L, in spacetime block form. Note that a Lorentz
transformation has one index up and one down, since it must map vectors to
vectors of the same type:

LY ( Ly Lg ) (9.98)
" L) L/

1

There are two independent (reducible) parts to this matrix representing boosts
w,v = 0,7 and rotations p,v = 1i, j. Although the generator w,,, is purely
anti-symmetric, the 0, i components form a symmetric matrix under transpose
since the act of transposition involves use of the metric:

(L) =-L'y=L>. (9.99)
The second, with purely spatial components, is anti-symmetric since the gen-

erator is anti-symmetric, and the metric leaves the signs of spatial indices
unchanged:

(Ll.j)T =L (9.100)

J

Thus, the summary of these two may be written (with both indices down)

pr = _va,~ (9101)
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226 9 Spacetime transformations

The matrix generators in a (3 + 1) dimensional representation for the Lorentz
group in (3 + 1) spacetime dimensions, 742 = T*", are given explicitly by

0i 00
i 000
Ty = 0000
0000
00 i 0
ro02_] 0000
3+1 i 000
0000
00 0 i
r os_] 0000
=100 0 0
i 000
00 0 0
00 —i 0
=10 1 o o
00 0 0
000 O
000 O
Ty = 00 0 —i
00 i O
0 0 00
0 0 0 i
T34 = 0 0 00 (9.102)
0 —i 0 0

Note that, because of the indefinite metric, only the spatial components of these
generators are Hermitian. This will lead us to reparametrize the components in
terms of positive definite group indices below. It is now conventional, if not a
little confusing, to write a general infinitesimal Lorentz transformation in the
form

1
UR:LR(a)):IRﬁ—Eia)MUTI’;V, (9103)

where I and Ty are the identity and generator matrices of a given representation
G . In terms of their components A, B,

i o
U4 = L% (w) = 8% + Ea)m[T,f 1%. (9.104)
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9.4 Lorentz invariance 227

The second term here corresponds to the second term in eqn. (9.95), but the
spacetime-specific indices @ in eqn. (9.95) have now been replaced by repre-
sentation indices A, B, anticipating a generalization to other representations.
A general finite element of the group in a representation Gy is obtained by
exponentiation,

LA = exp (%wm [TR”"]AB> (9.105)
Let us take a moment to understand this form, since it appears repeatedly in the
literature without satisfactory explanation. The w"” which appears here is not
the same as ew"” a priori (but see the next point). In fact, it plays the role of
the group parameters 6 in the previous chapter. Thus, in the language of the
previous chapter, one would write

i
Uy = Liye) = &y + 50°1T51%
i
LA, = exp (59“ [TR”]AB> : (9.106)

It is easy to see that the use of two indices is redundant notation, since most
of the elements of the generators are zeros. It is simply a convenient way to
count to the number of non-zero group dimensions dg in terms of spacetime
indices u, v = 0, ..., n+1 rather than positive definite a, b = 1, . .., d¢ indices
of the group space. The factor of % in eqn. (9.105) accounts for the double
counting due to the anti-symmetry in the summation over all u, v indices. The
fact that two indices are used in this summation, rather than the usual one index
in T¢, should not lead to confusion. To make contact with the usual notation for
generators, we may take the (3 + 1) dimensional case as an example. In (3 + 1)
dimensions, the homogeneous Lorentz group has d; = 6, and its complement
of generators may be written:

T ={T31", 5™, T30, T2 Tsn ™, Tsi ' (9.107)
where a = 1, ..., 6 and the group elements in eqn. (9.105) have the form
exp (10°T7). (9.108)

The first three T¢ are the generators of boosts (spacetime rotations), while the
latter three are the generators of spatial rotations. The anti-symmetric matrix of
parameters w,, contains the components of the rapidity «' from eqn. (9.68) as
well as the angles 6' which characterize rotations. Eqn. (9.105) is general for
any representation of the Lorentz group in n + 1 dimensions with an appropriate
set of matrix generators 7),,.
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228 9 Spacetime transformations

Lie algebra in 3 + 1 dimensions The generators above satisfy a Lie algebra
relation which can be written in several equivalent forms. In terms of the
two-index parametrization, one has

(TR, Te”) =i ("7 T + 0" Tg" = " Te"” = " Tg"")
(9.109)

This result applies in any number of dimensions. To see this, it is necessary to
tie up a loose end from the discussion of the parameters w,,, and €w,, above.
While these two quantities play formally different roles, in the way they are
introduced above they are in fact equivalent to one another and can even be
defined to be equal. This is not in contradiction with what is stated above, where
pains were made to distinguish these two quantities formally. The resolution of
this point comes about by distinguishing carefully between which properties
are special for a specific representation and which properties are general for all
representations. Let us try to unravel this point.

The Lorentz transformation is defined in physics by the effect it has on
spacetime reference frames (see figure 9.1). If we take this as a starting
point, then we must begin by dealing with a representation in which the
transformations act on spacetime vectors and tensors. This is the representation
in which A, B — uv, and we can write an infinitesimal transformation as in
eqn. (9.95). The alternative form in eqn. (9.104) applies for any representation.
If we compare the two infinitesimal forms, it seems clear that @,, plays the
role of a generator T4 5, and in fact we can make this identification complete by
defining

et = > [onih ] 9.110)
2 v
This is made clearer if we make the identification again, showing clearly the
representation specific indices:

o LA
ey = 3 [prT;;]] g ©.111)

This equation is easily satisfied by choosing
[T ~ 0™ n%. (9.112)
However, we must be careful about preserving the anti-symmetry of 73, so we

have
o 1A 2 1 o o

(7] =T x5 ("% — ™). 9.113)

Clearly, this equation can only be true when A, B representation indices belong
to the set of (3 + 1) spacetime indices, so this equation is only true in one
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9.4 Lorentz invariance 229

representation. Nevertheless, we can use this representation-specific result to
determine the algebra relation which is independent of representation as follows.
By writing

viA . y ;
[755] 5 =1 (" n"s — n"sn*")
c1B . o
[T ] =10 — n'en’®)., 9.114)
it is straightforward to compute the commutator,
[Tx", T Ve, (9.115)

in terms of 7 tensors. Each contraction over B leaves a new n with only
spacetime indices. The remaining #’s have mixed A, u indices and occur in
pairs, which can be identified as generators by reversing eqn. (9.113). The result
with A, C indices suppressed is given by eqn. (9.109). In fact, the expression is
uniform in indices A, C and thus these ‘cancel’ out of the result; more correctly
they may be generalized to any representation.

The representations of the restricted homogeneous Lorentz group are the
solutions to eqn. (9.109). The finite-dimensional, irreducible representations can
be labelled by two discrete indices which can take values in the positive integers,
positive half-integers and zero. This may be seen by writing the generators in
a vector form, analogous to the electric and magnetic components of the field
strength F*V in (3 + 1) dimensions:

. . 1 .
J'=Tp= Ee,-jkak =(T> 17" 1)
K ' =T}/c= T% = (1%, T2, 7%). (9.116)
These satisfy the Lie algebra commutation rules
[T}, T3] = ie”* T}
[T}, Tg'] = —ie*TE/c?
[T}, TJ1 = i€V T (9.117)
Also, as with electromagnetism, one can construct the invariants
aa 1 v 2 2.2
TT" = S Tau Ty = Tj = T/
1 oo .
ge“"””Tl’; Ty’ = —T Tg;/c. (9.118)
These quantities are Casimir invariants. They are proportional to the identity

element in any representation, and thus their values can be used to label the
representations. From this form of the generators we obtain an interesting
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230 9 Spacetime transformations

perspective on electromagnetism: its form is an inevitable expression of the
properties of the Lorentz group for vector fields. In other words, the constraints
of relativity balanced with the freedom in a vector field determine the form of
the action in terms of representations of the restricted group.

The structure of the group can be further unravelled and related to earlier
discussions of the Cartan—Weyl basis by forming the new Hermitian operators

1 .
E; = 2 xn (Tg +iTg/c)

1
F; = 2 Xn (Tg —iTg/c) (9.119)

which satisfy the commutation rules

[Ei, Ejl =1xn€iEx
[F;, Fil =1xn€ijiFr
[E;, F;]=0. (9.120)

The scale factor, xj, is included for generality. It is conventional to discuss
angular momentum directly in quantum mechanics texts, for which x;, — h.
For pure rotation, we can take x, = 1. As a matter of principle, we choose
to write x;, rather than #, since there is no reason to choose a special value
for this scale on the basis of group theory alone. The special value y;, = 4 is
the value which is measured for quantum mechanical systems. The restricted
Lorentz group algebra now has the form of two copies of the rotation algebra
su(2) in three spatial dimensions, and the highest weights of the representations
of these algebras will be the two labels which characterize the full representation
of the Lorentz group representations.

From the commutation rules (and referring to section 8.5.10), we see that the
algebra space may be spanned by a set of basis vectors (2Amax + 1) (2A[ , + 1)
of them). It is usual to use the notation

Ae = xn (me, mf)
Amax = Xn (€, f) (9.121)

in physics texts, where they are referred to as quantum numbers rather than
algebra eigenvalues. Also, the labels jj, j, are often used for e, f, but, in the
interest of a consistent and unique notation, it is best not to confuse these with
the eigenvalues of the total angular momentum J; which is slightly different.
In terms of these labels, the Lorentz group basis vectors may be written as
le,me; f,my), where —e < m, < e, —f <my < f, and e, m,, f, m take
on integer or half-integer values. The Cartan—Weyl stepping operators are then,
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9.4 Lorentz invariance 231

by direct transcription from section 8.5.10,

Eile,me; f,my) = (E1 £ iEs)le, m,; f,my)

= xn VeTm)etm,+1)le,m,£1; fymy)
Esle,m.; fymy) = xn mele,mg; f,my) 9.122)

and

File,me; fymy) = (Fy £iF)|e, m,; f,my)

= Vf Fmp)(f £my+1) |e,me; fymy 1)
File,m;;e,m,) = x, myle,m,; f,my). (9.123)

The algebra has factorized into two su(2) sub-algebras. Each irreducible repre-
sentation of this algebra may be labelled by a pair (e, f), which corresponds to
boosts and rotations, from the factorization of the algebra into E and F parts.
The number of independent components in such an irreducible representation
is 2e + 1)(2f + 1) since, for every e, f can run over all of its values, and
vice versa. The physical significance of these numbers lies in the extent to
which they may be used to construct field theories which describe a real physical
situations. Let us round off the discussion of representations by indicating how
these irreducible labels apply to physical fields.

9.4.4 Different representations of the Lorentz group in 3 + 1 dimensions

The explicit form of the Lorentz group generators given in eqns. (9.102) is
called the defining representation. It is also the form which applies to the
transformation of a spacetime vector. Using this explicit form, we can compute
the Casimir invariants for E; and F; to determine the values of e and f which
characterize that representation. It is a straightforward exercise to perform the
matrix multiplication and show that

. 1 3
E* = E'Ei = 20" (Tg = T/ = 7 0° B, (9.124)
where I3, is the identity matrix for the defining representation. Now, this
value can be likened to the general form to determine the highest weight of
the representation e:

3
E* =207 b =e(e+1)° bar, (9.125)
whence we deduce that e = % The same argument may be applied to F2, with

the same result. Thus, the defining representation is characterized by the pair of

numbers (e, f) = (%, % .
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232 9 Spacetime transformations

The Lorentz transformations have been discussed so far in terms of tensors,
but the independent components of a tensor are not always in an obvious form.
A vector, for instance, transforms as

At — LR AY, (9.126)
but a rank 2-tensor transforms with two such Lorentz transformation matrices
A" — L“pL”J AP?. 9.127)

The independent components of a rank 2-tensor might be either diagonal or
oft-diagonal, and there might be redundant zeros or terms which are identical
by symmetry or anti-symmetry, but one could think of re-writing eqn. (9.127)
in terms of a single larger matrix acting on a new vector where only the
independent components were present, rather than two smaller matrices acting
on a tensor. Again, this has to do with a choice of representations. We just pick
out the components and re-write the transformations in a way which preserves
their content, but changes their form.

Suppose then we do this: we collect all of the independent components of any
tensor field into a column vector,

aj
ap

AW;;;_ — ) , (9.128)
any

where N is the total number of independent components in the object being
acted upon, and is therefore the dimension of this representation. The array of
matrices L (one for each index) can now be replaced by a single matrix Lg
which will have as many independent components as the product of the L’s.
Often such a single matrix will be reducible into block-diagonal form, i.e. a
direct sum of irreducible representations.

The irreducible blocks of any (34-1) spacetime-dimensional Lorentz transfor-
mation of arbitrary representation dy are denoted D/)(Gg). A tensor trans-
formation of rank N might therefore decompose into a number of irreducible
blocks in equivalent-vector form:

LGBAB — plenfi o) D) o) Den- v (9.129)
The decomposition of a product of transformations as a series of irreducible
representations
DY@ D® =3 "¢, DV (9.130)
@
is called the Clebsch—Gordon series. The indices A, B run over 1, ..., 2e +

1)(2f 4+ 1) for each irreducible block. For each value of e, we may take all the
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9.4 Lorentz invariance 233

Table 9.1. Spin/helicity properties of some representations of the Lorentz group in
(3 + 1) dimensions.

The number of degrees of freedom (D.F.) ¢ = (2¢ 4+ 1)(2f + 1). Note that the
electromagnetic field F),, lacks the longitudinal mode my; = 0 of the massive vector

field A,,.
Representation ‘Spin’ D.E.  Description
(e, f) mg=e+f ¢
(3. 0) 3 2 Weyl 2-spinor
(O, %) % 2 Weyl 2-spinor
0,0 0 1 trivial scalar
(%, 0) & (0, %) :I:% 4 Dirac 4-spinor
11
323 0, £1 4 4-vector A,
(1,00® (0, 1) +1 6 anti-symm. F,,

1, d,080,1) 0,00 0,£1,£2 16  rank 2-tensor

values of f in turn, and vice versa. So which representation applies to which
field? We can look at this in two ways.

e We see that e, f are allowed by the general solution of the Lorentz
symmetry. The values are 0, %, 1,.... We then simply construct fields
which transform according to these representations and match them with
physical phenomena.

e We look at fields which we know about (¢, A, g, ...) and determine
what e, f these correspond to.

Some common values of ‘spin’ are listed in table 9.1. Counting the highest
weights of the blocks is not difficult, but to understand the difference between a
massless vector field and a massive vector field, for example (both with highest
spin weight 1), we must appreciate that these fields have quite different space-
time transformation properties. This is explained by the fact that there are two
ways in which a spin 1 field can be constructed from irreducible representations
of the Lorentz group, and they form inequivalent representations. Since we are
dealing with the homogeneous Lorentz group in a given frame, the spin is the
same as the total intrinsic angular momentum of the frame, and is defined by a
sum of the two vectors

Si = Jl’ = Ei + Fi, (9131)
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234 9 Spacetime transformations

with maximum helicity s given by e + f; the range of allowed values follows
in integer steps from the rules of vector addition (see section 11.7.4). The
maximum value is when the vectors are parallel and the minimum value is when
they are anti-parallel. Thus

s=x(e+ f),xle+ f—1),...,Ele— f]. (9.132)

The spin s is just the highest weight of the Lorentz representation. Of all
the representations which one might construct for physical models, we can
narrow down the possibilities by considering further symmetry properties. Most
physical fields do not change their properties under parity transformations
or spatial reflection. Under a spatial reflection, the generators E;, F; are
exchanged:

PEP'=F,
PEP ' =E;. (9.133)
In order to be consistent with spatial reflections, the representations of parity-

invariant fields must be symmetrical in (e, f). This means we can either make
irreducible representations of the form

(e, e) (9.134)
or symmetrized composite representations of the form

(e, [) @ (f,e), (9.135)

such that exchanging e <> f leaves them invariant.

Helicity values for spin 1 For example, a spin 1 field can be made in two ways
which correspond to the massless and massive representations of the Poincaré
algebra. In the first case, a spin 1 field can be constructed with the irreducible
transformational properties of a vector field,

L] 9.136
(53): 130

A field of this type would exist in nature with spin/helicities s = 0, 1. These
correspond to: (i) 2s 4+ 1 = 1, i.e. one longitudinal scalar component Ay, and (ii)
2s+1 = 3, a left or right circularly polarized vector field. This characterizes the
massive Proca field, A,,, which describes W and Z vector bosons in the electro-
weak theory. However, it is also possible to construct a field which transforms
as

(1,0) & (0, 1). (9.137)
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9.4 Lorentz invariance 235

The weight strings from this representation have only the values m; = +1, the
left and right circular polarizations. There is no longitudinal zero component.
The values here apply to the photon field, F,,. The symmetrization corre-
sponds to the anti-symmetry of the electromagnetic field strength tensor. The
anti-symmetry is also the key to understanding the difference between these two
representations.

One reason for looking at this example is that, at first glance, it seems
confusing. After all, the photon is also usually represented by a vector potential
A,,, but here we are claiming that a vector formulation is quite different from
an anti-symmetric tensor formulation. There is a crucial difference between the
massive vector field and the massless vector field, however. The difference can
be expressed in several equivalent ways which all knit together to illuminate the
theme of representations nicely.

The physical photon field, F),,, transforms like a tensor of rank 2. Because
of its anti-symmetry, it can also be written in terms of a massless 4-vector
potential, which transforms like a gauge-invariant vector field. Thus, the
massless vector field is associated with the anti-symmetric tensor form. The
massive Proca field only transforms like a vector field with no gauge invariance.
The gauge invariance is actually a direct manifestation of the difference in trans-
formation properties through a larger invariance group with a deep connection
to the Lorentz group. The true equation satisfied by the photon field is

9 F"' = @sh —9"9,)A, =0, (9.138)
while the Proca field satisfies
(-0 +m*A, =0. (9.139)

This displays the difference between the fields. The photon field has a degree
of freedom which the Proca field does not; namely, its vector formulation is
invariant under

Ay = A+ (3,9), (9.140)

for any scalar function s(x). The Proca field is not. Because of the gauge
symmetry, for the photon, no coordinate transformation is complete without an
associated, arbitrary gauge transformation. A general coordinate variation of
these fields illustrates this (see section 4.5.2).

Photon field §,A* =¢,F"*
Proca field 8, A" = €,(3VAM).

The difference between these two results is a gauge term. This has the
consequence that the photon’s gauge field formulation behaves like an element
of the conformal group, owing to the spacetime-dependent function s(x). This
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236 9 Spacetime transformations

is very clearly illustrated in section 11.5. The gauge field A, must transform
like this if the tensor F),, = 0,A, — 9,A, which derives from it is to transform
like an element of the Lorentz group. The same is not true of the Proca field,
A, which is simply a vector field without complication.

Appearances can therefore be deceptive. The spin 1 vector fields might
look the same, but the gauge invariance of the gauge field associates it with
an anti-symmetric second-rank tensor. The anti-symmetric property of the
photon tensor endows it with a property called transversality, which means
that the physical excitations of the field E;, B; are transverse to the direction
of propagation (i.e. to the direction of its momentum or wavenumber) k’. This
is not the case for the Proca field. It has components of its field in the direction
of motion, i.e. longitudinal components. The extra s = 0 mode in the helicity
values for the Proca field corresponds to a longitudinal mode.

For a massless field travelling in the x3 direction, k, = (k,0,0, k). Transver-
sality means that

k'F, =dF, =0, (9.141)
which is guaranteed by Maxwell’s equations away from sources. In gauge form,
kiA; =0, (9.142)

which can always be secured by a gauge transformation. For the massive vector
field, the lack of gauge invariance means that this condition cannot be secured.

9.4.5 Other spacetime dimensions

In a different number of spacetime dimensions n + 1, the whole of the above
(3 + 1) dimensional procedure for finding the irreducible representations must
be repeated, and the spin labels must be re-evaluated in the framework of a new
set of representations for the Lorentz group. This will not be pursued here.

9.4.6 Factorization of proper Lorentz transformations

From the discussion of the Lie algebra above, one sees that an arbitrary element
of the proper or restricted Lorentz group can be expressed as a product of a
rotation and a boost. This only applies to the restricted transformations, and
is only one possible way of parametrizing such a transformation. The result
follows from the fact that a general boost may be written as

% —yB'
g8 | (9.143)

il N L
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and a rotation may be written

L(R) = ( (1) Ig > (9.144)
ij

The result can be shown starting from a general Lorentz transformation as in
eqn. (9.98). Suppose we operate on this group element with an inverse boost (a
boost with g — —pg":

Y _yIBl LO Li
L' (B)L = : B o o ) 9.145
( ) ( _)/,Bl 8ij +()/ _ 1)% ) ( Ljo L_J ( )

1

where we define the velocity to be

B = <Li°) (9.146)
LY
This makes
y =L, (9.147)

and it then follows from eqns. (9.89) that this product has the form

1 0

L (B)L_(O M

) = L(R). (9.148)
This result is clearly a pure rotation, meaning that we can rearrange the formula
to express the original arbitrary proper Lorentz transformation as a product of a
boost and a rotation,

L = L(B)L(R). (9.149)

9.4.7 The inhomogeneous Lorentz group or Poincaré group in 3 + 1
dimensions

If the inhomogeneous translation term, a,,, is not set to zero in eqn. (9.66), one
is led to a richer and more complex group structure [137]. This is described by
the so-called inhomogeneous Lorentz group, or Poincaré group. It is a synthesis
of the physics of translations, from earlier in this chapter, and the fixed origin
behaviour of the homogeneous Lorentz group. The most general transformation
of this group can be written

X =L* x" +a", (9.150)

where a" is an x*-independent constant translation vector. These transfor-
mations cannot be represented by a dp = 4 representation by direct matrix
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238 9 Spacetime transformations

multiplication, but a dg = 5 representation is possible, by analogy with
eqn. (9.14), by embedding in one extra dimension:
n I
U3+1+1X“ = ( LOV alp_ ) ( xl ) = xM +Cl”'. (9151)

The generic infinitesimal Poincaré transformation may be written
i
U=1+ Ewulelew + i€, kk, (9.152)

for some scale x;, with dimensions of action. Inspired by the differential
representation for the translation group, we find a differential form for the
homogeneous Lorentz group, which might be combined with the translation
group in a straightforward way. These are:

Tpy = —i(x"3" — x"9")
I i
Ji = Eei./kT =3 Xn €ijk (X0 — X1 0;)
K; = Ty
Pu= Xn ku=—1x10,. (9.153)

An important difference between the inhomogeneous Lorentz group and the
homogeneous Lorentz group is that the total angular momentum generator, J;,
is no longer just the intrinsic angular momentum of a field, but it can include
orbital angular momentum about a point displaced from the origin. This means
that we have to be more careful than before in distinguishing spin s from
J = e + k by defining it only in an inertial rest frame with zero momentum.
It is easily verified that these representations satisfy the algebra relations. Using
these forms, it is a matter of simple algebra to evaluate the full algebraic content
of the Poincaré group:

ke, Tpol = —1(Mppks — Nucky), (9.154)
or equivalently
[ko, Ji1 =0
lki, Jil = =1 Xn €itmkim. (9.155)

These relations are trivial statements about the transformation properties of kg
(scalar) and k; (vector) under rotations. Using the definitions above, we also find
that

[ko, K;] = ik;
ki, K;1 = —i x5 mijko. (9.156)

These relations show that a boost K; affects ko, k;, but not k; for j # i.
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9.4 Lorentz invariance 239

Massive fields It is a curious feature of the Poincaré group, which comes about
because it arises in connection with the finite speed of light, that the mass of
fields plays a role in their symmetry properties. Physically, massless fields are
bound to move at the speed of light so they have no rest frame about which to
define intrinsic properties, like spin, which depend on coordinate concepts. It
is therefore necessary to find another way to characterize intrinsic rotation. We
can expect mass to play a role since it is linked to the momentum, which is the
generator of translations.
The Poincaré group leaves invariant the relation

p>c? + m*c* = const, (9.157)
where p, = (mc, p;). This is, in fact, a Casimir invariant, p*p,, up
to dimensional factors. Recall from the discussion of translations that the

momentum may be written

Pu = Xnku, (9.158)

where k, is the wavenumber or reciprocal lattice vector. As in the case of the
other groups, we can label the field by invariant quantities. Here we have the
quadratic Casimir invariants

I =jG+Dx’

p? =p’c? +m*ct, (9.159)
which commute with the group generators and are thus independent of symme-
try basis:

[P*, Pl =0
[p?, Ji1=0
[p?, K;]1=0. (9.160)

A covariant rotation operator can be identified which will be useful for dis-
cussing intrinsic in chapter 11. It is called the Pauli-Lubanski vector, and it is
defined by

Wzlxe T p? (9.161)
U zhuvkp p- .

The quadratic form, W?2, is Lorentz- and translation-invariant:

(W2, p.]=0
(W2, T,,] =0. 9.162)
W satisfies
W'p, =0 (9.163)
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240 9 Spacetime transformations

and
(W, Wyl = i€0p6 WP p° (9.164)

1
W? = -5 X 2T Ty p* + xu* T T, pypr.  (9.165)

If we consider W), in a rest frame where p; = 0, we have

1
erést = —mc(O, Ji, Jo, J3)rest = —Emc(O, S1, 52, 53), (9166)

where S; may be thought of as the intrinsic (non-orbital) rotation of the field
(called spin of the representation), which is defined by

=1 . 9.167)
rest

Thus, W* is clearly a 4-vector with the properties of intrinsic rotations in a rest
frame. Indeed, evaluating eqn. (9.164) in a rest frame, we find that

[Wi, W1 = —imc e WE. (9.168)
Or setting W; = —mc J;, we recover the rotational algebra
i, J1=1xnepnd" (9.169)

Thus the Poincaré-invariant quadratic form is

2
Wrest -

m>cc I =m?* jG+ 1) x5 Iz, (9.170)

For classifying fields, we are interested in knowing which of the properties of
the field can be determined independently (or which simultaneous eigenvalues
of the symmetry operators exist). Since the rest mass m is fixed by observation,
we need only specify the 3-momentum, p;, to characterize linear motion. From
eqns. (9.155), we find that J; and p; do not commute so they are not (non-
linearly) independent, but there is a rotation (or angular momentum) which does
commute with p;. Itis called the helicity and is defined by

A= Jipi, (9.171)

where p’ is a unit vector in the direction of the spatial 3-momentum. The
commutator then becomes

[pi,Jj]pj =1y eijkpkpj =0. (9.172)

Thus, A can be used to label the state of a field. A state vector is therefore
characterized by the labels (‘quantum numbers’ in quantum mechanics)

1©) = |m, j, p', A), 9.173)
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9.4 Lorentz invariance 241

i.e. the mass, the linear momentum, the highest weight of the rotational
symmetry and the helicity. In a rest frame, the helicity becomes ill defined, so
one must choose an arbitrary component of the spin, usually m; as the limiting
value.

We would like to know how these states transform under a given Poincaré
transformation. Since the states, as constructed, are manifestly eigenstates of
the momentum, a translation simply incurs a phase

|©) — exp (ip"a,) 1©). (9.174)

Homogeneous Lorentz transformations can be used to halt a moving state.
The state |m, j, p', A) can be obtained from |m, j, 0, s;) by a rotation into the
direction of p; followed by a boost exp(i6’ K;) to set the frame in motion. Thus

Im, j, p',A) = L|m, j,0,s,). (9.175)

The sub-group which leaves the momentum p,, invariant is called the little group
and can be used to classify the intrinsic rotational properties of a field. For
massive fields in 3 + 1 dimensions, the little group is covered by SU (2), but this
is not the case for massless fields.

Massless fields For massless fields, something special happens as a result of
motion at the speed of light in a special direction. It is as though a field is
squashed into a plane, and the rotational behaviour becomes two-dimensional
and Abelian. The direction of motion decouples from the two orthogonal
directions. Consider a state of the field

®7T> =|m7s’7Ts)">9 (9176)

where the momentum m, = 7 (1,0, 0, 1) is in the x3 direction, and the Lorentz
energy condition becomes p?c? = 0 or py = |p;|. This represents a “particle’
travelling in the x? direction at the speed of light. The little group, which leaves
p,. invariant, may be found and is generated by

A =1+ K
A =J; — K;
Ay = Js. (9.177)

Clearly, the x* direction is privileged. These are the generators of the two-
dimensional Euclidean group of translations and rotations called 1SO(2) or
E,. It is easily verified from the Poincaré group generators that the little group
generators commute with the momentum operator

[Ai, pu]1©5) = 0. (9.178)
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242 9 Spacetime transformations

The commutation relations for A; are

[Az, Al =1A,
[Az, Ar] = —1A,
[A1, Al =0. (9.179)

The last line signals the existence of an invariant sub-group. Indeed, one can
define a Cartan—Weyl form and identify an invariant sub-algebra H,

EL=A i\,
H = As, (9.180)
with Casimir invariant
C, = A% + A%
0=1[Cy, Al (9.181)
The stepping operators satisfy
[H,E+] =+ Ey4, (9.182)

ie. Ac = =£1. This looks almost like the algebra for su(2), but there is
an important difference, namely the Casimir invariant. A3 does not occur in
the Casimir invariant since it would spoil its commutation properties (it has
decoupled). This means that the value of Ac = m; is not restricted by the
Schwarz inequality, as in section 8.5.10, to less than ==A,.,x = £j. The stepping
operators still require the solutions for A = m; to be spaced by integers, but
there is no upper or lower limit on the allowed values of the spin eigenvalues.
In order to make this agree, at least in notation, with the massive case, we label
physical states by A3 only, taking

Ai|®r) = Ay|O;) =0. (9.183)

Thus, we may take the single value H = A3 = A, = m; = A to be the angular
momentum in the direction x>, which is the helicity, since we have taken the
momentum to point in this direction. See section 11.7.5 for further discussion
on this point.

9.4.8 Curved spacetime: Killing’s equation

In a curved spacetime, the result of an infinitesimal translation from a point can
depend on the local curvature there, i.e. the translation is position-dependent.
Consider an infinitesimal inhomogeneous translation €* (x), such that

xt — LExV + e (x). (9.184)
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9.5 Galilean invariance 243

Then we have

ax'™
T LM 4 (B, (9.185)
axV

and
ds” = guw (L, + @p€") (L', + (o€"))dx’dx’
= 8uv [L/l:oLUA =+ L“p(agev) + (apEM)Lva 4ot 0(62)] dx'odx*,
(9.186)

The first term here vanishes, as above, owing to the anti-symmetry of o /.
Expanding the second term using eqn. (9.95), and remembering that both
w,, and €,(x) are infinitesimal so that €“w,, is second-order and therefore
negligible, we have an additional term, which must vanish if we are to have
invariance of the line element:

0,€, + 0ye, =0. (9.187)
The covariant generalization of this is clearly
V€, + Ve, =0. (9.188)

This equation is known as Killing’s equation, and it is a constraint on the
allowed transformations, €*(x), which preserve the line element, in a spacetime
which is curved. A vector, £*(x), which satisfies Killing’s equation is called
a Killing vector of the metric g,,. Since this equation is symmetrical, it has
%(n—i— 1)2+(n+1) independent components. Since £ has only n+1 components,
the solution is over-determined. However, there are %(n + 12 —-—m+1
anti-symmetric components in Killing’s equation which are unaffected; thus
there must be

m:(n—l—l)—l—%(n—i—l)z—(n—l-l) (9.189)

free parameters in the Killing vector, in the form:

V& +Vyg, =0
£u(x) = ay + wux”, (9.190)
where w,, = —w,,,. A manifold is said to be ‘maximally symmetric’ if it has the

maximum number of Killing vectors, i.e. if the line element is invariant under
the maximal number of transformations.

9.5 Galilean invariance

The relativity group which describes non-Einsteinian physics is the Galilean
group. Like the Poincaré group, it contains translations, rotations and boosts.
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244 9 Spacetime transformations

As a group, it is no smaller, and certainly no less complicated, than the Lorentz
group. In fact, it may be derived as the ¢ — oo limit of the Poincaré group. But
there is one conceptual simplification which makes Galilean transformations
closer to our everyday experience: the absence of a cosmic speed limit means
that arbitrary boosts of the Galilean transformations commute with one another.
This alters the algebra of the generators.

9.5.1 Physical basis

The Galilean group applies physically to objects moving at speeds much less
than the speed of light. For this reason, it cannot describe massless fields at
all. The care required in distinguishing massless from massive concepts in the
Poincaré algebra does not arise here for that simple reason. An infinitesimal
Galilean transformation involves spatial and temporal translations, now written
separately as

x'' = x4 8x
t'=t+6t, (9.191)
rotations by 6/ = 1e/*w ;; and boosts by incremental velocity §v’

¥ =xl =5t (9.192)

This may be summarized by the standard infinitesimal transformation form

¥ = (1 + %a)lmTlm>lj x/
=1 +i0); ¥/, (9.193)
where the matrix
O = k;dx' — @8t + 6, T} + v; T, (9.194)
The exponentiated translational part of this is clearly a plane wave:
U ~exp ik - §x — &dr). (9.195)
Galilean transformations preserve the Euclidean scalar product

Xx-y=x'y. (9.196)

9.5.2 Retardation and boosts

Retardation is the name given to the delay experienced in observing the effect of
a phenomenon which happened at a finite distance from the source. The delay is

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

9.5 Galilean invariance 245

caused by the finite speed of the disturbance. For example, the radiation at great
distances from an antenna is retarded by the finite speed of light. A disturbance
in a fluid caused at a distant point is only felt later because the disturbance
travels at the finite speed of sound in the fluid. The change in momentum felt by
a ballistic impulse in a solid or fluid travels at the speed of transport, i.e. the rate
of flow of the fluid or the speed of projectiles emanating from the source.

Retardation expresses causality, and it is important in many physical prob-
lems. In Galilean physics, it is less important than in Einsteinian physics
because cause and effect in a Galilean world (where v < ¢) are often assumed
to be linked instantaneously. This is the Galilean approximation, which treats
the speed of light as effectively infinite. However, retardation transformations
become a useful tool in systems where the action is not invariant under boosts.
This is because they allow us to derive a covariant form by transforming a
non-covariant action. For example, the action for the Navier—Stokes equation
can be viewed as a retarded snapshot of a particle field in motion. It is a snapshot
because the action is not covariant with respect to boosts. We also derived a
retarded view of the electromagnetic field arising from a particle in motion in
section 7.3.4.

Retardation can be thought of as the opposite of a boost transformation. A
boost transformation is characterized by a change in position due to a finite
speed difference between two frames. In a frame x’ moving with respect to a
frame x we have

x'(t) = xi(t) + 't (9.197)

Rather than changing the position variable, we can change the way we choose to
measure time taken for the moving frame to run into an event which happened
some distance from it:
(x' — x)!
tet =1 — ———. (9.198)
vl
Whereas the idea of simultaneity makes this idea more complicated in the
Einsteinian theory, here the retarded time is quite straightforward for constant
velocity, v', between the frames. If we transform a system into a new frame,
it is sometimes convenient to parametrize it in terms of a retarded time. To do
this, we need to express both coordinates and derivatives in terms of the new
quantity. Considering an infinitesimal retardation
dx!
et =1 — —, (9199)
vl
it is possible to find the transformation rule for the time derivative, using the
requirement that

dtret
dfrer

= 1. (9.200)
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246 9 Spacetime transformations

It may be verified that
. dx/
(3 +v' 9] [z - i} =1. (9.201)
v/
Thus, one identifies
=3 +v'0;. 9.202
Ay r + v 0; ( )

This retarded time derivative is sometimes called the substantive derivative. In
fluid dynamics books it is written

D d
Dt dte

(9.203)

It is simply the retarded-time total derivative. Compare this procedure with the
form of the Navier—Stokes equation in section 7.5.1 and the field of a moving
charge in section 7.3.4.

9.5.3 Generator algebra

The generators Tp and T are essentially the same generators as those which
arise in the context of the Lorentz group in eqn. (9.116). The simplest way
to derive the Galilean group algebra at this stage is to consider the ¢ — oo
properties of the Poincaré group. The symbols Tz and Tg help to identify
the origins and the role of the generators within the framework of Lorentzian
symmetry, but they are cumbersome for more pedestrian work. Symbols for the
generators, which are in common usage are

J' =T
N' =T (9.204)

These are subtly different from, but clearly related to, the symbols used for
rotations and boosts in the Poincaré algebra. The infinitesimal parameters, 6¢,
of the group are

0° = {81,8x", 0", 8v'}. (9.205)

In 3 + 1 dimensions, there are ten such parameters, as there are in the Poincaré
group. These are related to the symbols of the Lorentz group by

dv; = @i
Sxi =€
8t = €%/, (9.206)
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9.6 Conformal invariance 247

and

H +mc* = cpo = xn cko
H = y, o (=ho). (9.207)

Note that the zero point is shifted so that the energy H does not include the rest
energy mc? of the field in the Galilean theory. This is a definition which only
changes group elements by a phase and the action by an irrelevant constant.
The algebraic properties of the generators are the ¢ — oo limit of the Poincaré
algebra. They are summarized by the following commutators:

[ki,kj1=0
[Ni,N;j]=0

[H,ki]=0

[H Ji]=0

[H, Ni]=1xuk

[kz, Sl = =1 xn €itmkm

[ki, N1 =im xp 6;;

[Ji, Ni] = i€i1m N

[Ji, J;] = i€ i, (9.208)

where po/c — m is the mass, having neglected H/c = xj, @/c. The Casimir
invariants of the Galilean group are

JJ, kK'K;, N'N;. (9.209)

The energy condition is now the limit of the Poincaré Casimir invariant, which
is singular and asymmetrical:

P _ g (9.210)

(see section 13.5).

9.6 Conformal invariance

If we relax the condition that the line element ds? must be preserved, and require
it only to transform isotropically (which preserves ds? = 0), then we can allow
transformations of the form

ds? = —dr? 4+ dx? + dy?* + dz?
— Q*(x) (—df? + dx? + dy* +dz?), (9.211)
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248 9 Spacetime transformations

where €2(x) is a non-singular, non-vanishing function of x*. In the action, we
combine this with a similar transformation of the fields, e.g. in n+ 1 dimensions,

P(x) > QU2 (x). (9.212)

This transformation stretches spacetime into a new shape by deforming it with
the function ©2(x) equally in all directions. For this reason, the conformal
transformation preserves the angle between any two lines which meet at a vertex,
even though it might bend straight lines into curves or vice versa.

Conformal transformations are important in physics for several reasons. They
represent a deviation from systems of purely Markov processes. If a translation
in spacetime is accompanied by a change in the environment, then the state
of the system must depend on the history of changes which occurred in the
environment. This occurs, for instance, in the curvature of spacetime, where
parallel transport is sensitive to local curvature; it also occurs in gauge theories,
where a change in a field’s internal variables (gauge transformation) accompa-
nies translations in spacetime, and in non-equilibrium statistical physics where
the environment changes alongside dynamical processes, leading to conformal
distortions of the phase space. Conformal symmetry has many applications.

Because the conformal transformation is a scaling of the metric tensor, its
effect is different for different kinds of fields and their interactions. The number
of powers of the metric which occurs in the action (or, loosely speaking, the
number of spacetime indices on the fields) makes the invariance properties of the
action and the field equations quite different. Amongst all the fields, Maxwell’s
free equations (a massless vector field in) in 3 4+ 1 dimensions stand out for
their general conformal invariance. This leads to several useful properties of
Maxwell’s equations, which many authors unknowingly take for granted. Scalar
fields are somewhat different, and are conformally invariant in 141 dimensions,
in the massless case, in the absence of self-interactions. We shall consider these
two cases below.

Consider now an infinitesimal change of coordinates, as we did in the case of
Lorentz transformations:

xt— AR XY + e (x). (9.213)
The line element need not be invariant any longer; it may change by
ds? = Q%(x) ds. (9.214)

Following the same procedure as in eqn. (9.186), we obtain now a condition for
eqn. (9.214) to be true. To first order, we have:

Q) gy = guv + 0,u€y + D (9.215)

Clearly, €* and €2(x) must be related in order to satisfy this condition. The
relationship is easily obtained by taking the trace of this equation, multiplying
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9.6 Conformal invariance 249

through by g"V. This gives, in n + 1 dimensions,
Q7 — D(n + 1) = 2(d€™). (9.216)

Using this to replace €2(x) in eqn. (9.215) gives us the equation analogous to
eqn. (9.187), but now for the full conformal symmetry:

A€y + Ove, = (0r€™) guv- (9.217)

n+1)
This is the Killing equation for the conformal symmetry. Its general solution in
n + 1 dimensions, forn > 1, is

e“(x) = a* + bx" + "x, + 2x*c’x, — c*x2, (9.218)

where 0"’ = —w"*. In (1 4+ 1) dimensional Minkowski space, eqn. (9.217)
reduces to two equations

8()60 = —8161
do€] = —0;€p. (9.219)

In two-dimensional Euclidean space, i.e. n = 1, followed by a Wick rotation to
a positive definite metric, this equation reduces simply to the Cauchy—Riemann
relations for €*(x), which is solved by any analytic function in the complex
plane. After a Wick rotation, one has

a()E() = 3161
8061 = —3160. (9220)
To see that this is simply the Cauchy—Riemann relations,
d
f@) =0, (9.221)
dz*
we make the identification
z=x"+ix!
f(2) = €p + i€ (9.222)
and note that
d 1(8 +19d1) (9.223)
= — 1 . .
dzx 2" !

This property of two-dimensional Euclidean space reflects the well known
property of analytic functions in the complex plane, namely that they all are
conformally invariant and solve Laplace’s equation:

. d d
Vi) = 4d—zd—z*f(z> = 0. (9.224)
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250 9 Spacetime transformations

It makes two-dimensional, conformal field theory very interesting. In particular
it is important for string theory and condensed matter physics of critical
phenomena, since the special analyticity allows one to obtain Green functions
and conservation laws in the vicinity of so-called fixed points.

9.6.1 Scalar fields in n + 1 dimensions

We begin by writing down the action, making the appearance of the metric
explicit:

11
S = /dnﬂxx/?E {5(3u¢)g“”(8u¢) + V(@) - J¢} : (9.225)

Note the factor of the determinant of the metric in the volume measure: this will
also scale in the conformal transformation. We now let

8uv = Qz(x)g;w
g — QZ(n-‘rl)(x) g

P (x) > QUT2(x)p(x)
J = Q¥(x)J, (9.226)

where « is presently unknown. It is also useful to define the ‘connection’ I'), =
©Q7'9,92. We now examine the variation of the action under this transformation:

n —on l —n _gl“f —n) /27
55=/d +1x\/§§2 _HZ{(aH-Q(l )/25¢)§(8v9(1 )/2¢)

48V — QU-m/2ta] 55}. (9.227)

Integrating by parts to separate §¢ gives

1
88 = /d"“x NrEvink
C
{—(1 +n—2T, Q2545 (0,21 "/*p)
_ Q(l—n)/2—26$§ll«v(auan(l—n)/Za) + 8V} (9228)

Notice how the extra terms involving I',,, which arise from derivatives acting
on €2, are proportional to (1 +n — 2) = n — 1. These will clearly vanish
in n = 1 dimensions, and thus we see how n = 1 is special for the scalar
field. To fully express the action in terms of barred quantities, we now need
to commute the factors of €2 through the remaining derivatives and cancel them
against the factors in the integration measure. Each time Q="/2 passes through
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9.6 Conformal invariance 251

a derivative, we pick up a term containing %(1 —n)I",,, thus, provided we have
a=—m+3)/2and §V = 0, we may write

88 = /d"“x NG é [-O¢—T}8¢ +terms x (n —1).  (9.229)

Clearly, in 1 4+ 1 dimensions, this equation is conformally invariant, provided
the source J transforms in the correct way, and the potential V vanishes. The
invariant equation of motion is

o) =J. (9.230)

9.6.2 The Maxwell field in n + 1 dimensions

The conformal properties of the Maxwell action are quite different to those of
the scalar field, since the Maxwell action contains two powers of the inverse
metric, rather than one. Moreover, the vector source coupling J# A, contains
a power of the inverse metric because of the indices on A,,. Writing the action
with metric explicit, we have

1(1
S = /d”“x\/gz {ZF,“,g"pg“FM + JMg"“A,)} . (9.231)
We now re-scale, as before, but with slightly different dimensional factors
guv = L (N

g — Qz(n+1)(x) §
A, (x) = QU2 (0)A, (x)

J,— QJ,, (9.232)
and vary the action to find the field equations:
— 1 _ B gupgw\
58S = / dH /gt E{au(aA,,sﬁ3 VI
+ T, g QB-ma-2tag g } (9.233)

Integrating by parts, we obtain
58 = f "ty %\/? Q2 5, [ (1 — I, T,
— 8,F,5" 8" + 7,@““9“—2}. (9.234)
On commuting the scale factor through the derivatives using

1 — _ _
3, Fy = 5(3 =)0, [TpA —ThA, |+ 0, F i, (9.235)
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252 9 Spacetime transformations

we see that we acquire further terms proportional to n — 3. Three dimensions
clearly has a special significance for Maxwell’s equations, so let us choose n = 3
now and use the notation 9, to denote the fact that the derivative is contracted
using the transformed metric g ,,. This gives

1 R — _
88 = /d"“x—\/? {—SMFW + J”QH} 5A, = 0. (9.236)
C

Notice that the invariance of the equations of motion, in the presence of a
current, depends on how the current itself scales. Suppose we couple to the
current arising from a scalar field which has the general form J, ~ ¢*d,¢,
then, from the previous section, this would scale by Q"~'. For n = 1, this
gives precisely « = n — 1 = 2. Note, however, that the matter field itself
is not conformally invariant in n = 3. As far as the electromagnetic sector
is concerned, however, n = 3 gives us the conformally invariant equation of
motion

0, F" =T". (9.237)
The above treatment covers only two of the four Maxwell’s equations. The
others arise from the Bianchi identity,

"y, Fp = 0. (9.238)

The important thing to notice about this equation is that it is independent of the
metric. All contractions are with the metric-independent, anti-symmetric tensor;
the other point is precisely that it is anti-symmetric. Moreover, the field scale
factor Q37" /2 is simply unity in n = 3, thus the remaining Maxwell equations
are trivially invariant.

In non-conformal dimensions, the boundary terms are also affected by the
scale factor, 2. The conformal distortion changes the shape of a boundary,
which must be compensated for by the other terms. Since the dimension
in which gauge fields are invariant is different to the dimension in which
matter fields are invariant, no gauge theory can be conformally invariant in flat
spacetime. Conformally improved matter theories can be formulated in curved
spacetime, however, in any number of dimensions (see section 11.6.3).

9.7 Scale invariance

Conformal invariance is an exacting symmetry. If we relax the x-dependence of
Q(x) and treat it as a constant, then there are further possibilities for invariance
of the action. Consider

1 1
S = / (dx) | 509D, ) + > gt (9.239)
— ||
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9.8 Breaking spacetime symmetry 253

Table 9.2. Scale-invariant potentials.

n=1 n=2 n=3

Al Lg¢® e

Let us scale

gll\) - g;w Qz
P(x) = px) Q7°, (9.240)

where « is to be determined. Since the scale factors now commute with the
derivatives, we can secure the invariance of the action for certain / which satisfy,

QUlQ 2 —1=Q, (9.241)
which solves to give o = % — 1, and hence,
__ntl (9.242)
Cm+D2-1 '

Forn = 3, = 4 solves this; for n = 2, [ = 6 solves this; and for n = 1, it is not
solved for any [ since the field is dimensionless. We therefore have the globally
scale-invariant potentials in table 9.2.

9.8 Breaking spacetime symmetry

The breakdown of a symmetry means that a constraint on the uniformity of
a system is lost. This sometimes happens if systems develop structure. For
example, if a uniformly homogeneous system suddenly becomes lumpy, perhaps
because of a phase transition, then translational symmetry will be lost. If a
uniform external magnetic field is applied to a system, rotational invariance
is lost. When effects like these occur, one or more symmetry generators
are effectively lost, together with the effect on any associated eigenvalues
of the symmetry group. In a sense, the loss of a constraint opens up the
possibility of more freedom or more variety in the system. In the opposite
sense, it restricts the type of transformations which leave the system unchanged.
Symmetry breakdown is often associated with the lifting of degeneracy of group
eigenvalues, or quantum numbers.

There is another sense in which symmetry is said to be broken. Some
calculational procedures break symmetries in the sense that they invalidate the
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254 9 Spacetime transformations

assumptions of the original symmetry. For example, the imposition of periodic
boundary conditions on a field in a crystal lattice is sometimes said to break
Lorentz invariance,

Y(x+L)=¢x). (9.243)

The existence of a topological property such as periodicity does not itself break
the Lorentz symmetry. If there is a loss of homogeneity, then translational
invariance would be lost, but eqn. (9.243) does not imply this in any way: it
is purely an identification of points in the system at which the wavefunction
should have a given value. The field still transforms faithfully as a spacetime
scalar. However, the condition in eqn. (9.243) does invalidate the assumptions
of Lorentz invariance because the periodicity length L is a constant and we know
that a boost in the direction of that periodicity would cause a length contraction.
In other words, the fact that the boundary conditions themselves are stated in a
way which is not covariant invalidates the underlying symmetry.

Another example is the imposition of a finite temperature scale § = 1/kT.
This is related to the last example because, in the Euclidean representation, a
finite temperature system is represented as being periodic in imaginary time
(see section 6.1.5). But whether we use imaginary time or not, the idea of
a constant temperature is also a non-covariant concept. If we start in a heat
bath and perform a boost, the temperature will appear to change because of
the Doppler shift. Radiation will be red- and blue-shifted in the direction of
travel, and thus it is only meaningful to measure a temperature at right angles to
the direction of travel. Again, the assumption of constant temperature does not
break any symmetry of spacetime, but the ignorance of the fact that temperature
is a function of the motion leads to a contradiction.

These last examples cannot be regarded as a breakdown of symmetry, because
they are not properties of the system which are lost, they are only a violation of
symmetry by the assumptions of a calculational procedure.

9.9 Example: Navier-Stokes equations

Consider the action for the velocity field:
1 , o 4 .
S=rt /(dx) {Epvi(Dtv’) + pv'v/ (Dfve) + %(a,‘vl)2 + Jiv’} . (9.244)

where

Ji=F + 9P, (9.245)
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9.9 Example: Navier—Stokes equations 255

and
1/0
D,=a,+r=a,+_<’_p)
2\ »p
m m ViV m
lej =8118j ak +Flk] — 81181- 8k+ U_4] am(v Uk), (9246)

i

D -
pD—'; 4 (9 P) — uVi = Fi, (9.247)

where P is the pressure and F is a generalized force. This might be the effect
of gravity or an electric field in the case of a charged fluid.

These connections result from the spacetime dependence of the coordinate
transformation. They imply that our transformation belongs to the conformal
group rather than the Galilean group, and thus we end up with connection terms

Du’ o
== @+ (9.248)

where
o N" =0 (9.249)

and N* = (N, Nv').
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10

Kinematical and dynamical transformations

In addition to parameter symmetries, which express geometrical uniformity in
spacetime, some symmetries relate to uniformities in the more abstract space
of the dynamical variables themselves. These ‘internal’ symmetries can contain
group elements which depend on the spacetime parameters, so that there is a
cross-dependence on the internal and external parameters; they are intimately
connected to the concept of ‘charge’ (see also chapter 12).

Internal symmetries are not necessarily divorced from geometrical (parame-
ter) invariances, but they may be formulated independently of them. The link
between the two is forged by the spacetime properties of the action principle,
through interactions between fields which act as generators for the symmetries
(see, for instance, section 11.5).

10.1 Global or rigid symmetries

The simplest symmetries are global symmetries, whose properties are indepen-
dent of spacetime location. For example, the action

1 1
S::t/}dx){E(aﬂ¢xaﬂ¢)+-§nﬂ¢2} (10.1)

is invariant under the Z, reflection symmetry ¢ (x) — —¢(x) at all spacetime
points. This symmetry would be broken by a term of the form

1 I o, 1 4
S = /(dX) {5(3%)(%(25) tomeT+ e } (10.2)

The next most commonly identified symmetry is the U(1) phase symmetry,
which is exhibited by complex fields:

d — . (10.3)

256
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10.2 Local symmetries 257

The action
1 1,
S = f(dx) {E(B‘LCD*)(EJMCD) + Em CID*CD} (10.4)

is invariant under this transformation. This symmetry is related to the idea of
electric charge. One can say that charge is a book-keeping parameter for this
underlying symmetry, or vice versa.

Multi-component fields also possess global symmetries. For instance, the

model
1 1
S = /(dX) {5(3”%)(3“%) + §m2¢A¢A} (10.5)
is invariant under the transformation
pa=U," ¢s, (10.6)
where
UBUSL =5/, (10.7)

or UTU = I. This is the group of orthogonal transformations O (N), where
A, B =1,..., N. Multi-level atom bound states can be represented in this way,
see, for instance, section 10.6.3. Multi-component symmetries of this kind are
form groups which are generally non-Abelian (see chapter 23 for further details
on the formulation of non-Abelian field theory).

The physical significance of global symmetries is not always clear a priori.
They represent global correlations of properties over the whole of spacetime
simultaneously, which apparently contradicts special relativity. Often the
analysis of global symmetries is only a prelude to studying local ones. Even
in section 10.6.3, the global symmetry appears only as a special case of a larger
local symmetry. One often finds connections between spacetime symmetries and
phase symmetries which make local symmetries more natural. This is especially
true in curved spacetime or inhomogeneous systems.

In practice, global symmetries are mainly used in non-relativistic, small
systems where simultaneity is not an issue, but there is a lingering suspicion
that global symmetries are only approximations to more complex local ones.

10.2 Local symmetries

A symmetry is called local if it involves transformations which depend on
coordinates. Allowing a phase transformation to depend on the coordinates is
sometimes referred to as ‘gauging the symmetry’. For example, the local version
of the complex U (1) symmetry is

d — eig(")qb
Fyx) — T, —(3,0). (10.8)
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258 10 Kinematical and dynamical transformations

The action now needs to be modified in order to account for the fact that partial
derivatives do not commute with these transformations. The partial derivative is
exchanged for a covariant one, which includes the connection I, (x),

D, =8, +il,. (10.9)

1 * 1 2 &k
S = /(dx) {E(D"(D (D, ®) + Em P d>} . (10.10)

The most important way in which abstract field symmetries connect with
spacetime properties is through the derivative operator, since this is the generator
of dynamical behaviour in continuous, holonomic systems.

10.3 Derivatives with a physical interpretation

Covariance with respect to local symmetries of the action may be made manifest
by re-writing the action in terms of an effective derivative. The physical
motivation for this procedure is that the ordinary partial derivative does not
have an invariant physical interpretation under local symmetry transformations.
By adding additional terms, called ‘connections’, to a partial derivative 9,,, one
creates an ‘effective derivative’, D,, which does have an invariant meaning.
Although the definition of a new object, D,,, is essentially a notational matter,
the notation is important because it assigns a unique interpretation to the new
derivative symbol, in any basis. For that reason, D, is called a covariant
derivative.

There are two related issues in defining derivatives which have a physical
interpretation. The first issue has to do with the physical assumption that mea-
surable quantities are associated with Hermitian operators (Hermitian operators
have real eigenvalues). The second has to do with form invariance under specific
transformations.

10.3.1 Hermiticity

According to the standard interpretation of quantum mechanics, physical quan-
tities are derived from Hermitian operators, since Hermitian operators have real
eigenvalues. Hermitian operators are self-adjoint with respect to the scalar
product:

@1019) = (079, ¢) = (¢, O9), (10.11)

or formally

0" =0. (10.12)
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10.3 Derivatives with a physical interpretation 259

If the operator O is a derivative operator, it can be moved from the left hand side
of the inner product to the right hand side and back by partial integration. This
follows from the definition of the inner product. For example, in the case of the
Schrodinger field, we have

(%ﬁww=fwwewmg

=fw&@mbw
= “ (it 1, ¥). (10.13)

Partial integration moves the derivative from ¥, to ¥; and changes the sign. This
sign change means that i9,, is not a Hermitian operator. In order for a derivative
operator to be Hermitian, it must not change sign. Thus, a quadratic derivative,
92, would be Hermitian. For linear derivatives, we should symmetrize the left—
right nature of the derivative. Using arrow notation to show the direction in
which the derivative acts, we may write

i
2

i9, —> %(aﬂ — 3, 3, . (10.14)

<~
Partial integration preserves the sign of 9,,.

A second important situation occurs when this straightforward partial integra-
tion is obstructed by a multiplying function. This is commonly the situation for
actions in curvilinear coordinates where the Jacobian in the volume measure is
a function of the coordinates themselves. The same thing occurs in momentum
space. To see this, we note that the volume measure in the inner product is

do = |J(x)|d"x, (10.15)

where J(x) is the Jacobian of the coordinates relative to a Cartesian basis.
Normally, J(x) = ,/gij(x), where g;;(x) is the spatial metric. If we now try to
integrate by parts with this volume measure, we pick up an extra term involving
the derivative of this function:

fdawf (=10, Yn) = /do <—iau - za"Tj) ARV (10.16)

This problem affects x derivatives in curved x coordinates and k derivatives in
Fourier transform space, on the ‘mass shell’. See table 10.1.

The partial derivatives in table 10.1 are clearly not Hermitian. The problem
now is the extra term owing to the coordinate-dependent measure. We can solve
this problem by introducing an extra term, called a ‘connection’, which makes
the derivative have the right properties under integration by parts. The crux
of the matter is to find a linear derivative operator which changes sign under
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260 10 Kinematical and dynamical transformations

Table 10.1. Derivatives and measures.

Derivative Measure

BM ,/gij(x)d”x

) d"k
T 20 (k)

integration by parts, but does not pick up any new terms. Then we are back
to the first example above, and further symmetrization is trivial. Consider the
spacetime derivative. The problem will be solved if we define a new derivative
by

D,=0,+T,, (10.17)

and demand that I", be determined by requiring that D, only change sign under
partial integration:

/d"xf(x) $1(Dyug2) = fd”XJ(X)(—DM¢1)¢2- (10.18)
Substituting eqn. (10.17) into eqn. (10.18), we find that I";, must satisfy
—(0,J)+MI', =—-MT",,, (10.19)
or
10,J
= ——. 10.20
2T ( )

The new derivative D,, can be used to construct symmetrical derivatives such as

D? = D, D" and D, by analogy with the partial derivative.

10.3.2 Commutativity with transformations

The problem of additional terms arising due to the presence of functions of
the coordinates occurs not just with the integration measure but also with
transformations of the fields. Imagine a field theory involving the field variable
¢ (x), a simple scalar field satisfying an equation of motion given by

—¢ =—-9,0"¢ =0. (10.21)
‘We then consider the transformation

¢(x) = ¢(x)U(x), (10.22)
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10.3 Derivatives with a physical interpretation 261

where U (x) is an arbitrary function of x. This situation crops up quite often in
field theory, when U (x) is a phase transformation. The first thing we notice is
that our equation of motion (10.21) is neither covariant nor invariant under this
transformation, since

0.9 = (3,0 (x)U(x) + (3,U (x)) (x). (10.23)

Clearly eqn. (10.21) is only a special case of the equations of motion. Under
a transformation we will always pick up new terms, as in eqn. (10.23), since
the partial derivative does not commute with an arbitrary function U (x), so
U (x) can never be cancelled out of the equations. But, suppose we re-write
eqn. (10.23) as

(0,9 ()U (x)) = U (x) <8,L + %) ¢ (x), (10.24)
and define a new derivative
D, =@, + Ty, (10.25)
where I'), = U71(3,U) = 9, In U, then we have
3 (U(x)p(x)) = U (x) Dy (¢ (x)). (10.26)

We can now try to make eqn. (10.21) covariant. We replace the partial derivative
by a covariant one, giving

—3%p(x) = —D,D"¢(x) =0. (10.27)
The covariance can be checked by applying the transformation
~D*(Ux)¢p((x)) = ~U(x)3*(¢(x)) =0 (10.28)

so that the factor of U (x) can now be cancelled from both sides.

At this point, it almost looks as though we have achieved an invariance in
the form of the equations, but that is not so. To begin with, the derivative we
introduced only works for a specific function U (x), and that function is actually
buried in the definition of the new derivative, so all we have done is to re-write
the equation in a new notation. If we change the function, we must also change
the derivative. Also, if we add a source to the right hand side of the equations,
then this argument breaks down. In other words, while the equation is now
written in a more elegant way, it is neither covariant nor invariant since the
specific values of the terms must still change from case to case.

10.3.3 Form-invariant derivatives

To obtain invariance requires another idea — and this involves a physical
assumption. Instead of defining I' ), = U-! (0,U), we say that I', is itself a new
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physical field; in addition, we demand that the transformation law be extended
to include a transformation of the new field I';,. The new transformation rule is
then

P (x) > Ux)p(x)
0.f
S

I',, might be zero in some basis, but not always. Under this new assumption,
only the physical fields transform. The covariant derivative is form-invariant, as
are the equations of motion, since I';, absorbs the extra term which is picked up
by the partial differentiation.

r,—-r,—

(10.29)

Note how this last step is a physical assumption. Whereas everything
leading up to eqn. (10.28) has simply been a mathematical manipulation of
the formulation, the assumption that I, is a new field, which transforms
separately, is a physical assumption. This makes symmetries of this type
dynamical symmetries, rather than coincidental kinematical symmetries, which
arise simply as a matter of fortuitous cancellations.

The covariant derivative crops up in several guises — most immediately in
connection with the interaction of matter with the electromagnetic field, and the
invariance of probabilities under arbitrary choice of quantum phase.

10.4 Charge conjugation

A charge conjugation transformation, for a field with sufficient internal symme-
try, is defined to be one which has the following properties on spin 0, %, and 1
fields:

Cop(x)C" =ny ¢ (x)

Cy(x)Cl=ny ¥ (x)
CA(x)C = —A,. (10.30)

Under this transformation, the sign of the gauge field (and hence the sign of the
charge it represents) is reversed. It is clearly a discrete rather than a continuous
transformation. In the complex scalar case, the transformation simply exchanges
the conjugate pair of fields. This is easy to see in the formulation of the
complex scalar as a pair of real fields (see section 19.7), where the field,
A, is accompanied by the anti-symmetric tensor €45, which clearly changes
sign on interchange of scalar field components. In the Dirac spinor case, a
more complicated transformation is dictated by the Dirac matrices (see section
20.3.4).
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10.5 TCP invariance

The TCP theorem [87, 88, 105, 114] asserts that any local physical Lagrangian
must be invariant under the combined action of time reversal (T), parity (P)
and charge conjugation (C). More specifically, it claims that the effect of CP
should be the same as T. Interactions may be constructed which violate these
symmetries separately, but the TCP theorem requires the product of these
transformations

Urcp = UrUpUc (10.31)
to be conserved:

Urcp ¢ (x) Urcp = nemimp ¢ (—x)
Urcp ¥ (x) Ugcp = —¥snemutp ¥*(—x)
Urcp Au(x) Updp = —nenimp Al (—x). (10.32)

A choice of phase such that ., = 1 is natural. This transformation
has particularly interesting consequence in the case of a spin—% field. If one
considers a bi-linear term in the action, of the form

AL =Y, (x) Oy (x), (10.33)
then the application of the transformation leads to
Urcp [¥,(x) O)¥2(0)] Ugdp = Urcp (¥ 7" Q)Y (x)] Urcp
= Wiy’ O@)yspa(—x)]
= — [V (=0)ys O@)ysia(—)]
= [F(=0)ps O®)ysva(—0)]',
(10.34)

In the last two lines, a minus sign appears first when commuting ys through v°,
then a second minus sign must be associated with commuting v, and ¥,. Under
the combination of TCP, one also has scalar behaviour

¥s O@)ys = —O(—x). (10.35)

Regardless of what one chooses to view as fundamental, the invariance under
TCP and the anti-commutativity of the Dirac field go hand in hand

Urce [V, (x) O (0)] U = [¥1 (=) O(—x) ¥ (—x)1". (10.36)

What is noteworthy about the TCP theorem is that it relates environmental,
spacetime symmetries (space and time reflection) to internal degrees of freedom
(charge reflection). This result follows from the locality and Hermiticity of the
action, but requires also a new result: the spin-statistics theorem, namely that
spin—% particles must anti-commute. This means that fermionic variables should
be represented by anti-commuting Grassman variables.
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10.6 Examples

The following examples show how symmetry requirements and covariance
determine the structure of the action under both internal and spacetime sym-
metries. The link between spacetime and internal symmetry, brought markedly
to bear in the TCP theorem, is also reflected through conformal symmetry and
transformation connections.

10.6.1 Gauge invariance: electromagnetism

The Schrodinger equation has the form

2
(—h—a"a,- + V) Y= id,. (10.37)
2m

The wavefunction ¥ (x) is not a direct physical observable of this equation.
However, the probability

P =y (10.38)

is observable. As the modulus of a complex number, the probability is invariant
under phase transformations of the form

Y(x) = /Oy (x). (10.39)

One expects that the Schrédinger action should be invariant under this symmetry
too. It should be clear from the discussion in section 10.3 that this is not
the case as long as the phase 6(x) is x-dependent; to make the Schrodinger
equation invariant, we must introduce a new field, A,. By appealing to the
phenomenology of the Aharonov—Bohm effect, one can identify A, with the
electromagnetic vector potential.

From eqn. (2.44), one may assume the following form for the covariant
derivative:

—ihd, — —ihD, = —ih (aﬂ - i%AM> , (10.40)

since it only differs from a completely general expression by some constants c, A
and e. In explicit terms, we have chosen I'), = —i;-A,. The total gauge or phase
transformation is now a combination of eqns. (10.37) and (10.39), and to secure
invariance of the equation, we must perform both transformations together.

Applying the phase transformation and demanding that D, commute with the
phase leads to

D, (7Y (x)) = '™ ((aﬂ - i%(A,L + aﬂs)) + i(aﬂe)) Vv (x),

=e@D, (¥ (x)) (10.41)
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where D, = 9, — iz A, and the last line follows provided we take
i(9,6) — i%(aﬂs) ~0. (10.42)

Both 8(x) and s(x) are completely arbitrary scalar fields, so this relation merely
identifies them to be the same arbitrary quantity. We may therefore write the
combined phase and gauge transformations in the final form

Y (x) = ¥/ (x) =MDy (x)
Au(x) — A;L(x) = A, (x) + (3,5(x)), (10.43)

and Schrodinger’s equation in gauge-invariant form is

2
(—h—DiDi + V) Y(x) = ihiDY, (10.44)
2m

where D; = c¢Dy. In terms of the covariant derivative, we can write the field
strength tensor as a commutator:

[D,.. D,] = —212F,w. (10.45)

This may be compared with eqn. (10.58) in the following section.

10.6.2 Lorentz invariance: gravity

In the presence of a non-trivial metric g,,, i.e. in the curved spacetime of a
gravitational field, or in a curvilinear coordinate system, the Lorentz transfor-
mation is not merely a passive kinematic transformation, it has the appearance
of a dynamical transformation. This change of character is accompanied by the
need for a transforming connection, like the ones above, only now using a more
complex rule, fit for general tensor fields.

The Lorentz-covariant derivative is usually written V,,, so that covariance is
obtained by substituting partial derivatives in the following manner:

0 —> V. (10.46)

With Lorentz transformations there is a subtlety, since we are interested in many
different representations of the Lorentz group, i.e. in tensors of different rank.
For scalar fields, there is no problem for Lorentz transformations. A scalar field
does not transform under a Lorentz transformation, so the partial derivative is
Hermitian. In other words,

Vi (x) = 3,6 (x). (10.47)
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266 10 Kinematical and dynamical transformations

For a vector field, however, the story is different. Now the problem is that
vectors transform according to the rules of tensor transformations and the partial
derivative of a vector field does not commute with Lorentz transformations
themselves. To fix this, a connection is required.! As before, we look for a
connection which makes the derivative commute with the transformation law.
Consider the vector field V,,. Let us transform it from one set of coordinates,
£% £, to another, x*, x". According to the rules of tensor transformation, we
have

0"
axH
= (9, &") Vp(x)

=L/ Vg(x). (10.48)

VI(E) =

Vg (x)

Let us now introduce a derivative V,, with the property that
V(LV)=L(N'V), (10.49)

i.e. such that the derivative V,, is form-invariant, but transforms dynamically
under a coordinate transformation. Let us write

Vi =0, + Ty, (10.50)

where the question mark is to be determined. At this stage, it is not clear just
how the indices will be arranged on I', since there are several possibilities when
acting on a vector field. Let us evaluate

VuVi@) =V, (L] V)

=V, ((51 sﬂ<x>>vﬁ)

X
= (@ +Tw ((au sﬁm)vﬁ)
= (3,0,")Vp(x) + (3,EP) (3, Vp) + T (8,6") Vg, (10.51)
From the assumed form of the transformation, we expect this to be
LP(V,Vg) = (0, §”)(0,, + T Vp. (10.52)
Comparing eqn. (10.51) and eqn. (10.52), we see that
) £B \ £\ g
(0, N — (0, M), — (9,,0,6"). (10.53)
I There are two ways to derive the connection for Lorentz transformations, one is to look at

the Hermitian nature of the derivatives; the other is to demand that the derivative of a tensor
always be a tensor. Either way, one arrives at the same answer, for essentially the same reason.
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£
Multiplying through by (9, x") and using the chain-rule, we see that the
transformation of I' must be

[ o T — (3 x")(0, 0, £7). (10.54)

This also shows us that there must be three indices on I', so that the correct
formulation of the vector-covariant derivative is

Vi Vo =0,V, =T}, Vi, (10.55)

with transformation rule
& X X
rf, — T8, — (8. x)(8,9, £9). (10.56)

Thus, demanding commutativity with a dynamical transformation, once again
requires the introduction of a corrective term, or connection.

What turns a coordinate transformation into a dynamical transformation is
the spacetime dependence of the metric. It makes the coordinate transformation
into a spacetime-dependent quantity also, changing its status from a passive
kinematical property to an active dynamical one. The non-linearity which is
implied by having coordinates which depend on other coordinates is what leads
Einstein’s theory of gravity to use the concept of intrinsic curvature.

The above procedure can be generalized to any tensor field. Extra terms will
be picked up for each index, since there is a coordinate transformation term
for each index of a tensor. The sign of the correction depends on whether
indices are raised or lowered, because of the mutually reciprocal nature of the
transformations in these cases. To summarize, we have spacetime-covariant
derivatives defined as follows:

Vup(x) = 8,9 (x)
VA, = 03,4, — T A
VA" =0,A" + T, Ax
VT =0, T + Tp T + T, T =TT, (10.57)
Note that we can express the curvature as a commutator of covariant derivatives:

Vi, VVIET = =R, 6. (10.58)

oy

This may be compared with eqn. (10.45).

10.6.3 The two-level atom in a strong radiation field

It was first realized by Jaynes and Cummings that a semi-classical model of a
two-level atom could reproduce the essential features of the quantum theoretical

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

268 10 Kinematical and dynamical transformations

problem [79]. The two-level system has a broad repertoire of applications in
physics, from spin models to the micromaser [91]. It is related to a class of
Dicke models [37, 57], and, in the so-called rotating wave approximation, it
becomes the Jaynes—Cummings model [79] which may be solved exactly. A
Hamiltonian analysis of symmetries in this Jaynes—Cummings model is given in
ref. [7].

The symmetry techniques and principles of covariant field theory can be
applied to the two-level atom to solve the full model and eliminate the need
for the so-called rotating wave approximation. Consider the phenomenological
two-level system described by the action

h:
5= / <dx>{—%(am>*<aiw) V(O

i
+ %w*w - (DZW)*w)}, (10.59)

where A, B = 1,2 characterizes the two levels, iAD, = ihd, + i['(¢) in
matrix notation, and I' = I'4p is an off-diagonal anti-symmetrical matrix.
At frequencies which are small compared with the light-size of the atom, an
atom may be considered electrically neutral. The distribution of charge within
the atoms is not required here. In this approximation the leading interaction
is a resonant dipole transition. The connection I'45 plays an analogous role
to the electromagnetic vector potential in electrodynamics, but it possesses no
dynamics of its own. Rather, it works as a constraint variable, or auxiliary
Lagrange multiplier field. There is no electromagnetic vector potential in the
action, since the field is electrically neutral in this formulation. I'4p refers not
to the U (1) phase symmetry but to the two-level symmetry. Variation of the
action with respect to I"(¢) provides us with the conserved current.

8S
0l aB

= %(w/f;:z/fg — YY), (10.60)

which represents the amplitude for stimulated transition between the levels. The
current generated by this connection is conserved only on average, since we are
not taking into account any back-reaction. The conservation law corresponds

merely to
38 )
d; X sin 2fX(t) , (10.61)
0l ap

where X (¢) will be defined later. The potential V4p(¢) is time-dependent, and
comprises the effect of the level splitting as well as a perturbation mediated
by the radiation field. A ‘connection’ I';; = —TI'y; is introduced since the
diagonalization procedure requires a time-dependent unitary transformation,
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and thus general covariance demands that this will transform in a different basis.
The physics of the model depends on the initial value of this ‘connection’, and
this is the key to the trivial solubility of the Jaynes—Cummings model.

In matrix form we may write the action for the matter fields

S = /(dx) VaOap¥s (10.62)
where
V2 ih .
Yy, —iEp J(t) +il
0= T 2() P, (1063)
J(#) =il o~ V2= 4 D

The level potentials may be regarded as constants in the effective theory. They
are given by Vi = E; and V, = E, — hQg where AQg is the interaction
energy imparted by the photon during the transition, i.e. the continuous radiation
pressure on the atom. In the effective theory, we must add this by hand, since we
have separated the levels into independent fields which are electrically neutral;
it would follow automatically in a complete microscopic theory. The quantum
content of this model is now that this recoil energy is a quantized unit of /€2,
the energy of a photon at the frequency of the source. Also, the amplitude of
the source, J, would be quantized and proportional to the number of photons
on the field. If one switches off the source (which models the photon’s electric
field), this radiation energy does not automatically go to zero, so this form is
applicable mainly to continuous operation (stimulation). The origin of the recoil
is clear, however: it is the electromagnetic force’s interaction with the electron,
transmitted to the nucleus by binding forces. What we are approximating is
clearly a J#* A, term for the electron, with neutralizing background charge.

It is now desirable to perform a unitary transformation on the action ¥ —
Uy, O — UOU™!, which diagonalizes the operator O. Clearly, the connection
I" 4 will transform under this procedure by

in -1 -1
r—-T+2 (U@U™ = @,uU™) (10.64)

since a time-dependent transformation is required to effect the diagonalization.

For notational simplicity we define L = —h;ZZ — %h D;, so that the secular
equation for the action is:
(L—E =ML —Ey+hQ—2) — (J24T3) =0. (10.65)

<~
Note that since J 9, J = 0 there are no operator difficulties with this equation.
The eigenvalues are thus

. 1 -
AL =L —E12+hQi\/Z(E21 — hQ)? 4+ J2 + T3, (10.66)
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L —FEp+hQ+ R0+ +1% (10.67)
L —E + hQ =+ hog, (10.68)

where E|, = %(El + E,) and Em = (E, — E;). For notational simplicity
we define @ and wg. One may now confirm this procedure by looking for the
eigenvectors and constructing U ~! as the matrix of these eigenvectors. This may
be written in the form

1 _ [ cosf —sin6
ve= < sinf  cos0 )’ (10.69)
where
b
cosf = @+ @r) (10.70)

\/hz(cb +wr)2+ J2+ T,

V72 +Th
(10.71)

sinf = .
\/hz(cb +wr)?+J2 4T3,

The change in the connection I'(¢) is thus off-diagonal and anti-symmetric, as
required by the gauge symmetry conservation law:

UaU" = ( —g,e 869 ) (10.72)

The time derivative of 6(f) may be written in one of two forms, which must
agree

d; cos 6 B 0; sin 6

(0,0) = (10.73)

—sin® cosf

This provides a consistency condition, which may be verified, and leads to the
proof of the identities

wrdiwr =J 0o, J+T0, T (10.74)
and

VIZHT20, + AMVI24+T?2 4+ (@4 wr)0, + A)(@+wr) =0
(10.75)

for arbitrary J (¢) and I'(¢), where

1 (@4 wr)?+ 7+ 17)
2 (@4 wr)?+J2+T2

(10.76)
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These relations are suggestive of a conformal nature to the transformation and,
with a little manipulation using the identities, one evaluates

(JoJ+T97T) [1 @+ wr)(@+ 2wg) }
wrv J? + T2 (@+wr)>+J2+T2]

Fp/h = (8,0) =
(10.77)

This quantity vanishes when J2 + I'? is constant with respect to time. Owing
to the various identities, the result presented here can be expressed in many
equivalent forms. In particular, it is zero when @ = 0. The equations of motion
for the transformed fields are now

L—Ep+hon 00 L (10.78)
—i9,0 L —E, — hag [/ ' '

In this basis, the centre of mass motion of the neutral atoms factorizes from
the wavefunction, since a neutral atom in an electromagnetic field is free on
average. The two equations in the matrix above may therefore be unravelled by
introducing a ‘gauge transformation’, or ‘integrating factor’,

Ve (x) = i fy X(har T, (10.79)

where the free wavefunction in n = 3 dimensions is

Tl = [ S0 LK eang (s (10.80)
(2m) 2m)" '
is a general linear combination of plane waves satisfying the dispersion relation
for centre of mass motion
h*Kk? —
2m

The latter is enforced by the delta function. This curious mixture of continuous
(w) and discontinuous (£2) belies the effective nature of the model and the
fact that its validity is only for a continuous operation (an eternally sinusoidal
radiation source which never starts or stops). The relevance of the model is thus
limited by this. Substituting this form, we identify X (¢) as the integrating factor
for the uncoupled differential equations. The complete solution is therefore

Y (x) = eF o @rHinOd 2y (10.82)

Notice that this result is an exact solution, in the sense of being in a closed form.
In the language of a gauge theory this result is gauge-dependent. This is because
our original theory was not invariant under time-dependent transformations.
The covariant procedure we have applied is simply a method to transform the
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equations into an appealing form; it does not imply invariance of the results
under a wide class of sources.

That this system undergoes transitions in time may be seen by constructing
wavefunctions which satisfy the boundary conditions where the probability of
being in one definite state of the system is zero at + = 0. To this end we write
W = 1Yy + ¥-) and Wy = (¥4 — ). In order to proceed beyond this
point, it becomes necessary to specify the initial value of I'1,. This choice carries
with it physical consequences; the model is not invariant under this choice.
The obvious first choice is to set this to zero. This would correspond to not
making the rotating wave approximation in the usual two-level atom, with a
cosine perturbation. Focusing on the state W, which was unoccupied at t = 0
forT', =0,

t

W, = sin (/ dr’ [\/5)2 + A2 J¢ cos?(Qt')
0

. JoQ2sin(Q2t") |:~ J§ cos*(Q1')

2hwr 72(& + wgr)

-1
] )J(x). (10.83)

We are interested in the period, and the amplitude of this quantity, whose
squared norm may be interpreted as the probability of finding the system in
the prepared state, given that it was not there at t = 0. Although the integral
is then difficult to perform exactly, it is possible to express it in terms of
Jacobian elliptic integrals, logarithms and trig functions. Nevertheless it is clear
that ® = %(E'zl/h — Q) is the decisive variable. When /i < Jj is small,
the first term is Jycos(€2¢) and the second term is small. This is resonance,
although the form of the solution is perhaps unexpected. The form of the
wavefunction guarantees a normalized result which is regular at @ = 0, and one

has Wy ~ sin ( fot de’ % cos(Q2t/ )), which may be compared with the standard

result of the Jaynes—Cummings model W, ~ sin(Jot/%). In the quantum case
the amplitude of the radiation source, Jy, is quantized as an integral number, Ng,
of photons of frequency €2. Here we see modulation of the rate of oscillation by
the photon frequency (or equivalently the level spacing). In a typical system, the
photon frequency is several tens of orders of magnitude larger than the coupling
strength Jo < A2 ~ E\, and thus there is an extremely rapid modulation of
the wavefunction. This results in an almost chaotic collapse-revival behaviour
with no discernible pattern, far from the calm sinusoidal Rabi oscillations of the
Jaynes—Cummings model. If iw ~ Jy, the second term is of order unity, and
then, defining the normalized resonant amplitude

J
A= 0 (10.84)

V2@ + T2
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one has

. JoS2 sin(Q2t) _
Yy~sin| — E(Q2,A)— A /d(Qt) v(x).
A V1 — A2sin®(Q1)

(10.85)

The Jacobian elliptical integral E (¢, B) is a doubly periodic function, so one
could expect qualitatively different behaviour away from resonance. On the
other hand, far from resonance, fi® > Jy, the leading term of the connection
becomes W, ~ sin(®f) ¥ (x) ~ sin () V¥ (x), and the effect of the level
spacing is washed out.

One can also consider other values for the connection. Comparing '}, to
the off-diagonal sources y*D,,, predicted on the basis of unitarity in effective
non-equilibrium field theory [13], one obtains an indication that, if the initial
connection is in phase with the time derivative of the perturbation, then one
can effectively ‘re-sum’ the decay processes using the connection. This is a
back-reaction effect of the time-dependent perturbation, or a renormalization
in the language of ref. [13]. If one chooses I';; = Jysin(€2t), this has the
effect of making the off-diagonal terms in the action not merely cosines but
a complex conjugate pair Jyexp(=£if2t). This corresponds to the result one
obtains from making the rotating wave approximation near resonance. This
initial configuration is extremely special. With this choice, one has exactly

W, = sin (/0 dr’ [,/5)2 + h-zjg]) U (x). (10.86)

The stability of the solution is noteworthy, and the diagonalizing transformation
is rendered trivial. The connection 9,60 is now zero under the diagonalizing
transformation. Thus, the above result is exact, and it is the standard result of
the approximated Jaynes—Cummings model. This indicates that the validity of
the Jaynes—Cummings model does not depend directly on its approximation, but
rather on the implicit choice of a connection.

10.7 Global symmetry breaking’

The dynamical properties of certain interacting fields lead to solution surfaces
whose stable minima favour field configurations, which are ordered, over
random ones. Such fields are said to display the phenomenon of spontaneous
ordering, or spontaneous symmetry breaking. This is a phenomenon in which
the average behaviour of the field, in spite of all its fluctuations, is locked into
a sub-set of its potential behaviour, with less symmetry. A classic example of

2h =c =g = € = 1 in this section.
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274 10 Kinematical and dynamical transformations

this is the alignment of spin in ferromagnetism, in which rotational symmetry is
broken into a linear alignment.

Spontaneous symmetry breaking can be discussed entirely within the frame-
work of classical field theory, but it should be noted that its dependence on
interactions raises the problem of negative energies and probabilities, which is
only fully resolved in the quantum theory of fields.

When a continuous global symmetry is broken (i.e. when its average state
does not express the full global symmetry), one sees the appearance of massless
modes associated with each suppressed symmetric degree of freedom. These
massless modes are called Nambu—Goldstone bosons [59, 60, 99, 100]. To see
how they arise, consider the action

1, 1, A )
§= /(dX) {5(3‘ ¢4)0ufa) + 5m bada + 11 (Pada) } (10.87)

The interaction potential V (¢) = 3m*¢? + % ¢ has a minimum at

v A
iem:z% =m*p, + £ (psdp) = 0. (10.88)

This would therefore be the equilibrium value for the average field. Note that
a non-zero value for (¢), within a bounded potential A > 0, is possible only
if m> < 0. Suppose one now considers the effect of fluctuations, or virtual
processes, in the field. Following the procedure of chapter 6, one may split the
field into an average (constant) part (¢) and a fluctuating (quickly varying) part

®,
ha = (P)a+ ¢a. (10.89)
Expressed in terms of these parts, the terms of the action become:
(0%94) (0u94) — (0"9)(0,9)
Smada = (D)4 @)a +2D)apa + 0a0)

(Pada)> = ((P)ald)a) +4((B)a(d)a) (D) 50B)
+ 2(0a0a) (D) (D)) + 4 @a(P)a)(@p{d)B)
+ 4((9) a0a) (05PB) + (Paga)’. (10.90)

To quadratic order, the action therefore takes the form

1 1 A
S = /(dX) E(a“w)(aufp) +5%a <m + g((b) >¢A

A
+€¢A(<¢>A<¢>B)¢B + - } (10.91)
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10.7 Global symmetry breaking 275

If the action is evaluated at the minimum of the potential, substituting for
the minimum (¢),, the quadratic masslike terms do not vanish, nor is any
asymmetry created. The action is still invariant under rotations in A, B space,
with a different mass matrix A/3(¢) s (¢) g. However, if one postulates that it is
favourable to select a particular combination for (¢)4, e.g. let A, B = 1,2 and
(p)1 =0, (¢)>» = (¢), thus breaking the symmetry between degenerate choices,
then the quadratic terms become:

Lo (m+ 207 ) o1 + Lo (m? + 20y (10.92)
2§01 6 1 2§02 ) ¥2. .

The first of these terms, evaluated at the minimum, vanishes, meaning that ¢;
is a massless excitation at the equilibrium solution. It is a Nambu—Goldstone
boson, which results from the selection of a special direction. The rotational
A, B symmetry of the fluctuating field ¢4 is still present, but the direction of the
average field is now chosen at all points.

In this two-dimensional rotational example, the special direction was chosen
by hand, using the ad hoc assumption that the scalar field would have an
energetically favoured ordered state. Clearly, one could have chosen any
direction (linear combination of ¢, from the rotational invariance), and the
result would be the same, due to the original symmetry. Since these are all
equivalent, it takes only the energetic selection of any one of them to lead to an
ordering, and thus spontaneous symmetry breaking. In the parametrization

1 .
®=—pe’ 10.93
Nl ( )
the symmetry properties of the action become even more transparent. The action
is now:
Lo Loyo Ay
S= ] (dx) 5(8‘ p)(0,.p) + Smep + a” | (10.94)

This, assuming a stable average state p — (p) + p, gives, to quadratic order:

S = /(dX) {p [—D + m* + %(p)z] p+(p)*0(=00)0 + - } (10.95)
The radial 6 excitation is clearly massless. This parametrization has presented
several technical challenges in the quantum theory however, so we shall not
pursue it in detail.

The foregoing argument can be generalized to any continuous global group,
either Abelian or non-Abelian. Suppose that the action

5= / (@) [T@pba) — Vi) (10.96)
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276 10 Kinematical and dynamical transformations

is invariant under a symmetry group G, of dimension dg; then, if it is
energetically favourable for the field to develop a stable average (¢),4 with
restricted behaviour, such that

¢ —> (P)i + @i (10.97)
for a sub-set of the components i € A, there must a minimum in the potential,
such that

oV
"o=(9)
The field there splits into two parts:
(¢)i+9i €H
¢a — { & € G/H (10.99)

The first part has a stable average and small fluctuations around this value.
The remainder of the components are unconstrained fluctuations, which are
orthogonal in the group theoretical sense from the others. For the components
with non-zero averages, one may expand the potential around the minimum:
3*V
Vi(da) = V(da) +— @app +---.  (10.100)
¢a=@)a  0PAOQB Ipa=(p)a

The form and value of the potential are unchanged by a group transformation G,
since the action is invariant under G. Moreover, by assumption of a minimum,
one must have

9%V
> 0. (10.101)

Mg =
A 0009, lga=(@)a —

To determine whether any of the components of this have to be zero, one uses the
assumption that the average state is invariant under the sub-group H. Invariance
under H means that

3’V ((¢)) ,
V(Un{(¢) =VUP)) + ——F——0u(P)iduld); +---; (10.102)
pidp;
thus, 8y {(¢); = 0 and Mizj is arbitrary, since the transformation itself is null-

potent at (¢). However, if one transforms the average state by an element which
does not belong to the restricted group H, then §g(¢) # 0, and

92V
VWUg(g)) = V(o)) + SOV s i) a6 (hp+---.  (10.103)
0pA0Qp
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10.7 Global symmetry breaking 277

Thus, for any A, B which do not belong to i, j, the mass terms M% gz = 0 for
invariance of the potential. These are the massless modes. There are clearly
dimG/H = dg — dy of these massless elements, which correspond to all of the
fluctuations which are not constrained by the average state.

This argument does not depend on whether the group is Abelian or non-
Abelian (except that the coset dimension G/H does not apply to groups like
U (1)), only on the fact that a stable average emerges, picking out a special
direction in group space. Since even a single group generator, corresponding to
a single component of the field, generates a sub-group, the average field lies in
a group of its own (the factor group). If the group H is an Abelian sub-group,
such as Zy, (generated by the Cartan sub-algebra of the full Lie algebra), then
the resulting factor group shares the same algebra as the full group, only the
centre of the group is broken. This changes the dimension of the representation,
but does not change the universal cover group for the symmetry. If H is not an
Abelian sub-group, then the basic algebra of the symmetry must also change.

The Nambu—Goldstone mechanism is a relative suppression of certain fluc-
tuations, rather than a breakdown of fundamental symmetry. For example, in
a crystal, with an R" symmetry, the crystal lattice breaks up translations into
R"/Zy, leading to massless vector fields, which are phonons.

It is not clear from the above that the choice of symmetry breaking potential
is actually feasible: it has not been shown that the fluctuations around the
average state are small enough to sustain the average value that was assumed.
This requires a more lengthy calculation, using the generating functionals of
chapter 6. Moreover, unless the result of the calculation can be determined
entirely by quadratic terms, one is forced to use quantum field theory to
calculate the expectation values, since there are questions of negative energies
and probabilities which are only resolved by operator ordering in the second
quantization. General theorems exist which prohibit the existence of Goldstone
bosons, due to infra-red divergences, and thus global symmetry breaking in less
than three spatial dimensions cannot occur by this mechanism [27, 97].

The occurrence of spontaneous symmetry breaking assumes that it will be
possible to find a system in which the effective mass squared in the action is less
than zero. Clearly no such fundamental fields exist: they would be tachyonic.
However, composite systems, or systems influenced by external forces, can have
effective mass-squared terms which have this property. This is exploited in
heuristic studies of phase transitions, where one often writes the mass term as:

C

2 (T—Tc) 2
m(T) = ( ——— ) m; (10.104)

which gives rise to a second-order phase transition at critical temperature 7T
(n > 2), i.e. a change from an ordered average state at low temperature to a
disordered state above the critical temperature.
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278 10 Kinematical and dynamical transformations

10.8 Local symmetry breaking®

The predominance of gauge theories in real physical models leads one to ask
whether symmetry breaking phenomena could occur in local gauge theories.
Here one finds a subtly different mechanism, originally pointed out by Anderson
[3], inspired by an observation of Schwinger [117], and rediscovered in the
context of non-Abelian field theory by Higgs [68, 69, 70]. It is called the
Anderson-Higgs mechanism, or simply the Higgs mechanism.

The action for this model is that of a complex scalar field coupled to the
electromagnetic field. It is sometimes used as a simple Landau—Ginsburg
model of super-conductivity (see section 12.6). It is also referred to as scalar
electrodynamics. A straightforward non-Abelian generalization is used in
connection with the Standard Model; this is discussed in many other references
[136]. The action in complex form is written

A
— /(dx){(D“CD)T(DMQD) +m*dT o + ;(CDTCD)2 +
1
+F" Fun f- (10.105)

Here we have only written a ®* interaction explicitly, with coupling constant A.
Other interactions are also possible depending on the criteria for the model. In
the quantum theory, restrictions about renormalizability exclude higher powers
of the field in 3 + 1 dimensions. In 2 + 1 dimensions one may add a term
Sg 2 (®Td)3. Odd powers of the fields are precluded by the fact that the action
must be real. The covariant derivative is usually written D, = 9, +ieA,. The
conserved current generated by the gauge field A, is therefore

38 s '
&T(Z = J, =ie(®' (D, ®) — (D, D) D). (10.106)
The action clearly has a basic U (1) symmetry. An alternative form of the action

is obtained by re-writing the complex field in terms of two real component fields
¢a, where A = 1, 2, as follows:

1
d(x) = E((bl +ig). (10.107)

The covariant derivative acting on the fields can then be expanded in real and
imaginary parts to give

Dy pa = 0,pa — e€apppAy. (10.108)

3h = ¢ = g = € = 1 in this section.
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10.8 Local symmetry breaking 279

The action then takes the more complicated form
1 23 "
§= [ (dx)) (0"¢1)(0,84) — (@ da)eanAnds

1, u A 5, 1 v
+ ¢ €ABEACHBPc A" A, + E(¢A¢A) + A_IF Fut.

(10.109)

Expressed in this language, the conserved current becomes

‘]M = € €AB (¢ADM¢B)' (10110)

This shows the anti-symmetry of the current with respect to the field components
in this O (2) formulation.

Suppose, as before, that one component of the scalar field develops a constant
non-zero expectation value ¢; — (¢) + ¢;; the action can be expanded around
this solution. Once again, this must be justified by an energy calculation to show
that such a configuration is energetically favourable; is non-trivial and will not
be discussed here. It is interesting to compare what happens in the presence of
the Maxwell field with the case in the previous section. The part of the action,
which is quadratic in ¢, ¢, A, is the dynamical part of the fluctuations. It is
given by

A

$@ = /(dx){%cm [—D +m* + 2<¢>2] o1

+ %% [—D +m* + %W + e2<¢>2] ¢

+ 2e A" (9, (9)) + %Aﬂ [0 +e%(¢)?] A“] (10.111)

This may be diagonalized with the help of the procedure analogous to
eqn. (A.11) in Appendix A. The identity

%¢2A¢2 + B¢y = %(05 +BA YA+ A'B) — %BA‘lB
(10.112)
with
A= [—D bt (o) e2<¢>2}
B = —2ep A" (0,(¢)) (10.113)
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results in an action of the form
2 1 2, A
S = | (dx) §<P1 -0 +m”+ §<¢) @1
1
+ EAM [(—0 +e*(¢)H)g" + Gd"d"] AU} (10.114)

where G is a gauge-dependent term. The details of this action are less interesting
than its general characteristics. Unlike the case of the global symmetry,
there is only one remaining scalar field component. The component which
corresponds to the Goldstone boson, disappears in the variable transformations
and re-appears as a mass for the vector field. The lack of a Goldstone
boson is also interesting, since it circumvents the problems associated with
Goldstone bosons in lower dimensions n < 3 [27, 97]. Although it is only
an idealized effective theory, this local symmetry breaking mechanism indicates
that symmetry breaking is indeed possible when one relaxes the rigidity of a
global group.

The transmutation of the massless scalar excitation into a mass for the vector
field can be seen even more transparently in the unitary gauge. The unitary
gauge is effected by the parametrization

1 )
P =—pe 10.115
ﬁpe ( )
1
B,=A,+ -0,0 (10.116)
e

so that the action becomes
I . 1 1, ,
S= [ dv ZF“ F + 5(8“,0)(8,4,0) + Ee p°B"B,

Loaa, Ay

+2m 0 —1—4!,0 (10.117)
What looks like a gauge transformation by a phase 6 is now a dynamical
absorption of the Goldstone boson. This is sometimes stated by saying that
the Goldstone boson is ‘eaten up’ by the gauge field, as if the photon were some
elementary particular Pacman. A more field theoretical description is to say
that the Goldstone mode modulates the fluctuations of the electromagnetic field,
making them move in a wavefront. This wavefront impedes the fluctuations
by an amount that depends upon the gauge coupling constant e. The result
is an effective mass for the gauge fluctuations, or a gap in their spectrum of
excitations. However one states it, the Goldstone field ceases to be a separate
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10.9 Dynamical symmetry breaking mechanisms 281

excitation due to the coupling: its modulation of the vector field’s zero point
energy breaks the gauge invariance of the fluctuations and it re-appears, with a
new status, as the extra mode of the vector field.

It cannot be emphasized enough that the assumption that there exists a stable
average state of lower symmetry than the fluctuations of the theory is ad hoc, and
its consistency has to be proven. Even today, this remains one of the toughest
challenges for quantum field theory.

10.9 Dynamical symmetry breaking mechanisms

The Nambu—Goldstone or Anderson—-Higgs models of symmetry breaking can-
not be fundamental theories, because they do not explain how the mass-squared
terms, in their Lagrangians, can become negative. As such, they must be
regarded as effective actions for deeper theories. Moreover, their apparent
reliance on the existence of an arbitrary scalar field has been controversial, since,
in spite of the best efforts of particle physicists, no one has to date observed a
Higgs scalar particle. The introduction of a scalar field is not the only way in
which gauge symmetries can be broken, however. At least two other possibilities
exist. Both rely on quantum dynamical calculations, but can be mentioned
here.

One such mechanism was suggested in connection with field theories on
topologically non-trivial spacetimes (e.g. the torus), based on an idea by
Ford [52], that non-trivial average states, such as vortices could occur around
topological singularities in spacetime. The main idea is that a gauge field A, —
(A,) + A, (either Abelian or non-Abelian) can acquire a non-zero expectation
value around a hole in spacetime. In simply connected spacetimes (without
holes), such constant vector field configurations are gauge-equivalent to zero
and thus have no invariant meaning. However, around a topological singularity,
such transformations are restricted by the cohomology of the manifold. One
example is that of a periodic crystal, which has the same boundary conditions as
the surface of a torus, and is therefore relevant in solid state physics.

In the Abelian theory, the phenomenon is a purely classical, statistical effect,
though for non-Abelian symmetries the non-linearity makes it the domain of
quantum field theory. It is equivalent to there being a constant magnetic flux
through the centre of the hole. In some theories, such expectation values might
occur spontaneously, by the dynamics of the model (without having to assume
a negative mass squared ad hoc). In the Abelian case, this results only in a
phase. However, it was later explored in the context of non-Abelian symmetries
by Hosotani [72] and Toms [129] and developed further in refs. [17, 19, 20, 21,
32, 33]. Such models are of particular interest in connection with grand unified
theories, such as Kaluza—Klein and string theory, where extra dimensions are
involved. Topological singularities also occur in lower dimensions in the form
of vortices and the Aharonov—Bohm effect.
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282 10 Kinematical and dynamical transformations

The second mechanism is the Coleman and Weinberg mechanism [28], which
is a purely quantum effect for massless fields, whereby a non-trivial average
state can be created truly spontaneously, by the non-linearities of massless scalar
electrodynamics. Quantum fluctuations themselves lead to the attainment of an
ordered state. It is believed that this mechanism leads to a first-order phase
transition [66, 86], rather than the second-order transitions from the Goldstone
and Higgs models.
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11

Position and momentum

Field theory is ripe with objects referred to colloquially as coordinates and
momenta. These conjugate pairs play a special role in the dynamical formulation
but do not necessarily imply any dimensional relationship to actual positions or
momenta.

11.1 Position, energy and momentum

In classical particle mechanics, point particles have a definite position in space
at a particular time described by a dynamical trajectory x(¢). The momentum
dx(t)

p(t) = m=;~. In addition, one has the energy of the particle, % 4+ V,asa

book-keeping parameter for the history of the particle’s momentum transactions.

In the theory of fields, there is no a priori notion of particles: no variable
in the theory represents discrete objects with deterministic trajectories; instead
there is a continuous field covering the whole of space and changing in time. The
position x is a coordinate parameter, not a dynamical variable. As Schwinger
puts it, the coordinates in field theory play the role of an abstract measurement
apparatus [119], a ruler or measuring rod which labels the stage on which the
field evolves. Table 11.1 summarizes the correspondence.

The quantum theory is constructed by replacing the classical measures of
position, momentum and energy with operators satisfying certain commutation
relations:

[x,p] = iA (11.1)
and
[z, E] = —ih. (11.2)

These operators have to act on something, and indeed they act on the fields,
but the momentum and energy are represented by the operators themselves

283
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284 11 Position and momentum

Table 11.1. Dynamical variables.

Canonical Particle Field
position mechanics  theory
Parameter space t X, !

Dynamical variable x(1) ¢(x,1)

independently of the nature of the fields. Let us see why this must be so. The
obvious solution to the commutators above is to represent ¢ and x by algebraic
variables and E and p as differential operators:

pi = —1ho;
E =iho,. (11.3)

If we check the dimensions of these operator expressions, we find that /9; has
the dimensions of momentum and that /40, has the dimensions of energy. In
other words, even though these operators have no meaning until they act on
some field, like this

piY = —iho;y
Ev = ihd (11.4)

it is the operator, or its eigenvalues, which represent the momentum and energy.
The field itself is merely a carrier of the information, which the operator extracts.
In this way, it is possible for the classical analogues of energy and momentum,
by assumption, to be represented by the same operators for all the fields. Thus
the dimensions of these quantities are correct regardless of the dimensions of
the field.

The expectation values of these operators are related to the components of the
energy—momentum tensor (see section 11.3),

e = — / 460 = (pic)
E,= /daoeoo = (Hp). (11.5)

Hp is the differential Hamiltonian operator, which through the equations of
motion is related to i%9,. The relationship does not work for the Klein—Gordon
field, because it is quadratic in time derivatives. Because of their relationship
with classical concepts of energy and momentum, E, and P; may also be
considered as mechanical energy and momenta.
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Table 11.2. Canonical pairs for the fields.

Field ‘X’ ‘P’
Klein-Gordon ¢  h%c?dy¢
Dirac W Al
Schrodinger W ihy*
Maxwell A, Dy;

Separate from these manifestations of mechanical transport are a number of
other conjugate pairs. The field g itself is a basic variable in field theory, whose
canonical conjugate dyg is often referred to as a conjugate momentum; see
table 11.2. That these quantities do not have the dimensions of position and
momentum should be obvious from these expressions; thus, it should be clear
that they are in no way connected with the mechanical quantities known from the
classical theory. In classical electrodynamics there is also a notion of ‘hidden’
momentum which results from self-interactions [71] in the field.

11.2 Particles and position

The word particle is dogged by semantic confusion in the quantum theory of
matter. The classical meaning of a particle, namely a localized pointlike object
with mass and definite position, no longer has a primary significance in many
problems. The quantum theory of fields is often credited with re-discovering
the particle concept, since it identifies countable, discrete objects with a number
operator in Fock space. The objects which are counted by this operator are
really quanta, not particles in the classical sense. They are free, delocalized,
plane wave objects with infinite extent. This is no problem for physics. In fact,
it is possible to speak of momentum and energy transfer, without discussing
the nature of the objects which carry these labels. However, it is sometimes
important to discuss localizability.

In spite of their conceptual demotion, it is clear that pointlike particle events
are measured by detectors on a regular basis and thus have a practical signifi-
cance. Accordingly, one is interested in determining how sharply it is possible
to localize a particle in space, i.e. how sharp a peak can the wavefunction, and
hence the probability, develop? Does this depend on the nature of the field, for
instance, the other quantum numbers, such as mass and spin? This question
was asked originally by Wigner and collaborators in the 1940s and answered for
general mass and spin [6, 101].

The localizability of different types of particle depends on the existence of a
Hermitian position operator which can measure it. This is related to the issue
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286 11 Position and momentum

of physical derivatives in section 10.3. Finding such an operator is simple in
the case of the non-relativistic Schrodinger field, but is less trivial for relativistic
fields. In particular, massless fields, such as the photon, which travel at the speed
of light, seem unlikely candidates for localization since they can never be halted
in one place.

11.2.1 Schrodinger field
The Schrodinger field has a scalar product

W ¥) = / d"x ¥ ()Y (x)

= ¢’k ) (k 11.6
= | Gy VOV, (11.6)

Its wavefunctions automatically have positive energy, and thus the position
operator may be written

(W.%y) = / d"x ¥ (ORY ()

= 'k *(k 0 k 11.7
—/@n)n‘“)(la_k)‘“)' (11.7)

This is manifestly Hermitian. If one translates one of these wavefunctions a
distance a from the other, then, using

¥ (a) = %y (0), (11.8)
one has
(W (@), ¥(0) = / d"x ¥*(0)¢(0) = 8(a)

= f d"x elka, (11.9)

This is an identity. It shows that the Schrodinger wavefunction can be localized
with delta-function precision. Point particles exist.

11.2.2 Klein—Gordon field

The Klein—Gordon field does not automatically have only positive energy
solutions, so we must restrict the discussion to the set of solutions which have
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11.2 Particles and position 287

strictly positive energy. The scalar product on this positive energy manifold is
(@D, o) = /dnx @D 3 o),

=fmm¢“wwwwwemw@%ﬂwhﬂ

() ika

1pS 2. (11.10)
2p0lC P

A translation by a such that ¢ (a) = e3¢, (k) makes the states orthogonal;

@™ (a), ™ (0) = §"(a)

— /‘(dk)eikba

/(dk) —1ka|¢(+)| ) (11.11)
2| pol

For the last two lines to agree, we must have

o5 (k) = /2l pol, (11.12)

and thus the extent of the field about the point a is given by

(dk) e—ik~(x—a)
v 2[pol

which is not a delta function, and thus the Klein—Gordon particles do not exist
in the same sense that Schrodinger particles do. There exist only approximately
localizable concentrations of the field. The result of this integral in » dimensions
can be expressed in terms of Bessel functions. For instance, in n = 3,

¢ (x—a) =

(11.13)

¢ (a) ~ (?) ! H?(imr) (11.14)

where r = |x—a|. This lack of sharpness is reflected in the nature of the position
operator X acting on these states:

. (dk)
@ (a), %M (@) = 2P O EO®. (11.15)
Po
Clearly, the partial derivative % is not a Hermitian operator owing to the factors
of py in the measure. It is easy to show (see section 10.3) that the addition of
the connection term,
=i + Lk (11.16)
X=1i— 4+ -—, .
ok 2 pg

is what is required to make this operator Hermitian.
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288 11 Position and momentum

11.2.3 Dirac field

The Dirac field also has both positive and negative energy states, and particle
wavefunctions must be restricted to positive energies. It shares with the Klein—
Gordon field the inability to produce sharp delta-function-like configurations
of the field. The expression for the position operator is extremely complicated
for the spin—% particles, owing to the constraints imposed by the y-matrices.
Although the procedure is the same, in principle, as for the Klein—Gordon field,
the details are aggravated by the complexity of the field equations for the Dirac

field.
The scalar product for localizable solutions is now, by analogy with
eqn. (11.11),
(dk) )
(Wﬂw“hzf———wu (11.17)
(2po)?

since there is no time derivative in the scalar product. Restricting to positive
energies is also more complex, owing to the matrix nature of the equation. The
normalized positive energy solutions include factors of

E —Po
N = — : (11.18)
E + mc? (—po + mc)

. k) o
) )y — il
(v JW)—/Qm#tx

A suitable Hermitian operator for the position

giving

Nu. (11.19)

d
XxX=N|—-1i—+T) N 11.20
% (1%+) (11.20)

must now take into account all of these factors of the momentum.

11.2.4 Spin s fields in 3 + 1 dimensions
The generalization to any half-integral and integral massive spin fields can be
accomplished using Dirac’s construction for spin % It is only sketched here. A

spin-s field may be written as a direct product of 2s spin—% blocks. Following
Wigner et al. [6, 101], the wavefunction may be written in momentum space as

V(K)o (11.21)

where @« = 1,...,2s represents the components of 2s four-component spin
blocks (in total 2s x 4 components). The sub-spinors satisfy block-diagonal
equations of motion:

V4 pu +me)y = 0. (11.22)
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11.3 The energy—momentum tensor 0, 289

The y-matrices all satisfy the Clifford algebra relation (see chapter 20),

vl vy} =—2¢". (11.23)

The scalar product for localizable positive energy solutions may thus be found
by analogy with eqn. (11.17):

W, ) = / Ap)T1 v Vo

|mc| 2s+1 )
=/(dp) <W) viv, (11.24)

since, in the product over blocks, each normalization factor is multiplied in turn.
Wigner et al. drop the factors of the mass arbitrarily in their definitions, since
these contribute only dimensional factors. It is the factors of py which affect the
localizability of the fields. The localizable wavefunction is thus of the form

[ > ~ pgth (11.25)

The normalization of the positive energy spinors is

Z| <p°+mc> . (11.26)

2p

Combining the factors of momentum, one arrives at a normalization factor of

Po ’ 2541
N=|———] x4/ 11.27
(Po-l-mc) Po ( )

and a Hermitian position operator of the form

. (dp) .0
Notice that the extra factors of the momentum lead to a greater de-localization.
This expression contains the expressions for spin 0 and spin 5 1 as special cases.
For massless fields, the above expressions hold for spin 0 and sp1n , but break
down for spin 1, i.e. the photon.

11.3 The energy—-momentum tensor 6,,,,

Translational invariance of the action implies the conservation of momentum.
Time-translation invariance implies the conservation of energy. Generally,
invariance of one variable implies the conservation of its conjugate variable.
In this section, we see how symmetry under translations of coordinates leads to
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290 11 Position and momentum

the definition of energy, momentum and shear stress in a mechanical system of
fields.

In looking at dynamical variations of the action, we have been considering
changes in the function ¢ (x). Now consider variations in the field which occur
because we choose to translate or transform the coordinates x*, i.e.

8x¢(x) = (9,9 (x))dx", (11.29)
where we use §, to distinguish a coordinate variation and
Sxt = x™ — x*. (11.30)

The variation of the action under such a change is given by

88 = /(dx/)ﬁ(x/) — /(dx)ﬁ(x), (11.31)

which is manifestly zero, in the absence of boundaries, since the first term
is simply a re-labelling of the second. We shall consider the action of an
infinitesimal change dx* and investigate what this tells us about the system.
Since we are not making a dynamical variation, we can expect to find quantities
which are constant with respect to dynamics.

To calculate eqn. (11.31), we expand the first term formally about x:

Ly = £ 4500 4 ..
= L(x) + (0,£)5x" + O((5x)*). (11.32)

The volume element transforms with the Jacobian

v

ox'*
(dx") = det < ) (dx), (11.33)
dx
thus, we require the determinant of

3y X" = 8" + (3,8x"). (11.34)

This would be quite difficult to compute generally, but fortunately we only
require the result to first order in §x*. Writing out the infinite-dimensional
matrix explicitly, it is easy to see that all the terms which can contribute to first
order lie on the diagonal:

1+815x] 815)62
Béxt 14+ dx | (11.35)
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11.3 The energy—momentum tensor 0, 291

Now, the determinant is the product of all the terms along the diagonal, plus
some other terms involving off-diagonal elements which do not contribute to
first order; thus, it is easy to see that we must have

det(d, x™) = 1 + 9,8x" + O((8x)?). (11.36)

Using this result in eqn. (11.34), we obtain, to first order,
88 = /(dx) {60 + (3,8x")L} . (11.37)

Let us now use this result to consider the total variation of the action under a
combined dynamical and coordinate variation. In principle, we should proceed
from here for each Lagrangian we encounter. To make things more concrete,
let us make the canonical assumption that we have a Lagrangian density which
depends on some generic field g (x) and its derivative d,,q(x). This assumption
leads to correct results in nearly all cases of interest — it fails for gauge theories,
because the definition of the velocity is not gauge-covariant, but we can return
to that problem later. We take

L=L(q(x), (0.q(x)), x"). (11.38)

Normally, in a conservative system, x*” does not appear explicitly, but we
can include this for generality. Let us denote a functional variation by dq as
previously, and the total variation of ¢ (x) by

S1q = 8q + (9,,9)8x". (11.39)

The total variation of the action is now

5L 5L
— = n n
518 = /(dx) {Sq 8q + 8(8Mq)8(a”q) + (0, L)6x" + (9,6x )E} ,
(11.40)

where the first two terms originate from the functional variation in eqn. (4.21)
and the second two arise from the coordinate change in eqn. (11.32). We
now make the usual observation that the § variation commutes with the partial
derivative (see eqn. (4.19)), and thus we may integrate by parts in the second
and fourth terms of this expression to give

SL
oS = d )
T /( X){( 54 “6<auq)> q}

dx b} Lox* . 1141
/( ){ [(S(auq)“ "“ (114D

One identifies the first line as being that which gives rise to the Euler—Lagrange
field equations. This term vanishes by virtue of the field equations, for any
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292 11 Position and momentum

classically acceptable path. The remaining surface term can be compared with
eqn. (4.62) and represents a generator for the combined transformation. We
recognize the canonical momentum I1, from eqn. (4.66). To display this term
in its full glory, let us add and subtract

sL
5(3,9)

(3,9)8x" (11.42)

to the surface term, giving

1
5p8 = — / do* {T1,,(8¢ + (8,9)8x") — 6,,8x")
C

1
= —/da“ {M.érq — 0,,8x"}, (11.43)
c

where we have defined

Ly

0 = ———(0,9) — b 11.44
0 = Sianay @0 L (11.44)

This quantity is called the energy—momentum tensor. Its i, v = 0, 0 component
is the total energy density or Hamiltonian density of the system. Its u,v =
0, i components are the momentum components. In fact, if we expand out the
surface term in eqn. (11.43) we have terms of the form

M8g — HSt +pdx+ -+ -. (11.45)

This shows how elegantly the action principle generates all of the dynamical
entities of our covariant system and their respective conjugates (the delta objects
can be thought of as the conjugates to each of the dynamical generators).
Another way of expressing this is to say

e Il is the generator of ¢ translations,
e H is the generator of ¢ translations,
e p is the generator of x translations,

and so on. That these differential operators are the generators of causal changes
can be understood from method 2 of the example in section 7.1. A single partial
derivative has a complementary Green function which satisfies

0, G(x,x") =68(x,x"). (11.46)

This Green function is simply the Heaviside step function 6(t — ') from
Appendix A, eqn. (A.2). What this is saying is that a derivative picks out a
direction for causal change in the system. In other words, the response of the
system to a source is channelled into a change in the coordinates and vice versa.
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11.3 The energy—momentum tensor 6, 293

11.3.1 Example: classical particle mechanics

To illustrate the energy—momentum tensor in the simplest of cases, we return to
the classical system, with the Lagrangian given by eqn. (4.5). This Lagrangian
has no v indices, so our dogged Lorentz-covariant formalism is strictly wasted,
but we may take u to stand for the time ¢ or position i and use the general
expression. Recognizing that the metric for classical particles is §,,, rather than
guv> We have

oL .
O = F‘Ii — L&y

=piq' — L
1,
=3mq + V()

=H. (11.47)
The off-diagonal spacetime components give the momentum,
IL 3g, J :
i:_._:p'B[:pi:inv (1148)
"7 8, 0g; !
and
0; = —L, (11.49)

which has no special interpretation. The off-diagonal ij components vanish in
this case.

The analogous analysis can be carried out for relativistic point particles.
Using the action in eqn. (4.32), one finds that

oL
9rr = (8ZX) + L
LD«

oL (0:x) + L
= —(0{X
07X

1
=mu? — —mu>+V’
2
1
= 5mu2 +V, (11.50)

where u = dx/dr is the velocity, or

1
0, = 5mv2 +V. (11.51)

11.3.2 Example: the complex scalar field
The application of eqn. (11.44) for the action

S = / (dx) (R (3" a)* (3uda) + m*c*Pida + V().  (11.52)
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294 11 Position and momentum

gives us the following components for the energy—momentum tensor:

aL oL
0 L
0o = 8(80¢A)( 0Pa) + 3(30¢A)( o) — Lgoo
= 12c? [Bod) (opa) + (3ip2) Bipa) | +m*c* + V (9).
(11.53)
Thus, the last line defines the Hamiltonian density 7, and the Hamiltonian is
given by
H = /daH. (11.54)
The off-diagonal spacetime components define a momentum:
oL oL
Boi = Bip = ————(0;
o 0 8(8°¢)A( P)a+ 8(8°¢A)( i®4)
= 12c* {(3093) (i) + (30pa) (i3} - (11.55)

Taking the integral over all space enables us to integrate by parts and write this
in a form which turns out to have the interpretation of the expectation value
(inner product) of the field momentum (see chapter 9):

/ dotly = —h2c? / do (¢"0:309 — (D0d)0i0))

= —(¢, picd), (11.56)
where p = —ihd;. The diagonal space components are given by
6 = @) + () —
SRETC N a<a AN
= 21°c(3;0")(di¢) — L, (11.57)
where i is not summed. Similarly, the off-diagonal ‘stress’ components are given
by
1y = — = (3y) + (B 8)
T RGO Y R
=12 { @93 3¢4) + 3,95 Bi¢a) )
=h"'c(Pa, pipjda)- (11.58)

From eqn. (11.57), we see that the trace over spatial components in n + 1
dimensions is

D 0 =H—2mc'¢; — 2V () + (n — DL, (11.59)
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11.3 The energy—momentum tensor 6, 295

so that the full trace gives
Ok = g""0,, = —2m’c*p; — 2V ($) + (n — L. (11.60)

Note that this vanishes in 1 + 1 dimensions for zero mass and potential.

11.3.3 Example: conservation

We can also verify the energy—momentum conservation law, when the fields
satisfy the equations of motion. We return to this issue in section 11.8.1. For the
simplest example of a scalar field with action,

1 15,
S =/ (dx) 5(8“¢)(8M¢) + ™ . (11.61)
Using eqn. (11.44), we obtain the energy—momentum tensor

1 1
O = 5 (0,8)(3s) — 5m¢2. (11.62)
The spacetime divergence of this is
"6 = —(—0 ¢ + m*¢)(0,¢) = 0. (11.63)

The right hand side vanishes as a result of the equations of motion, and thus the
conservation law is upheld.

It is interesting to consider what happens if we add a potential V (x) to the
action. This procedure is standard practice in quantum mechanics, for instance.
This can be done by shifting the mass in the action by m?> — m? + V(x). The
result of this is the following expression:

3Oy = (O ¢ — (M + V(x))P)(3,9) + (3,V)§*
= 3,V (x)¢>. (11.64)

The first term vanishes again by virtue of the equations of motion. The
spacetime-dependent potential does not vanish, however. Conservation of
energy is only assured if there are no spacetime-dependent potentials. This
illustrates an important point, which is discussed more generally in section
11.8.1.

The reason that the conservation of energy is violated here is that a static
potential of this kind is not physical. All real potentials change in response to
an interaction with another field. By making a potential static, we are claiming
that the form of V (x) remains unchanged no matter what we scatter off it. It is
an immovable barrier. Conservation is violated because, in a physical system,
we would take into account terms in the action which allow V (x) to change in
response to the momentum imparted by ¢. See also exercise 1, at the end of this
chapter.
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296 11 Position and momentum

11.4 Spacetime invariance and symmetry on indices

For reasons which should become apparent in section 11.6.1, the energy—
momentum tensor, properly defined under maximal symmetry, is symmetrical
under interchange of its indices. This reflects the symmetry of the metric tensor
under interchange of indices. If the Lorentz symmetry is broken, however (for
instance, in the non-relativistic limit), then this property ceases to apply. In a
relativistic field theory, a non-symmetrical tensor may be considered simply
incorrect; in the non-relativistic limit, only the spatial part of the tensor is
symmetrical.

11.5 6,, for gauge theories

Consider the Maxwell action
1
S = /(dx) —F"F,, —J'A, . (11.65)
4o

A direct application of the formula in eqn. (11.44) gives an energy—momentum
tensor which is not gauge-invariant:

oL

1
O = ————(0,A%) — —F"" For 8- 11.66
w0 = Ay AN = F " oot (11.66)

The explicit appearance of A, in this result shows that this definition cannot
be physical for the Maxwell field. The reason for this lack of gauge invariance
can be traced to an inaccurate assumption about the nature of a translation, or
conformal transformation of the gauge field [44, 76]; it is related to the gauge
invariance of the theory. The expression for 6, in eqn. (11.44) relies on the
assumption in eqn. (11.29) that the expression for the variation in the field by
change of coordinates is given by

8x A, = (04A,)8x7. (11.67)

It is clear that this translation is not invariant with respect to gauge transforma-
tions, but this seems to be wrong. After all, potential differences are observable
as electric and magnetic fields between two points, and observable quantities
should be gauge-invariant. In terms of this quantity, the energy—momentum
tensor can be written as

oL

0, 6x" = — =
O = (g A)

o l o v
(6, A%) — me Fio8undx”. (11.68)
Suppose now that we use this as a more fundamental definition of 6,,. Our
problem is then to find a more appropriate definition of §,A,,, which leads to a
gauge-invariant answer. The source of the problem is the implicit assumption
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that the field at one point in spacetime should have the same phase as the field
at another point. In other words, under a translation of coordinates, we should
expect the field to transform like a vector only up to a gauge transformation.
Generalizing the transformation rule for the vector potential to account for this
simple observation cures the problem entirely. The correct definition of this
variation was derived in section 4.5.2.

The correct (gauge-invariant) transformation is now found by noting that we
may write

8eA, = (0,AL ()" + (3, €A,
= 6, FY + 0, (e, A). (11.69)

This last term has the form of a gauge-invariant translation plus a term which
can be interpreted as a gauge transformation d*s (where s = ¢€,A"). Thus
we may now re-define the variation 6, A* to include a simultaneous gauge
transformation, leading to the gauge-invariant expression

S AR (x) = 8, A" — dts = €, F"M, (11.70)

where € = §x*. The most general description of the translation €, in 3 4 1
dimensions is a 15-parameter solution to Killing’s equation for the conformal
symmetry [76],

A€y + 0v€, — %gwaye” =0, (11.71)

with solution
e*(x) = a"* + bx* + 0*'x, + 2x*cx, — X2, (11.72)
where 0" = —w"#. This explains why the conformal variation in the tensor 7,

gives the correct result for gauge theories: the extra freedom can accommodate
x-dependent scalings of the fields, or gauge transformations.

The anti-symmetry of F,, will now guarantee the gauge invariance of
0,.,. Using this expression in eqn. (11.43) for the energy—momentum tensor
(recalling e* = §x*) gives

5L
0, =—— F*—L
T T S
5L
:28FMO‘FV _Eg/,w
I
~1
= 115 FuaF," = —F" Fpy g 11.73
Ko Fualy A1t po 8 ( )

This result is manifestly gauge-invariant and can be checked against the tradi-
tional expressions obtained from Maxwell’s equations for the energy density and
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the momentum flux. It also agrees with the Einstein energy—momentum tensor
Ty
The components in 3 + 1 dimensions evaluate to:
600 = g (Foi Fy' — Lgoo)

_EE 1 (. EE
C g 2o\ c?

1 E2+B2
© 2uo \ 2

1
= 5(E-D+B~H), (11.74)

which has the interpretation of an energy or Hamiltonian density. The spacetime
oft-diagonal components are given by
Ooj = 0jo = 1y Foi F'
= 11y '€k Ei By /c
(E x H);
C 9

(11.75)

which has the interpretation of a ‘momentum’ density for the field. This
quantity is also known as Poynting’s vector divided by the speed of light. The
conservation law is

1 1
86u0 = ——3H + 8, (H x E) = 3, 8" =0, (11.76)

which may be compared with eqns. (2.70) and (2.73). Notice finally that
88
50— do 6o, 11.77)
and thus that
o5 _ H (11.78)
st '

which is the energy density or Hamiltonian. We shall have use for this relation
in chapter 14.

11.6 Another energy—-momentum tensor 7,
11.6.1 Variational definition

Using the action principle and the Lorentz invariance of the action, we have
viewed the energy—momentum tensor 6,,,, as a generator for translations in space
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11.6 Another energy—momentum tensor Ty, 299

and time. There is another quantity which we can construct which behaves as
an energy—momentum tensor: it arises naturally in Einstein’s field equations
of general relativity as a source term for matter. This tensor is defined by the
variation of the action with respect to the metric tensor:

2 35S
ST

Clearly, this definition assumes that the action is covariant with respect to the
metric g,,, so we should not expect this to work infallibly for non-relativistic
actions.

The connection between 7, and 6,,, is rather subtle and has to do with con-
formal transformations. Conformal transformations (see section 9.6) are related
to re-scalings of the metric tensor, and they form a super-group, which contains
and extends the Lorentz transformation group; thus 7}, admits more freedom
than 6,,. As it turns out, this extra freedom enables it to be covariant even
for local gauge theories, where fields are re-defined by spacetime-dependent
functions. The naive application of Lorentz invariance for scalar fields in section
11.3 does not automatically lead to invariance in this way; but it can be fixed, as
we shall see in the next section. The upshot of this is that, with the exception of
the Maxwell field and the Yang—Mills field, these two tensors are the same.

To evaluate eqn. (11.79), we write the action with the metric made explicit,
and write the variation:

1 $g 5L
_ n+1
58 = /d xJ3g <_¢§5guv£+ Sgw>, (11.80)

(11.79)

where we recall that g = —det g,,,. To evaluate the first term, we note that
] ddet g,
£ _ 28w (11.81)
Sglfw Sgllw

and use the identity
Indetg,, = Trlng,,. (11.82)

Varying this latter result gives

8 In(detg,,) = TréIn g,., (11.83)
or
d(detg,, 1)
(detgyw) _ 08, (11.84)
detg,,, g™
Using this result, together with eqn. (11.81), in eqn. (11.80), we obtain
aL
T/LU = 2@ - guvﬁ. (1185)
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This definition is tantalizingly close to that for the Lorentz symmetry variation,
except for the replacement of the first term. In many cases, the two definitions
give the same result, but this is not the case for the gauge field, where T},
gives the correct answer, but a naive application of 6, does not. The clue as
to their relationship is to consider how the metric transforms under a change of
coordinates (see chapter 25). Relating a general action g,, to a locally inertial
frame 7,,,, one has

g = V.2 V,” 1. (11.86)
where the vielbein V,j‘ = 8,’Lx"‘, so that
8" (0,4)(0,9) = n“? ng;(auqs)(am). (11.87)

In terms of these quantities, one has

2 85 Vg 8S
/g dgn detV sy,

(11.88)

Thus, one sees that variation with respect to a vector, as in the case of 6,
will only work if the vector transforms fully covariantly under every symmetry.
Given that the maximal required symmetry is the conformal symmetry, one may
regard 7, as the correct definition of the energy—momentum tensor.

11.6.2 The trace of the energy—momentum tensor T,

The conformal invariance of the field equations is reflected in the trace of the
energy—momentum tensor 7,,, which we shall meet in the next chapter. Its
trace vanishes for actions which are conformally invariant. To see this, we note
that, in a conformally invariant theory,
5§
3Q
If we express this in terms of the individual partial transformations, we have
58S 85 4g™ +8S8¢ _0
5Q  Sghv Q8¢

0. (11.89)

(11.90)

Assuming that the transformation is invertible, and that the field equations are

satisfied,
58S
— =0, (11.91)
5¢
we have
1 dgh
- T,,— =0. 11.92
2«/? WSS (11.92)
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11.6 Another energy—momentum tensor Ty, 301

Since % must be proportional to g"”, we have simply that
T,,8"" =TrT,, =0. (11.93)

A similar argument applies to the tensor 6,,,, since the two tensors (when defined
correctly) agree. In the absence of conformal invariance, one may expand the
trace in the following way:

Th = L, (11.94)

where £ are terms in the Lagrangian of ith order in the fields. 8’ is then called
the beta function for this term. It occurs in renormalization group and scaling
theory.

11.6.3 The conformally improved T,,

The uncertainty in the definition of the energy—momentum tensors 6,,, and T,
is usually understood as the freedom to change boundary conditions by adding
total derivatives, i.e. surface terms, to the action. However, another explanation
is forthcoming: such boundary terms are generators of symmetries, and one
would therefore be justified in suspecting that symmetry covariance plays a
role in the correctness of the definition. It has emerged that covariance, with
respect to the conformal symmetry, frequently plays a role in elucidating a
sensible definition of this tensor. While this symmetry might seem excessive
in many physical systems, where one would not expect to see such a symmetry,
its structure encompasses a generality which ensures that all possible terms are
generated, before any limit is taken.

In the case of the energy—momentum tensor, the conformal symmetry mo-
tivates improvements not only for gauge theories, but also with regard to
scaling anomalies. The tracelessness of the energy—momentum tensor for a
massless field is only guaranteed in the presence of conformal symmetry, but
such a symmetry usually demands a specific spacetime dimensionality. What is
interesting is that a fully covariant, curved spacetime formulation of 7),, leads
to an invariant definition, which ensures a vanishing 7" in the massless limit
[23, 26, 119].

The freedom to add total derivatives means that one may write

Ty = Ty + VPV 0, (11.95)

where m,,,,, 1s a function of the metric tensor, and is symmetrical on p, v and
p, o indices; additionally it satisfies:

myvpo + Mpvopu + Movup = 0. (1196)
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These are also the symmetry properties of the Riemann tensor (see eqn. (25.24)).
This combination ensures that the additional terms are conserved:

VEAT,, = VEVPV M0 = 0. (11.97)

The properties of the Riemann tensor imply that the following additional
invariant term may be added to the action:

AS = /(dx) Em" R pe - (11.98)
For spin-0 fields, the only invariant combination of correct dimension is
1 1
mtP? = (g’”gp" - Eg””g’“’ - Egp"g”"> ¢’ (11.99)

which gives the term

AS:/ %§R¢2, (11.100)

where R is the scalar curvature (see chapter 25). Thus, the modified action,
which must be temporarily interpreted in curved spacetime, is

1 1
S = /(dx} {E(V%)(VM) + 5(m2 + ER)¢2} : (11.101)
where (dx) = ﬁd"“x. Varying this action with respect to the metric leads to

1
Tuv = (Vu$)(Vu®) = S8 [(V}*)(Vig) + m*¢*]
+ £V, VY, — gl (11.102)

Notice that the terms proportional to £ do not vanish, even in the limit R — 0,
i.e. V, — 9,. The resulting additional piece is a classic (n + 1) dimensional,
transverse (conserved) vector displacement. Indeed, it has the conformally
invariant form of the Maxwell action, stripped of its fields. The trace of this
tensor may now be computed, giving:

u 1—n 1 2,2
T = [_ + 25,1} (VB (Vu) = 500+ Dm’g. (11103

2
One now sees that it is possible to choose & such that it vanishes in the massless
limit; i.e.
1
Th = —E(n + DHm?*¢?, (11.104)
where
n—1
§ = . (11.105)
4n

This value of & is referred to as conformal coupling. In 3 4 1 dimensions, it has
the value of é, which is often assumed explicitly.

Downloaded from https://www.cambridge.org/core. IP address: 3.145.191.181, on 16 Sep 2024 at 23:29:27, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/B1B9650BCAFAC6395E1B67B5047B8306
https://www.cambridge.org/core

11.7 Angular momentum and spin 303

11.7 Angular momentum and spin'

The topic of angular momentum in quantum mechanics is one of the clas-
sic demonstrations of the direct relevance of group theory to the nature of
microscopic observables. Whereas linear momentum more closely resembles
its Abelian classical limit, the microscopic behaviour of rotation at the level
of particles within a field is quite unexpected. The existence of intrinsic,
half-integral spin S, readily predicted by representation theory of the rotation
group in 3 4+ 1 dimensions, has no analogue in a single-valued differential
representation of the orbital angular momentum L.

11.7.1 Algebra of orbital motion in 3 + 1 dimensions

The dynamical commutation relations of quantum mechanics fix the algebra
of angular momentum operators. It is perhaps unsurprising, at this stage,
that the canonical commutation relations for position and momentum actually
correspond to the Lie algebra for the rotation group. The orbital angular
momentum of a body is defined by

L=rxp. (11.106)
In component notation in n-dimensional Euclidean space, one writes
L; = e;jx! p*. (11.107)
The commutation relations for position and momentum
X', p/1=1xp 8" (11.108)
then imply that (see section 11.9)
[Li, L;]=1x €jk Lk. (11.109)

This is a Lie algebra. Comparing it with eqn. (8.47) we see the correspondence
between the generators and the angular momentum components,

T < L%/ xn
Jabe = —€ape, (11.110)

with the group space a, b, ¢ < i, j, k corresponding to the Euclidean spatial
basis vectors. What this shows, however, is that the group theoretical description
of rotation translates directly into the operators of the dynamical theory, with a

1A full understanding of this section requires a familiarity with Lorentz and Poincaré symmetry
from section 9.4.
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dimensionful scale y; , which in quantum mechanics is x; = #. This happens,
as discussed in section 8.1.3, because we are representing the dynamical
variables (fields or wavefunctions) as tensors which live on the representation
space of the group (spacetime) by a mapping which is adjoint (the group space
and representation space are the same).

11.7.2 The nature of angular momentum in n + 1 dimensions

In spite of its commonality, the nature of rotation is surprisingly non-intuitive,
perhaps because many of its everyday features are taken for granted. The
freedom for rotation is intimately linked to the dimension of spacetime. This
much is clear from intuition, but, as we have seen, the physics of dynamical
systems depends on the group properties of the transformations, which result
in rotations. Thus, to gain a true intuition for rotation, one must look to the
properties of the rotation group in n + 1 dimensions.

In one dimension, there are not enough degrees of freedom to admit rotations.
In 2 4 1 dimensions, there is only room for one axis of rotation. Then we have
an Abelian group U (1) with continuous eigenvalues exp(if). These ‘circular
harmonics’ or eigenfunctions span this continuum. The topology of this space
gives boundary conditions which can lead to any statistics under rotation. i.e.
anyons.

In 3 4 1 dimensions, the rank 2-tensor components of the symmetry group
generators behave like two separate 3-vectors, those arising in the timelike
components T% and those arising in the spacelike components %e’j KT;;; indeed,
the electric and magnetic components of the electromagnetic field are related
to the electric and magnetic components of the Lorentz group generators.
Physically, we know that rotations and coils are associated with magnetic fields,
so this ought not be surprising. The rotation group in 3 + 1 dimensions is
the non-Abelian SO (3), and the maximal Abelian sub-group (the centre) has
eigenvalues £1. These form a Z, sub-group and reflect the topology of the
group, giving rise to two possible behaviours under rotation: symmetrical and
anti-symmetrical boundary conditions corresponding in turn to Bose—Einstein
and Fermi—Dirac statistics.

In higher dimensions, angular momentum has a tensor character and is
characterized by n-dimensional spherical harmonics [130].

11.7.3 Covariant description in 3 + 1 dimensions

The angular momentum of a body at position r, about an origin, with momentum
p, is defined by

J=L+S=@@xp)+S. (11.111)
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The first term, constructed from the cross-product of the position and linear
momentum, is the contribution to the orbital angular momentum. The second
term, S, is the spin, or intrinsic angular momentum, of the body. The total
angular momentum is a conserved quantity and may be derived from the energy—
momentum tensor in the following way. Suppose we have a conserved energy—
momentum tensor 6,,,,, which is symmetrical in its indices (Lorentz-invariant),
then

9,0"" =0. (11.112)
We can construct the new axial tensor,
LM = xV o — x ovr, (11.113)
which is also conserved, since

BMLIW)L = 0" _g" = . (11.114)

Comparing eqn. (11.113) with eqn. (11.111), we see that L** is a generalized

vector product, since the components of r x p are of the form L; = ry p3 —r3 pa,
or L; = €;jxrjpr. We may then identify the angular momentum 2-tensor as the
anti-symmetrical matrix

JW = /da Lo = — UK, (11.115)

which is related to the generators of homogeneous Lorentz transformations
(generalized rotations on spacetime) by

T = T (11.116)

3410

pi=0

see eqn. (9.95). The ij components of J*¥ are simply the components of r x p.
The i0 components are related to boosts. Clearly, this matrix is conserved,

9, J" = 0. (11.117)

Since the coordinates x* appear explicitly in the definition of J*", it is not
invariant under translations of the origin. Under the translation x* — x* + a*,
the components transform into

JH — T 4 (a" p” + a* pt). (11.118)

(see eqn. (11.5)). This can be compared with the properties of eqn. (9.153).
To isolate the part of 7),, which is intrinsic to the field (i.e. is independent of
position), we may either evaluate in a rest frame p; = 0 or define, in 3 4 1
dimensions, the dual tensor

1
S = Eewpﬂ“’ =5, (11.119)
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The anti-symmetry of the Levi-Cevita tensor ensures that the extra terms in
eqn. (11.118) cancel. We may therefore think of this as being the generator
of the intrinsic angular momentum of the field or spin. This dual tensor is
rather formal though and not very useful in practice. Rather, we consider the
Pauli-Lubanski vector as introduced in eqn. (9.161). We define a spin 4-vector
by

1 1 oo
—5me Sy=xn Wy = Ee,wm] ?p*, (11.120)
so that, in a rest frame,
X Wiest = —%mC(O, 5H, (11.121)
where S is the intrinsic spin angular momentum, which is defined by

. . 1 .
S'=J =T == xnepy (11.122)
p'=0 2

with eigenvalues s(s + 1) x5, 2 and my x,, where s = e + f.

11.7.4 Intrinsic spin of tensor fields in 3 4+ 1 dimensions

Tensor fields are classified by their intrinsic spin in 3 + 1 dimensions. We
speak of fields with intrinsic spin 0, %, 1, %, 2,.... These labels usually refer
to 3 + 1 dimensions, and may differ in other number of dimensions since they
involve counting the number of independent components in the tensors, which
differs since the representation space is spacetime for the Lorentz symmetry.
The number depends on the dimension and transformation properties of the
matrix representation, which defines a rotation of the field. The homogeneous
(translation independent) Lorentz group classifies these properties of the field in

3 + 1 dimensions,

Field Spin
$px) O
Va(x) 3
A, 1
3
Ve 2
8uv 2

where w, v = 0, 1, 2, 3. Although fields are classified by their spin properties,
this is not enough to be able to determine the rotational modes of the field. The
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mass also plays a role. This is perhaps most noticeable for the spin-1 field A,,.
In the massless case, it has helicities A = &1, whereas in the massive case it can
take on the additional value of zero. The reason for the difference follows from
a difference in the true spacetime symmetry of the field in the two cases. We
shall explore this below.

From section 9.4.3 we recall that the irreducible representations of the Lorentz
group determine the highest weight or spin s = e + f of a field. If we set
the generators of boosts to zero by taking wy; T% = 0 in eqn. (9.95), then we
obtain the pure spatial rotations of section 8.5.10. Then the generators of the
Lorentz group E; and F; become identical, and we may define the spin of a
representation by the operator

S,':E,'-i-F,': Xh TBi- (11123)

The Casimir operator for the defining (vector field) representation is then

S*=x}Ts=xf (11.124)

(=N el N
S OO
SN OO
N O OO

This shows that the rotational 3-vector part of the defining representation forms
an irreducible module, leaving an empty scalar component in the time direction.
One might expect this; after all, spatial rotations ought not to involve timelike
components. If we ignore the time component, then we easily identify the spin
of the vector field as follows. From section 8.5.10 we know that in representation
GR, the Casimir operator is proportional to the identity matrix with value

§? = 8'S; = s(s + Dy} I, (11.125)

and s = e + f. Comparing this with eqn. (11.124) we have s(s + 1) = 2, thus
s = 1 for the vector field. We say that a vector field has spin 1.

Although the vector transformation leads us to a value for the highest weight
spin, this does not necessarily tell us about the intermediate values, because
there are two ways to put together a spin-1 representation. One of these applies
to the massless (transverse) field and the other to the massive Proca field, which
was discussed in section 9.4.4. As another example, we take a rank 2-tensor
field. This transforms like

Guy = LPLIG . (11.126)

In other words, two vector transformations are required to transform this, one
for each index. The product of two such matrices has an equivalent vector form
with irreducible blocks:
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(L @& (1,080,1) & (0,0).
—— —_— ——

traceless  + anti-symmetric + trace
symmetric

This is another way of writing the result which was found in section 3.76 using
more pedestrian arguments. The first has 2e + 1))2f +1) =9 = f =1)
spin e 4+ f = 2 components; the second two blocks are six spin-1 parts; and the
last term is a single scalar component, giving 16 components in all, which is the
number of components in the second-rank tensor.

Another way to look at this is to compare the number of spatial components
in fields with 25 + 1. For scalar fields (spin 0), 2s + 1 gives one component. A
4-vector field has one scalar component and 25+ 1 = 3 spatial components (spin
1). A spin-2 field has nine spatial components: one scalar (spin-0) component,
three vector (spin-1) components and 2s + 1 = 5 remaining spin-2 components.
This is reflected in the way that the representations of the Lorentz transformation
matrices reduce into diagonal blocks for spins 0, 1 and 2. See ref. [132] for a
discussion of spin-2 fields and covariance.

It is coincidental for 3 4+ 1 dimensions that spin-0 particles have no Lorentz
indices, spin-1 particles have one Lorentz index and spin-2 particles have two
Lorentz indices.

What is the physical meaning of the spin label? The spin is the highest weight
of the representation which characterizes rotational invariance of the system.
Since the string of values produced by the stepping operators moves in integer
steps, it tells us how many distinct ways, m + m’, a system can spin in an
‘equivalent’ fashion. In this case, equivalent means about the same axis.

11.7.5 Helicity versus spin
Helicity is defined by

A=Ji P (11.127)

Spin s and helicity A are clearly related quite closely, but they are subtly
different. It is not uncommon to refer loosely to helicity as spin in the literature
since that is often the relevant quantity to consider. The differences in rotation
algebras, as applied to physical states are summarized in table 11.3. Because
the value of the helicity is not determined by an upper limit on the total
angular momentum, it is conventional to use the component of the spin of the
irreducible representation for the Lorentz group which lies along the direction
of the direction of travel. Clearly these two definitions are not the same thing. In
the massless case, the labels for the helicity are the same as those which would
occur for m; in the rest frame of the massive case.

From eqn. (11.127) we see that the helicity is rotationally invariant for
massive fields and generally Lorentz-invariant for massless po = 0 fields.
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Table 11.3. Spin and helicity.

Casimir A.=m;
Massive j(j+1) 0,£1, %+1,..., %)
Massless 0 0, j:%,ﬂ:l,...,oo

It transforms like a pseudo-scalar, since J; is a pseudo-vector. Thus, the
sign of helicity changes under parity transformations, and a massless particle
which takes part in parity conserving interactions must have both helicity states
42, i.e. we must represent it by a (reducible) symmetrized pair of irreducible

representations:
(J(; S) or (2 J(;) (11.128)

The former is the case for the massless Dirac field (A = :I:%), while the
latter is true for the photon field F*' (A = =1), where the states correspond
to left and right circularly polarized radiation. Note that, whereas a massive
particle could have A = 0, £1, representing left transverse, right transverse
and longitudinal angular momentum, a massless (purely transverse) field cannot
have a longitudinal mode, so A = 0 is absent. This can be derived more
rigorously from representation theory.

In refs. [45, 55], the authors study massless fields with general spin and show
that higher spins do not necessarily have to be strictly conserved; only the Dirac-
traceless part of the divergence has to vanish.

11.7.6 Fractional spin in 2 + 1 dimensions

The Poincaré group in 2 + 1 dimensions shares many features of the group
in 3 4+ 1 dimensions, but also conceals many subtleties [9, 58, 77]. These
have specific implications for angular momentum and spin. In two spatial
dimensions, rotations form an Abelian group SO (2) ~ U (1), whose generators
can, in principle, take on eigenvalues which are unrestricted by the constraints
of spherical harmonics. This leads to continuous phases [89, 138], particle
statistics and the concept of fractional spin. It turns out, however, that there is a
close relationship between vector (gauge) fields and spin in 2 + 1 dimensions,
and that fractional values of spin can only be realized in the context of a gauge
field coupling. This is an involved topic, with a considerable literature, which
we shall not delve into here.
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11.8 Work, force and transport in open systems

The notion of interaction and force in field theory is unlike the classical
picture of particles bumping into one another and transferring momentum. Two
fields interact in the manner of two waves passing through one another: by
interference, or amplitude modulation. Two fields are said to interact if there is
a term in the action in which some power of one field multiplies some power of
another. For example,

Sint = /(dx) {$*A, A"} (11.129)

Since the fields multiply, they modulate one another’s behaviour or perturb
one another. There is no explicit notion of a force here, and precisely what
momentum is transferred is rather unclear in the classical picture; nevertheless,
there is an interaction. This can lead to scattering of one field off another, for
instance.

The source terms in the previous section have the form of an interaction,
in which the coupling is linear, and thus they exert what is referred to as a
generalized force on the field concerned. The word generalized is used because
J does not have the dimensions of force — what is important is that the source
has an influence on the behaviour of the field.

Moreover, if we place all such interaction terms on the right hand side of
the equations of motion, it is clear that interactions also behave as sources for
the fields (or currents, if you prefer that name). In eqn. (11.129), the coupling
between ¢ and A, will lead to a term in the equations of motion for ¢ and for
A, thus it acts as a source for both fields.

We can express this in other words: an interaction can be thought of as a
source which transfers some ‘current’ from one field to another. But be wary
that what we are calling heuristically ‘current’ might be different in each case
and have different dimensions.

A term in which a field multiplies itself, ¢", is called a self-interaction. In
this case the field is its own source. Self-interactions lead to the scattering of
a field off itself. The classical notion of a force was described in terms of the
energy—momentum tensor in section 11.3.

11.8.1 The generalized force F, = 9, T""

There is a simple proof which shows that the tensor 7),, is conserved, provided
one has Lorentz invariance and the classical equations of motion are satisfied.
Consider the total dynamical variation of the action

BS—/ 855’”4—/858 =0 (11.130)
= SgWg Sqq_. .
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11.8 Work, force and transport in open systems 311

Since the equations of motion are satisfied, the second term vanishes identically,
leaving

1
58 = E@/(dx)T/w(Sg“”. (11.131)

For simplicity, we shall assume that the metric g,,, is independent of x, so that
the variation may be written (see eqn. (4.88))

8§ = /(dx)Tw [£1.(0,€") + 3, (3,M)] = 0. (11.132)
Integrating by parts, we obtain
s = [@o[-20,7"]e, =0, (11.133)

Since € (x) is arbitrary, this implies that
0, T"" =0, (11.134)

and hence T*' is conserved. From this argument, it would seem that 7+"
must always be conserved in every physical system, and yet one could imagine
constructing a physical model in which energy was allowed to leak away. The
assumption of Lorentz invariance and the use of the equations of motion provide
a catch, however. While it is true that the energy—momentum tensor is conserved
in any complete physical system, it does not follow that energy or momentum
is conserved in every part of a system individually. If we imagine taking
two partial systems and coupling them together, then those two systems can
exchange energy. In fact, energy will only be conserved if the systems are in
perfect balance: if, on the other hand, one system does work on the other, then
energy flows from one system to the other. No energy escapes the total system,
however.

Physical systems which are coupled to other systems, about which we have
no knowledge, are called open systems. This is a matter of definition. Given
any closed system, we can make an open system by isolating a piece of it and
ignoring the rest. Clearly a description of a piece of a system is an incomplete
description of the total system, so it appears that energy is not conserved in the
small piece. In order to see conservation, we need to know about the whole
system. This situation has a direct analogue in field theory. Systems are placed
in contact with one another by interactions, often through currents or sources.
For instance, Dirac matter and radiation couple through a term which looks like
J#A,. If we look at only the Dirac field, the energy—-momentum tensor is not
conserved. If we look at only the radiation field, the energy—momentum tensor
is not conserved, but the sum of the two parts is. The reason is that we have to
be ‘on shell’ —i.e., we have to satisfy the equations of motion.
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Consider the following example. The (incomplete) action for the interaction
between the Dirac field and the Maxwell field is

1
S = /(dx) — FME, — JA, Y, (11.135)
4o

where J# = ¥ y*y. Now, computing the energy—momentum tensor for this
action, we obtain

9, T = F*,. (11.136)

This is not zero because we are assuming that the current J# is not zero. But
this is not a consistent assumption in the action, because we have not added
any dynamics for the Dirac field, only the coupling J#A . Consider the field
equation for ¥ from eqn. (11.135). Varying with respect to ¥,

éS
57 YA ( )

This means that either A, = 0 or ¥ = 0, but both of these assumptions make
the right hand side of eqn. (11.136) zero! So, in fact, the energy—momentum
tensor is conserved, as long as we obey the equations of motion given by the
variation of the action.

The ‘paradox’ here is that we did not include a piece in the action for the
Dirac field, but that we were sort of just assuming that it was there. This is a
classic example of writing down an incomplete (open) system. The full action,

S = /(dx) {ﬁF’”FM — JHA, + Y ("0, + m)l/f} ., (11.138)

has a conserved energy—momentum tensor, for more interesting solutions than
Yy =0.

From this discussion, we can imagine the imbalance of energy—momentum
on a partial system as resulting in an external force on this system, just as in
Newton’s second law. Suppose we define the generalized external force by

F' = /do 0, T™". (11.139)

The spatial components are

i 0i i dp
F =/do T =0,P' = e (11.140)
which is just Newton’s second law. Compare the above discussion with
eqn. (2.73) for the Poynting vector.
An important lesson to learn from this is that a source is not only a generator
for the field (see section 14.2) but also a model for what we do not know about
an external system. This is part of the essence of source theory as proposed by

Schwinger. For another manifestation of this, see section 11.3.3.
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11.8.2 Work and power

In chapter 5 we related the imaginary part of the Feynman Green function to
the instantaneous rate at which work is done by the field. We now return to this
problem and use the energy—momentum tensor to provide a new perspective on
the problem.

In section 6.1.4 we assumed that the variation of the action with time,
evaluated at the equations of motion, was the energy of the system. It is now
possible to justify this; in fact, it should already be clear from eqn. (11.78). We
can go one step further, however, and relate the power loss to the notion of an
open system. If a system is open (if it is coupled to sources), it does work, w.
The rate at which it does work is given by

dw /d 9, T (11.141)
— = o . .
dr "

This has the dimensions of energy per unit time. It is clearly related to the
variation of the action itself, evaluated at value of the field which satisfies the
field equations, since

sS

Aw = —/dodt 3, T = —— (11.142)

field eqns

The electromagnetic field is the proto-typical example here. If we consider the
open part of the action (the source coupling),

Sy = /(dx) JHA,, (11.143)
then, using
A, = /(dx) D,y(x, x")J"(x"), (11.144)
we have

6S[A;] = 8/(dx) JHSA,
= /(dx)(dx’)]”(x)Du,,(x,x/)(SJ"(x/)

- / (dx) (2, T"0)st
= Awét. (11.145)

The Green function we choose here plays an important role in the discussion,
as noted in section 6.1.4. There are two Green functions which can be used
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in eqn. (11.144) as the inverse of the Maxwell operator: the retarded Green
function and the Feynman Green function. The key expression here is

W= %/(dx)(dx’)]“(x)DW(x,x')]”(x’). (11.146)

Since the integral is spacetime symmetrical, only the symmetrical part of the
Green function contributes to the integral. This immediately excludes the
retarded Green function

11.8.3 Hydrodynamic flow and entropy

Hydrodynamics is not usually regarded as field theory, but it is from hydro-
dynamics (fluid mechanics) that we derive notions of macroscopic transport.
All transport phenomena and thermodynamic properties are based on the idea
of flow. The equations of hydrodynamics are the Navier—Stokes equations.
These are non-linear vector equations with highly complex properties, and their
complete treatment is outside the scope of this book. In their linearized form,
however, they may be solved in the usual way of a classical field theory, using
the methods of this book. We study hydrodynamics here in order to forge a
link between field theory and thermodynamics. This is an important connection,
which is crying out to be a part of the treatment of the energy—momentum tensor.
We should be clear, however, that this is a phenomenological addition to the field
theory for statistically large systems.

A fluid is represented as a velocity field, U*(x), such that each point in a
system is moving with a specified velocity. The considerations in this section do
not depend on the specific nature of the field, only that the field is composed of
matter which is flowing with the velocity vector U*. Our discussion of flow will
be partly inspired by the treatment in ref. [134], and it applies even to relativistic
flows. As we shall see, the result differs from the non-relativistic case only by a
single term. A stationary field (fluid) with maximal spherical symmetry, in flat
spacetime, has an energy—momentum tensor given by

Too=H
Toi =To=0
T, = P& (11.147)

In order to make this system flow, we may perform a position-dependent boost
which places the observer in relative motion with the fluid. Following a boost,
the energy—momentum tensor has the form

T" = Pg" + (P + H)U U/, (11.148)

The terms have the dimensions of energy density. P is the pressure exerted by
the fluid (clearly a thermodynamical average variable, which summarizes the
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11.8 Work, force and transport in open systems 315

microscopic thermal motion of the field). H is the internal energy density of the
field. Let us consider the generalized thermodynamic force F* = 9,T*". Ina
closed thermodynamic system, we know that the energy—momentum tensor is
conserved:

Ft=9,T" =0, (11.149)
and that the matter density N (x) in the field is conserved,
I, N" =0, (11.150)

where N, = N(x)U,. If we think of the field as a plasma of particles, then
N (x) is the number of particles per unit volume, or number density. Due to its
special form, we may write

0, N" = (0, N)U" + (3, U"), (11.151)

which provides a hint that the velocity boost acts like a local scaling or
conformal transformation on space

—2df? 4 dx;dx’ — —c2dr? + Q*(U)dx;dx’. (11.152)

The average rate of work done by the field is zero in an ideal, closed system:

dw
— = [ do U,F"
pm / o U
= /do [U"0,P — 9, (P +H)U"]

: (11.153)

Now, noting the identity

NE)M(P;H> =3d(P+H) — (8‘;\]N>(P+H), (11.154)

we may write

dw :/da v |:8MP—N(P+H)]. (11.155)
ar N

Then, integrating by parts, assuming that U* is zero on the boundary of the
system, and using the identity in eqn. (11.151)

B

=— / do NU"[P8,V + 9,H], (11.156)
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