ON ALMOST REGULAR HOMEOMORPHISMS
S. K. KAUL

1. Let (X, d) be a metric space with metric d, and % be a homeomorphism
of X onto itself. Any point ¥ in X is called a regular point (2) under % if for
any given e > 0 there exists a § > 0 such that d(x,y) < & implies that
d(k"(x), h*(y)) < e for all integers », where #* is the composition of %z or k™!

© with itself |#| times, depending upon whether # is positive or negative, and A°
is the identity on X. If v is not regular under %, then vy is called srregular. We
shall denote the set of regular points by R(%) and the set of irregular points by
I(k). The homeomorphism £ is called almost regular if I(h) is zero dimensional
and compact. Note that I(%) is therefore non-empty. We use the terms
Lim sup and Lim inf as defined in (5).
One of the aims of this paper is to prove the following:

Ma1N THEOREM. Let X be a locally compact, locally connected and connected
space, and h be an almost regular homeomorphism of X onto itself. If R(h) is
connecled, then I{h) consists of al most two pownts, both of which are fixed under h.

This result is related to Theorem 1 of (4), where (k) was assumed to be
finite and X connected and compact. The case [(h) = @ is considered in (4).

I wish to express my thanks to Professor S. Kinoshita for suggesting the
problem and for many helpful discussions.

Lemma 1. Let (X, d) be a locally compact metric space and h be an almost
regular homeomorphism of X onmto itself. If p € I(h) and X s locally connected
at p, then there exists a y € R(h) such that

p € Lim sup %" (v).

n->tco
Proof. Since p is an irregular point under £, there exists an € > 0 such that
for any open set V containing p, diam A*(V) > e {or infinitely many integers .
Let

Q = Lim sup #*(p).

N30
It is easy to see that £*[I(h)] = I(k) for each integer . This together with the
fact that I(h) is compact implies that Q is a non-empty compact subset of I{%).
Since I(k) is zero dimensional and X is locally compact, there exists a finite
open covering {U;} (¢ = 1,...,m) of Q such that for each z, diam U, < &,
U, is compact, and boundary of U; M I(k) is @. Since
Q = Lim sup " (p),

4o
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there exists a natural number N such that for all |n| > N,

K@) e U U

Since X is locally connected at p, there exists a sequence {V;} of connected
open sets containing p, such that V4, C Vifore = 1,2, ... ,anddiam[V,]—0
as 71— o. Let {n:7=1,2,...} be the set of all the integers such that
diam h*i[V,] > e. Since Vi1 C Vi, we have {n4,;} C {n;} for each 4.
It is easy to see then that there exists a member U of Uy, ..., U, and a
subsequence {7 kB = 1,2,...} of the natural numbers ¢ such that for each
member 4; of this infinite set, U M A" [V;] # 0 for infinitely many values
of j. For each k let m, denote an element of {rny;:j = 1,2,...} such that
e[V ] M U 5= 0, and {mgyd] > |my| (B = 1,2,...). Since diam 2™[V ;] > e,
W[V ,,] is connected, and diam U < ¢, ™[V, ] N bdry U = @. Let

Vi & hmk[Vq_k] M bdry U (k = 1, 2, .. .).

The sequence of points {y,} C bdry U has a limit point ¥ in it. Let us assume
for convenience that {y,} converges to y (or we work with a subsequence
converging to ). We shall show that

$ € Lim sup £"(y).

Nt

Let % > 0 be arbitrary. Since y € bdry U C R(%), there exists a v > 0,
such that, for d(x, v) <, d(B*{(x), k*(y)) < 1/2 {or all integers n. Let K be
large enough so that d(y,y) <+ for k> K. Hence (1) d(h™(y),
e(y,)) < 1/2 for kB > K. Let N be large enough so that diam V,, < »/2
for B > N. Hence (ii) d(h™™(y;), p) < /2 for k > N. Thus

A (y), p) < ™ (y), ™ (y)) + (™ (y,), p) < in -+ ip = 5

for & > max (K, N) from (i) and (i1). Hence
p = Lim K ™(y),
k300

which completes the proof.

THEOREM 1. Let X be a locally connected, connected and locally compact metric
space, and h be an almost regular homeomorphism of X onto iiself. If R(h) is
connected, then for any y € R(h),

Lim sup 2"(y) N\ R(h) = @.
—tco

Proof. The proof follows immediately from Theorems 1 and 2 of (4) and

Lemma 1 above.

Henceforth we assume in this paper that (X, d) is a locally connected,
connected and locally compact space, % is an almost regular homeomorphism
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of X onto itself and R(%) is connected. Note that under these conditions the
above results are true.

2. For the purposes of this article let U be an open set in X such that U is
compact and bdry UM I(h) = @. Let {m,;} be any sequence of integers,
and

F = lim inf #™[U] (myi=1,2,...,distinct).

LemMma 2. Let y € FOR(). Then y € k™i[U) for all except finitely many 1.

Proof. Suppose there is a subsequence {n; C {m,;} such that y ¢ r*[U].
Let { &} be a sequence of positive numbers converging to zero. Since v € R(h),
for each integer k there exists a §; > 0 such that for d{x,v) < &, d(h"(x),
H*(y)) < e for all integers #. Again since ¥ € F and {n;} is a subsequence of
{m,} there exists for each & an integer #, in {n;} such that for |n,] > n,
r Ul M Uy # @ where U, is the §-neighbourhood of y. Let y, € B#(U) M U,
fork =1,2,....Since d(v, v) < &, A (ys), B (y)) < &, b (y,) € U,
and k" (y) ¢ U (k=1,2,...). But, since ¢ > 0as bk — o,

Lim sup 5™ (y,) = Lim sup & ™ (y).

k>0 ke

Clearly,
Lim sup 27" (y;) =~ 0

k-0

for B (y,) € U and U is compact; hence
Lim sup 2™ (y) = 0

koo

and is contained in the boundary of U. This contradicts Theorem 1 above and
completes the proof.

Lemma 3. If y € B™[UL M R(k) for all values of i, then there exists an open
set V in X containing v such that V. C k™i[U] for all but a finite number of
values of 1.

Proof. Suppose the lemma is false; that is for any open set V containing ¥
there exist infinitely many values of ¢ for which V — A™[U] = 0. Let {¢} be
a sequence of real positive numbers converging to zero. Since ¥y € R(k), for
every integer k there exists a & > 0 such that for d(x,y) < &, d(#*(y),
B (x)) < ¢ for all integers n. But for each integer & (k = 1, 2, ...) there exists
an #; in {m;} such that U, — k"[U] = @ and |n| < |#441], where Uy is the
o-neighbourhood of y in X. Let v, be any point in U, — F**[U]. Then
d(y, yi) < & implies that d(F—"(y), h™(y;)) < & where k" (y) ¢ U and
B (y,) ¢ U.Since ¢, —>0ask — o.

Lim sup 2™ (y;) = Lim sup ¥ "*(v) C bdry U C R(%).
k-y0 k>0

This, as in Lemma 2, leads to a contradiction and completes the proof.
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From Lemmas 2 and 3, we have immediately

THEOREM 2. If y € F M\ R(k), then there exisis an open set V in X containing
v such that V- C k™[ U] for all but a finite number of values of i, i.e.

V C F = Lim inf A™[U].

TuroreM 3. If F M\ R(h) 5= @, then R(h) C F.

Proof. From Theorem 2 it follows that F M\ R(k) is open in R(%). Since F
is closed in X, FMN R(h) is closed in R(k). Since R(h) is connected and
F M R{k) # @, the result follows.

3. TaroreM 4. If p € I(h), then for any open set U containing p there exists
a sequence of integers {m;} such that
Lim inf A™[U] = X.
100
Proof. Since Lemma 1 is true, there exists a point ¥y € R(%) and a sequence
of integers {m,} such that
Lim A ™ (y) = p.
50
Let ¥ be an open set such that p € ¥V C U, V is compact, and
bdry VN I(h) = 8.

Now A=™i(y) e V for all but a finite number of values of 7; hence vy € 2™:[V] for
all but a finite number of values of 4, that is,

y € Lim inf A™[V].

Since
R{&) M Lim inf A™[V] = 9,

it follows from Theorem 3 that
R(k) C Lim inf 2™[V].
i3
But since
Lim inf A™[V]

is closed in X, it contains R(k). Finally, since R(k) is dense in X andV C U,
the theorem follows.

LEMMA 4. Let p € I(h) and V be any open set containing p. Then there exists a
sequence of integers {m,} such that given any y € R(k), h™(y) € V for i > j
for some positive integer j.

Proof. Let U be an open set containing p such that U is compact,
bdry UM I(h) = 8,
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and U C V. From Theorem 4 there exists a sequence of integers {m;} such that

Lim inf U] = X.
If y € R(h), then o
y€ RME) N Lim inf U
Hence, from Lemma 2, y € F™i[U] for all ¢ > j for some integer j. Thus
kmi(y) € U C V for 2 » j. This completes the proof.

TaEOREM 5. If p € I(h), then h(p) = p.

Proof. Suppose h(p) # p. Then there exists an open set U containing p
such that UM E[U] = #. From Lemma 4 there exists a sequence of integers
{m;} such that for any v € R(%), W™i(y) € U for ¢ > j for some integer 7.

Consider y and y; = #~!(y) in R(k). Then there exists an integer j such that
for 7 » j, B™i(y) and k™i(y;) are both in U. But #™i(y1) = A 1(h™i(y)) gives
Bmi(y) € BlU] for ¢ > j. Hence U M A[U] # 8. This contradiction completes
the proof.

Proof of the Main Theorem. Suppose I(h) consists of more than two points.
We shall establish a contradiction.

It is not difficult to see that every point of I(%) is a non-cut point of X since
R (k) is connected and dense in X. Hence for any p € I(h) there exists an
arbitrarily small open set in X containing p such that its complement is
connected (5, (4.15), p. 50). Let V be an open set containing some point
p € I(h) such that X — V is connected and contains at least two points, say
p1and ps, of I(k). Since every point of I(k) is fixed under & (Theorem 5) and
RI(R)] = I(h), p1 and p; do not belong to A*[V] for any integer n. Note also
that for any integer #, X — k*[V] is a connected set, and also for any two
integers m, n, (X — B[V]) N (X — B"[V]) #£ 8.

Let U be an open set containing p such that p € U C V, U is compact, and
bdry UM I(k) = @. Let n, denote the sequence of integers such that

Lim inf Ul =X
(see Theorem 4). .
Consider

X — V]

J

B, =X — N K[V] =
i=j 1=

Then B, is a connected set, and B, D B;y1 (7 = 1,2,...). Set

B=NB,=X—U N KVl

1 7=1 ¢=j

D

)

J

Then B contains at least two points, p1 and p.. _
Let W be an open set containing p: but not p;, W be compact, and
bdry WM I(h) = 8. Since B; D B, and B; is connected, B; N bdry W == 4.
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Let Vi E B]mbdry W (j = 1, 2, .. .). Since Vi E Bj,

v, & N B[V, thatis y; ¢ M A" [U1
=] i=j

since U C V. Hence there exists, {or each j, an ¢; > j such that y; ¢ k*[U].
The sequence of points {y,} contained in the boundary of W must have at
least one limit point ¥ in it. Let us suppose for convenience that it converges
to y.

Let Z be an open set containing y. Since

Limy; =y,

J=00
there exists an integer % such that, for j > &, y; € Z. But, since y; ¢ h*4[U],
there exist infinitely many values of ¢ for which A*[U] does not contain Z.
Since Z is arbitrary, this contradicts Theorem 2. Hence for any arbitrarily
small open set containing p its complement contains at most one point of I (k).
Thus I(k) consists of at most two points. That these points are fixed is a
consequence of Theorem 5 above. This completes the proof.

An immediate consequence of the Main Theorem and Theorems 6 and 7
of (3) is the following:

THEOREM 6. If X is a closed connected topological n-manifold and there exists
an almost regular homeomorphism h of X onto iiself such that R(h) s connected,
then X is an n-sphere.

Remark. If, in Theorem 6, n > 2, then the condition that R(%#) be connected
is redundant.
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