
ON ALMOST REGULAR HOMEOMORPHISMS 

S. K. KAUL 

1. Let (X, d) be a metric space with metric d, and h be a homeomorphism 
of X onto itself. Any point y in X is called a regular point (2) under A if for 
any given e > 0 there exists a 5 > 0 such that d(x, y) < 5 implies that 
d(hn(x), hn{y)) < e for all integers n, where hn is the composition of h or h~l 

with itself \n\ times, depending upon whether n is positive or negative, and h° 
is the identity on X. If y is not regular under h, then y is called irregular. We 
shall denote the set of regular points by R(h) and the set of irregular points by 
1(h). The homeomorphism h is called almost regular if 1(h) is zero dimensional 
and compact. Note that 1(h) is therefore non-empty. We use the terms 
Lim sup and Lim inf as defined in (5). 

One of the aims of this paper is to prove the following: 

MAIN THEOREM. Let X be a locally compact, locally connected and connected 
space, and h be an almost regular homeomorphism of X onto itself. If R(h) is 
connected, then 1(h) consists of at most two points, both of ivhich are fixed under h. 

This result is related to Theorem 1 of (4), where 1(h) was assumed to be 
finite and X connected and compact. The case 1(h) = 0 is considered in (4). 

I wish to express my thanks to Professor S. Kinoshita for suggesting the 
problem and for many helpful discussions. 

LEMMA 1. Let (X, d) be a locally compact metric space and h be an almost 
regular homeomorphism of X onto itself. If p £ 1(h) and X is locally connected 
at p, then there exists a y £ R(h) such that 

p (i Lim sup hn(y). 

Proof. Since p is an irregular point under h, there exists an e > 0 such that 
for any open set V containing p, diam hn( V) > e for infinitely many integers n. 

Let 
Q = Lim sup hn(p). 

W->±CO 

It is easy to see that hn[I(h)] = 1(h) for each integer n. This together with the 
fact that 1(h) is compact implies that Q is a non-empty compact subset of 1(h). 
Since 1(h) is zero dimensional and X is locally compact, there exists a finite 
open covering { Ui} (i = 1, . . . , m) of Q such that for each i, diam Ui < e, 
Ûi is compact, and boundary of Ui C\ 1(h) is 0. Since 

Q = Lim sup hn (p), 
rc->±oo 
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there exists a natural number N such that for all \n\ > N, 

m 

hn(p)e u ut. 

Since X is locally connected at p, there exists a sequence { Vt} of connected 
open sets containing £, such that Vi+i C Vtiori = 1, 2, . . . , and diam [F*] —>0 
a s {-* oo. Let {w^: j = 1, 2, . . .} be the set of all the integers such that 
diam hnii[Vt] > e. Since 7 i + i C Vu we have \ni+itj} C {ntj} for each i. 
It is easy to see then that there exists a member U of Ui, . . . , Um and a 
subsequence {v. fe = 1, 2, . . .} of the natural numbers i such that for each 
member ik of this infinité set, U C\ hnikj[Vîk] ^ 0 for infinitely many values 
of j . For each k let mk denote an element of {nikj:j = 1, 2, . . .} such that 
hmk[Vik] C\U 5* 0, and |w»+i| > K | (£ = 1 ,2 , . . .). Since diam hm*[Vik] > e, 
fc1**^**] is connected, and diam U < e, / ^ [ F * J Pi bdry U 9* 0. Let 

y* G Am*[Ftt] H bdry Z7 ik = 1, 2, . . .). 

The sequence of points {yk} C bdry £/ has a limit point y in it. Let us assume 
for convenience that {ji} converges to y (or we work wTith a subsequence 
converging to y). We shall show that 

p G Lim sup hn(y). 

Let 7] > 0 be arbitrary. Since y G bdry U <Z R(h), there exists a y > 0, 
such that, for d(x, y) < y, d(Jin(x), hn(y)) < rj/2 for all integers n. Let K be 
large enough so that d{y,yk)<y for k > X. Hence (i) d{hrmk{y), 
h-mk(yk)) < y/2 for & > i£. Let iV be large enough so that diam Vik < rj/2 
for k > N. Hence (ii) d{hrmk{yk), p) < rj/2 for k > iV. Thus 

<*(&-**00, />) < ^-m*(:v), ^-mfc(^)) + dQrmk{yk), p) < \n + in = v 

for & > max(i£, TV) from (i) and (ii). Hence 

p = Umh~mk(y), 

which completes the proof. 

THEOREM 1. Let X be a locally connected, connected and locally compact metric 
space, and h be an almost regular homeomorphism of X onto itself. If RQi) is 
connected, then for any y G R(h), 

Lim sup hn(y) H R(h) = 0. 
W->±co 

Proof. The proof follows immediately from Theorems 1 and 2 of (4) and 
Lemma 1 above. 

Henceforth we assume in this paper that (Xy d) is a locally connected, 
connected and locally compact space, h is an almost regular homeomorphism 

https://doi.org/10.4153/CJM-1968-001-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-001-5


ALMOST REGULAR HOMEOMORPHISMS 3 

of X onto itself and R(h) is connected. Note that under these conditions the 
above results are true. 

2. For the purposes of this article let U be an open set in X such that Û is 
compact and bdry UfMQi) = 0. Let ( w j be any sequence of integers, 
and 

F = lim inf hmi[U] (mi} i = 1, 2, . . . , distinct). 
î->oo 

LEMMA 2. L ^ 3/ G F C\ R(h). Then y G &TO »"[£/] /ar a// except finitely many Ù 

Proof. Suppose there is a subsequence {nt\ C {*#*} such that y G &*»*[£/]. 
Let {ek) be a sequence of positive numbers converging to zero. Since y G R(h)y 

for each integer k there exists a 5* > 0 such that for d{x,y) < ôkJ d(hn(x)y 

hn(y)) < ek for all integers n. Again since y G F and {nt} is a subsequence of 
{mi} there exists for each k an integer nk in {n^ such that for |#*| > #*, 
ftn*'[i7] Pi C/fc 5* 0 where £4 is the ^-neighbourhood of y. Let yk G An*(C7) Pi £4 
for * = 1, 2, . . . . Since d(y, 3/*) < dk, d (&"**(?*), *"** W ) < «*, A^Cv*) G *7, 
and fc-w*(y) G £/ (& = 1, 2, . . .). But, since ek -» 0 as jfe -> 00, 

Lim sup h~nk(yk) = Lim sup h~nk(y). 

Lim sup A-"*(y*) ^ 0 
#->oo 

G Ï7 and £7 is compact; hence 
Lim sup A"** (y) ^ 0 

and is contained in the boundary of U. This contradicts Theorem 1 above and 
completes the proof. 

LEMMA 3. If y G hmi[U] C\ R(h) for all values of i, then there exists an open 
set V in X containing y such that V C hmi[U] for all but a finite number of 
values of i. 

Proof. Suppose the lemma is false ; that is for any open set V containing y 
there exist infinitely many values of i for which V — hmi[U] 9e 0. Let {ek} be 
a sequence of real positive numbers converging to zero. Since y G R(h), for 
every integer k there exists a 8k > 0 such that for d(x,y) < ôk, d(hn(y)r 

hn(x)) < ek for all integers n. But for each integer k (k = 1, 2, . . .) there exists 
an nk in {mt} such that Uk — hnk[U] 9e 0 and \nk\ < \nk+i\, where Uk is the 
^-neighbourhood of y in X. Let yk be any point in Uk — hnk[U], Then 
d(y,yk) < h implies that d(hrn*(y), h~nk(yk)) < ek where h~n*(y) G U and 
h~nk(yk) G U. Since ek —> 0 as k —» oo. 

Lim sup h~nk(yk) = Lim sup A"""*(y) C bdry UCRQi). 
k-^oo k-ïco 

This, as in Lemma 2, leads to a contradiction and completes the proof. 

Clearly, 

for h~n*(yk) 
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From Lemmas 2 and 3, we have immediately 

THEOREM 2. If y G F C\ R(h), then there exists an open set V in X containing 
y such that V (Z hmi[U] for all but a finite number of values of i, i.e. 

VCF= Liminf hmi[U]. 

THEOREM 3. If F H R(h) ^ 0, then R(h) C F. 

Proof. From Theorem 2 it follows that F C\ R(h) is open in R(h). Since F 
is closed in X> F C\ R(h) is closed in R(h). Since R(h) is connected and 
F r\ R(h) ^ 0, the result follows. 

3. THEOREM 4. If p G i*(fe), then for any open set U containing p there exists 
a sequence of integers {nït} such that 

Liminf hmi[U] =X. 
i->oo 

Proof. Since Lemma 1 is true, there exists a point y G R(h) and a sequence 
of integers {m*} such that 

Hm hTmi(y) = p. 
î'->oo 

Let F be an open set such that p G F C £/, F is compact, and 

bdry V C\ 1(h) = id. 

Now h~mi(y) e F for all but a finite number of values of i\ hence y G hmi[V] for 
all but a finite number of values of i, that is, 

ye Liminf ^ ' [ F ] . 

Since 
22(A) H Liminf ftm,'[F] ^ 0, 

l->oo 

it follows from Theorem 3 that 

R(h) C Liminf hmi[V]. 

But since 
Liminf hmi[V] 

is closed in X, it contains R(h). Finally, since R(h) is dense in X and F C U, 
the theorem follows. 

LEMMA 4. Let p G 1(h) and V be any open set containing p. Then there exists a 
sequence of integers {m^ such that given any y G R(h), hmi(y) G V for i > j 
for some positive integer j . 

Proof. Let U be an open set containing p such that Û is compact, 

bdry U H 1(h) = 0, 
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and U C V. From Theorem 4 there exists a sequence of integers {mt} such that 

Lim inf h~mi[U] = X. 

If y € R(h), then 
y£R(h) n Lim inf hTmi[U]. 

i-ïoo 

Hence, from Lemma 2, y G /r*m »'[£/] for all i > j for some integer j . Thus 
hmi(y) G £/ C V for i > j . This completes the proof. 

THEOREM 5. If p G 1(A), *Ae» A(/>) = £. 

Proof. Suppose h(p) ^ £. Then there exists an open set U containing p 
such that U C\ h[U] = 0. From Lemma 4 there exists a sequence of integers 
{nii} such that for any y G -R(ft), hmi(y) G [7 for i > j for some integer j . 

Consider y and yi = h~l(y) in i?(A). Then there exists an integer j such that 
for i > j , hm*(y) and hmi(yi) are both in U. But &w<(yi) = hrl(hm*(y)) gives 
Aw*'(y) 6 A[t/] for i > j . Hence [ / n i [ [ / ] ^ 0. This contradiction completes 
the proof. 

Proof of the Main Theorem. Suppose 1(h) consists of more than two points. 
We shall establish a contradiction. 

It is not difficult to see that every point of 1(h) is a non-cut point of X since 
R(h) is connected and dense in X. Hence for any p G 1(h) there exists an 
arbitrarily small open set in X containing p such that its complement is 
connected (5, (4.15), p. 50). Let V be an open set containing some point 
p G 1(h) such that X — V is connected and contains at least two points, say 
pi and p2, of 1(h). Since every point of 1(h) is fixed under h (Theorem 5) and 
h[I(h)] = 1(h)j pi and p2 do not belong to hn[V] for any integer n. Note also 
that for any integer n, X — hn[V] is a connected set, and also for any two 
integers m, », (X - hn[V]) C\ (X - hm[V]) 9* 0. 

Let U be an open set containing p such that p G Z7 C F, Ê7 is compact, and 
bdry U P\ 1(h) = 0. Let w* denote the sequence of integers such that 

Lim inf hni[U] =X 

(see Theorem 4). 
Consider 

Bû = X - n ^ ' [ F ] = U ftw,"[X - V]. 
i=j i=j 

Then B3 is a connected set, and Bj D 5^+i (j = 1 ,2 , . . .). Set 

00 00 

Then .B contains at least two points, p\ and p%. 
Let PF be an open set containing pi but not p2, W be compact, and 

bdry W f~\ 1(h) = 0. Since B , D 5 , and £ , is connected, £ , Pi bdry W ?± 0. 
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Let yt e Bj C\ bdry W (j = 1, 2, . . .)• Since y} € Bh 

y , a n hni[v], that is y, (Z n /*rai[c/i 

since U C V. Hence there exists, for each j , an ij > j such that yy g hn^[U]. 
The sequence of points {3;̂ } contained in the boundary of W must have at 
least one limit point y in it. Let us suppose for convenience that it converges 
to y. 

Let Z be an open set containing y. Since 

Lim y j = y, 
;?->oo 

there exists an integer k such that, for j > fe, yi G Z. But, since yi d hn^[U], 
there exist infinitely many values of i for which hni[U] does not contain Z. 
Since Z is arbitrary, this contradicts Theorem 2. Hence for any arbitrarily 
small open set containing p its complement contains at most one point of 1(h). 
Thus 1(h) consists of at most two points. That these points are fixed is a 
consequence of Theorem 5 above. This completes the proof. 

An immediate consequence of the Main Theorem and Theorems 6 and 7 
of (3) is the following: 

THEOREM 6. If X is a closed connected topological n-manifold and there exists 
an almost regular homeomorphism h of X onto itself such that R(h) is connected, 
then X is an n-sphere. 

Remark. If, in Theorem 6, n > 2, then the condition that R(h) be connected 
is redundant. 
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