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Abstract

Let & be a class of finite groups and G a finite group. Let £5(G) be the set of all subgroups A of G
with AG/Ag € §. A chief factor H/K of G is §-central in G if (H/K) = (G/Cg(H/K)) € §. We study
the structure of G under the hypothesis that every chief factor of G between Ag and AC is F-central in G
for every subgroup A € Lg(G). As an application, we prove that a finite soluble group G is a PST-group
if and only if A%/Ag < Z(G/Ag) for every subgroup A € Ly (G), where N is the class of all nilpotent
groups.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, £(G) denotes the lattice of all subgroups of G and £,,(G) is the lattice of all
normal subgroups of G. We use A to denote the normal closure of the subgroup A in
G and set Ag = (g A" If L < T are normal subgroups of G, then we say that 7/L
is a normal section of G. Finally, § is a class of groups containing all identity groups
and N denotes the class of all nilpotent groups.

Wielandt [12] proved that the set £,(G), of all subnormal subgroups of a finite
group G, forms a sublattice of the lattice £(G). Later, Kegel [7] proposed a
generalisation of the lattice £,(G) based on the theory of group classes. The papers
[7, 12] motivated many studies to find and apply sublattices of the lattices £(G) and
L,(G) (see, for example, [1, 6, 11], [4, Chapter 6] and the recent paper [10]).

In this paper, we discuss a new approach that allows us to locate two new classes
of sublattices in the lattice £(G) and we give some applications of these sublattices in
the theory of generalised 7-groups.
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Let A be any set of normal sections of G. We say that A is G-closed provided that,
for any two G-isomorphic normal sections H/K and 7/L where T/L € A, we have
H/K € A. If L < T are normal subgroups of G, then we write 7/L < Zx(G) (or simply
T < ZA(G) if L =1) provided either L =T or L < T and H/K € A for every chief factor
H/K of G between Land T.

Now let £5(G) be the set of all subgroups A of G such that A%/Ag < Za(G),
and let £g(G) be the set of all subgroups A of G such that A%JAg € . Then
L£,(G) € La(G) N Lg(G).

Before continuing, we recall some notation and concepts of the theory of group
classes. The symbol G? denotes the §-residual of G, that is, the intersection of all
normal subgroups N of G with G/N € &, and Gg denotes the §-radical of G, that
is, the product of all normal subgroups N of G with N € §. The class & is said to
be normally hereditary if H € § whenever H < G € §, saturated if G € § whenever
G% < ®(G), a formation if every homomorphic image of G/G% belongs to & for any
group G and a Fitting class if every normal subgroup of Gg belongs to § for any
group G.

Our first observation is the following theorem.

TaEOREM 1.1.

(1) IfAis a G-closed set of chief factors of G, then LA(G) is a sublattice of the lattice
L(G).

(i1) If & is a normally hereditary formation, then the set Lg(G) is a lattice (a meet-
sublattice of L(G) [8, page 7]).

(iii) If & is a Fitting formation, then L5(G) is a sublattice of the lattice L(G).

A subgroup M of G is called modular in G if M is a modular element (in the
sense of Kurosh (see [8, page 43])) of the lattice £(G). From [8, Theorem 5.2.3], for
every modular subgroup A of G, all chief factors of G between Ag and AS are cyclic.
Consequently, despite the fact that in the general case the intersection of two modular
subgroups of G may be nonmodular, the following result holds.

CororLARrY 1.2. If A and B are modular subgroups of G, then every chief factor of G
between (A N B)g and (A N B)® is cyclic.

A subgroup A of G is said to be quasinormal (respectively, S -quasinormal or S -
permutable [3]) in G if A permutes with all subgroups (respectively, with all Sylow
subgroups) H of G, that is, AH = HA. For every quasinormal subgroup A of G,
we have AY/Ag < Z(G/Ag) [3, Corollary 1.5.6]. In general, the intersection of
quasinormal subgroups of G may be nonquasinormal. Nevertheless, the following
fact holds.

CoroLLARY 1.3. If A and B are quasinormal subgroups of G, then

(AN BC /(AN B)g < Zo(G/(AN B)g).
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A chief factor H/K of G is said to be &-central in G if (H/K) = (G/Cg(H/K))
belongs to & [9]. This leads to our next result.

TueoreM 1.4. Let § be a normally hereditary saturated formation containing all
nilpotent groups and A the set of all §-central chief factors of G.

()  If the §-residual D = GS of G is soluble and Lg(G) = LA(G), then D is an
abelian Hall subgroup of odd order of G, every element of G induces a power
automorphism in D/®(D) and every chief factor of G below D is cyclic.

(i1) Let G be soluble and let A be the set of all central chief factors H/K of G, that
is, HHK < Z(G/K). If Ly(G) = LA(G), then every element of G induces a power
automorphism in G™.

Now we consider some applications of Theorem 1.4 in the theory of generalised
T-groups. Firstly recall that G is said to be a T-group (respectively, a PT-group or a
PST-group) if every subnormal subgroup of G is normal (respectively, permutable or
S -permutable) in G. Theorem 1.4 allows us to give a new characterisation of soluble
PST-groups.

TueorREM 1.5. Suppose that G is soluble. Then G is a PST-group if and only if
Ly (G) = LA(G), where A is the set of all central chief factors of G.

Since clearly Lq(G) C £;,(G) and, in the general case, the lattices Lg(G) and
L,(G) do not coincide, Theorem 1.5 allows us to strengthen the following known
result.

CororLARrY 1.6 (Ballester-Bolinches and Esteban-Romero [2]). If G is soluble and
A/Ag £ Z(G[Ag) for every subnormal subgroup A of G, then G is a PST-group.

From Theorem 1.4, we also derive the following well-known result.

CoroLLARY 1.7 (Zacher (see [3, Theorem 2.1.11))). If G is a soluble PT-group, then G
has an abelian normal Hall subgroup D of odd order such that G/D is nilpotent and
every element of G induces a power automorphism in D.

Finally, Theorem 1.5 and [3, Corollary 2.1.12] yield the following result.

CoroLLARY 1.8. Suppose that G is soluble. Then G is a PT-group if and only if
Ly (G) = LA(G), where A is the set of all central chief factors H/K of G, and every
two subgroups A and B of any Sylow subgroup of G are permutable, that is, AB = BA.

2. Proof of Theorem 1.1

Direct verification gives the following two lemmas.

LemmA 2.1. Let N, M and K < H < G be normal subgroups of G, where H/K is a chief
factor of G.
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(1) IfN <K, then
(H/K) = (G/Cc(H/K)) = ((H/N)/(K/N)) =< ((G/N)/Cgn((H/N)/(K/N))).

(2) If T/L is a chief factor of G and H/K and T/L are G-isomorphic, then
Cs(H/K) = Cs(T/L) and

(H/K) = (G/Cc(H/K)) = (T /L) < (G/Cs(T/L)).

LemmA 2.2. Let A be a G-closed set of chief factors of G. Let K< H, K<V, W<V
and N < H be normal subgroups of G, where H/ K < Zx(G).

(1) KN/K <ZA(G) ifand only if N/(K N N) < Zx(G).
(2) IfH/N < ZA(G), then H/(K N N) < ZA(G).
(3) IfV/IK < ZA(G), then HV/K < ZA(G).

Proor oF THEOREM 1.1. Let A and B be subgroups of G such that A, B € LA(G)
(respectively, A, B € Lz(G)).

Claim 1: AN B e LA(G) (respectively, A N B € L5(G)).
First note that (A N B)g = Ag N Bg. On the other hand, from the G-isomorphism
(A° N B%)/(Ag N B°) = (A° N B%)/(Ag N B® N A®) =~ Ag(B® N A%)/A; < A /Ag,

we see that (A° N BY%)/(Ag N B®) < Zx(G) (respectively, (A° N BY)/(Ag N B%) €
& since ¥ is normally hereditary).  Similarly, (B® N A%)/(Bg N A%) < Zx(G)
(respectively, (B¢ N A®)/(Bg N A®) € ¥). Then

(A% N B%)/((Ag N BY) N (Bg N A9)) = (A N B9)/(AG N Bg) < Za(G)

by Lemma 2.2(2) (respectively, (A® N B)/(Ag N Bg) € & since § is a formation). But
(ANB)Y <A°NB°, so

(AN B)%/(Ag N Bg) = (AN B)° /(AN B)g < Zx(G)
(respectively, (A N B)°/(AN B)g € F). Therefore, AN B e LA(G) (respectively,
AN Be L5(G)).

Claim 2: Statement (ii) holds for G.

The set L5(G) is partially ordered with respect to set inclusion and G is the greatest
element of £L5(G). Moreover, Claim 1 implies that for any set {Ay,...,A,} € Lz(G),
we have A; N ---N A, € Lz(G). Therefore, the set L5(G) is a lattice (a meet-sublattice
of L(G) [8, page 7]).

Claim 3: Statements (i) and (iii) hold for G.

In view of Claim 1, we only need to show that (A, B) € LA(G) (respectively,
(A, B) € Lx(G)). From the G-isomorphisms

A%(AGBg)/AcBg = A° (A N AgBg) = A% JAG(A° N Bg)
= (A°/AG)/(AG(A® N Bo)/Ag),
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we see that A°(AgBg)/AGBg < Za(G) (respectively, A°(AgBg)/AGBg € & since §
is closed under taking homomorphic images). Similarly, B°(AGBg)/AcB:g < Za(G)
(respectively, B(AgBg)/AgBg € §). Moreover,

AYB° |AGBG = (A°(AGB)/AcBG)(B°(AGBg)/AGBG)

and so A°B¢/AgBg < ZA(G) by Lemma 2.2(3) (respectively, A°B¢/AgB¢ € & since
& is a Fitting formation).

Next, we note that (A, BY° = A°B% and AgBg < (A, B)g. It follows that
(A, B /(A, B)g < ZA(G) (respectively, (A, B¢/ (A, B)g € § since & is closed under
taking homomorphic images). Hence, (A, B) € LA(G) (respectively, (A, B) € Lg(G)).
The theorem is proved. O

3. Proofs of Theorems 1.4 and 1.5

Remark 3.1. If G € §, where § is a formation, then every chief factor of G is §-central
in G by a well-known result of Barnes and Kegel (see [5, Chapter IV, Lemma 1.5]).
On the other hand, if  is a saturated formation and every chief factor of G is ¥-central
in G, then G € § by [9, Theorem 17.14].

Proor orF THEOREM 1.4. (1) Assume that the assertion is false and let G be a
counterexample of minimal order. Let D = G® be the J-residual of G and let R be
a minimal normal subgroup of G.

Claim I: Statement (i) holds for G/R.

Let A* be the set of all §-central chief factors of G/R. By [4, Proposition 2.2.8],
(G/R)® =RG%/R =RD/R =~ D/(D N R) is soluble. Now let A/R € L(G/R). From the
G-isomorphism

ACJAg = (A°IR)/(Ac/R) = (A/R)*'R |(A/R)g/r,

we see that A°/Ag € §, s0A € L5(G) and, by hypothesis, A € LA(G), that is, A% /A <
ZA(G). By Lemma 2.1(1), it follows that

(A/R"*[(A/R)Gk < Zn-(G/R).

Hence, A/R € Lx-(G/R). Therefore, the hypothesis holds for G/R, so we have
established Claim 1 by the choice of G.

Claim 2: D is nilpotent.

Assume that this is false. Claim 1 implies that (G/R)® = RD/R ~ D/(R N D) is
nilpotent. Therefore, if R £ D, then D ~ D/(R N D) = D/1 is nilpotent. Consequently,
every minimal normal subgroup N of G is contained in D and D/N is nilpotent. Hence,
Ris abelian. If N # R, then D ~ D/1 = D/((R N D) N (N N D)) is nilpotent. Therefore,
R is the unique minimal normal subgroup of G and R £ ®(G) by [5, Chapter A,
Lemma 13.2]. Hence, R = C(R) by [5, Chapter A, Theorem 15.6]. If |R| is a prime,
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then G/R = G/Cg(R) is cyclic and so R = D is nilpotent. Thus, |R| is not a prime. Let
V be a maximal subgroup of R. Then Vi =1 and V¢ =R ¢ L5(G) since § contains
all nilpotent groups. Therefore, V € LAo(G). Hence, V°/V; = R/1 is F-central in
G and so G/R = G/Cs(R) = G/D, which implies that D = R is nilpotent, which is a
contradiction. This proves Claim 2.

Claim 3: Every subgroup V of D containing ®(D) is normal in G.

Let V/®(D) be a maximal subgroup of D/®(D). Suppose that V/®(D) is not normal
in G/®(D). Then V¢ = D and V € £5(G) = LA(G) by Claim 2. Hence, D/ Vi < ZA(G)
and so G/Vs € ¥ by Remark 3.1. But then D < V5 < D. This contradiction shows
that V/®(D) is normal in G/®(D). Since D/D(D) is the direct product of elementary
abelian Sylow subgroups of D/®(D), every subgroup of D/®(D) can be written as the
intersection of some maximal subgroups of D/®(D). Hence, we have Claim 3.

Claim 4: Every chief factor of G below D is cyclic.
This follows from Claim 3 and [5, Chapter IV, Theorem 6.7].

Claim 5: D is a Hall subgroup of G.

Suppose that this assertion is false and let P be a Sylow p-subgroup of D such that
1 < P < G, for some prime p and some Sylow p-subgroup G, of G. Then p divides
|G : D|.

(a) D = P is a minimal normal subgroup of G.

Let N be a minimal normal subgroup of G contained in D. Then N is a g-group for
some prime g and NP/N is a Sylow p-subgroup of D/N. Moreover, D/N = (G/N)¥ is
a Hall subgroup of G/N by Claim 1 and p divides [(G/N) : (D/N)| = |G : D|. Hence,
N = P is a Sylow p-subgroup of D. Since D is nilpotent by Claim 2, a p-complement
V of D is characteristic in D and so it is normal in G. Therefore, V=1and D =N = P.

(b) If R # D, then G, = D X R. Hence, O,(G) =1 and R/1 is §-central in G.

Indeed, DR/R ~ D is a Sylow subgroup of G/R by Claim 1 and (a) and hence
G,R/R = DR/R, which implies that G, = D(G, N R). But then G, = D X R since
D <G, by (a). Thus, O,(G) = 1. Finally, from the G-isomorphism DR/D =~ R, it
follows that R/1 is §-central in G.

(c) D = R £ ®©(G) is the unique minimal normal subgroup of G.

Suppose that R # D. Then G, = D X R is an elementary abelian p-group by (a) and
(b). Hence, R = {a;) X - -- X {a;) for some elements ay, ..., a, of order p. On the other
hand, by Claim 3, D = {a), where |a| = p. Now let Z = {(aa; - - - a;). Then |Z| = p and
ZR=DR=G,since ZND=1=ZNRand |G, : Rl = p. If Z=Z; is normal in G,
then from the G-isomorphism DZ/D ~ Z it follows that Z/1 is §-central in G. Hence,
G, =ZR < Z;(G) by Lemma 2.2(3) since R/1 is F-central in G by (b). In the case
when Z; = 1, by hypothesis Z < Z¢ < Zo(G) and again G, = ZR < Z)(G). But then
G € & by Remark 3.1. This contradiction establishes (c).
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(d) G is supersoluble, so G, is normal in G.

Since § is a saturated formation, D £ ®(G) and so D = Cs(D) by (c) and
[5, Chapter A, Theorem 15.6]. On the other hand, |D| = p by Claim 4 and (a), so
G/D = G/Cg(D) is cyclic. Hence, G is supersoluble and so for some prime g dividing
|G| a Sylow g-subgroup Q of G is normal in G. Now (b) implies that, in fact, Q = G,.
Hence, we have (d).

The final contradiction for Claim 5.

Since ®(G,) is characteristic in G, (d) implies that ®(G,) is normal in G and
so ®(G,) < ©(G) = 1. Hence, G, is an elementary abelian p-group and it follows that
G, = N; X --- x N, for some minimal normal subgroups Nj, ..., N, of G by Maschke’s
theorem. But then G, = D by (c). This contradiction completes the proof of Claim 5.

Claim 6: Every subgroup H of D is normal in D.

If H; # 1, then H/Hg is normal in D/Hg = G5/Hg by Claim 1 and so H is
normal in D. Now suppose that Hg = 1. Then H® < Z5(G) by hypothesis and hence
G/Cs(H) € § by [9, Theorem 17.14] and [5, Chapter IV, Theorem 6.10]. It follows
that D < Cg(HY), which implies that H is normal in D.

Claim 7: |D| is odd.

Suppose that 2 divides |D|. Then G has a chief factor D/K with |D/K| = 2 by Claims
2 and 4. But then D/K < Z(G/K) and so G/K € & by Remark 3.1, which implies that
D < K < D. This contradiction proves Claim 7.

Claim 8: The group D is abelian.
In view of Claims 6 and 7, D is a Dedekind group of odd order, giving Claim 8.

Conclusion of the proof of Theorem 1.4.

From Claims 3-8, it follows that Statement (i) holds for G, contrary to the choice
of G. This final contradiction completes the proof of (i).

(ii) We have to show that if H is any subgroup of D = G*, then x € Ng(H) for
each x € G. It is enough to consider the case when H is a p-group for some prime p.
Moreover, in view of Statement (i), we can assume that x is a p’-element of G.

If H; # 1, then H/Hg < D/Hg = (G/Hg)" and so the hypothesis holds for
(G/Hg, H/Hg) (see the proof of Claim 1). Thus, H/Hg is normal in G/Hg by
induction, which implies that H is normal in G. If H; = 1, then H® < Z,(G) N 0,(G)
since H is subnormal in G. But then [H, x] = 1. The theorem is proved. |

Proor oF THEOREM 1.5. First observe that if Lq(G) = LA(G), then G is a PST-group
by Theorem 1.4 and [3, Theorem 2.1.8].

Now assume that G is a soluble PST-group and let A € Lq(G), that is, A%/Ag is
nilpotent. Then A is subnormal in G and so A/Ag < Z(G/Ag) by [2, Corollary 2] (see
also [3, Theorem 2.4.4]), which implies that A% /A; < Z..(G/Ag). Hence, A € £,(G),
s0 Ly (G) C LA(G). The inverse inclusion follows from the fact that if A € LA(G), then
AYJAG < Zo(G/Ag) < F(G/Ag). The theorem is proved. o
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