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Abstract

In this paper we introduce an exponential continuous-time GARCH(p, q) process. It
is defined in such a way that it is a continuous-time extension of the discrete-time
EGARCH(p, q) process. We investigate stationarity, mixing, and moment properties
of the new model. An instantaneous leverage effect can be shown for the exponential
continuous-time GARCH(p, p) model.
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1. Introduction

GARCH-type processes have become very popular in financial econometrics to model
returns of stocks, exchange rates, and other series observed at equidistant time points. They
have been designed (see [9] and [3]) to capture so-called stylised facts of such data, which
are, for example, volatility clustering, dependence without correlation, and tail heaviness.
Another characteristic is that stock returns seem to be negatively correlated with changes in the
volatility, i.e. that volatility tends to increase after negative shocks and to decrease after positive
shocks. This effect is called the leverage effect and cannot be modelled by a GARCH-type
process without further extensions. This finding led Nelson [19] to introduce the exponential
GARCH process, which is able to model this asymmetry in stock returns. The log-volatility of
the EGARCH(p, q) process was modelled as an ARMA(q, p − 1) process. Another popular
model in this context is the linearARCH process suggested by Robinson [21]. Here the volatility
process is modelled as the square of an MA(∞) process driven by past observations. In [10] it
was shown that the model contains, in addition to a long memory property, a leverage effect.

The availability of high-frequency data, which has increased enormously in the last few
years, is one reason for considering continuous-time models with similar behaviour to discrete-
time GARCH models. The reason for this is that at the highest available frequency, the
observations of the price process occur at irregularly spaced time points and, therefore, it
is natural to assume an underlying continuous-time model. Different approaches have been
taken to set up a continuous-time model, which has the same features as discrete-time GARCH
processes. Recently Klüppelberg et al. [13] developed a continuous-time GARCH(1, 1)model,
abbreviated to a COGARCH(1, 1)model in the sequel. Their approach fundamentally differed
from previous attempts, which could be summarised as diffusion approximations (see, e.g. [18]),
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by the fact that their model was driven by only one source of randomness (as in discrete-time
GARCH models) instead of two (as in the diffusion approximations). They replaced the noise
process of discrete-time GARCH models by the jumps of a Lévy process. The COGARCH(1, 1)
model was then extended by Brockwell et al. [6] to a continuous-time GARCH(p, q) process
for general orders p, q ∈ N, q ≥ p; henceforth called a COGARCH(p, q) process.

In this paper a continuous-time analogue of the EGARCH(p, q) model is introduced. The
noise processes will also be modelled by the increments of a Lévy process. As in the discrete-
time case, we describe the log-volatility process as a linear process, more precisely a continuous-
time ARMA(q, p − 1) process.

The paper is organised as follows. In Section 2 we review the definition of the discrete-time
EGARCH process. After a short review of the elementary properties of Lévy processes, we
define the exponential continuous-time GARCH(p, q) process at the beginning of Section 3.
In addition, we state stationarity conditions for the log-volatility and volatility processes of our
model. Afterwards, the leverage effect in our model is considered. We close Section 3 with an
investigation of the mixing properties of the (log-)volatility and return processes. In Section 4
we derive second-order properties of the volatility process. Section 5 is devoted to the analysis
of the second-order behaviour of the return process. We derive expressions for the first and
second moment of the return process. The stylised fact of zero correlation in the return process,
but correlation of the squared returns, is also shown.

2. The discrete-time EGARCH process

Motivated by empirical evidence that stock returns are negatively correlated with changes in
returns volatility, Nelson [19] defined the exponential GARCH process (EGARCH) to model
this effect, which is called the leverage effect (see also Section 3.1).

Definition 2.1. The process (Xn)n∈Z of the form Xn = σnεn, n ∈ Z, where (εn)n∈Z is an
independent and identically distributed (i.i.d.) sequence with E(ε1) = 0 and var(ε1) = 1, is
called an EGARCH process, if the volatility process (σ 2

n )n∈Z satisfies

log(σ 2
n ) = µ+

∞∑
k=1

βkf (εn−k),

where f : R → R is some measurable real-valued deterministic function, µ ∈ R, and (βk)k∈N

are real coefficients such that E(|f (εn)|) < ∞, var(f (εn)) < ∞, and
∑∞
k=1 |βk| < ∞.

Nelson [19] also suggested a finite-parameter model by modelling the log-volatility as an
ARMA(q, p − 1) process instead of an infinite-moving average process. This leads to the
EGARCH(p, q) model, which is defined in the following way.

Definition 2.2. Let p, q ∈ N and µ, α1, . . . , αq, β1, . . . , βp ∈ R. Suppose that αq �= 0,
βp �= 0, that the autoregressive polynomial φ(z) := 1 − α1z − · · · − αqz

q and the moving
average polynomialψ(z) := β1+β2z+· · ·+βpzp−1 have no common zeros, and thatφ(z) �= 0
on {z ∈ C | |z| ≤ 1}. Let (εn)n∈Z be an i.i.d. sequence with E(ε1) = 0 and var(ε1) = 1, and
let f (·) be such that E(|f (εn)|) < ∞ and var(f (εn)) < ∞. Then (Xn)n∈Z, where Xn = σnεn
and

log(σ 2
n ) = µ+

p∑
k=1

βkf (εn−k)+
q∑
k=1

αk log(σ 2
n−k),

is called an EGARCH(p, q) process.
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To achieve the asymmetric relation between the stock returns and the volatility, f (εn) must
be a function of the magnitude and the sign of εn, as noted by Nelson [19]. Therefore, he
proposed the following function:

f (εn) := θεn + γ (|εn| − E(|εn|)),
with real coefficients θ and γ . We see that f (εn) is piecewise linear in εn and has slope θ+γ for
positive shocks εn and slope θ − γ for negative shocks. Therefore, f (εn) allows the volatility
process (σ 2

n )n∈Z to respond asymmetrically to positive and negative jumps in the stock price.

3. The exponential COGARCH process

The goal of this section is to construct a continuous-time analogue of the discrete-time
EGARCH(p, q) process. Therefore, we will use the idea of Klüppelberg et al. [13] to replace
the noise variables εn by the increments of a Lévy process L = (Lt )t≥0. Any Lévy process L
on R has a characteristic function of the form E(exp(iuLt)) = exp{tψL(u)}, t ≥ 0, with

ψL(u) := iγLu− τ 2
L

2
u2 +

∫
R

(eiux − 1 − iuxχ(−1,1)(x))νL(dx), u ∈ R,

where τ 2
L ≥ 0, γL ∈ R, the measure νL satisfies

νL({0}) = 0 and
∫

R

min(x2, 1)νL(dx) < ∞,

and χA(·) denotes the indicator function of the set A ⊂ R. The measure νL is called the Lévy
measure of L, and the triplet (γL, τ 2

L, νL) is called the characteristic triplet of L. The map
ψL is called the Lévy symbol . For more details on Lévy processes, we refer the reader to [1]
or [22].

We consider Lévy processesL defined on a probability space (�,F ,P)with jumps
Lt :=
Lt − Lt−, zero mean, and finite variance. In this case the Lévy–Itô decomposition (see, e.g.
[1, Theorem 2.4.16]) of L is

Lt = Bt +
∫

R\{0}
xÑL(t, dx), t ≥ 0,

whereB is a Brownian motion with variance τ 2
L, and ÑL(t, dx) = NL(t, dx)− tνL(dx), t ≥ 0,

is the compensated random measure associated to the Poisson random measure

NL(t, A) = #{0 ≤ s < t; 
Ls ∈ A} =
∑

0<s≤t
χA(
Ls), A ∈ B(R \ {0}),

on R+ × R \ {0}, which is independent of B.
The driving-noise process of the log-volatility in this continuous-time model will be con-

structed similarly to the discrete-time case. In particular, for a zero-mean Lévy process L,
with E(L2

1) < ∞ and parameters (θ, γ )	 ∈ R
2 \ {0}, we define the driving process M of the

log-volatility process by

Mt :=
∫

R\{0}
h(x)ÑL(t, dx), t ≥ 0, (3.1)

with h(x) := θx + γ |x|.
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Remark 3.1. (i) The processM defined by (3.1) is by construction a process with independent
and stationary increments and by Theorem 4.3.4 of [1] well defined if∫

R

|h(x)|2νL(dx) < ∞. (3.2)

Condition (3.2) is satisfied since νL is a Lévy measure and L has finite variance. By Equa-
tion (2.9) of [1], the characteristic triplet of M is (γM, 0, νM), where νM := νL ◦ h−1 is the
Lévy measure ofM and γM := − ∫

|x|>1 xνM(dx). The precise form of νM depends on the sign
and size of θ and γ , and is given in the following formulae:

νM((−∞,−x]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νL

([
− x

θ + γ
,∞

))
+ νL

((
−∞,− x

θ − γ

])
, −γ > θ > γ,

νL

((
−∞,− x

θ − γ

])
, −θ < γ < θ,

νL

([
− x

θ + γ
,∞

))
, −θ > γ > θ,

0, −γ < θ < γ,

and

νM([x,∞)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νL

([ x

θ + γ
,∞

))
+ νL

((
−∞,

x

θ − γ

])
, −γ < θ < γ,

νL

((
−∞,

x

θ − γ

])
, −θ > γ > θ,

νL

([ x

θ + γ
,∞

))
, −θ < γ < θ,

0, −γ > θ > γ,

for x > 0. We recognise thatM is a spectrally negative Lévy process for γ < θ < −γ , i.e.M
has only negative jumps, and a spectrally positive Lévy process for −γ < θ < γ .

(ii) In case the jump part of L is of finite variation,M is a Lévy process of finite variation with
Lévy–Itô decomposition

Mt :=
∑

0<s≤t
[θ
Ls + γ |
Ls |] − Ct, t > 0,

where C := γ
∫

R
|x|νL(dx).

Now we define the exponential continuous-time GARCH(p, q) process by specifying the
log-volatility process as a continuous-time ARMA(q, p − 1) process; henceforth called a
CARMA(q, p − 1) process (see, e.g. [5] for details on CARMA processes), which is the
continuous-time analogue of an ARMA(q, p − 1) process.

Definition 3.1. Let L = (Lt )t≥0 be a zero-mean Lévy process with Lévy measure νL such
that

∫
|x|≥1 x

2νL(dx) < ∞. Then we define the exponential COGARCH(p, q) process G,
abbreviated to ECOGARCH(p, q), as the stochastic process satisfying

dGt := σt− dLt , t > 0, G0 = 0,
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where the log-volatility process log(σ 2) = (log(σ 2
t ))t≥0 is a CARMA(q, p − 1) process,

1 ≤ p ≤ q, with mean µ ∈ R and state space representation

log(σ 2
t ) := µ+ b	Xt , t ≥ 0, (3.3)

dXt = AXt dt + 1q dMt, t > 0, (3.4)

where X0 ∈ R
q is independent of the driving Lévy process M . The q × q matrix A and the

vectors b ∈ R
q and 1q ∈ R

q are defined by

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aq −aq−1 −aq−2 · · · −a1

⎤⎥⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎣
b1
b2
...

bq−1
bq

⎤⎥⎥⎥⎥⎥⎦ , 1q =

⎡⎢⎢⎢⎢⎢⎣
0
0
...

0
1

⎤⎥⎥⎥⎥⎥⎦ ,

with coefficients a1, . . . , aq, b1, . . . , bp ∈ R, where aq �= 0, bp �= 0, and bp+1 = · · · =
bq = 0.

Returns over a time interval of length r > 0 are described by the increments of G:

G
(r)
t := Gt −Gt−r =

∫
(t−r,t]

σs− dLs, t ≥ r > 0. (3.5)

Thus, this gives us the possibility to model ultra-high-frequency data, which consists of
returns over varying time intervals. Conversely, an equidistant sequence of such nonoverlapping
returns of length r is given by (G(r)nr )n∈N.

In the sequel we refer toG andG(r) as the (log-)price process and the (log-)return process,
respectively. Also, we call σ 2 and log(σ 2) the volatility process and the log-volatility process,
respectively.

Remark 3.2. ([5, Proposition 2].) (i) As the log-volatility process is a CARMA(q, p − 1)
process, it is strictly stationary if the eigenvalues of A all have negative real parts and X0 has
the same distribution as

∫ ∞
0 eAu1q dMu. If σ 2 is as defined in Definition 3.1 then σ 2 is also

strictly stationary, as this property is preserved under measurable mappings.

(ii) The solution of the continuous-time state-space model, (3.3) and (3.4), has the representation

log(σ 2
t ) = µ+ b	eAtX0 +

∫ t

0
b	eA(t−u)1q dMu, t > 0.

If we choose a second Lévy process, (L̃t )t≥0, independent ofL and with the same distribution
as L, then we can define an extension (L∗

t )t∈R of L to the real line by

L∗
t := Ltχ[0,∞)(t)− L̃−t−χ(−∞,0)(t), t ∈ R.

UsingL∗ instead ofL in (3.1), we obtain an extensionM∗ ofM . For simplicity, in the following
we will write L and M instead of L∗ and M∗. In the strictly stationary case the log-volatility
process can be defined on the whole real line by

log(σ 2
t ) = µ+

∫ t

−∞
g(t − u) dMu, t ∈ R, (3.6)
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with kernel function
g(t) = b	eAt1qχ(0,∞)(t); (3.7)

see [5, Section 2] for further details.

(iii) From (3.5) it directly follows that the incrementsG(r). = ∫
(·−r,·]σs− dLs ofG are stationary

if the volatility σ 2 is stationary, as the increments of L are stationary and independent by
definition.

(iv) If q ≥ p + 1, the log-volatility process is (q − p − 1) times differentiable, which follows
from the state-space representation of log(σ 2) and, hence, the volatility process has continuous
sample paths. In particular, the volatility will contain jumps only for p = q.

3.1. The leverage effect

For empirical return data, researchers have found evidence that (see, e.g. [19, Section 1])
current returns are negatively correlated with future volatility. We distinguish two cases. Either
a negative jump in the log-price process G increases the future volatility more than a positive
jump of the same size (compare to (i), below, with −γ < θ < 0), or a negative jump in G
increases the future volatility while a positive jump even decreases it (compare to (iv), below).
This phenomenon is called the leverage effect in the literature.

If we take a look at the jumps of the state process X in the ECOGARCH(p, q) model,


Mt =
{
(θ + γ )
Lt , 
Lt ≥ 0,

(θ − γ )
Lt , 
Lt < 0,

we see that

(i) for −γ < θ < 0 (0 < θ < γ ), a positive jump 
Lt leads to a smaller (greater) positive
jump 
Mt compared to a negative jump 
Lt of the same size;

(ii) for θ > |γ |, a positive jump 
Lt leads to a positive jump 
Mt , while a negative jump
of the same size results in a negative jump 
Mt ;

(iii) for 0 < θ < −γ (γ < θ < 0), a positive jump 
Lt leads to a smaller (greater) negative
jump 
Mt compared to a negative jump 
Lt of the same size;

(iv) for θ < −|γ |, a positive jump
Lt leads to a negative jump
Mt , while a negative jump
of the same size results in a positive jump 
Mt .

If we compare this to the COGARCH(p, q) process, we see that in the COGARCH model
the innovations of the volatility process at time t are given by the squared innovations of the
log-price process (see [6, Section 2]). Hence, the volatility process of the COGARCH model
reacts in the same way to positive and negative jumps. Now we will consider the instantaneous
leverage effect, which is defined as

cov(
Gt , σ
2
t | |
Lt | > ε)

being negative. Intuitively it is clear that this correlation can only be different from 0 if the
sample paths of σ 2 exhibit jumps. But, from Remark 3.2(iv) we know that this is the case only
for p = q. The reason is that, for p < q, the parameter bq will be 0 and, therefore, the jump

Lt at time t contributes only to the (q−1)th derivative of the state process X, but is not taken
into account for the log-volatility at that time point. Thus, we will expect an instantaneous
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leverage effect only for the ECOGARCH(p, p)models. This will be shown in Proposition 3.1,
below; in particular, we will show that the sign of the correlation is equal to the sign of θbq .
This result is similar to the discrete-time case; see [23, Proposition 2.9].

Proposition 3.1. Assume that the distribution of the jumps of L is symmetric, i.e. for all ε > 0,

P(
Lt ∈ dx | |
Lt | > ε) = P(
Lt ∈ −dx | |
Lt | > ε), t ≥ 0.

Conditionally on the event that |
Lt | > ε, the sign of cov(
Gt , σ 2
t ) is equal to the sign of

θbq .

Proof. Since the distribution of the jumps of L is symmetric, we obtain

E(
Gt | |
Lt | > ε) = E(σt−)E(
Lt | |
Lt | > ε) = 0.

This then implies that

cov(
Gt , σ
2
t | |
Lt | > ε) = E(
Gtσ

2
t | |
Lt | > ε)

= E(
Gt exp(log(σ 2
t−)+ bq
Mt) | |
Lt | > ε)

= E(σ 3
t−
Lt exp(bq(θ
Lt + γ |
Lt |)) | |
Lt | > ε).

Since 
Lt is independent of σ 3
t−, we obtain

cov(
Gt , σ
2
t | |
Lt | > ε)

= E(σ 3
t−)E(
Lt exp(bq(θ
Lt + γ |
Lt |)) | |
Lt | > ε)

= E(σ 3
t−)

∫
x>ε

x exp(bqγ x)(exp(θbqx)− exp(−θbqx))P(
Lt ∈ dx | |
Lt | > ε).

From the fact that sgn(exp(θbqx)− exp(−θbqx)) = sgn(θbq) for all x > ε, the desired result
follows.

From Proposition 3.1 we see that the existence of an instantaneous leverage effect depends
only on the parameters θ and bq . Hence, we will have a leverage effect for all orders p ≥ 1 as
long as the condition on θ and bq is satisfied. In simulations of the ECOGARCH(p, p) process
we see similar results concerning the leverage effect for different orders p ≥ 1. As an example,
we will now consider an ECOGARCH(1, 1) process.

Example 3.1. In this example we consider an ECOGARCH(1, 1) process driven by a Lévy
process L with Lévy symbol

ψL(u) = −u
2

2
+

∫
R

(eiux − 1)λ�0,1/λ(dx),

where�0,1/λ(·) is the distribution function of a normal distribution with zero mean and variance
1/λ. This means thatL is the sum of a standard Brownian motionW and the compound Poisson
process Jt = ∑Nt

k=1 Zk, t ≥ 0, where (Nt )t∈R is an independent Poisson process with intensity
λ > 0 and jump times (Tk)k∈Z. The Poisson process N is also independent from the i.i.d.
sequence of jump sizes (Zk)k∈Z, with Z1 ∼ N(0, 1/λ). The Lévy process M is, in this case,
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Figure 1: Simulated sample paths of J (top row) and M (bottom row),
with parameters θ = −0.2 and γ = 0.1, over three different time scales.

given by the following expression:

Mt =
Nt∑
k=1

[θZk + γ |Zk|] − Ct, t > 0,

with

C = γ

∫
R

|x|λ�0,1/λ(dx) = γ

√
2λ

π
.

If we just consider the case in which θ < −γ < 0 then the Lévy measure νM of M is defined
by

νM((−∞,−x]) = λ�0,1/λ

([
− x

θ + γ
,∞

))
, x > 0,

on the negative half real line and by

νM([x,∞)) = λ�0,1/λ

((
−∞,

x

θ − γ

])
, x > 0,

on the positive half real line. In the top row of Figure 1 a simulated sample path of the compound
Poisson process J , with N(0, 1

2 ) distributed jumps, can be seen over three time scales. The
corresponding Lévy process M , with parameters θ = −0.2 and γ = 0.1, can be seen in the
bottom row. Over all three time intervals we can recognise the desired asymmetry for this set
of parameters. If J jumps up then M jumps down and vice versa. If J does not move then we
observe the downwards drift of M , which can be seen on the right-hand side of Figure 1.

https://doi.org/10.1239/jap/1197908817 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908817


968 S. HAUG AND C. CZADO

–2

0

2

 –1.0
 –0.5

0.0
0.5
1.0

0.0

0.1

–10
0

10
20

0 100 200 300 400 500 600 700

 –2
0
2
4

0.2

Gt

Mt

Lt

σ2

Gt
(r)

Figure 2: Observations of the log-price process Gt (top row), the return process G(r)t (second row), the
volatility process σ 2

t (third row), with parameters b1 = 1, a1 = 0.1, µ = −4, θ = −0.2, and γ = 0.1, the
driving Lévy process Lt (fourth row), and the Lévy processMt (bottom row) in the time interval (0, 700].

The log-volatility process is then of the form

log(σ 2
t ) = µ+ b1 exp(−a1t)X0 +

∫ t

0
b1 exp(−a1(t − s)) dMs

= µ+ b1 exp(−a1t)X0 +
Nt∑
k=1

b1 exp(−a1(t − Tk))[θZk + γ |Zk|]

− C
b1

a1
(1 − exp(−a1t)) for t > 0,

and the log-price process is given by

Gt =
∫ t

0
σs− dWs +

Nt∑
k=1

σTk−Zk, t > 0, G0 = 0,

with jump times Tk, k ∈ N.
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Generally the simulation of a sample path of the log-price process,G, and the log-volatility
process, log(σ 2), over a time interval [0, T ] is carried out in the following steps.

1. Choose observation times 0 = t0 < t1 < · · · < tn ≤ T , possibly random.

2. Simulate the jump times (Tk), k = 1, . . . , nT , with nT := max{k ∈ N : Tk ≤ T }, of the
compound Poisson process J .

3. Approximate the state process (3.4) of the log-volatility by a stochastic Euler scheme.

4. Compute an approximation Ĝ via the recursion

Ĝti = Ĝti−1 +
√

exp(µ+ b	X̂ti−1)W̃i +
Nti∑

k=Nti−1+1

√
exp(µ+ b	X̂Tk−)Zk,

where W̃i ∼ N(0, ti − ti−1), and X̂Tk− is the Euler approximation without the jump

MTk .

In Figure 2 the results of the above simulation procedure are shown. The jump rate λ is now
chosen to be 1

4 , which implies a variance of the jump sizes Zi of 4. For i.i.d. exponentially
distributed interarrival times 
ti := ti − ti−1, with E(
ti) = 1, the sample path of the log-
price G, the return process G(
t.), and the volatility process σ 2 are displayed in the first three
rows of Figure 2. The sample paths of the Lévy processes L and M are shown in the bottom
two rows. From the plots of the return and volatility processes, we see the negative correlation
between the two processes. On the one hand, we recognise increases in the volatility after large
negative returns, and on the other hand, we recognise a decrease in the volatility after a larger
positive return. This displays the leverage effect explained in Subsection 3.1.

3.2. Mixing

Mixing properties are useful for a number of applications including asymptotic statistics,
since a central limit theorem holds for mixing processes (see [8] for a comprehensive treatment
of mixing properties). For an application in this continuous-time GARCH setting, see, e.g.
Theorem 3 of Haug et al. [12]. Thus, we will derive mixing properties of the strictly stationary
volatility process and the return process in the ECOGARCH(p, q) model.

First we recall the definition of strong mixing, which is also called α-mixing for a process
with a continuous-time parameter.

Definition 3.2. ([7].) For a process Y = (Ys)s≥0, define the σ -algebras F Y[0,u] :=
σ((Ys)s∈[0,u]) and F Y

[u+t,∞) := σ((Ys)s≥u+t ) for all u ≥ 0. Then Y is called strongly or
α-mixing if

αY (t) := sup
u≥0

α(F Y[0,u],F Y
[u+t,∞)) → 0 as t → ∞,

where α(F Y[0,u],F Y
[u+t,∞)) := sup{| P(A ∩ B)− P(A)P(B)| : A ∈ F Y[0,u], B ∈ F Y

[u+t,∞)}.
Above we denote by σ(·) the generated completed σ -algebra. The strong mixing property

with exponential rate of the log-volatility, volatility, and return processes is the subject of
Theorem 3.1, below. Here strong mixing with exponential rate (exponentially α-mixing) means
that the α-mixing coefficient α·(t) decays to 0 exponentially fast as t tends to ∞.
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Theorem 3.1. Let log(σ 2) be as defined by (3.3) and (3.4) with both θ and γ not equal to 0.
Assume that E(L2

1) < ∞, that the eigenvalues of A all have negative real parts, and that X0

has the same distribution as
∫ ∞

0 eAu1q dMu; hence, log(σ 2) and σ 2 are strictly stationary.

(i) Then there exist constants K > 0 and a > 0 such that

αlog(σ 2)(t) ≤ Ke−at and ασ 2(t) ≤ Ke−at as t → ∞,

where αlog(σ 2)(t) and ασ 2(t) are the α-mixing coefficients of the log-volatility and
volatility processes, respectively.

(ii) Then the discrete-time process (G(r)nr )n∈N, where G(r)nr is defined in (3.5), is strongly
mixing with exponential rate and ergodic.

Proof. (i) The log-volatility process is a CARMA(q, p − 1) process, which is equal to the
first component of the q-dimensional Ornstein–Uhlenbeck process V := (V 1, . . . , V q)	 ∈ R

q

(see, e.g. [4, Section 4]), where, for fixed t ,

Vt = exp(BAB−1(t − s))Vs +
∫ t

s

exp(A(t − u))B1q dMu a.s.,

with

B =

⎡⎢⎢⎢⎢⎢⎣
b1 b2 b3 · · · bq
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ .
Since L, hence M , has finite second moment, V also has finite second moment. There-
fore, condition (4.5) of [15] is satisfied. By Theorem 4.3 of [15], V is then exponentially
α-mixing. Since every component of a multidimensional exponentially strong mixing process
is exponentially strong mixing, the log-volatility process is also exponentially α-mixing. The
property of α-mixing is invariant under continuous transformations, which implies that σ 2 also
has this property.

(ii) Define the σ -algebras

F σ 2,dL
I := σ(σ 2

t , Lt − Ls : s, t ∈ I ) for I ⊂ R

and
F G(r)

J := σ(G
(r)
kr : k ∈ J ) for J ⊂ N.

From (3.5) it follows that

F G(r)

{1,2,...,l} ⊂ F σ 2,dL
[0,lr] and F G(r)

{k+l,k+l+1,... } ⊂ F σ 2,dL
[(k+l−1)r,∞). (3.8)

To show the strong mixing property of the return process we will use the following relation:

α(F1,F2) ≤ α̃(F1,F2) ≤ 6α(F1,F2), (3.9)

where F1 and F2 are σ -algebras,

α̃(F1,F2) := sup{‖ E(f | F1)− E(f )‖L1(P ) : f ∈ bF2, ‖f ‖∞ ≤ 1},
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‖ · ‖L1(P ) and ‖ · ‖∞ denote the L1-norm under P and the sup-norm, respectively, and bF
denotes the set of all bounded F -measurable random variables. The left-hand inequality of
(3.9) is easy to see (cf. [12, Lemma B.2]) and the right-hand inequality follows from Lemma 3.5
of [17]. For a stochastic process Y , the corresponding α̃-mixing coefficient is defined as

α̃Y (t) := sup
s∈R+

α̃(F Y[0,s],F Y
[s+t,∞)), t ∈ R+;

see, e.g. [16, Section 2.1]. Now since (G(r)nr )n∈N is strictly stationary, we have the following:

α̃G(r) (k − l) = sup{‖ E(f | F G(r)

{1,2,...,l})− E(f )‖L1(P ) : f ∈ bF G(r)

{k,k+1,... }, ‖f ‖∞ ≤ 1}
≤ sup{‖ E(f | F σ 2,dL

[0,lr] )− E(f )‖L1(P ) : f ∈ bF σ 2,dL
[(k−1)r,∞), ‖f ‖∞ ≤ 1},

where the inequality follows from (3.8) and an application of Jensen’s inequality (see also
[16, Remark 1]). From the exponentially α-mixing property of σ 2 and (3.9), we find that there
exists a constant Kσ 2 > 0 such that

α̃σ 2(t − s) = sup{‖ E(f | F σ 2

[0,s])− E(f )‖L1(P ) : f ∈ bF σ 2,dL
[t,∞) , ‖f ‖∞ ≤ 1} ≤ Kσ 2 e−a(t−s)

for all 0 ≤ s ≤ t < ∞ and ‖f ‖∞ ≤ 1. Now analogously to the proof of Lemma 1 of [14], it
follows that

‖ E(f | F σ 2,dL
[0,lr] )− E(f )‖L1(P ) ≤ Kσ 2 e−a((k−1−l)r)‖f ‖∞

for all f ∈ bF σ 2,dL
[(k−1)r,∞). The only difference is that we do not have a Markov process; hence,

we have to condition on the information over the whole time interval [0, lr] and not just on the
information at the time point lr . This implies that we have

α̃G(r) (k − l) ≤ Kσ 2 e−a((k−1−l)r),

which means that (G(r)nr )n∈N is exponentially α-mixing by (3.9). Since strict stationarity and
strong mixing imply ergodicity the result follows.

4. Second-order properties of the volatility process

In this section we derive moments and the autocovariance function of the volatility process
σ 2. Since it is a nonlinear transformation of a CARMA(q, p − 1) process, we will first recall
the moment structure and conditions for weak stationarity of a CARMA(q, p − 1) process.

Proposition 4.1. If X0 has the same mean vector and covariance matrix as
∫ ∞

0 eAu1q dMu,
then log(σ 2) is weakly stationary. In the weakly stationary case the mean and autocovariance
function of log(σ 2) are given by

E(log(σ 2
t )) = µ and cov(log(σ 2

t+h), log(σ 2
t )) = E(M2

1 )b
	eAh�b, t, h ≥ 0,

where

� :=
∫ ∞

0
eAs1q1	

q exp(A	s) ds.

https://doi.org/10.1239/jap/1197908817 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908817


972 S. HAUG AND C. CZADO

The results follow from Proposition 1 and Remark 4 of [5] and the fact that
∫

R
g(u − h)

× g(u) du = b	eAh�b, with g as defined in (3.7).
The moments of the strictly stationary volatility process are exponential moments of the

stationary distribution of the log-volatility process. In Remark 3.2(i) we gave conditions for the
existence of a stationary distribution F of the log-volatility process. In Proposition 4.2, below,
we want to further characterise this distribution.

Proposition 4.2. Let (γM, 0, νM) be the characteristic triplet of the Lévy processM , whereM
is as defined in (3.1), and F is the stationary distribution of the log-volatility process. Then F
is infinitely divisible with characteristic triplet (γ∞, 0, ν∞), where

γ∞ = µ+
∫ ∞

0
g(s)γM ds +

∫ ∞

0

∫
R

g(s)x[χ(−1,1)(g(s)x)− χ(−1,1)(x)]νM(dx) ds,

ν∞(B) =
∫ ∞

0

∫
R

χB(g(s)x)νM(dx) ds, B ∈ B(R),

with g(s) = b	eAs1qχ(0,∞)(s).

Proof. In the strictly stationary case the log-volatility process is the continuous-time moving
average process (3.6). Since M has finite variance, the kernel g and the driving Lévy process
M satisfy the conditions in Theorem 2.7 of [20] which are:

• ∫
R

|γMg(s)+ ∫
R
xg(s)[χ(−1,1)(xg(s))− χ(−1,1)(x)]νM(dx)| ds < ∞,

• ∫
R

∫
R

min(|g(s)x|2, 1)νM(dx) ds < ∞.

Therefore, the stationary distribution F of the log-volatility process is infinitely divisible
with characteristic triplet (γ∞, 0, ν∞).

Let log(σ 2∞) be a random variable with distribution F . Since F is infinitely divisible, we
can now apply Theorem 25.17 of [22] to calculate the exponential moments of log(σ 2∞), i.e. the
moments of σ 2∞, in Proposition 4.3, below.

Proposition 4.3. Let F be the stationary distribution of log(σ 2) with characteristic triplet
(γ∞, 0, ν∞). Then the kth moment of σ 2

t is finite if

k ∈ K∞ =
{
s ∈ R :

∫
|x|>1

esxν∞(dx) < ∞
}

=
{
s ∈ R :

∫ ∞

0

∫
x∈R,|h(x)|>1

esg(u)xνL(dx) du < ∞
}
.

In this case

�∞(k) := γ∞k +
∫

R

(ekx − 1 − kxχ(−1,1)(x))ν∞(dx) (4.1)

is well defined and
E(σ 2k

t ) = exp(�∞(k)) for all t ≥ 0. (4.2)

Proposition 4.4. Let log(σ 2
t ) be the strictly stationary solution of (3.3) and (3.4). Assume that

E(σ 4
t ) < ∞ for all t ≥ 0. Let �h∞(·) and �h(·) be as defined by (4.1) with kernel function g

replaced by gh∞(s) = b	(Iq + eAh)eAs1q and gh(s) = b	eAs1qχ(0,h)(s), respectively. Then
the autocovariance function of σ 2 is given by the following expression:

cov(σ 2
t+h, σ 2

t ) = exp(�h∞(1)) exp(�h(1))− exp(2�∞(1)), h > 0, t ≥ 0. (4.3)
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Proof. Let F M
t = σ(Ms,−∞ < s ≤ t) be the σ -algebra generated by the Lévy processM

up to time t , then

E(σ 2
t+h | F M

t ) = E

(
exp

(
µ+

∫ t+h

−∞
g(t + h− s) dMs

) ∣∣∣ F M
t

)
= exp

(
µ+

∫ t

−∞
b	eAheA(t−s)1q dMs

)
× E

(
exp

(∫ t+h

t

g(t + h− s) dMs

))
.

Therefore, we obtain

E(σ 2
t+hσ 2

t ) = E(E(σ 2
t+hσ 2

t | F M
t ))

= E(σ 2
t E(σ 2

t+h | F M
t ))

= E

(
σ 2
t exp

(
µ+

∫ t

−∞
b	eAheA(t−s)1q dMs

)
× E

(
exp

(∫ t+h

t

g(t + h− s) dMs

)))
= E

(
exp

(
2µ+

∫ t

−∞
b	(Iq + eAh)eA(t−s)1q dMs

))
E

(
exp

(∫ h

0
g(s) dMs

))
= E

(
exp

(
µ+

∫ ∞

0
b	(Iq + eAh)eAs1q dMs

))
× E

(
exp

(
µ+

∫ ∞

0
b	eAs1qχ(0,h)(s) dMs

))
= exp(�h∞(1)) exp(�h(1)),

where the last equality follows from (4.2) when we substitute the kernel g in (3.6) by gh∞(s)
and gh, respectively. This together with (4.2) yields (4.3).

5. Second-order properties of the return process

In this section we derive the moment structure of the return process

G
(r)
t = Gt −Gt−r =

∫
(t−r,t]

σs− dLs, t ≥ r > 0.

We will consider only the case of a strictly stationary volatility process.

5.1. Moments and autocovariance function of the return process

Proposition 5.1. Let L be a Lévy process with E(L1) = 0 and E(L2
1) < ∞. Assume that the

volatility process σ 2 is strictly stationary with finite mean. Then E(G2
t ) < ∞ for all t ≥ 0 and,

for every t, h ≥ r > 0, it holds that

EG(r)t = 0, (5.1)

E(G(r)t )
2 = exp(�∞(1))r E(L2

1), (5.2)

cov(G(r)t , G
(r)
t+h) = 0. (5.3)
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Furthermore, if E(L4
1) < ∞ and the volatility process has finite second moment then E(G4

t ) <

∞ for all t ≥ 0 and, for every t, h ≥ r > 0, we have

cov((G(r)t )
2, (G

(r)
t+h)

2) = E(L2
1)

∫ h+r

h

cov(G2
r , σ

2
s ) ds.

Proof. If L has no Brownian component, the proof of (5.1)–(5.3) is analogous to the proof
of Proposition 5.1 of [13] and can be extended in the same way as in the proof of Proposition 2.1
of [12] for the case in which L has a Brownian component. Since G is a square integrable
martingale, we obtain

E((G(r)r )
2(G

(r)
h+r )

2) = E(G2
r (Gh+r −Gh)

2) = E(G2
r (G

2
h+r −G2

h)).

Using this result,

G2
t = 2

∫ t

0
Gs−σs− dLs +

∫ t

0
σ 2
s− d[L,L]s , t ≥ 0,

and the compensation formula (see, e.g. [2, Section 0.5]), we obtain

E((G(r)r )
2(G

(r)
h+r )

2) = E

(
2

∫ h+r

h

G2
rGs−σs− dLs +

∫ h+r

h

G2
r σ

2
s− d[L,L]s

)
= E

(∫ h+r

h

G2
r σ

2
s− d[L,L]s

)
=

∫ h+r

h

E(G2
r σ

2
s )τ

2
L ds +

∫ h+r

h

E(G2
r σ

2
s ) ds

∫
R

x2νL(dx)

= E(L2
1)

∫ h+r

h

E(G2
r σ

2
s ) ds.

Hence, the covariance is equal to

cov((G(r)r )
2, (G

(r)
h+r )

2) = E((G(r)r )
2(G

(r)
h+r )

2)− (E(G(r)t )
2)2

= E(L2
1)

∫ h+r

h

(cov(G2
r , σ

2
s )+ E(G2

r )E(σ 2
s )) ds − (E(G(r)t )

2)2

= E(L2
1)

∫ h+r

h

cov(G2
r , σ

2
s ) ds.

The covariance is finite if E(G4
t ) < ∞ for all t ≥ 0, and this follows with E(L4

1) < ∞ and
2 ∈ K∞ analogously to the proof of Proposition 1.1 of [12].

Example 5.1. Let us consider again Example 3.1. From 50 000 equidistant observations of the
simulated log-price process we computed the empirical autocorrelation function of the returns
and squared returns. In Figure 3 the first 40 lags of both empirical autocorrelation functions
are shown. We recognise the GARCH-like behaviour of zero correlation of the returns and
significant correlation of the squared returns.
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Figure 3: The first 40 lags of the empirical autocorrelation function (EAF)
of (a) the return process and (b) the squared return process.

Remark 5.1. In Theorem 3.1 we have seen that the volatility and return processes are strongly
mixing with exponential rate. A consequence of this property (see, e.g. [8, Section 1.2.2]) is
that there exist constants K1,K2 > 0 such that

| cov(σ 2
t+h, σ 2

t )| ≤ K1e−ah and | cov((G(r)(n+h)r )
2, (G(r)nr )

2)| ≤ K2e−ah

for all h > 0, with a > 0 as given in Theorem 3.1. In particular, this means that the
autocovariance function of the volatility and squared returns will decay to 0 at an exponential
rate. Therefore, we will speak of a short memory process in both cases. The model can
be extended to incorporate long memory effects, by specifing the log-volatility process by a
fractionally integrated CARMA(q, p − 1) process. For further details we refer the reader
to [11].
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