ON A TYPE OF SUBGROUPS OF
A COMPACT LIE GROUP

YOzO MATSUSHIMA

Let G be a connected compact Lie group and H a connected closed sub-
group. Then H is an orientable submanifold of G and we may consider H as
a cycle in G. In his interesting paper on the topology of group manifolds® H.
Samelson has proved that, if H is not homologous to 0, then the homology ring®
of the coset space G/H is isomorphic to the homology ring of a product space
of odd dimensional spheres and the homology ring of G is isomorphic to that
of the product of the spaces H and G/H. On the other hand, in a recent in-
vestigation of fibre bundles® T. Kudo has shown that, if the homology ring of
the coset space G/H is isomorphic to that of an odd dimensional sphere, then
H is not homologous to 0.

In the present paper we shall consider those connected closed subgroups
of a connected compact Lie group G such that the homology rings of the coset
spaces are isomorphic to that of odd dimensional spheres. We shall first show
that the problem to find all such subgroups of G may be reduced to the case
where G is a simple group. The determination of such subgroups of the rotation
groups of spheres (simple Lie groups of types B and D) is contained essentially
in a paper by D. Montgomery and H. Samelson on the transformation groups of
spheres.”” Hence we shall consider here the above problem for simple Lie groups
of the other types. The writer is grateful to Mr. M. Kuranishi for his friendly
cooperation during the preparation of this paper.

I.

1. All groups considered in the following are compact Lie groups and sub-
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1) H. Samelson, Beitrige zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of Math
Vol. 42 (1941) ; Satz VI. We refer to this paper as [S].

2 The coefficients of the homology ring are rational numbers.

3) T. Kudo, On the homological properties of fibre bundles, forthcoming in Journ. of the
Institute of Polytechnics, Osaka City University.

4 D. Montgomery and H. Samelson,. Transformation groups of spheres, Ann. of Math,
Vol 44 (1943). We refer to this paper as [M-S].
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groups are always taken as closed.

a) The homology ring? of an orientable manifold M is denoted by R(M)
and S” denotes the »n-sphere. The homology ring R(G) of a compact Lie group
G is isomorphic to R(S™ x ., .. x S™r), where m; are odd and 7 is the rank
7(G) of G.»

b) A connected subgroup H of a compact connected Lie group G is said
to be an S-subgroup, if R(G/H) is isomorphic to R(S™), where m is odd. If H
is an S-subgroup, then 7(H) = r(G) — 1.9

e) Let G;, ..., Gebe (compact connected) Lie groups and let NV be a finite
normal subgroup of G = G, x . .. x Gr. We say that the factor group G = G/N
is essentially the product of G, ..., Gr and we denote G = G;o...°G.

Every compact connected Lie group G is essentially the producted of some simply
connected simple groups and a toral group. If G; is a connected normal sub-
group of a compact connected Lie group G, then there exists a connected normal
subgroup G. of G such that G = G, o G,.”

d) Let G be a Lie group and H a subgroup and let W = G/H. Then we
may consider G in a natural way as a transitive transformation group of W.
The set of all elements g € G for which g(x), x € W, are identity transformation
of W form a normal subgroup G, contained in H. If G,is a finite group, then
G is said to be almost effective on W.

2. We prove now a theorem on the structure of S-subgroups. Let R, be
the rotation group of 1-sphere and R; the simply connected covering group of
the rotation group R. of 2-sphere.

TaEOREM 1. Let G be g compact connected Lie group, H an S-subgroup of
G, and let G: be the maximal connected normal subgroup of G contained in H.
Further, let G, be a connected normal subgroup of G such that G = G;° G,.
Then H = H, o G, and H, is an S-subgroups of G, and G, is simple or essen-
tially the product of two simple groups one of which is R, or R..

3. To prove Theorem I we need some lemmas.

Lemma 1. If H is a connected normal subgroup of G, then H + 0.

Proof. Let K be a connected normal subgroup of G such that G = Ho K

% H. Hopf, Uber die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeine-
rungen, Ann. of Math. Vol. 42 (1941) and H. Hopf, Uber den Rang geschlossener
Lieschen Gruppen, Commet, Math. Helvet. Vol. 13 (1941).

8 See, [S], Satz VI. Note that by the results of H. Samelson and T. Kudo H is an S-
subgroup if and only if H is not homologous to 0 and 7(H) = (G) — 1.

" In this case we may consider G; o G: as the usual product of two normal subgroups
G; and Ga.
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and let G = H x K. Then H is obviously + 0 in G. But the natural homo-
morphism = of G onto G induces the isomorphic mapping of the homology group
B (G) of G onto the homology group B(G) of G. From these facts we conclude
without difficulty that H + 0 in G.

LEMMA 2. Let G =G, 0 G:, G = G, X G» and let = be the natural homomor-
phic mapping of & onto G. Further let H be a connected subgroup of G and
H the connected component containing the identity of the group n~'(H). H is
an S-subgroup of G if and only if A is an S-subgroup of G, and R(G/H)
=~ R(G/H).

Proof. = induces the isomorphic mapping of the homology group B(G) of
G onto the homology group B(G) of G. The same holds for B(H) and B(H),
since n(H) = H and = is locally isomorphic. Let V(H) be the additive sub-
group of B(Z) composed of all minimal elements of B(H)® and let vy, ..., vz
be a basis of V(H). Then =(7)), . . ., n(¥z) is also a basis of the group V(H)
of the minimal elements of B(H).® Assume H-+ 0. Then =(v)), ..., n(vp)
are linearly independent also when we consider = (7;) as homology classes in
G It H~0, then 7y, ..., vr would be linearly dependent considered as
homology classes in G, and the same for 7(2;), ..., 7(7%) considered as the
homology class in G. Hence H + 0. Conversely, if H + 0, then H + 0. Since
7(H) = r(H), 7(G) = 7(G) and 7(H) = 7(G) — 1, we have »(H) =7G) — 1.
Hence R(G/H) = R(S™). Further since dim G/H = dim G/H we have clearly
R(G/H) = R(S™).

4. Proof of Theorem I LetG = G, x G., = be the natural homomorphism
of G onto G and let H be the connected component of the group =-!(H). Since
H > G., we have H = H, x G,, where H, is a connected subgroup of G,. By
Lemma 2 H + 0 in G, hence H, + 0in G, and H, is clearly an S-subgroup of
G, containing no connected normal subgroup of G, (different from the group
consisting only of identity of G;). We shall prove that G; has the structure
stated in Theorem I. For simplicity we write G and H in place of G, and H,.
Then H is an S-subgroup of G containing no connected normal subgroup of G.
Let W = G/H and R(W) = R(S™) (m being odd). Then G is almost effective
on W. If G = G,o G, then we show that one of Gi, say G,, is transitive on W.
For this purpose let G = G, X G., let, as above, H be the connected component

8) For the definition and the properties of the minimal element, see H. Hopf, loc. oit.
and [S].

9 See, [S], Satz III. Korollar 1.

10) The following proof is similar to-the proof of Theorem I b) in [M-S]. But we avoid
to use a theorem of Gysin which played an essential role there.
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of n~)(H) and W = G/H. Then R(W) = R(S™) and G is also almost effective
on W. If we can show that G, is transitive on W, then we see easily that
G, is also transitive on W. Let I'; be the image of H under the natural homo-
morphism g; + & — & of G onto G; and let I’ = I'y x I':. I'; are connected and
I 2 H. Let H; be the intersections Z n G;. H; are normal subgroups of I'i.
Then, as in the proof of Theorem I b) in [M-S], the spaces I'/H, I'\/H,, I':/H;
are homeomorphic. Consider the space I'y/H;. As H, is a normal subgroup of
I\, it is a compact connected Lie group. If I'y = H,, then I'; = H;. If follows
that H = H, X H.and G/H = Gy/H; x G:x H,. But since R(G/H) = R(S™), the
space G/H can not be decomposed into a direct product of two manifolds of
positive dimensiens. Hence one of the spaces G;/H;, for example G./H., must
be a point. This means that G. = H, and hence H must contain the normal
subgroup G:, which is impossible. Hence I'; = H,. Since r(H) = 7(G) — 1, we
can show that »(I';//H,) = 1. Therefore I'\/H; is homeomorphic with one of the
three following manifolds : the 1-sphere S’, the 3-sphere S* and the projective
3-space P%. We shall show that one of I'; is equal to G;.

i) First let I'/H ~ I'i/H; ~ S

Since S* is simply connected, H; are connected. Clearly 7(G) = 7(I') and
7(H) = 7(G) — 1. As H; are the normal subgroups of H, H; + 0 in & by Lemma
1. Since H + 0 in G, it follows that H; + 0 in G, whence H;+ 0 in G;. Let
4d=H x H,. Then 440 in G and since 7(H;) = »([}) — 1,7(4) =r(H) — 1.
Hence 4 is an S-subgroup of 7. Then, from the relations R(G) = R(G/H x H)
and R(H) = R(H/4 x 4),”» we obtain R(G) = R(G/H x H/4 x 4). But since
R(G) = R(G/4 x 4), it follows that R(G/4) = R(G;/H, x G:/H,) = R(G/H
x H/4). However, H and 4 are S-subgroups of G and H respectively, and there-
fore R(G/H) = R(S™) and R(H/4) = R(S*) (m and k being odd). Hence R(G,/H;
X Go/Hy) = R(S™x S*). Then it follows that R(G,/H,) = R(S™) and R(G:/H:)
= R(S*). On the other hand R(G:) = R(H; x G:/Hz) = R(H, x S*¥) and R(I;)
= R(H; x I';/H;) = R(H; x S*). Butsince dim I" — dim 4 = 6 and dim I — dim
H =3, we have dim H —dim 4 =3. Hence 2=3. This shows that dim G
= dim I; and hence G; = I,.

ii) Next let I'/H =~ I';/H; ~ P*.

In this case H; need not be connected. But if H;® are the connected com-
ponents of H;, then I';/H;® are the covering spaces of P? whence homeomorphic
to S*% So, replacing H; by H, if necessary, we obtain G, = I'; by the same
argument as in i).

1) Gee, [S], Satz 111 Korollar 3.
12) See, [S], Satz VI
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iii) Finally let I'/H ~ T'i/H; =~ S'.

Let H;® be the connected components of H;. Then I';/H are also homeo-
morphic to S!. Hence we may assume that H; are connected. In this case
H/4=S" and by the same argument as in i), we have R(G,/H, X G./H,)
= R(G/H x H/4) = R(S™" x S'). Hence R(G:/H,) =R(S™) and R(G./H.)
=R(S"). It followsthatdim G; — dim H; = dim I: — dim H; = 1. Hence G, = I,.

Thus we have proved that G, = I';». Then we may show as in [M-S] that
G, is transitive on W and that 7(G:) =1 ie. G: is R, or R. or R.. Theorem
I will be proved, if we show that G, is simple. Since G, is transitive on W,
there exists a subgroup H, of G, such that W = G,/H;, where H; = G, 0 H. Let
H,® be the connected component of H;. Then H," is a normal subgroup of H.
Hence H’+4+ 0 in H. Then, by the same argument as above, H,°+ 0 in Gj.
Moreover, we may easily verify that »(H,°) = 7(G,) — 1, whence H is an S-
subgroup of G, and R(W,;) = R(S™). Clearly H," contains no connected normal
subgroup of G, different from the identity. Suppose that G, is not simple and
let G; =G o G”’. We use for G,, H’ and W, the same argument we used for
G, H and W and find that G’ is transitive on W; and G” is R, or R; or R,. Then
G = G’ o (G” o G,). Since the rank of the group Gi; = G” o G, is 2, it must be
transitive on W. By the same argument as above, there exists in G; an S-
subgroup H; such that R(Gs/H,;) = R(S™) and H; contains no connected normal
subgroup of G;. Then G” or G, must be transitive on Gs/Hs. This is impos-
sible if m2 > 3. The cases m = 1 and 3 may be treated easily for themselves.
Thus Theorem I is proved.

5. By Theorem I the problem to find all S-subgroups of a compact connected
group G is reduced to the cases where G is a simple group or a direct product
of two simple groups one of which is of rank 1. The latter case may be reduced
to the former case. So we consider in the following the S-subgroups of a simple
group.

I11.

1. If G and G’ are locally isomorphic compact simple groups, then, as we
may easily see from Lemma 2, the S-subgroups of G and G’ correspond to each
other. Hence we have only to consider one respresentative from each class of
locally isomorphic groups. In particular, if we can show that the S-groups of a
simple group G are conjugate to each other, then the same folds for every
simple group locally isomorphic to G.

2. First we consider the case G = R,, the rotation group of n-sphere. We
denote by Q.- the subgroup of R, composed of all elements of R, which leave
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fixed the unit point on the first 2 of #+ 1 axis of Euclidean (2 4+ 1)-space
E,.. Clearly Q. is isomorphic to Ru-z.

yn=2m-—-1L

Then Rx#/Qn-1 = S¥! and hence @n.;+ 0 in R, By Lemma 7 of
[M-S] we see that every S-subgroup of R is conjugate to @»-, except for a
finite number of #n’s.

i) n=2m.

In this case Qn-: + 0 in R,. By the proof of Theorem IV of [M-S] we see
that every S-subgroup of R, is conjugate to Q... except for a finite number
of »’s.

III.

1. Here we consider the group G = A,, the unimodular unitary group in
7 + 1 variables. We denote by A,_; the subgroup of G = A, consisting of all
elements of G which leave fixed the unit point on the first of the » + 1 axis
of unitary (n+ 1)-space. Then G/A -, = S***1, whence A ,_; + 0.7

We prove the following

TuroreM II. Every S-subgroup of G = Ay is conjugate to A -y for n=8."

2. Let U be an S-subgroup of G. Then R(G/U) = R(S™) (m: odd) and
R(G) = R(G/U x U). Hence R(G) = R(U x S™). The homology ring of G is

R(G) = R(A,) = R(S*x S§* x ... x Swt) B
Hence m =2k + 1 and
1) R(U) =R(S*x S%x ... x Sm-2x §m+2 x . x S+,

U is simple, for in (1) S* appears only once.® As we may easily verify the
group A, can not contain the exceptional groups of rank » — 1. Hence U is
a classical simple group. Then (1) is possible for m <27 + 1 only when n =3,
m =5, and R(G) = R(S* x S® x S7) and R(U) = R(S* x S7). Hence if >3
then m =2n-+1 and R(U) = R(S* x S5 x ... x S}, This shows that U is
a simple group of type An.."”

18) See, [S1, Satz IV.

) The writer can not decide whether Theorem II is also valid for 7 < 8 or not. Since
every subgroups of rank 1 is not homologous to O, Theorem II is not valid for n =2
as we may show by an example. Cf. J. L. Koszul, C. R. Paris 225, p. 477 (1947), and
H. Samelson, C. R, Paris 228, p. 630 (1949).

5) See, L. Pontrjagin, Homologies in compact Lie groups, Rec. Math. N. S. Vol. 6 (1939)
or [S].

8) For, by a theorem of E. Cartan, the 3-dimensional Betti number of any semi-simple

group is not equal to 0,
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3. Let & be the Lie algebra of G and U, the subalgebra of @, correspond-
ing to the subgroup U. By taking a suitable conjugate group of U, we may
assume that a maximal abkelian subalgebra ) of U, is contained in a fixed
maximal abelian subalgebra $. of §.'" We denote by & and Il the Lie algebras
obtained from . and . respectively by extending the domain of coefficients
to the complex number field XK. $ and ) may be defined analogously. Then as
is well known, & is the Lie algebra consisting of all matrices of degree n + 1
with complex numbers as coefficients whose traces are 0. Let eir (5,2 =1,.. .,
7 + 1) be the matrix whose (7, £)-element is 1 and others are all 0 and #; = ¢;;.
Then & has the following basis :
x+1 ntl
=9 +i?_l‘l(€ik, @Gxk); D=+ ...+ hy}, i};’,k =0;

A=

n+1 .
[i‘,&fhj, eik] = (AF = %) esp.

i=

The real Lie algebra &, is obtained from & by the so called “unitary restric-
tion.” Since Ul is of type Ax_:, U has the following basis :

U=KRf + ...+ Khn_s +iil](uik, (i=k),
e
where 7y, . . ., W, is a linearly independent basis of § and

n-1 o~ o
Z} why, uik] = (U —pF)uir, (4, k= n-1);
2=

n=1 Y~ N
[E why, uin] =+ o+ .+ 2" Dtig,

i=1

n—=1 Y~ .
[5_; #hy, uin] =(=p —p == 2" Nt
7~
Now, let /i, be an element of  which is not contained in ¥ and let &; = it/ + 7,
for 1=1,...,n—1. Thenpu'fy/+ ...+ u? Wy =i+ ...+ p"hn and
w4+ ...+ " =0. Hence § is the set of all elements A'%; + . . . + A"}, such

that }n_} 2t =0. We have
i=1

[‘%-‘} VT, uik] = (A = %) uy,

i=

I”) For, any toral sukgroup of a compact connected Lie group G is conjugate to a sub-
group of any maximal toral subgroup G. See, A. Weil, Démonstration topologique
d’un théoréme fondamental de Cartan. C. R. Paris 200 (1935) ; H. Hopf and H. Samelson,
Ein Satz iiber die Wirkungsriume geschlossener Liescher Gruppen, Commet. Math.
Helvet. Vol. 13 (1941).
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forl<i, k<=n.

Clearly wuix’s are linear combinations of e,’s. A % is said to be singular
if it is a linear combination of at least two ers’s. We shall prove that no % is
singular for n=8.

~ n+l n+tl . o~ . .
4. Let ki = >, pifhr, where 1‘2;;4.-" = 0. Since ki,. .., hs are linearly in-
k=] =

dependent elements of 9, det. (#i*)i ko1, - - -, 2% 0. Let uf = (&, . . ., uaf) for
i=1,...,n+1 Then the vectors z!, ..., u” are linearly independent and
puttl= — pgl — . — u"% Hence n vectors taken from g, ..., u**! are all line-

arly independent. Now [i M hj, e;k] = (ﬁ M(uf - p,-"))eik and [i Mhj, ers]
I=1 =1 j=1

= (P —um))en. 1t WG = ut) = ;’;Af(uf — uf) for every ¥ such

that jil A = 0, then, as we may easily verify, uf — u* = o — u* + ¢ (:I':), where

& (:;) =(c, ..., c). If this relation holds, we define e;x = ¢,;. We may easily

see that if ¢;x and e,s appear in a singular #;; then ejr = eys.
5. First we consider the case where a relation z#f — #* = £ holds for some
i, k, where £ is a vector whose components are all equal, ie. £ = (d, .. ., d).®

Then [;2’, Mhj, e.';,] = (g M(uf — ,uj")) eir = (g Ajd)eﬂ. = 0.

Since 4 is (# — 1)-dimensional, we may easily see that }) is the subspace of
9 consisting of all elements A'h; + . . . + A"+ By, such that 4 = A*. For sim-
plicity, let i = n, k= n+ 1. Let[h, eix] = aeir and [k, e,s] = Beys, where k EY.
Then e;r = e,s, if and only if « = 8 for every kY. Hence in our case, eix = eys

if and only if A — A* = A — 5. As we may easily verify, the followings are
possible :

n, k= Cnisky Chon = €k, ni1, (R <L N), €5, n41 = Cnyi, ne

Since [, en, n41] = [, €n41, n] = 0 holds for every B EY, en, nis and en4y, » Can
not appear in «’s as factors. Hence if some #’s are singular, these #’s must be
the form #, = aén, r + beny1, b, #y = Cep, n+ der, nyy and the “roots” a and 8
corresponding to these #’s satisfy the relation « = — 8. Hence [%., %3] = [aen, &
+ benys, kyClh, n+ deg, nis] = ac (hn — he) + bd (hnyy — hr) + bcenss, n + aden,nys
€Y. Hence bc = ad = 0 and ac = bd. This is clearly a contradiction and hence
all #’s are not singular.

6. Now suppose eir = ¢ys. Then pf — uf = " — ps + 5(:}:) If ¢ (:Z) =0,

%) Through in the following we denote by ¢ such a vector.
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then e,s =ejr or ers = eri, since 4 vectors taken from pu!'... u”**! are linearly
independent for # =4 (cf. 4.) and i % kand 7 = 5. If ejr = epi, then the relation
# — u¥ = ¢ holds and hence all #’s are not singular. Thus we may assume

§ (:,:) % 0. Further if i =7 or k = s, we also have the relations u* — 4 = ¢ or

# — " =¢. Hence we may assume i % 7, k % s.
7. Suppose that et = e,s and eu» = exy holds. We may assume that i % 7,

kxs,uxxand v ¥y. Then we have the relations uf — u#* = " — us + ¢ (:Z)
and p* — p¥ = p* — p¥ + E(:;‘;) We may assume that £’s are = 0 and 5(:2)
= de(:;i), where d( % 0) is a complex number. Then we obtain the relation

po= gt —dpt + dp = g — g — dpE dp.

i) Let d = +1. Since 8 vectors taken from u'. .. u"*! are linearly inde-
pendent for #=8, we must have #' — g% — p" + 45 =0, p¥ — p® =~ p* 4+ =0
and moreover i=s, k=7 u=y and v =x. Hence ejr =er and euw = eyu.
Then #f — % = ¢ and u* — ¥ = £ hold and all «’s are not singular (c.f. 5 and 6).

ii) Letd= +1. Then g £ p? + pS £ p* — pf F p* — " ¥ ¥ = 0. As in i)
8 vectors are linearly independent and since ix Xk 7=xs, %9, x %Y, L X 7,
ks, uxx and v %y, we may verify that the following cases are possible :

1) Cik = €rs, €ir = €ks
2) Cik = Ops, €y = €sk
3) Cik = €rs, ki = €y
4) ik = Chi, Euv = Cyy
5) @ik = €ks, €sp = €p{
6) Cik = ks, Civ = €os

But in the cases 4), 5) and 6), we obtain the relation of the form uf — 4™ = £.
Hence we have only to treat 1), 2) and 3).
8. Then it is easily verified that the possible singular #’s are as follows :

U = Gy Cik + by lrs, U-o = G-gChi + b_glsr;
us = ag €ir + bgers, U.p=a-peri+ b.p estk.

Let #s = upq. Then u, = [ups, 4] (¢ =1, ..., n). Clearly, for some ¢, 2
and wq, are not singular. Let #p = @ews and urg = bexy. Then ug = [upt, sl
= [@ euv, bexy] = ab (Ovx €uy — Oyuyexw). Hence it follows that u =4, y =k, x =7,
v=soru=79=S8 x=4, v=~k Then, since ik and7 x5, Ouy = Ovxr = 0.
However, they can not bo the case. Thus we have proved that no # is singular.
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9. Let u, = as€i, ;.. We want to prove that the set of indices S = Laj(ia, Ja)
is a proper subset of {1, 2, . .., #+ 1}. Suppose, for this purpose, that S = {1,
2. ..., n+1) Let 1=s,t=<n+1 Then there exist « and B such that
s =i, Or j, and ¢ = 4; or f;. Take a u: such that [#,, #.] = 0 and [%., #] = 0.
Then [€iy jys Cicjed = Ojo ic @iq jo — 0jz ia €jeia ¥ 0. Hence ie = j, or iy = je. It
follows similarly that é: = j; or j. = 3. Now there exists an element z(= 0) of
$ such that [, U] = 0. Then [k, ur] =0 for every u.. Let h=A2"h + ...
+ A% By, It follows that Aie = Ae, 2is = A% and A% = A%s, From the above
relations we obtain Afe = JJu = e = Ae = 2 = A8, Hence A° = A Since this

holds for every pair of s and ¢, it follows that ' = A2 = ... = A?*. Then
n+l

necessarily ' =22= ... =" =0, since D) 2*=0. Hence k=0 and this is
i=1

impossible. Thus S= (1, 2, . .., n+ 1}. Hence there exists an integer s(1 £ s

= n+ 1) such that s& S. Then we see easily that U is contained in the Lie

n+l

algebra % =Y + ieik K, where Y is composed of all elements 'k, + ...
i,k=1
its, ks

+ A" f, ., of © such that A5 = 0. But since U and U have the same dimension,

it follows that 11 = %A. Then every matrix of Ul transforms the s-th axis of the
(n + 1)-dimensional complex vector space into 0. Then “unitary ristricted” U,
transforms the s-th axis of the unitary (2 -+ 1)-space into 0. The integrated
group U leaves fixed the same axis. Then clearly U is conjugate to A,_;.

Iv.
1. We consider now the group G = Cj,, the unitary simplectic group of 22
variables. G consists of all unitary matrices of degree 2# which leave the skew-
symmetric bilinear form

S(x,9) = (v =%/ ) + (X9’ —x/¥2) + . .o+ (Xnyn — X0 Yn)

invariant, where the vector x has the componentes (x;,. .., Xu %/, . . ., % ).
We denote by C,-, the subgroup of G conisting of all matrices of G which
leave fixed the variables x; and x,/ i.e. x, - x;, x/ > x/. Then G/C,., = S¥#-!

and hence C,_; + 0.2
We prove the following
Tueorewm III. Every S-subgroup of G = C, is conjugate to C,_, for n > 4.

19 Take an element k; of § which is not contained in 5. Since [A#i, 1] S 11, the mapping
#~— [In, u] (e ) is a derivation of . As the derivations of the simple Lie algebra
U are inner, there exists an element % of U such that [h,, #] = [uo, u] for every u € .
But since [/, #] =0 for every # € i, #y commutes with every element of §j. b is a
maximal abelian subalgebra of 1l and hence #o € . Then the element %, — o satisfies
our condition.
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2, Let U bc an S-subgroup of G. Then R(G/U) = R(S™) (m: odd) and
R(G) = R(U x S™). The homology ring of C is

R(G) =R(Cp) = R(S? x ST X ... x Sm-1)»
Hence m = 4% — 1. and
1 RU)=R(S*x S"x ...x St#h~5x Sthts 5 ||| x §in-1),

Since S?* appears in (1) only once, U is simple.'” As we may easily verify, U
can not be the exceptional groups Fu, £; and As. If U = E;, then we may casily
verify that the homology ring of & must be isomorphic with that of Cs and
this is a contradiction.®® Hence if » > 3, U is 2 classical simple group. Then
(1) is impossible if m <42 ~1, Hencem =4n ~land R(U) = R(S* x §"x . ..
x S17-5), This shows that U is a simple group of type C,-: or B,..."»

3. Let the Lie algebras @, &, U, U, D¢, D, e and § be defined as in TII, 3.
Then & has the following basis :

n

& = Khy+ . . . + Khp + }—1 Kesni + ) Kesrizak

i,k=1

(K : the field of complex numbers),

where © = Khy+ .. .+ Khy and [gl A hj, ein‘i] = (& 24%) exa? and [,é_, A hj,

emﬂk] = (£Ai£1¥) esaigar, First let 11 be a simple algebra of type Cu.;. Then

11 has the following basis :
- 7=l n=1
U=Ki+ ...+ Khn_y + ;—].Ku*”t +,2:=1f{“*’i*""

where §) = Kk, + . . . + Khn_y (c ) and the commutator products of %'s and
s are defined anlogously as in ®. If 11 is a simple algebra of type By.;, U
has the following basis :

- N n=1 n-t
UW=Kh+ ...+ Khn,+ ZIKM:H' +i§;!{uilii.\k9

—~ -~ m=1 .
where )= Kh+ ...+ Khn.y (<) and LZ;N hj, uﬁi] = (xA'usnd) and

”—] ;3 ¢ . . ‘ -
j}j}&f nj, ut}\iik"] = (£M£2%) uyrar. Clearly u#.’s are the linear combinations of

eg’s. A u, is said to be singular if it is a linear combination of at least two
ey’s. We shall prove that non of them is singular in case z > 4,

2 See, Yen Chih-Ta, Sur les polynomes de Poincaré des groupes simples exceptionnels,
C. R, Paris, 228, (1949).
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4. Let i = Z"},u,* he. Since F; are linearly independent the matrix (u:%)
(=1, ..., n;kz:l=1, ...,n—1) hasrank n—=1. Let p* = (uf,. .., uk_s),
k=1,...,n Then n—1 of these n vectors are linearly independent. We
may assume that z', ¢%, ..., #” are so. Now

N~

'i}‘zfﬁ,-, emmk]= (Z‘: M (e + 6#;”)) €erivan®,
=1 - i=1
where e = =1, 6 = +1 for ix kandfori=~%, e =0 = x1, if Ul is of type Cy-s,
and e= 0, 8 = =1, if U is of type Bx.:.

If :i,jlf (eus + Sus®) = :}Z‘;Ai (¢uf + 0'u;f) holds for every A/, then the rela-
tion euf + du® = Ju + 0'x° holds. In this case we write eiink = eeariene. If
¢, and ¢; appear in a singular #,, then e. = e;.

5. Let #*=0. Then the possible relations are e.isax = eaioan (e = x1;
1 < i = n). Hence the possible singular #’s are the forms

Uq; = QierigAn + biell_)", Uog; = Ci€_ri_xn + die-)‘i+k"-

Then [%a;, %] = h+ biciNie_gn + aidi Niean & Yy, where h &l and [eri.an,
e.xi_xn] = Nie_an and [eyian, e_rtan] = Niemn and N; % 0, N/ % 0. Hence it
follows bic; = aid; = 0. This shows that #,; and #_., can not be singular.

6. Now let 4" 0. Then 4" = 3 a;ui. Let m be the number of indices i
i=}

such that a; % 0. If m =4, then no «, is singular. For, if eni,sx = eenr,sns,
then euf 4 0u* =¢'pu” + 6’15 and at least one of these vectors must be z%.
Then p” is a linear combination of at most 3 vectors and this is impossible.
Hence we may assume m = 3.

i) First let m = 1. For simplicity let p” = a;p'. Let a = eX + 6%, We
denote for simplicity the indices i, £ as the indices of « and e,. Let %, = 2: g, €5;
be singular. We show that the indices of B8/s are 1 and n. Suppose that 3,
has an index ¢ different from 1 and # and let 8; = &4 + &4, Further let
B2 = mA® + 7.4l Then since ey = eps, 12’ + et = mpf + et 14, 7, kb, 1< m,
this is impossible. Since i =1, n, a) first let 7 = #. Then e uf + ecaip* = 7, 0*
+ 74!, Since i1, it follows that i =&, ¢, =7, and 1 =/, e2a, = 7. Then 8,
= e Al + 2" and B: = A + ey Al. ) Let k=mn. Then B, = A + &' and B
=egA + ead®. ) Let I=n. Then B8 = &;Af + &40 and B, = 614 + e2ayi”. In
either case f; is determined by B; uniquely, whence e3; can not appear in #.,
and #_, must be the forms #, = aeiiien! + brisnan, Uog = CC_xi-e! + de_Snpyn.
Then [#., #_,]& ) and we may prove in the same way as in 5 that bc =0
and ad = 0. Then u, and %.., are not singular. Hence the indices of §; are 1
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and n. But there are only 8 ¢’s having indices 1 and 2, i.e. esa, €41, €x21an
Hence the number of possible singular #’s is at most 4.

i) Next let m = 2. For simplicity let »” = a;p' + @ p®. If u, = Z‘a,,e‘,,. is
singular, then we may prove as in i) that the indices of 8/s form subset of
{1, 2, »}. But in each singular %, at least one e;, must appear, one of whose
indices is #. The number of such g’s are 10, i.e. £, €xa:a» and ex2.in. But
it is impossible that, for example, ex1;exn and e 1,ex both appear in the singular
u’s. For, then the relations e\ en24en = €lyenn and €5\ semtraqn = €_\1ean hold,
where ¢, 0i = £ 1 or 0 and at least one of ¢ and ¢; is O respectively. These
lead to a contradiction as we may easily verify. From these facts we see that
the number of the possible singular #’s is at most 6.

iii) Finally let m = 3 and let, for simplicity, u”? = au* + a.p® + as>. Then
as above the singular #’s are the linear combinations of ¢;’s whose indices form
subsets of {1, 2, 3, #} and in each u, at least one ¢;; with index # must appear.
The number of such e;’s is 14, i.e. ex2an, €100 427, €4024an and exxigan. But egon
can not appear in the singular #’s, for if did x” would be a linear combination
of two u’s. As in ii) it is also impossible that, for example, el exn and e_j1 enn
both appear in the singular #’s. Hence the number of possible singular #’s is
at most 6. Thus we have shown that the number of singular elements is at
most 6. We see also from the above consideration that if the number s of
singular elements is 6, then for every singular #;, #.; is also singular. Further
we see that if s =5, then there exist singular u; and #, such that #_, and
u_p, are also singular. These hold equally for Il of type Bx.: and of type Cy..;.

7. Next we prove that if # > 4, no # is singular.

i) Let U be the type Bj-;. Suppose that #ai.ex (i k, ¢ = =1, 6 = x1)
is singular. Then since [#%ex, usik] = Ni,z terisark, ueré Or %5+ must be singular.
Let eyt be singular. Then since e = Np[uernignt, #-xt), =1, ...,n~1,
?x1), uaiat or u_xt is singular for every ¢, Hence we get a set of n — 2
singular elements. Further from the relations #ei = Nf[#exioat, wat] (=1, .. .,
n—1,%% 1), we get also a set of » — 2 singular elements and these two sets
have no common elements. #, is also a singular element different from these
2(n — 2) singular element. Hence there are at least 2(» — 2) + 1 singular ele-
ments. If the number s of singular elements is = 4, then 2(n — 2) + 1 < 4 and
hence n<3. If s=05 we see easily that there exists at least one singular u;
different from the above 2(n — 2) + 1 elements and hence also # = 3. If s =6,
there exist at least two singular elements different from the above 2(n — 2) + 1
element and so also # < 3. Hence we may assume that all u.(a = =2 =25, 4,
k=1, ..., n—1) are not singular. If one of u., say wu, is not singular,
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then since [, #-a1sni] = Niwteri (=2, ..., m=1), uert (=2, ..., n—1)
are also not singular. Then since [#-nya, #-xi] = NY#u_x, u-\ is also not
singular and hence all #’s are not singular. Ifallof #sy¢ (¢ =1,...,n —1) are

singular, there exist 2(n — 1) singular element. Hence 2(n ~ 1) £ 6,i.e. n £ 4.2
Thus if » > 4 «’s are not singular.

ii) If Wis of type Cn..;, we may prove analogously that none of # is singular
in case » > 3.

8. We prove now that U is not of type Bu-i. Let uyi = agie,;, and #%-,:
=pie_y (¢1=1,2, ..., n—1). Then since [uei, #55] %0 (¢, 6 = 1), we see
that the set of 2( -~ 1) “roots” {+ai} of & has the property that *a; ta;
are also the roots of &. Let one of a; be the form =2V ; for example let
o, = 247, Further let a; = s 4+ §2%, then since a; -+ «, is a root, it follows that
as = ~ A + 8A%. But then — @+ as= — 237 — 7+ 6% is not a root of @.
Hence a; are of the forms =¥+, Let a; = ¢k + 4% and a; = A7 + 8144
Since a; + as = edi + 0A% 4+ 5,47 + 8,4 is a root, it follows that a; = — edf + 745
or as = — 8A + 325, where s = jor . But since a;, — a. is also a root it follows
that a, = — el + 04% or a» = €A’ — 81%. Thus a; and — a; are determined uniquely
by a;. Hence if » > 3, there is no such a set of roots {* a;} of & Therefore
11 is not of type Ba.:

9. By 8. we know that 1 is of type Cu-i. Now let uyi = a;jeq; and u_m"
=bie.e; 1=1,2, ..., n—1). Since [#en, #sars] = 0, the set of 2(n — 1) roots
{£ a;} of @ has the property that =+ a;+ «; are not the roots of @ at all.
Suppose that a; = €247 for 1€ j <k and a5 = 8;49s + Al (Fs % &) for B+ 1
=s<n -1 Then the sets of indices {#;}, . . ., {&}, {Jre1s Tks1}s -+ - s {Fn-1s
lx-1} have no common indices. Hence the number of these indices is %2+ 2(n
—~k~-1) =2(n~-1) —k Thus 2(n —1) — k= n and hence 2= n — 2. Suppose
that £ = n — 2 and let, for simplicity, {4, . . ., énc1} ={1,2, ..., 2 — 2}, {Gnos,
In.i} = {m —1,n)and #an = @~y €axn-1,50n. Now there exists an element 2 = 'k,
4. .+ AR, =9 (h=x0) such that [k, #] =0 for all u =WN."® Since [h, #ai]
=0, it follows that ! =A2= ... =1""2=0 and eA?"'4 647 = 0. Let #n-1,3s
= cey and wn-1oy = deg. As [B, ¢, ] =0 (k=1, 2) and Br = = (eA! + 54%),
the indices of Bi’s are < n — 1. But [uye-145i, =15 = N; usn-1 and this is a
contradiction. Hence 2 =2 — 1. Suppose {#1, . .., ina} ={1, 2, ..., n—1}
Then we easily see that #ei sk = Girespnisent (1€ 4ksn—1andlgj,lsn—1.

7n=1 n=1
Now let U=Kh;+ ...+ Khpyy + ‘E_:,Keiw' + kEKe:)fi}\k. Then % is a subal-
= k=1

gebra of & of type Cu.: containing . Hence % = . Then each matrix of Il

) If n = 4, there may be 6 singular elements.
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transforms the variables x, and x,” into 0. The same holds for every matrix
of U.. Hence each matrix of the integrated group U leaves fixed the variables
xpand x, (i.e. Xn = Xn, X4’ = %’). Then clearly U is conjugate to C,_;. Thus
Theorem III is proved.

V.
Now let G be the exceptional group of rank > 2. The Poincaré polynomials
of the exceptional groups are as follows :*9

Ge: (14 2% (14 21);

Fi: (1+2) (142" (14 2%) (1+1%);

Eo: (1+2% (1+29) (1+2") 1L+2% (1+27) (1+2%);

E: (1+x) (142 1+ 2%) 1+ 29) (14 2%) 1+ 27) (14 2%);

Es: (142" (14 x") (L+2%) (1+27) (1+2%) (14 2%) (1+27) 1+ 27).

From this table, we may easily see the following
TueoreM 1V. Exceptional simple groups of rank > 2 have no S-subgroups.

Mathematical Institute,
Nagoya University.
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