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DEFICIENCIES OF CERTAIN REAL UNIFORM 
ALGEBRAS 

B. V. LIMAYE AND R. R. SIMHA 

Introduction. Let U be a complex uniform algebra, Z and dZ its maximal 
ideal space and its Silov boundary, respectively. The Dirichlet (respectively 
Arens-Singer) deficiency of U is the codimension in CR(dZ) of the closure of 
Re U (respectively of the real linear span of log|£/ -1 |). Algebras with finite 
Dirichlet deficiency have many interesting properties, especially when the 
Arens-Singer deficiency is zero. (See, e.g. [5].) By a real uniform algebra we 
mean a real commutative Banach algebra A with identity 1, and norm || || 
such that | | f || = | l/l |2 for each fin A. 

By considering the complexification B of A, we show in § 1 that the Silov 
boundary of A exists, thus giving a valid proof of a result claimed by Ailing in 
[1, Theorems 3.13 and 3.16]. This enables us to define the Dirichlet and the 
Arens-Singer deficiencies of A. Next, we introduce the concepts of imaginary 
Dirichlet deficiency and inverse Arens-Singer deficiency of A. It turns out 
easily that the Dirichlet (Arens-Singer) deficiency of B is the sum of the 
Dirichlet (Arens-Singer) and the imaginary Dirichlet (inverse Arens-Singer) 
deficiencies of A (Proposition 1.3). As an example, we consider the standard 
algebras on compact bordered non-orientable Klein surfaces, and compute 
their Dirichlet and imaginary Dirichlet deficiencies in terms of the first Betti 
numbers of the surfaces (Example 1.4). 

In § 2, we study the following real subalgebras of a complex uniform algebra 
U. Let {zi, . . . , zq) be a finite subset of Z and Dk a continuous (possibly 
trivial) point derivation of U at zk, for each k. Let 

Aq = {/in U:f(zk) and Dk(f) real for 1 ^ k S q}. 

In §3, we calculate the Dirichlet, the Arens-Singer, the imaginary Dirichlet 
and the inverse Arens-Singer deficiencies of A q in terms of the deficiencies of L7, 
the number of Gleason parts in Z to which the zks belong, the number of 
points zk which belong to dZ, and the number of nontrivial point derivations 
Dk (Theorems 3.3 and 3.4). This tells us about the possibilities of approximating 
continuous real-valued functions on dZ by various real-valued functions 
associated with Aq like Re Aqi Im Aqy etc. 

1. Silov boundary and deficiencies of A. Let A be a commutative real 
Banach algebra with identity 1 ^ 0 , and Y its maximal ideal space. Each / 
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122 B. V. LIMAYE AND R. R. SIMHA 

in A defines two real-valued functions, R e / and |/ | , on F. (See [1, §3].) Let 
F be given the weakest topology making all |/ | , / in A, continuous. Note that 
for / in A, g = exp / belongs to A~l, and R e / = log|g|. Since \g\ is always 
positive, R e / is also continuous in this topology on F. A general reference for 
real Banach algebras is [6]. 

Let us consider now the complexification 

B = {1 ®f + i® g:f,gmA} 

of A, together with a norm which makes the natural R-injection of A into B 
an isometry. Then B is a commutative complex Banach algebra with identity 
1 ® 1 . L e t / in A be identified with 1 ® f in B. Let X be the maximal ideal 
space of B and ex* the map from X to Y which restricts a maximal ideal of 
B to that of A. Define the involution a of B by a (1 ® / + i ® g) = 1 ® / — 
i ® g. Now, o- induces an endomorphism r of X, where 

T(X) = {1 ® / + i ® g : 1 ® / — i ®g in x}, 

for each x in X. Clearly ex* o r = ex*, and if dX is the Silov boundary of B, 
r(dX) = dX. 

Now, for e a c h / in ^ and M in X, |(1 ® f)(M)\ = \f\(cx*(M)). Since ex* 
maps X onto F, we have for each / in A, 

111®/II- = «UP l/l W-
iV in Y 

where || ||œ is the spectral norm for B. 
F o r / i n A, let \\f\\m = ||1 0 / I U - We shall henceforth work with this norm 

on A. It is, therefore, necessary to know when the original norm || || on A 
coincides with this norm. By the spectral radius formula for B, 

| |1 ® / | | œ = lim ||(1 ® / ) - | | 1 / * 
n-$co 

= lim \\1 ® f\\1/n 

= lim||/"||1/M. 
W->oo 

Thus, the two norms || || and || ||œ for A coincide if and only if | | /2 | | = | | / | |2 

for every/ in A. We shall assume this property from now on and not distinguish 
between the two norms for A. 

A boundary F0 of A is a subset of F such that for each / in A, 

| | / | | = sup | / | ( i \ 0 . 
.Vin Fo 

PROPOSITION 1.0. Let dX be the Silov boundary of B. Then ex*(dX) is the 
smallest closed boundary of A. 

Proof. First, since dX is compact, ex* is continuous and F is Hausdorff, 
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cx*(dX) is closed. Also, f o r / in A, 

11/11 = I | 1 ® / I L = sup |(1 ® / ) ( J l f ) | = sup \f\(N). 
M in a x Nlncx*(dX) 

Thus , cx*(dX) is a closed boundary of A. T o prove it is the smallest such 
boundary , it is enough to show tha t if F 0 is a closed boundary of A, then 
Xo = (cx*)_ 1 (F 0 ) is a boundary for B. Assume for a moment tha t X 0 is not 
a boundary for B. Then there exists a b in B such t ha t for some x0 in X, 
b(x0) = 1, bu t |6| S e < 1 on X 0 . Hence |6 + a(b)\ ^ 2e and \ba(b)\ ^ e2 on 
X 0 . Since b + a(b) and 6o-(&) belong to Ay and since F 0 is a boundary of ^4, 
these inequalities are valid on X , in part icular a t x0. Thus , 

k ( 6 ) ( * 0 ) | = |&(xo)ir(6)(*o)| ^ e2, and 1 - e2 ^ |6(*0) | - k (6) (*o) | 

^ \(b + a(b))(x0)\ S2e. 

By considering a high enough power of b, we can make e arbi trar i ly small. 
This contradicts 1 — e2 ^ 2e. 

Let dY == cx*(dX). Then d F is called the 5^/w boundary of ^4. We would 
like to remark here t ha t the existence of the Silov boundary for real commuta­
tive Banach algebras was claimed by Ailing in [1, Theorem 3.13], bu t it seems 
t ha t the proof he indicated there as well as the proof of Theorem 3.16 of [1] 
cannot be justified. 

Let CR(dY) denote the space of all real-valued continuous functions on 
dY. The codimension of the uniform closure in CR(dY) of 

(Re A) (dY) = { R e / r e s t r i c t e d to d F : / i n , 4 } 

is called the Dirichlet deficiency of A ; and the codimension of the uniform 
closure of the real linear span of 

(log \A~l\)(dY) = {log (/I restricted to dY : / in A-1} 

in CR(dY) is called the Arens-Singer deficiency of A. 
Let C(dX) denote the space of all complex-valued continuous functions on 

dX. For h in C(dX), let a(h)(x) = h(r(x)), for each x in dX. Then , a2 = 
identi ty, a(cihi + £2^2) = C\<r(hi) + c&Qiz), and vQiihz) = (TQI\)<TQIZ), for C\ 
and c2 complex numbers and hi and h2 in C{dX). Let B(dX) and A(dX) be 
the sets of restrictions of elements in B and A, respectively, to dX. Then a 
maps B(dX) into itself, and A (dX) = [h in B(dX) : a(h) = h\. Correspond­
ingly, let CR(dX)s = [u in CR(dX) : MOT = u) be the set of all symmetric 
(w.r.t. T) elements oi CR(dX). 

PROPOSITION 1.1. The Dirichlet (respectively Ar ens-Singer) deficiency of A 
equals the codimension of the closure of Re (A (dX)) (respectively of the real 
linear span of log l ^ ( X ) - 1 ! ) in CR(dX)s. 
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Proof. Notice that for each / in A, the following two diagrams commute: 

X X 

ex* 

Since the map ex* is both continuous and open [1, Corollary 3.3 and Lemma 
3.9] the proof of the proposition follows easily. 

The above proposition lets us introduce the concepts of imaginary Dirichlet 
and inverse Arens-Singer deficiencies of A. Let CR(dX)a denote the set of all 
antisymmetric (w.r.t. r) elements of CR(dX) : i.e., \u in CR(dX) : u o r = — a). 

Definition 1.2. The codimension of the uniform closure of Im (A(dX)) in 
CR(dX)a will be called the imaginary Dirichlet deficiency of A. The codimension 
in CR{dX)a of the uniform closure of the real linear span of log |^4_i(dX)|, 
where A-i(dX) = {h in B(dX)~1 : a(h) = h~l), will be called the inverse 
A rens-Singer deficiency of A. 

Note that Im {A (dX)) is contained in log|^4_i(dX)|, s ince/ in A (dX) and 
g = exp(-if) give Im / = log|g|. Hence the inverse Arens-Singer deficiency 
of A is less than or equal to the imaginary Dirichlet deficiency of A. 

PROPOSITION 1.3. The Dirichlet (respectively Arens-Singer) deficiency of B 
is equal to the sum of the Dirichlet {respectively Arens-Singer) and the imaginary 
Dirichelt (respectively inverse Arens-Singer) deficiencies of A. 

Proof. Since CR(dX) = CR(dX)s 0 CR(dX)\ it is enough to show that 

cl. ReB(dX) = cl. ReA(dX) 0 cl. ImA(dX) 

and that 

cl. (log\B(dX)-i\) = cl. (\og\A(dX)-i\) ® cl. (loS\A^(dX)\) 

where cl. denotes the uniform closure and ( ) denotes the real linear span. 
For / and g in A, let b = 1 (8) / + i 0 g. Then Re b = Re / — Im g, and 
log|fr| = \ \og\bo-(b)\ + J log|ôo-(fr)-1|. The result follows by taking the real 
linear span and the uniform closure. 

Example 1.4. Let F be a compact non-orientable Klein surface with a 
non-empty boundary d F, and let A be the standard algebra associated with F. 
(See [1, §2].) Let (X, p, T) be the orienting double of F, where X is a compact 
Riemann surface with boundary dX, p is a covering morphism such that 
p~1(dY) = dX, and r is an antianalytic involution of X which commutes 
with p. If c is the first Betti number of F, then the first Betti number of X is 
2c - 1. 

1(1 ® / ) | 
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If B is the s tandard algebra associated with X, then B is the complexification 
of A. (See [1, §4].) I t is well-known [9, Lemma 1] t ha t the Dirichlet deficiency 
of B is 2c — 1, while its Arens-Singer deficiency is 0. I t was proved recently in 
[3, Theorem 4.2] t h a t there exists a basis {Zi, . . . , Z2c_i} of B~l modulo exp B 
such t h a t <T{ZJ) = Zj for 1 ^ j ^ c — 1, <r(Zj) = Z i _ ( c _i ) Z fl for c S j ^ 
2c — 2, and o-(Z2c_i) = — Z 2 c_i _ 1 , where <r(/) = / o r. Let us now define 

_ ( log|Z, | , if 1 ^ j ^ c - 1, or j = 2c - 1 
* ' " \ l o g | Z , | - iloglZj-wl, iic^j ^ 2 c - 2 . 

Then cl. (Re B, u\, . . . , u2c-i) = CB(dX), and Uj = Uj o T for 1 ^ j ^ c — 1, 
whereas wy = —UJOT for c ^ j ^ 2c - 1. I t follows t ha t the Dirichlet 
deficiency of 4̂ is c — 1 (cf. [2, Theorem 5.7]), and tha t the imaginary Dirichlet 
deficiency of A is c (cf. [3, Theorem 3.6]). 

2. S o m e real suba lgebras of a c o m p l e x a lgebra. Let U be a complex 
uniform algebra with norm || ||. Let Z and dZ be its maximal ideal space and 
its Silov boundary respectively. In this section we consider the following real 
subalgebras of U. Let {JSI, . . . , zq) be a specified finite subset of q points in Z, 
and let Dk be a continuous (possibly trivial) point derivation of U a t zk for 
each k. Define 

Aq = {/in £/ : / (**) and Dk(f) real for 1 ^ ft ^ g}. 

Then Aq is a real uniform algebra. Let F and d F be its maximal ideal space 
and its Silov boundary respectively. We shall assume throughout t ha t the 
Dirichlet deficiency of U is finite and would like to compute the Dirichlet, the 
imaginary Dirichlet, the Arens-Singer and the inverse Arens-Singer deficiencies 
of A Q. Consider now the restriction m a p j from Z to F . We shall show tha t we 
can identify F and d F with Z and dZ respectively, by means of this map . For 
this purpose, we need the following crucial lemma. 

LEMMA 2.1. (i) There exist fi*, . . . ,/ff* in U such that (fm*)(zk) = ômjk, and 

Dk(fn*) = 0,for 1 g m , k S q. 
(ii) Of the given q continuous point derivations Di, . . . , Dq, let Dkl1 . . . , Dkp 

be the only non-trivial ones. Then there exist gi*, . . . , gq* in U such that 
(gm*)(zk) = 0, for 1 ^ m, k ^ q, and Dki{gm*) = 5mMl for 1 ^ m ^ g, 
1 S i ^ p. 

Proof, (i) First we show tha t given two points a and b in Z, and two deriva­
tions Da and D& a t a and 6 respectively, there e x i s t s / in U such t h a t / ( a ) = 1, 

f(b) = Da(f) = Db(f) = 0. Surely there exists h'mU such tha t h (a) = 1 and 
/&(&) = 0. Then it suffices to t a k e / = 2h2 — hA. Denote this function a s / a > 6 . 
Fix now m, 1 ^ m S g, and let 

/w = 1 1 Jzm,Zj' 

(ii) Again, fix ra, 1 ^ m 5̂  g. For j ^ m, I ^ j ^ q, there exists /7- in [7 
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such that fj(zj) = 0 and fj(zm) = 1. Also, letfm be in Z7such that fm(zm) = 0, 
and Dm(fm) = 1, if Dm is non-trivial. 

Now let 

gm — J m ' 1 JL J j ' 

It is easy to verify that these fm* and gw* are as required. 

We shall fix these functions fm* and gm*, 1 ^ m S <Z, as obtained in the 
above lemma, once and for all. 

PROPOSITION 2.2. The restriction map j from Z to Y is one-to-one and onto. 
Moreover, dY = j(dZ). 

Proof. Let z =̂  z' be in Z. As in (i) of Lemma 2.1 find / in U such that 
f(z) = 1, /(*') = 0, f{zk) = 0, for 1 S k ^ a and z ^ z*, and Dk{f) = 0 for 
1 ^ k ^ q. Clearly, t h i s / i s in Aqi it belongs to j(z') but not to j{z). T h u s j is 
one-to-one. In order to show that j is onto, it is enough to prove that if N is a 
maximal ideal of Aq, then the ideal generated by A7' in U is proper. For this 
purpose we quote an algebraic result. Let R be a commutative ring with 1 T6- 0, 
and S a subring of R containing 1. As an 5-module, let R be finitely generated. 
If J is a proper ideal of 5, then the ideal generated by I in R is also proper. We 
now show that U is finitely generated as an ^ -module . If / is a function in U, 
ffe) = ck and Dk(J) = dk, then 

Q Q 

f = h + X) (Im ck) if j* + X) ( Im d*) igk*, 
k=l k=l 

where h = f - i £*- i (Im ck) fk* - ÏYX=\ (Im dk) gk*. Since h(zk) = Re 6A-, 
and Dk(h) = Re dkl h belongs to Aq, and it follows that the functions 1, 
ifm* and i gm* generate U as an ylff-module. 

Finally, we show that j(dZ) = dY. Now, j(dZ) is a closed subset of F, and 
it is a boundary for Aq: 

sup | / |Cy) â H/H = sup \f(z)\ = sup \f\(j(z)). 
y in Y zindZ 2 in dZ 

Since dY is the smallest closed boundary for Aq, it is contained in j(dZ). 
Conversely, to show that dY contains j (dZ), note that a point z0 in Z belongs 
to dZ if and only if for every neighbourhood V of z0, there i s / in U such that 
the set on which / attains its maximum modulus is contained in V. Let now 
So be in dZ and V a neighbourhood of z0. WTe prove that there exists g in Aq 

which satisfies the above condition. Since j is continuous, it will then follow 
that 7(20) belongs to dY. First, assume that Zo 9e zkj for 1 ^ k ^ q. Since Z 
is Hausdorff, we can assume without loss of generality that no zk belongs to V. 
L e t / be in U such that max2 i n F \f(z)\ = 1, but | /(z) | < 1 for z outside V. 
Let f(zk) = ck, 1 ^ k S q> Then \ck\ < 1 for each k, and hence (1 — ckf) is 
invertible in U. Define 
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T h e n / , is in U, \fk(z)\ = 1 if | / ( s ) | = 1, and \fk(z)\ < 1 if \f(z)\ < 1. If we let 

g = n h\ 

then g(zk) = Dk(g) = 0 for each fe, and we are done. Now let z0 = £i say. 
In this case we can assume tha t V does not contain any zk, for 2 ^ k ^ q. 
First , let Di{f) 9^ 0. Then since D\ is nontrivial and since the Dirichlet 
deficiency of U is finite, it follows from [4, Théorème 2] t ha t the G l e a s o n p a r t P 
of %\ is nontrivial . Now, if | / ( z i ) | = 1, t h e n / is constant on P , and hence V 
contains P . Since P is nontrivial , there exists a neighbourhood V± of z\ not 
containing P. Then the function corresponding to V C\ V\ has absolute value 
less than 1 a t Z\. Hence we can assume t h a t | / ( z i ) | = |ci| < 1. T h u s again 
the function g constructed above works. Next, let Di(f) = 0. Here, let 
g = exp( — is)g', where gf = / if q = 1, and gr = Hl=2fk

2, if q ^ 2, and 
g'(zi) = r exp(w) . 

We thus see t h a t the restriction map j is a homeomorphism of Z onto F 
and it maps dZ onto d Y. Hence we can and shall identify Y and d Y with Z 
and dZ respectively. Let B be the complexification of A q, and X and 5X its 
maximal ideal space and its Silov boundary respectively. 

PROPOSITION 2.3. X is homeomorphic to two copies of Z, pasted together at 
the real locus of Z (considered as the maximal ideal space of A Q) , VIZ., \Zi, . . . ,Z„\. 

Proof. For z in Z, let s(z) be the complex homomorphism of B such t h a t 
(1 ® f)(s(z)) — f(z) for each / i n Aq. Then 5 is a continuous section of ex* 
over Z. For z in Z, (ex*) - 1 (2) = {x0, Xi}, where r(x 0) = X\. Hence X is the 
union of s(Z) and r ( s ( Z ) ) ; and z belongs to the real locus of Z if and only if 
the inverse image of z consists of a single point of X. I t is clear t ha t 5 is one-to-
one, and hence a homeomorphism into X. The result now follows. 

Since X is homeomorphic to two copies of Z glued together a t certain points 
and since the values of functions in B on one copy determine their values on 
the other copy, we can make the following identifications which will be useful 
in comput ing the various deficiencies of Aq in the next section. First , CR{dX)s 

can be identified with CR(dZ), and CR(dX)a with 

CR°(dZ) = {u in CR(dZ) : u = 0 a t each zk in dZ, 1 ^ k ^ q). 

Also, Aq(dX) can be identified with Aq(dZ) = {/restr icted to dZ : / in Aq}. 
The following simple result allows us to identify (Aq)-\ (dX) with (Aq)^i (dZ) 
— ( / + i g restricted to dZ : / and g in Aqi p + g2 = 1} : Let A be a real 
commuta t ive algebra with 1 ^ 0 , and let B be its complexification. Then 
& = l ® / + i ® g i s invertible in ^ if and only if / 2 + g2 is invertible in 4̂ ; 
and if b is in B~l, then o-(6) = b~l if and only if p + g2 = 1. 
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3. Deficiencies of Aq and the Gleason parts. Let the Dirichlet deficiency 
of U be d and the Arens-Singer deficiency a. We can assume without loss of 
generality that the first 5 of the q points zi, . . . , zq belong to dZ and the last 
q — s do not, for some s, 0 ^ 5 ^ q. Let Dkl, . . . , Dkp be the only non trivial 
ones among the q point derivations D\, . . . , Dqy for some p, 0 ^ p S q-
Finally, let the points z\y . . . , zq belong to r different Gleason parts in Z. We 
shall determine the various deficiencies of A q in terms of d, a, q, s, p and r. 
The functions/*;* and gk*, 1 ^ k ^ q constructed in Lemma 2.1 will turn out 
to be very useful, as is seen from the following proposition. 

PROPOSITION 3.1. (i) (Re Aq, I m / i * , . . . , Im/,*, Imgkl*,..., Im^ p *) =ReU. 
(ii) (log \Aq-i\, Im/x*, . . . , Im/,*, Img t l*, . . . , Im fe*> = (log \U~'\). 

(iii) (Im Aq, Re/S + 1*, . . . , R e / / , Re gkl*, . . . , Re gkp*) = Re U H CV(dZ). 
( i v ) ( l o g | ( ^ J _ 1 | , R e / , + 1 ^ . . . , R e / / , R e ^ , . . . , R e ^ ) = ( l o g | ^ - 1 | ) n ^ ^ a Z ) ^ 

Proof. L e t / be in U, f(zm) = cm and Dm(f) = dm, I ^ m ^ q. Then 

r ? ç ~i 

/ - i X (Im O/m* - *' X (Im dkm) gkm* 
I— m = l m = l —I 

and 

U/ - i X (Re *ro)/m* - i X (Re 4 J £*.* ] 

both belong to ^4 .̂ From this (i) and (iii) follow by considering the real and 
imaginary parts. 

Now, l e t / be in U~l, f{zm) = rm exp(ism) and Dm(J) = rm' exp(ism'). Then 
/ • exp( —i Z L i sw/m* - i S = i *̂«g*™*) where tkm = rkJ s in(%/ ~ skm)/rkm, 
belongs to A~l. This gives (ii). 

As for (iv), let v belong to (log | U~l\) C\ CR°(dZ). Then, by (ii), there exists 
/ in Aq~

x and real numbers a, ai, . . . , aq, bklf . . . , bkp such that 

Q V 

v = a log | / | + X am Im/OT* + X) **,» Im ^m*, 
m = l ra=l 

and y = 0 at 2i, . . . , 2S. Moreover, since Im/m* = Im gfcm* = 0 at zi, . . . , s5 

for each m, \f\ = 1 at zi, . . . , zs. Let /(zm) = rmexp(wm) and Dm(f) == 
rm' exp(wm '). Consider now 

g = / • exp ( - X) (log r w ) / w * - X) ™̂ gkm* ) , 

where 4m = rkn'/rkn. Then g belongs to Aq~\ g = ± 1 at zu . . . , zq, and 
Dm(g) = 0 for each w. Now, 

»g = [*/2(g ~ g"1)] + *[l/2(g + ÉT1)], 

where (i/2)(g — g_1) and (1/2) (g + g_1) both belong to 4 5 and the sum of 
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their squares is 1. Hence ig belongs to (Aq)-i. The rest follows immediately 
since Im/m* and Im gkm* also belong to log |(^4ff)_i|, for each m. 

We conclude from (i) and (ii) of Proposition 3.1 that the Dirichlet (respec­
tively Arens-Singer) deficiency of A q is at most d + q + p (respectively 
a + q + p). In order to determine them actually, we need the following 
lemma. 

LEMMA 3.2. Let P be a Gleason part in Z,z a point in P , and zr a point outside 
P. Then, for every positive e there exists g in U such that g(z) = 1, g(zr) = 0, 
I Re g\ ^ 2, and |Im g\ < e. 

Proof. We know that 

sup {|/(Z)| : / in U, | | / | | £ 1 ,/(*') = 0} = 1. 

By the Riemann mapping theorem, there exists a one-to-one complex analytic 
function <p on the closed unit disk such that ç>(0) = 0, <p maps [ — 1, 1] to the 
reals, <p(l) = 2, |Re <p\ ^ 2 and |Im <p\ < e. Let <p(s) = 1. Now there exists 
f in U such that | |/ | | ^ 1, f(zr) = 0, and f(z) = sly for some Si, s < si ^ 1. 
Then 1 < ^(^i) = k, say. Since cp is analytic, it can be approximated by 
polynomials, and hence <p of belongs to U. Then g = (l/k) <pof has the 
required properties. 

THEOREM 3.3. The Dirichlet (respectively Arens-Singer) deficiency of Aq is 
d + q — r + p (respectively a + p), where d (respectively a) is the Dirichlet 
(respectively Arens-Singer) deficiency of U, r is the number of distinct Gleason 
parts to which the q points zi, . . . , zQ belong, and p is the number of non-trivial 
point derivations among D\, . . . , Dq. 

Proof. We use the identifications introduced at the end of § 2, and take our 
starting point as (i) and (ii) of Proposition 3.1. Let z\, . . . ,zt belong to a 
Gleason part P, and zt+i, . . . , zq be outside P. We shall show that 

(i) Im/ j* belongs to the closure of ReAq, Im/m*, 1 ^ m S t — 1, and 
Imgkn*, 1 ^ m ^ p; 

(ii) for any k, 1 ^ k ^ t — 1, lmfk* does not belong to the closure of 
Re Aq, Im/W*, \^m^q,m^t,k, and Im gkm*, 1 ^ m S P', whereas it does 
belong to (log l ^ - 1 ! ) ; and that 

(iii) Im gkj* does not belong to the closure of (log |^4Ç
_1|), and Imgkm*t 

m 7e j , 1 S m S p-
Since ReAq is contained in log |^4Ç

_1|, (i) shows that corresponding to each 
of the r Gleason parts to which the q points zi, . . . , zq belong, we can eliminate 
one of the functions Im/i*, . . . , I m / / ; (ii) shows that we can eliminate 
exactly one such function for the Dirichlet deficiency, whereas we can eliminate 
all these for the Arens-Singer deficiency; and (iii) shows that we cannot 
eliminate any of Im gkl*, . . . , Im gkp*. 

In order to prove (i), we construct a sequence (fn)n in U such that (Im/n) (zt) 
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= 1, (Im fn)(zm) = 0 for / + 1 ^ m ^ q, and | R e / w | ^ \/n for each n. First , 
note t h a t the m a p which sends (wt+i, . . . , wq) to I I J U H - I wm, where wm = 
%m + iy-m is a complex number , is continuous. Hence, given a positive integer n 
there exists a positive number e such t h a t if \xm\ ^ 2 and \ym\ < e for each m, 
then | Im(Il4=H-i w m ) | ^ 1/n. Now, let z = zt, and s' = zm, t + 1 ^ m ^ g, 
in L e m m a 3.2, and get functions gm in U such t h a t gm(2i) = 1, gm(zm) = 0, 
|Re gTO| ^ 2, and | Im gm\ < e. T a k e t h e n / n = i I I ^ + i gm. If we define 

/ . ' = fn - i \ft* + E (lmfn(zm))fm* + E (Im Z M / O W ] , 
L w=l m=l —I 

t h e n / / belongs to ^4ff, and since (Re/ W ) n tends to zero, 

i R e / n ' - E ( W „ f e J ) Im/ W * - E (Im Dkm(fn)) Im g*w* ) 
\ m=l ra=l / w 

tends to Imf*. This proves (i) . 
As for (ii), let 1 ^ k S t — 1, and assume for a momen t t h a t 

v 
Im/** = lim Re/ W + E *™ Im/ W * + E sm Im g&m*, 

w ra+Z.fc ra=l 

where /w is in Aq, and £m and sm are real numbers . If we let 

g = i\-fk*+ E tmfm* + E Sm gkm* I , 
\ m^t.k ra=l / 

then (Re (fn — g))n tends to zero. Since ((/w — g) (zt))n also tends to zero, and zk 

belongs to the same Gleason p a r t as zt, ({fn — g) (zk))n m u s t also tend to zero. 
B u t ((fn — g)(Zk))n tends to i, which is a contradict ion. Finally, lmfk* = 
(1/2TT) log| exp( — 2irifk*)\, which is in (log l ^ - 1 ! ) - Th is proves (ii). 

As for (iii), let, if possible, 

Im gkj* = lim un + E sm Im gkm*, 

where 

in 

Un = E *n,i»log |/»fJ»| 
ra=l 

for some jfn,m in ^4C
_1, and /WtOT and sm real numbers . If we let 

g = i ( - gk* + E *« g*m*) » 

then (wn)n tends to Re g. 
If Z) is a continuous point derivat ion of any uniform algebra U a t z, then 

wre show t h a t the m a p T from (log | U~l\) to C given by 

r(£«,.o^l)-|>(^ 
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is well-defined. If D is trivial, then so is the map T. If D is nontrivial, then by 
[4, Théorème 1], there exists a representing measure m for z and a function 
F in Hœ(m) with JFdm = 0 such that D(f) = Jf F dm for every / in U. 
From this it follows immediately that D(f) = 2 J Re / F dm for every / in U. 
Thus, if (/w)n is a sequence in Z7 such that (Refn)n tends to zero, then so does 
(D(fn))n- If (fn)n is a sequence in £/-1 such that (log|/„|)w tends to zero, then 
by considering Re (fn — fn~

l) it again follows that (D(fn)/fn(z))n tends to 
zero. Now le t / i , . . . ,fn be in U"~1

1 and ai, . . . , an real numbers such that 

Ê «i log I/.| =0. 

Then, by Dirichlet's theorem on Diophantine approximation, given a positive 
integer &, there exists a positive integer g& such that qkaj differs from an integer, 
say pjtJb, by less than 1/k, j = 1, . . . , n. Let gk = I t U / / * • » . Then (log |^ | ) f t 

tends to zero, and hence so does (D(gk)/gk(z))k. But 

y a ^& 1 n 

<-Y = k JA + 
D(gk) 

Thus X"=i aj D(fj)/fj(z) = 0, and the map T is well defined. 
Of course, T, restricted to Re U, is continuous. Now, in the case at hand, 

the Dirichlet deficiency of U is finite, hence cl. Re U has finite codimension 
in cl. (log |£7-1|). Hence the map T is actually continuous. Taking D = Dkj 

and z = zkj, it now follows that (E4n=i tn,m Dkj(fn>m)/fni7n(zkj))n tends to Dkj(g). 
But each term of this sequence is real since each fntTn is in Afx, while 
Dkj(g) = ~~i- This gives the required contradiction. 

THEOREM 3.4. The imaginary Dirichlet (respectively inverse Arens-Singer) 
deficiency of Aqis d + q — s + p (respectively a + q — s + p), where d, a and 
p are as in Theorem 3.3, and s is the number of points among zi, . . . , zq which 
belong to the Silov boundary of U. 

Proof. Recall that we have identified CR(dX)a with CB°(dZ). Then, (iii) 
and (iv) of Proposition 3.1 show that the imaginary Dirichlet (respectively 
inverse Arens-Singer) deficiency of Aq is at most d + q — s +p (respectively 
a + q — s + p). Since Im Aq is contained in log |(^4ç)_i|, we need only show 
that Re/ s + i*, . . . , R e / / , Re gkl*, . . . , Re gkp* are linearly independent over 
cl. (log |(4*)-i|>. Let 

Q V 

u = X) ^ Re/m* + J2 sm Re gkm* 
m—s+1 ra=l 

where u = limB un, with un = Y,m=i tn,m log |/„,w|, and/„,m in (4ff)_i. 
First, |/„,OT(zjb)| = 1 for 1 ^ k ^ q. This gives 0 = u(zk) = tk for 5 + 1 ^ 

k ^ q. Secondly, if we let g — ̂ Cm=i Smgicm*J (^"n)n tends to Re g, and as in the 
proof of Theorem 3.4, 

I V / Dkj(fn,m)\ 
\ AJ Ln,m r / \ J 
\ ra=l Jn,m\^kj ) > n 
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tends to Dkj(g) = Sj, for 1 ^ j ^ p. Now we show that if / is in (Aq)-\, 
then the real part of Dk(f)/f(zk) is zero for each k. Let f = g + ih, where g 
and h are in Aq and g2 + h2 = 1. Thus, 

Dk(f)/f(zk) = [^(g) + i ZM*)]/[g(s*) + **(**)]• 
Since Dk(g), Dk(h),g(zk) <mdh(zk) are all real, Re [Dk(f)/f(zk)] = gfe)^-(g) + 
h(zk)Dk(h) = hDk(g

2 + h2) = 0. This shows that Sj = 0 for I ^ j ^ p, and 
we are done. 

COROLLARY 3.5. If k is the Dirichlet (respectively Arens-Singer) deficiency 
of Aq, then the Dirichlet (respectively Arens-Singer) deficiency of its complexi-
fication B is 2k + r — s (respectively 2k + q — s). 

Proof. The result follows from Proposition 1.3 and Theorems 3.3 and 3.4. 

Example 3.6. In the case of a standard algebra on a compact bordered 
nonorientable Klein surface, the Dirichlet deficiency is less than or equal to 
half the Dirichlet deficiency of its complexification. (See Example 1.4.) In 
view of Corollary 3.5, we can construct an algebra Aq for which the Dirichlet 
deficiency is strictly greater than half the Dirichlet deficiency of its complexi­
fication. We only have to find a complex uniform algebra with finite Dirichlet 
deficiency such that one of the Gleason parts in its maximal ideal space 
contains at least two points of its Silov boundary. An example of such an 
algebra is given by the subalgebra of the standard algebra on the unit disk 
consisting of functions which sat isfy/( l) = f(\) a n d / ( —1) = / ( — | ) . 

Added in proof. The referee has kindly pointed out that Lemma 3.2 and 
much of the proof of Theorem 3.3 can be essentially found in Peak points for 
hypo-Dirichlet algebras, Proc. Amer. Math. Soc. 26 (1970), 431-436, by 
S. J. Sidney. (See Lemma 3 and Remark 8.) 
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