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Abstract We investigate the sums (1/
√
H)

∑
X<n≤X+H χ(n), where χ is a fixed non-principal Dirichlet

character modulo a prime q, and 0 ≤ X ≤ q− 1 is uniformly random. Davenport and Erdős, and more
recently Lamzouri, proved central limit theorems for these sums provided H →∞ and (logH)/ logq → 0
as q → ∞, and Lamzouri conjectured these should hold subject to the much weaker upper bound H =
o(q/ logq). We prove this is false for some χ, even when H = q/ logA q for any fixed A > 0. However, we
show it is true for ‘almost all’ characters on the range q1−o(1) ≤H = o(q).

Using Pólya’s Fourier expansion, these results may be reformulated as statements about the distribution
of certain Fourier series with number theoretic coefficients. Tools used in the proofs include the existence
of characters with large partial sums on short initial segments, and moment estimates for trigonometric
polynomials with random multiplicative coefficients.

1. Introduction

Let q denote a large prime, and χ a non-principal Dirichlet character modulo q. In this

paper, we will be interested in the statistical behaviour of sums

Sχ,H(x) :=
∑

x<n≤x+H

χ(n),

where H =H(q) is some function.
Since χ has period q, we may restrict attention to 1 ≤H ≤ q. The case of long sums,

where H(q) � q as q → ∞, has been quite extensively studied. See, for example, the
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2 A. J. Harper

work of Granville and Soundararajan [7] and of Bober, Goldmakher, Granville and

Koukoulopoulos [2] investigating the largest possible values of character sums, and the

recent work of Hussain [12] on the behaviour of the paths t �→
∑

n≤qtχ(n). In this paper,
we focus instead on short sums, where H(q) = o(q) as q →∞. Our primary focus shall

be on the situation where χ is fixed for given q, and the start point x ∈ {0,1, . . . ,q− 1}
varies, although we will touch on what happens when χ varies as well.

This problem was studied by Davenport and Erdős [5], who proved that if χ =
(

·
q

)
is the Legendre symbol, and if the function H satisfies H → ∞ but (logH)/ logq → 0

as q →∞, and if X ∈ {0,1, . . . ,q− 1} is uniformly random, then one has convergence in
distribution to a standard Gaussian,

Sχ,H(X)√
H

d→N(0,1) as q →∞.

Recall this means that for each fixed w ∈ R, we have

P(
Sχ,H(X)√

H
≤ w)→ Φ(w) as q →∞,

where Φ(w) := (1/
√
2π)

∫ w

−∞ e−z2/2dz is the standard Gaussian cumulative distribution
function. Lamzouri [14] recently extended this to more general Dirichlet characters. He

showed that if one chooses a non-real character χ modulo each prime q (in any way),

then under the same conditions on H as Davenport and Erdős [5], one has

Sχ,H(X)√
H

d→ Z1+ iZ2 as q →∞,

where Z1,Z2 are independent N(0,1/2) random variables. Lamzouri [14] also obtained a

quantitative rate of convergence (in the sense of Kolmogorov distance). We also mention
slightly earlier work of Mak and Zaharescu [15], who proved separate distributional

convergence results for the real and imaginary parts of
Sχ,H(X)√

H
, and more generally for

the projections of various kinds of moving character sum onto lines through the origin.
All of these results, and many related ones (e.g., the work of Perret-Gentil [20] on short

sums of l -adic trace functions), ultimately depend on a moment method. For example, in

the case χ=
(

·
q

)
, Davenport and Erdős calculated

1

q

∑
0≤x≤q−1

(
Sχ,H(x)√

H

)j

=
1

qHj/2

∑
1≤h1,...,hj≤H

∑
0≤x≤q−1

(
x+h1

q

)(
x+h2

q

)
...

(
x+hj

q

)
,

showing that for each fixed j ∈ N, this converges to the standard normal moment

(1/
√
2π)

∫∞
−∞ zje−z2/2dz as q → ∞. It is well known that the normal distribution is

sufficiently nice that moment convergence implies convergence in distribution. The key

to performing the moment calculation is that for a given tuple (h1, . . . ,hj) of shifts, if any

shift h occurs with odd multiplicity, then the sum over x is 	j
√
q, by the Weil bound.
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Under the condition (logH)/ logq → 0, all these terms together give a contribution

	j
1

√
qHj/2

∑
1≤h1,...,hj≤H,

a shift occurs with odd multiplicity

1≤ Hj/2

√
q

→ 0 as q →∞.

If one drops the condition (logH)/ logq → 0, then this method seems to break down.
Lamzouri [14] made the following conjecture about what happens for larger H.

Conjecture 1 (Lamzouri, 2013). Suppose that H →∞ but H = o(q/ logq) as the prime

q →∞. Then if χ=
(

·
q

)
is the Legendre symbol, and if X ∈ {0,1, . . . ,q−1} is uniformly

random, we have

Sχ,H(X)√
H

d→N(0,1) as q →∞.

If we choose a non-real character χ modulo each prime q (in any way), then on the

same range of H we have

Sχ,H(X)√
H

d→ Z1+ iZ2 as q →∞,

where Z1,Z2 are independent N(0,1/2) random variables.

Our goal here is the further investigation of Lamzouri’s conjecture. Prior to this, we
briefly explain the origins of the conjecture, and in particular of the condition H =

o(q/ logq). For each prime p, let f(p) be an independent random variable taking values

±1 with probability 1/2 each (i.e., a Rademacher random variable), and then for each
n ∈ N, define

f(n) :=
∏
pα||n

f(p)α,

where pα||n means that pα is the highest power of p that divides n. We shall refer to such

f as an extended Rademacher random multiplicative function and think of f as a random

model for the Legendre symbol
(

n
q

)
as q varies. Similarly, to model a complex Dirichlet

character χ(n), we let f(p) be uniformly distributed on the complex unit circle (i.e.,

Steinhaus random variables) and again define f(n) :=
∏

pα||n f(p)
α, a Steinhaus random

multiplicative function. Chatterjee and Soundararajan [4] showed that for a very similar1

kind of real random function f, one has∑
x<n≤x+y f(n)√

E

(∑
x<n≤x+y f(n)

)2

d→N(0,1) as x→∞

1Chatterjee and Soundararajan [4] studied Rademacher random multiplicative functions
summed over squarefree numbers rather than the extended functions whose support is not
restricted to squarefree n.
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4 A. J. Harper

provided the interval length y = y(x) satisfies x1/5 logx 	 y = o(x/ logx). Lamzouri’s
conjectured condition H = o(q/ logq) is analogous to Chatterjee and Soundararajan’s

upper bound on y.

There are at least two issues that need to be understood when considering whether the

random multiplicative model is a good one for Sχ,H(X). The first is whether a random
multiplicative function captures all of the important structure of a Dirichlet character,

which in particular has an additional periodicity property. The second is whether one

can infer things about Sχ,H(X), where the function χ is fixed (for given q) and the start
point X of the interval randomly varies, from things about

∑
x<n≤x+y f(n) where the

interval is fixed (for given x ) and the function f randomly varies. One might think that

if the latter is a good model for character sums, it would rather be for the case of a fixed
interval for given q and randomly varying character χ mod q.

1.1. Statement of results

Our main results are negative, showing that Conjecture 1 is not correct as stated.

Theorem 1. Let A> 0 be arbitrary but fixed, and set H(q) = q/ logA q. Then as q varies

over all large primes, with χ=
(

·
q

)
denoting the unique corresponding quadratic character,

we have

Sχ,H(X)√
H

d


→N(0,1) as q →∞.

Theorem 2. Let A> 0 be arbitrary but fixed, and set H(q) = q/ logA q. Then as q varies
over all large primes, there exists a corresponding sequence of non-real characters χ

modulo q for which

Sχ,H(X)√
H

d


→ Z1+ iZ2 as q →∞,

where Z1,Z2 are independent N(0,1/2) random variables.

It may not be very illuminating just to say that something does not converge to a

specified limit object. In fact, in the real case covered by Theorem 1, we will show that

there exists an infinite sequence of primes q along which
Sχ,H(X)√

H
has properties that forbid

it from closely approaching the N(0,1) limit. This special sequence consists of primes q

for which
(

·
q

)
is ‘highly biased’, in the sense that its partial sums up to about q/H are

not small. Similarly, in the non-real case covered by Theorem 2, the bad character χ that

we select for each prime q is such that its partial sum up to about q/H has large modulus.

To explain further, if χ is primitive mod q (so for q prime, any non-principal character
is admissible), then Pólya’s Fourier expansion for character sums implies that

Sχ,H(x) =
τ(χ)

2πi

∑
0<|k|<q/2

χ(−k)

k
e(kx/q)(e(kH/q)−1)+O(logq).

Here, τ(χ) denotes the Gauss sum, of absolute value
√
q, and e(·) = e2πi· denotes the

complex exponential. When |k| ≤ q/H, we have (1/k)(e(kH/q)− 1) ≈ 2πi(H/q), and it
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turns out that (on average over x ) these are essentially the only terms that make a

significant contribution, so

Sχ,H(x)√
H

≈ τ(χ)
√
H

q

∑
0<|k|<q/H

χ(−k)e(kx/q). (1.1)

Now if H = q/ logA q, and so q/H = logA q, we can find characters χ for which

|
∑

0<k<q/H χ(k)| �A q/H. For such characters, we can think of Sχ,H(x)/
√
H as having a

significant piece resembling the scaled Dirichlet kernel (τ(χ)
√
H/q)

∑
0<|k|<q/H e(kx/q).

The Dirichlet kernel certainly does not have Gaussian behaviour as x varies and q →∞;

in fact (since it has relatively small L1 norm), it converges to 0 in probability, which
suggests it is unlikely that Sχ,H(x)/

√
H can converge to the desired Gaussian. This

argument can be made rigorous by subtracting a suitable multiple of the Dirichlet kernel

from Sχ,H(x)/
√
H, which makes no difference to the putative convergence in distribution

but reduces the variance of the sum.

Note that the use of Pólya’s Fourier expansion imports information about the

periodicity of χ mod q into our analysis.

The characters used in the proofs of Theorems 1 and 2 are quite special, suggesting that
Lamzouri’s conjecture might be true for almost all q for real characters, or for almost all

characters for each q for non-real characters. Another reason for believing this comes from

thinking more carefully about the representation (1.1). In a famous classical paper, Salem
and Zygmund [21] showed that for almost all sequences of independent ±1 coefficients,

the partial Fourier series with those coefficients satisfy a central limit theorem when the

‘frequency’ (corresponding to x/q in our setup) is chosen uniformly at random. Thus, if
we believe that the values of a typical Dirichlet character are somewhat ‘random looking’,

we might expect to have a central limit theorem as the length q/H tends to infinity. This

translates into a condition H = o(q) rather than the condition H = o(q/ logq) proposed

by Lamzouri [14].
In this positive ‘almost all’ direction, we establish the following.

Theorem 3. Let H =H(q) satisfy log(q/H)
logq → 0 and H = o(q) as the prime q→∞. Then

there exists a subset PH of primes, which satisfies

#(PH ∩ [Q,2Q])

#{Q≤ q ≤ 2Q : q prime} ≥ 1−O(e−minQ≤q≤2Q log3/4(q/H))

(say) for all Q= 2j,j ∈ N, such that if χ=
(

·
q

)
, we have

Sχ,H(X)√
H

d→N(0,1) as q →∞, q ∈ PH .

Theorem 4. Let H =H(q) satisfy log(q/H)
logq → 0 and H = o(q) as the prime q→∞. Then

there exist sets Gq,H of characters mod q, satisfying #Gq,H ≥ q(1−O(e− log3/4(q/H))), such
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that for any choice of χ ∈ Gq,H , we have

Sχ,H(X)√
H

d→ Z1+ iZ2 as q →∞,

where Z1,Z2 are independent N(0,1/2) random variables.

The proofs of Theorems 3 and 4 again use the trigonometric series approximation to
Sχ,H(x)/

√
H, which can be reworked slightly into a form (roughly speaking) like

Sχ,H(x)√
H

≈ 2
√
q

π
√
H

∑
0<k<q/H

χ(k)sin(πkH/q)

k
cos(2πkx/q). (1.2)

In fact, looking at Sχ,H(X)/
√
H for X ∈ {0,1, . . . ,q− 1} uniformly random turns out to

be roughly equivalent to looking at
2
√
q

π
√
H

∑
0<k<q/H

χ(k)sin(πkH/q)
k cos(2πkθ), for θ ∈ [0,1]

uniformly random. This latter small change is not really important, but neatens the

writing.

Since moment convergence implies distributional convergence to the Gaussian, to prove
Theorem 3, it would suffice (roughly speaking) to show the existence of a subsequence

PH of primes such that, for each fixed j ∈ N, we have

∫ 1

0

⎛
⎝ 2

√
q

π
√
H

∑
1≤k<q/H

(
k
q

)
sin(πkH/q)

k
cos(2πkθ)

⎞
⎠

j

dθ → (1/
√
2π)

∫ ∞

−∞
zje−z2/2dz

as q →∞,q ∈ PH . To do this, we can try to calculate the average (square) discrepancy

between the actual and the Gaussian moments as q varies in each dyadic interval – namely,

logQ

Q

∑
Q≤q≤2Q,
q prime

×

∣∣∣∣∣∣∣
∫ 1

0

⎛
⎝ 2

√
q

π
√
H

∑
1≤k<q/H

(
k
q

)
sin(πkH/q)

k
cos(2πkθ)

⎞
⎠

j

dθ− 1√
2π

∫ ∞

−∞
zje−z2/2dz

∣∣∣∣∣∣∣
2

.

If this tends to zero at a sufficient rate as Q→∞, on a range of j that grows to infinity
as Q → ∞ (recall that we need convergence of all fixed integer moments to guarantee

convergence to the Gaussian), then we can form PH from all the many primes in each

interval [Q,2Q] where the discrepancy is simultaneously small for a suitable range of j.
Provided that (q/H)j is small compared with Q, so the periodicity of the characters(
k
q

)
does not intervene, one expects the left-hand side in the above display to be close

to the corresponding one where
(

k
q

)
is replaced by an extended Rademacher random

multiplicative function f(k), and the normalised sum logQ
Q

∑
Q≤q≤2Q,
q prime

is replaced by an

expectation E. There are technical challenges in establishing this because q/H(q) might

also vary with q in the sum, and averaging over primes q entails non-trivial issues with

the distribution of primes, but these problems can be overcome (see Number Theory
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Result 3 and Section 6.3 below; essentially one needs to show that the
(

k
q

)
for varying

q have similar correlation/orthogonality properties to the random f(k)). Unfortunately,

the condition that (q/H)j is small compared with Q, for each fixed j, forces the unwanted

condition log(q/H)
logq → 0 in Theorem 3. This is similar to the condition (logH)/ logq → 0

that appeared in the work of Davenport and Erdős [5], Lamzouri [14] and others.

Finally, we need upper bounds for quantities like

E

∣∣∣∣∣∣∣
∫ 1

0

⎛
⎝ 2

√
Q

π
√
H

∑
1≤k<Q/H

f(k)sin(πkH/Q)

k
cos(2πkθ)

⎞
⎠

j

dθ− 1√
2π

∫ ∞

−∞
zje−z2/2dz

∣∣∣∣∣∣∣
2

,

where f(k) is a random multiplicative function. This arithmetic input can be extracted

from a nice recent paper of Benatar, Nishry and Rodgers [1]. They were interested in

almost sure central limit theorems and size bounds for random trigonometric polynomials
1√
N

∑
n≤N f(n)e(nθ) and directly calculated such expectations using a point counting

argument drawing on work of Vaughan and Wooley [23]. Ultimately, one needs to
count tuples (n1, . . . ,n2j) satisfying a small collection of linear and multiplicative

equations.

As Benatar, Nishry and Rodgers [1] comment, one can also analyse the distribution
of 1√

N

∑
n≤N f(n)e(nθ) using martingale methods, and this was done in unpublished

work of the present author (see the paper [9] for an application of martingales to a
different distributional problem for random multiplicative functions, and the recent paper

[22] of Soundararajan and Xu for various such applications, including to trigonometric

polynomials with random multiplicative coefficients). But to transfer these conclusions
to character sums, one would seem to again need moment estimates on the random

multiplicative side, not just distributional convergence. These could be obtained (e.g.,

one can use Burkholder’s inequalities [3] and some calculation to show that all moments
remain bounded as N →∞, and this combined with distributional convergence implies

they must all converge to the desired Gaussian moments), but it seems simpler to rely

on the existing calculations of Benatar, Nishry and Rodgers [1].

In the complex case in Theorem 4, one proceeds exactly similarly in studying the
square discrepancy from the moments of the complex Gaussian Z1+ iZ2, now averaging

over all χ mod q rather than over Q≤ q ≤ 2Q. Provided that 1≤ n1,n2 < q, say, we have

the identity 1
q−1

∑
χ mod qχ(n1)χ(n2) = 1n1≡n2 mod q = 1n1=n2

= Ef(n1)f(n2), where f(·)
denotes a Steinhaus random multiplicative function. This exact equality makes it much

easier to establish the connection with random multiplicative functions than in Theorem

3, but the condition 1 ≤ n1,n2 < q ultimately forces the same unwanted constraint
log(q/H)

logq → 0.

1.2. Discussion and open questions

Our results leave open several problems about the behaviour of Sχ,H(x)/
√
H, and related

issues.
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The results of Davenport and Erdős [5] and of Lamzouri [14] establish a central limit

theorem for all characters provided H → ∞ but H = qo(1), and our results establish a

central limit theorem for almost all characters provided q1−o(1) ≤H = o(q). Moreover, we
have shown that one cannot hope to prove a central limit theorem for all characters when

log(q/H)/ log logq is bounded. Given this state of affairs, one can ask the following:

(i) How does Sχ,H(x)/
√
H behave on the missing range qo(1) ≤H ≤ q1−o(1) ?

(ii) Indeed, should it be possible to prove a central limit theorem for all characters
provided H →∞ and log(q/H)/ log logq →∞ ?

The author tentatively conjectures that the answer to (ii) is Yes. In view of Corollary A

of Granville and Soundararajan [6], if the Generalised Riemann Hypothesis is true, then∑
n≤xχ(n) = o(x) whenever χ is a non-principal character mod q, and (logx)/ log logq→

∞. This means that, assuming GRH, there would be no construction along the lines of

Theorems 1 and 2 available once log(q/H)/ log logq→∞. So if one believes this is the only

barrier to a central limit theorem holding, as is somewhat suggested by the representation
(1.1) together with the classical work of Salem and Zygmund [21] on random Fourier

series, then one arrives at this conjecture.

However, proving such a result seems difficult. First, the best unconditional estimates
we have of the form

∑
n≤xχ(n) = o(x), where χ is any non-principal character modulo

a prime q (one can sometimes do better for special non-prime moduli), are Burgess-

type estimates requiring that x ≥ q1/4−o(1). Thus, we would need to assume results like

GRH merely to exclude the kind of construction from Theorems 1 and 2 from cropping
up. But even allowing such unproved arithmetical results, there is no clear way to go

on and establish a central limit theorem on the full range of H in (ii). The problem of

understanding the distribution of (τ(χ)
√
H/q)

∑
0<|k|<q/H χ(−k)e(kθ), where θ =X/q is

random but the coefficients χ(−k) are deterministic, is just one example of the important

general problem of understanding the distribution of
∑

k ake(kθ), where ak are interesting

deterministic coefficients. See, for example, the work of Hughes and Rudnick [11] on
lattice points in annuli. They encounter similar sums where the ak involve the number

of representations of k as a sum of two squares, and the range of their main theorem

involves a similar (conjecturally unnecessary) restriction as in Theorems 3 and 4 to allow

a proof by the method of moments.
Indeed, even extending our ‘almost all’ results to a wider range of H would be very

interesting, and does not seem easily attackable.

Another, perhaps rather specialised, question is the following:

(iii) What can be said about the distribution of Sχ,H(X)/
√
H, for those characters χ

and interval lengths H where it does not satisfy the expected central limit theorem?

We can also return to the random multiplicative functions f(n) that motivated

Lamzouri’s conjecture [14] and played a role in the proofs of Theorems 3 and 4. As
discussed earlier, and perhaps demonstrated by Theorems 1 and 2, the author does

not believe that Chatterjee and Soundararajan’s work [4] on
∑

x<n≤x+y f(n) provides

a natural model for Sχ,H(X). But the study of
∑

x<n≤x+y f(n) is very interesting in its
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own right. Although Chatterjee and Soundararajan only obtained2 a Gaussian limiting
distribution when x1/5 logx	 y = o(x/ logx), they did not show that their upper bound

on y is optimal, and recent work of Soundararajan and Xu [22] extends the range to

x1/5 logx	 y 	 x

log2log2−1+εx
.

However, it follows directly from work of the author [10] that if y
√
log logx
x →∞ as x→∞,

then

E|
∑

x<n≤x+y f(n)|√
y

≤
E|

∑
n≤x f(n)|+E|

∑
n≤x+y f(n)|√

y
→ 0.

This implies (by Markov’s inequality) that
∑

x<n≤x+y f(n) converges in probability to

0 rather than converging to a standard Gaussian, when renormalised by its standard
deviation. As Soundararajan and Xu [22] remark, by looking inside the proofs from [10],

one can show that E
|
∑

x<n≤x+y f(n)|
√
y → 0 even for somewhat smaller y. Thus, there is at

least one qualitative transition in the distributional behaviour of
∑

x<n≤x+y f(n) when y

approaches x, and the exact location and nature of this remains to be understood.
As also noted earlier, the author believes that

∑
x<n≤x+y f(n) will be a good model for

the behaviour of
∑

x<n≤x+yχ(n) where x,y(x) are fixed and the character χ varies mod

q, at least provided x≤√
q, say (for x close to q, one will again need to be more careful to

account for the periodicity of χ). It would be very interesting to obtain rigorous results

on the distribution of
∑

x<n≤x+yχ(n) for varying χ.

Finally, we might wonder the following.

(iv) When f(n) is a realisation of a Steinhaus or (extended) Rademacher random
multiplicative function, what is the distribution of

∑
x<n≤x+H f(n) as x varies

over a long interval?

Although the proofs of Theorems 3 and 4 use the random multiplicative model f(n)

for χ(n), they do not address (iv) because they only use this after first passing to
the representation (1.2), the truth of which depends on special properties of Dirichlet

characters. Our arguments say nothing directly about the ‘model’ object
∑

x<n≤x+H f(n).

Of course, a little care is required to sensibly interpret question (iv). For example, the
function f(n) that is 1 for all n on some long initial segment is a realisation of a random

multiplicative function and has rather exceptional behaviour, but it is a realisation that

occurs with extremely small probability. A natural problem might be to investigate the

distribution of
∑

x<n≤x+H f(n) for ‘most’ realisations of f, somewhat analogously to
Theorems 3 and 4. Relevant work in the literature includes Najnudel’s paper [18], which

2We remark again that Chatterjee and Soundararajan [4] studied Rademacher random
multiplicative functions supported on squarefree numbers only. For the next paragraph, f(n)
should be taken to mean this model. Most things discussed will carry over to Steinhaus random
multiplicative functions as well, but extended Rademacher random multiplicative functions
may exhibit some different behaviour due to significant contributions from squares (on which
an extended Rademacher random multiplicative function is identically 1) and numbers with
large square factors.
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10 A. J. Harper

explores the joint distribution of the tuple (f(x),f(x+1), . . . ,f(x+H)) for x varying and

H fixed (or slowly growing).

Remark added in review, March 2024. Following the release of a preprint version of
the present article, question (iv) was investigated by Pandey, Wang and Xu [19]. Using

a moment method, they can show that 1√
H

∑
x<n≤x+H f(n) typically (i.e., for most

realisations of Steinhaus random multiplicative f(n)) has an approximately Gaussian

distribution as x≤X varies, provided that H =H(X)→∞ but log(X/H)/ log logX →∞
as X →∞.

2. Tools for Theorems 1 and 2

The proofs of Theorems 1 and 2 rest on the following simple principle.

Probability Result 1. Let 0 ≤ τ < 1, and suppose (Vn)
∞
n=1 is a sequence of real or

complex valued random variables satisfying E|Vn|2 ≤ τ for all n. Then if Z is any real or
complex valued random variable such that E|Z|2 = 1, we have

Vn

d


→ Z as n→∞.

Proof of Probability Result 1. Choose a ∈ R such that Emin{|Z|2,a2} ≥ (1 + τ)/2

(such a exists by the monotone convergence theorem). Since v �→ min{|v|2,a2} is a

continuous bounded function on C, if we had Vn
d→ Z, then we would have

Emin{|Vn|2,a2}→ Emin{|Z|2,a2} as n→∞.

But this is impossible since clearly Emin{|Vn|2,a2} ≤ E|Vn|2 ≤ τ < (1+ τ)/2.

We remark that although Probability Result 1 is simple, there is a non-trivial issue

involved which it is important to recognise. Thus, the analogous statement in which for

some ν > 1 our sequence satisfied E|Vn|2 ≥ ν for all n would be false, as can easily be

shown by examples. In general, the failure of moments to converge to the moments of a
supposed limit distribution need not, by itself, imply that convergence in distribution is

not happening since moments may be inflated by events whose probabilities tend to zero,

and which are therefore irrelevant to convergence in distribution.
As explained in the Introduction, Theorems 1 and 2 will also rely on the existence of

non-principal characters with large partial sums. In the non-real case, the existence of

such characters follows immediately from work of Granville and Soundararajan [6].

Number Theory Result 1 (see Theorem 3 of Granville and Soundararajan [6], 2001).
Let A > 0, and suppose q is a prime (say) that is sufficiently large in terms of A. Then

for any 2≤ x≤ logA q, there exist at least q1−
2

logx characters χ mod q for which∣∣∣∣∣∣
∑
n≤x

χ(n)

∣∣∣∣∣∣≥ xρ(A)

(
1+O

(
1

logx
+

logx(log log logq)2

(log logq)2

))
,

where ρ(A)> 0 denotes the Dickman function.
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A note on character sums over short moving intervals 11

In the real case, Granville and Soundararajan (see Theorem 9 of [6]) also proved that

for any fixed A, if q is large and x = ((1/3) logq)A, then there exists a fundamental

discriminant q ≤ |D| ≤ 2q for which

∑
n≤x

(
D

n

)
≥ x(ρ(A)+o(1)).

Unfortunately this is not quite sufficient for our purposes because we need to find biased

real characters
(

·
q

)
where q is prime. But by reorganising Granville and Soundararajan’s

proof a little, and inserting information about the zero-free region and exceptional zeros

of Dirichlet L-functions, one can prove such a statement. This has been done by Kalmynin
[13].

Number Theory Result 2 (see Theorem 3 of Kalmynin [13], 2019). For any fixedB> 0,
there exists a small constant c(B)> 0 such that the following is true. If Q is sufficiently

large in terms of B, then for any 1 ≤ x ≤ logBQ, there exists a prime Q < q ≤ 2Q such

that ∑
n≤x

(
n

q

)
≥ c(B)x.

Proof of Number Theory Result 2. Theorem 3 of Kalmynin [13] directly implies

Number Theory Result 2 provided that B ≥ 1 and x= logBQ. However, the lower bound

for S0(Q) obtained in Kalmynin’s proof implies that one can find primes Q< q≤ 2Q such

that
(

n
q

)
= 1 for all n ≤ log1/3Q. This means that if x ≤ log1/3Q, then one can make∑

n≤x

(
n
q

)
maximally large. And if log1/3Q< x≤ logBQ, then one can run Kalmynin’s

proof with the sum over n ≤ logBQ replaced by a sum over n ≤ x without changing

anything, giving the desired conclusion.

3. Proof of Theorem 1

Let K ≥ 1. If χ is a primitive character modulo q, then Pólya’s Fourier expansion (see,

for example, display (9.19) of Montgomery and Vaughan [17], noting that the restriction

K ≤ q1−ε there is unnecessary if one is happy with a general error term q logq
K rather than

φ(q) logq
K ) yields that

∑
n≤x

χ(n) =
τ(χ)

2πi

∑
0<|k|≤K

χ(−k)

k
(e(kx/q)−1)+O

(
1+

q logq

K

)
,

so in particular,

Sχ,H(x) =
τ(χ)

2πi

∑
0<|k|<q/2

χ(−k)

k
e(kx/q)(e(kH/q)−1)+O(logq). (3.1)

Here, τ(χ) denotes the Gauss sum, having absolute value
√
q for primitive χ.
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Recall that X denotes a random variable having the discrete uniform distribution on
{0,1, . . . ,q− 1} (this is the randomness with respect to which we will shortly calculate

expectations E), and that H = H(q) = q/ logA q, and that χ =
(

·
q

)
is real-valued in

Theorem 1. Next let 0 < δ ≤ 1 be a parameter, that will be fixed later, and define
α= α(δ) ∈ R by ∑

1≤k≤δq/H

χ(−k) =
∑

1≤k≤δq/H

χ(−k) = α
∑

1≤k≤δq/H

1,

and define

Gχ,H(x) :=
ατ(χ)H

q

∑
1≤k≤δq/H

e(kx/q).

As discussed in the Introduction, Gχ,H(x) is the scaled Dirichlet kernel that we shall

strategically subtract from Sχ,H(x). (The small parameter δ is only present for technical

reasons, to control lower order terms in Taylor expansions of the complex exponential.)
Before embarking on our main computations, we record some basic observations. By

expanding the square and using the fact that Ee(k1X/q)e(−k2X/q) =Ee((k1−k2)X/q) =

0 when −q/2< k1 
= k2 < q/2, we find

E|Gχ,H(X)|2 = α2H2

q
E|

∑
1≤k≤δq/H

e(kX/q)|2 = α2H2

q

∑
1≤k≤δq/H

1≤H,

as well as

E

∣∣∣∣∣τ(χ)2πi

∑
0<|k|<q/2

χ(−k)

k
e(kX/q)(e(kH/q)−1)

∣∣∣∣∣
2

=
q

(2π)2

∑
0<|k|<q/2

1

k2
|e(kH/q)−1|2.

Since E|Sχ,H(X)|2 = E|
∑

X<n≤X+H χ(n)|2 is

=
∑

1≤h1,h2≤H

Eχ(X+h1)χ(X+h2) =
∑

1≤h1,h2≤H

Eχ(X+h1−h2)χ(X) =H+O(H2/q),

(explaining why
Sχ,H(X)√

H
is the natural renormalisation to consider), we deduce that

q

(2π)2

∑
0<|k|<q/2

1

k2
|e(kH/q)−1|2 = E|Sχ,H(X)+O(logq)|2

= E|Sχ,H(X)|2+O(logqE|Sχ,H(X)|+log2 q)

= (1+o(1))H

when H =H(q) = q/ logA q (and indeed on a much larger range of H as well).
Next, using (3.1), expanding the square, and calculating as above (and using the

Cauchy–Schwarz inequality and the above estimates of E|Gχ,H(X)|2 and E|Sχ,H(X)|2
to control the contribution from the O(logq) term), we find
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E|Sχ,H(X)−Gχ,H(X)|2

= E

∣∣∣∣∣τ(χ)
∑

1≤k≤δq/H

e(kX/q)

(
χ(−k)

k

(e(kH/q)−1)

2πi
− αH

q

)
+

+
τ(χ)

2πi

∑
0<|k|<q/2,
k/∈[1,δq/H]

χ(−k)

k
e(kX/q)(e(kH/q)−1)+O(logq)

∣∣∣∣∣
2

= q
∑

1≤k≤δq/H

∣∣∣∣χ(−k)

k

(e(kH/q)−1)

2πi
− αH

q

∣∣∣∣
2

+
q

(2π)2

∑
0<|k|<q/2,
k/∈[1,δq/H]

1

k2
|e(kH/q)−1|2+

+O(
√
H logq+log2 q). (3.2)

Using the Taylor expansion e(kH/q) = 1+2πikH/q+O((kH/q)2), the first sum here

is seen to be

q
∑

1≤k≤δq/H

∣∣∣∣χ(−k)H

q
+O

(
δH

q

)
− αH

q

∣∣∣∣
2

=
H2

q

∑
1≤k≤δq/H

|χ(−k)+O(δ)−α|2

=
H2

q

∑
1≤k≤δq/H

|χ(−k)−α|2+O(δ2H).

Moreover, since we chose α to be the mean value of χ(−k)(= χ(−k)) over the interval

1≤ k ≤ δq/H, this simplifies to

(1−α2)
H2

q

( ∑
1≤k≤δq/H

1

)
+O(δ2H),

which we can rewrite (again using the Taylor expansion of the exponential) as

H2

q

( ∑
1≤k≤δq/H

1

)
− δα2H+O

(
δ2H+

H2

q

)

=
q

(2π)2

∑
1≤k≤δq/H

1

k2
|e(kH/q)−1|2− δα2H+O

(
δ2H+

H2

q

)
.

Inserting this in (3.2), and using our earlier calculation that q
(2π)2

∑
0<|k|<q/2

1
k2 |e(kH/q)−

1|2 = (1+o(1))H, we deduce

E|Sχ,H(X)−Gχ,H(X)|2 = (1− δα2+O(δ2)+o(1))H.

In particular, note that if H(q) = q/ logA q, then we have δq/H ≤ q/H = logA q. Thus, by

Number Theory Result 2, there exist arbitrarily large primes q for which, with χ=
(

·
q

)
,

we have
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14 A. J. Harper

∣∣∣∣∣
∑

1≤k≤δq/H

χ(−k)

∣∣∣∣∣=
∣∣∣∣∣

∑
1≤k≤δq/H

χ(k)

∣∣∣∣∣≥ c(A)δq/H.

In other words, for such q, we will have |α| ≥ c(A). So if we fix the choice δ = c0c(A)
2, for

a suitably small absolute constant c0 > 0 to neutralise the implicit constant in the O(δ2)

term, we will have

E

∣∣∣∣Sχ,H(X)−Gχ,H(X)√
H

∣∣∣∣
2

= 1− δα2+O(δ2)+o(1)≤ 1− (c0/2)c(A)
4 (3.3)

whenever q is a large enough prime coming from Number Theory Result 2.

Now on the other hand, using the formula for summing a geometric progression, we

may calculate explicitly that, with || · || denoting distance to the nearest integer,

E|Gχ,H(X)|= |α|H
√
q
E

∣∣∣∣∣∣
∑

1≤k≤δq/H

e(kX/q)

∣∣∣∣∣∣
	 H

√
q
Emin

{
δq

H
,

1

||X/q||

}
	 H

√
q
(1+ log(δq/H)),

and therefore,

E

∣∣∣∣Gχ,H(X)√
H

∣∣∣∣	 (1+ log(δq/H))√
q/H

	 log(q/H)√
q/H

→ 0 as q →∞.

By Markov’s inequality, it follows that
Gχ,H(X)√

H
converges in probability to zero as q→∞,

and so if
Sχ,H(X)√

H

d→N(0,1), then we must also have
Sχ,H(X)−Gχ,H(X)√

H

d→N(0,1).

But combining Probability Result 1 with (3.3), we see this convergence in distribution

is impossible, which proves Theorem 1.

4. Proof of Theorem 2

The proof of Theorem 2 is extremely similar to that of Theorem 1, so we simply make a

few remarks to reassure the reader that no additional difficulties arise.

Indeed, this time, we define α= α(δ) ∈ C by

∑
1≤k≤δq/H

χ(−k) = α
∑

1≤k≤δq/H

1,

and again we set

Gχ,H(x) :=
ατ(χ)H

q

∑
1≤k≤δq/H

e(kx/q).
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Then the same calculations as in the proof of Theorem 1 show that

E|Sχ,H(X)−Gχ,H(X)|2

= (1−|α|2)H
2

q

∑
1≤k≤δq/H

1+O(δ2H)+
q

(2π)2

∑
0<|k|<q/2,
k/∈[1,δq/H]

1

k2
|e(kH/q)−1|2+

+O(
√
H logq+log2 q)

= (1− δ|α|2+O(δ2)+o(1))H.

Next, in place of Number Theory Result 2, we can invoke Number Theory Result 1,

which implies that for any large prime q, we may find a non-real character χ mod q (in

fact, several of them) for which

∣∣∣∣∣∣
∑

1≤k≤δq/H

χ(−k)

∣∣∣∣∣∣=
∣∣∣∣∣∣

∑
1≤k≤δq/H

χ(k)

∣∣∣∣∣∣≥ (ρ(A)+oδ,A(1))
∑

1≤k≤δq/H

1.

For such a character, we will have |α| ≥ ρ(A)+oδ,A(1), so if we fix the choice δ = cρ(A)2,

where c > 0 is a suitably small absolute constant, then in place of (3.3), we will get

E

∣∣∣∣Sχ,H(X)−Gχ,H(X)√
H

∣∣∣∣
2

= 1− δ|α|2+O(δ2)+o(1)≤ 1− (c/2)ρ(A)4,

provided q is large enough.

Combining this bound with Probability Result 1, and the facts that
Gχ,H(X)√

H

p→ 0 and

that E|Z1 + iZ2|2 = EZ2
1 +EZ2

2 = 1 (where Z1,Z2 are independent N(0,1/2) random

variables), we conclude that indeed
Sχ,H(X)√

H

d


→ Z1+ iZ2 as q →∞.

5. Tools for Theorems 3 and 4

As discussed in the Introduction, much of the work in the proofs of Theorems 3 and 4

will be done by some results on random multiplicative functions.

Probability Result 2 (See Theorem 1.1 of Benatar, Nishry and Rodgers [1]). Let f(n)

be an extended Rademacher random multiplicative function. Then uniformly for any large

N, any coefficients (an)n≤N bounded in absolute value by 1, any 1 ≤ k ≤ c( logN
log logN )1/3

and any 0≤ j ≤ k, we have

E

∣∣∣∣∣
∫ 1

0

⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

j⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

k

dθ−k!

⎛
⎝∑

n≤N

|an|2
⎞
⎠

k

1j=k

∣∣∣∣∣
2

	 N j+k

N1/15k
,

where 1 denotes the indicator function.
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Under the same conditions, and provided the an are real, we have

E

∣∣∣∣∣
∫ 1

0

⎛
⎝∑

n≤N

anf(n)cos(2πnθ)

⎞
⎠

k

dθ− k!

(k/2)!2k/2

⎛
⎝1

2

∑
n≤N

|an|2
⎞
⎠

k/2

1k even

∣∣∣∣∣
2

	 Nk

N1/15k
,

and the same when
∑

n≤N anf(n)cos(2πnθ) is replaced by
∑

n≤N anf(n)sin(2πnθ).

Proof of Probability Result 2. When an = 1 for all n, the first statement follows

immediately from Theorem 1.1 of Benatar, Nishry and Rodgers [1], after adjusting for the
rescaling of the sums by 1/

√
N that they perform but we do not, and handling the easy

j = 0 case that they omit. For general an, one can check that the proof of Theorem 1.1

transfers over straightforwardly since the diagonal contribution to the integral (coming

when j = k, from summands in
(∑

n≤N anf(n)e(nθ)
)k

that are a permutation of the

summands in
(∑

n≤N anf(n)e(nθ)
)k

) has the acceptable form

k!
∑

n1,...,nk≤N

|an1
|2...|ank

|2+O

(
k!

∑
n1,...,nk≤N,

ni not all distinct

|an1
|2 . . . |ank

|2
)

= k!

⎛
⎝∑

n≤N

|an|2
⎞
⎠

k

+O(k!k2Nk−1),

and all off-diagonal contributions continue to satisfy the point-counting bounds of

Benatar, Nishry and Rodgers [1] (since the weights an are bounded in absolute value
by 1).

To deduce the second statement, by writing cos(2πnθ) = e(nθ)+e(−nθ)
2 and expanding

the k -th power, we can rewrite
∫ 1

0

(∑
n≤N anf(n)cos(2πnθ)

)k

dθ as a weighted sum of

k+1 terms of the form

∫ 1

0

⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

j⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

k−j

dθ.

Here, we use the fact that an and f(n) are real valued, and so
∑

n≤N anf(n)e(−nθ) =∑
n≤N anf(n)e(nθ). If k is even, then the term with j = k/2 is

1

2k

(
k

k/2

)∫ 1

0

⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

k/2⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

k/2

dθ,

and from the first part of Probability Result 2, we obtain a corresponding ‘main term’

1

2k

(
k

k/2

)
(k/2)!

⎛
⎝∑

n≤N

|an|2
⎞
⎠

k/2

=
k!

(k/2)!2k/2

⎛
⎝1

2

∑
n≤N

|an|2
⎞
⎠

k/2

,
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as desired. No other values of j produce any main terms. So using the first part of
Probability Result 2, along with Minkowski’s inequality, we obtain√√√√√E

∣∣∣∣∣
∫ 1

0

⎛
⎝∑

n≤N

anf(n)cos(2πnθ)

⎞
⎠

k

dθ− k!

(k/2)!2k/2

⎛
⎝1

2

∑
n≤N

|an|2
⎞
⎠

k/2

1k even

∣∣∣∣∣
2

≤
k∑

j=0

1

2k

(
k

j

)

×

√√√√√E

∣∣∣∣∣
∫ 1

0

⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

j⎛
⎝∑

n≤N

anf(n)e(nθ)

⎞
⎠

k−j

− j!

⎛
⎝∑

n≤N

|an|2
⎞
⎠

j

1j=k−j

∣∣∣∣∣
2

	
k∑

j=0

1

2k

(
k

j

)√
Nk

N1/15k
=

√
Nk

N1/15k
.

Squaring both sides yields the second part of Probability Result 2.

To handle
∑

n≤N anf(n)sin(2πnθ), one proceeds in the same way writing sin(2πnθ) =
e(nθ)−e(−nθ)

2i , and noting that if k is even, then the term with j = k/2 again produces a

main term

1

(2i)k

(
k

k/2

)
(−1)k/2(k/2)!

⎛
⎝∑

n≤N

|an|2
⎞
⎠

k/2

=
1

2k

(
k

k/2

)
(k/2)!

⎛
⎝∑

n≤N

|an|2
⎞
⎠

k/2

=
k!

(k/2)!2k/2

⎛
⎝1

2

∑
n≤N

|an|2
⎞
⎠

k/2

.

In the Steinhaus case, the estimates we require cannot be read so immediately out

of the work of Benatar, Nishry and Rodgers [1], but we can extract suitable results by

adapting their proofs.

Probability Result 3. Let f(n) be a Steinhaus random multiplicative function. Then

uniformly for any large N, any coefficients (an)n≤N bounded in absolute value by 1, any

1≤ k ≤ c( logN
log logN )1/3 and any 0≤ j ≤ k, we have

E

∣∣∣∣∣
∫ 1

0

⎛
⎝∑

n≤N

anf(n)cos(2πnθ)

⎞
⎠

j⎛
⎝∑

n≤N

anf(n)cos(2πnθ)

⎞
⎠

k

dθ−k!

⎛
⎝1

2

∑
n≤N

|an|2
⎞
⎠

k

1j=k

∣∣∣∣∣
2

	 N j+k

N1/15k
,

where 1 denotes the indicator function.

The same is true when
∑

n≤N anf(n)cos(2πnθ) is replaced by
∑

n≤N anf(n)sin(2πnθ).
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The proof of Probability Result 3 will rest on the following three Claims.

Claim 1. Let N ∈ N be large, let 0 ≤ j ≤ J and 1 ≤ k ≤K, and let A denote the set of

all tuples (m1, . . . ,mJ,n1, . . . ,nK) ∈ {1, . . . ,N}J+K satisfying

j∑
i=1

mi−
J∑

i=j+1

mi =
k∑

i=1

ni−
K∑

i=k+1

ni, and
J∏

i=1

mi ·
K∏
i=1

ni is a square.

Given such a tuple, let mw denote the weighted set obtained from (m1, . . . ,mJ ) by counting

each element m with weight w(m) = #{1 ≤ i ≤ j :mi =m}−#{j+1 ≤ i ≤ J :mi =m}
(and discarding any elements whose weight turns out to be zero). Let nw denote the

analogous weighted set obtained from (n1, . . . ,nK).

Then the number of tuples in A that do not satisfy mw = nw (i.e., equality of the

elements of the sets and of their weights) is

	N (J+K)/2 exp

{
− logN

3(J +K)
+O((J +K)2(log(J +K)+ log logN))

}
.

Proof of Claim 1. We can rearrange the conditions defining A into the form

j∑
i=1

mi+
K∑

i=k+1

ni =
k∑

i=1

ni+
J∑

i=j+1

mi, and
J∏

i=1

mi ·
K∏
i=1

ni is a square.

And the relation mw =nw is equivalent to saying that the tuple (m1, . . . ,mj,nk+1, . . . ,nK)

now occurring on the left is a permutation of the tuple (n1, . . . ,nk,mj+1, . . . ,mJ ) on the

right. So by Lemma 3.2 of Benatar, Nishry and Rodgers [1] (writing the bound in the
slightly more precise form from display (3.10) in their proof), the number of tuples in A
with mw 
= nw is indeed

	N (J+K)/2 exp

{
− logN

3(J +K)
+O((J +K)2(log(J +K)+ log logN))

}
.

If we replace the condition that
∏J

i=1mi ·
∏K

i=1ni is a square by the stronger condition

that
∏J

i=1mi =
∏K

i=1ni, then we can obtain another relationship between (m1, . . . ,mJ)
and (n1, . . . ,nK) (for all except a small collection of tuples).

Claim 2. Let N ∈ N be large, let 0 ≤ j ≤ J and 1 ≤ k ≤K, and let B denote the set of

all tuples (m1, . . . ,mJ,n1, . . . ,nK) ∈ {1, . . . ,N}J+K satisfying

j∑
i=1

mi−
J∑

i=j+1

mi =

k∑
i=1

ni−
K∑

i=k+1

ni, and

J∏
i=1

mi =

K∏
i=1

ni.

Then the number of tuples in B for which (m1, . . . ,mJ) is not a permutation of (n1, . . . ,nK)

is 	N (J+K)/2 exp{− logN
3(J+K) +O((J +K)2(log(J +K)+ log logN))}.

Proof of Claim 2. Since any tuple in B also belongs to the set A from Claim 1,

we may restrict attention to tuples satisfying mw = nw. We shall analyse these by
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investigating the number s of common elements (counted with multiplicity) between

the multisets {m1, . . . ,mj} and {mj+1, . . . ,mJ}, and the number t of common elements

between {n1, . . . ,nk} and {nk+1, . . . ,nK}. If s= t= 0, then the relation mw = nw implies
that (m1, . . . ,mJ ) is a permutation of (n1, . . . ,nK), so we may ignore this case and assume

that s+ t≥ 1.

After possibly reordering some of the mi and ni (which at worst will multiply our
final bounds by an acceptable factor of (J +K)!), we may assume that mi = mj+i for

all 1 ≤ i ≤ s and that ni = nk+i for all 1 ≤ i ≤ t. This leaves J +K − 2(s+ t) other

components of (m1, . . . ,mJ,n1, . . . ,nK). The relation mw = nw implies these J+K−2(s+
t) latter components must consist of (1/2)(J +K− 2(s+ t)) components mi (for which

there are ≤N (J+K)/2−s−t possibilities), and (1/2)(J +K−2(s+ t)) components ni that

are a permutation of the mi. Meanwhile, note that

mw = nw and

J∏
i=1

mi =

K∏
i=1

ni ⇒
s∏

i=1

m2
i =

t∏
i=1

n2
i ⇒

s∏
i=1

mi =

t∏
i=1

ni.

Then standard calculations with iterated divisor functions dα(·) (see, for example,

Section 3.1 of Benatar, Nishry and Rodgers [1]) show the number of possibilities for

m1, . . . ,ms,n1, . . . ,nt is

≤min

⎧⎨
⎩

∑
m1,...,ms≤N

dt(m1...ms),
∑

n1,...,nt≤N

ds(n1...nt)

⎫⎬
⎭

≤min

⎧⎨
⎩
⎛
⎝ ∑

m≤N

dt(m)

⎞
⎠

s

,

⎛
⎝∑

n≤N

ds(n)

⎞
⎠

t⎫⎬
⎭

≤Nmin{s,t}(2 logN)st ≤Nmin{s,t}(2 logN)(J+K)2 .

So for given s and t, our total number of possible tuples is

≤ (J +K)! ·N (J+K)/2−s−t ·Nmin{s,t}(2 logN)(J+K)2

≤N (J+K)/2−max{s,t}eO((J+K) log(J+K)+(J+K)2 log logN).

Summing over all s+ t≥ 1 gives a more than acceptable final contribution.

We shall also require a slightly more complicated ‘doubled up’ version of Claim 2.

Claim 3. Let N ∈ N be large, let 0 ≤ j ≤ J and 1 ≤ k ≤ K, and let C denote the
set of all tuples (m

(1)
1 , . . . ,m

(1)
J ,n

(1)
1 , . . . ,n

(1)
K ,m

(2)
1 , . . . ,m

(2)
J ,n

(2)
1 , . . . ,n

(2)
K )∈ {1, . . . ,N}2(J+K)

satisfying

j∑
i=1

m
(l)
i −

J∑
i=j+1

m
(l)
i

=
k∑

i=1

n
(l)
i −

K∑
i=k+1

n
(l)
i ∀l ∈ {1,2}, and

J∏
i=1

m
(1)
i ·

K∏
i=1

n
(2)
i =

J∏
i=1

m
(2)
i ·

K∏
i=1

n
(1)
i .
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Then the number of tuples in C for which (m
(1)
1 , . . . ,m

(1)
J ) is not a permutation

of (n
(1)
1 , . . . ,n

(1)
K ), or (m

(2)
1 , . . . ,m

(2)
J ) is not a permutation of (n

(2)
1 , . . . ,n

(2)
K ), is 	

NJ+K exp{− logN
6(J+K) +O((J +K)2(log(J +K)+ log logN))}.

Proof of Claim 3. With an obvious adaptation of the notation from Claim 1, we may

restrict attention to tuples in C that satisfy m(1)w = n(1)w and m(2)w = n(2)w. For if there

is some element whose weight is (say) greater in m(1) than in n(1), and whose weight is
at least as great in m(2) as in n(2), then (adding our equations3 for l = 1,2), we get

j∑
i=1

m
(1)
i +

j∑
i=1

m
(2)
i −

J∑
i=j+1

m
(1)
i −

J∑
i=j+1

m
(2)
i =

k∑
i=1

n
(1)
i +

k∑
i=1

n
(2)
i −

K∑
i=k+1

n
(1)
i −

K∑
i=k+1

n
(2)
i ,

and
J∏

i=1

m
(1)
i ·

J∏
i=1

m
(2)
i ·

K∏
i=1

n
(1)
i ·

K∏
i=1

n
(2)
i is a square,

where the weighted set corresponding to the concatenated tuple of m terms on the left
will be unequal to the weighted set corresponding to the n terms on the right. Thus,

Claim 1 implies that the number of such ‘bad’ tuples is 	NJ+K exp{− logN
6(J+K) +O((J+

K)2(log(J +K)+ log logN))}.
For those ‘good’ tuples where m(1)w = n(1)w and m(2)w = n(2)w, we may conclude

similarly as in the proof of Claim 2. Thus, if s(1) denotes the number of common elements
(counted with multiplicity) between {m(1)

1 , . . . ,m
(1)
j } and {m(1)

j+1, . . . ,m
(1)
J }, similarly for

t(1),s(2),t(2), then we may ignore the case where all of these are zero, and otherwise our

total number of possible tuples is

	 (2(J +K))! ·N (J+K)/2−s(1)−t(1)N (J+K)/2−s(2)−t(2)

·Nmin{s(1)+t(2),s(2)+t(1)}(2 logN)(s
(1)+t(2))(s(2)+t(1))

	NJ+K−max{s(1)+t(2),s(2)+t(1)}eO((J+K) log(J+K)+(J+K)2 log logN).

Summing this over all s(1)+ t(1)+s(2)+ t(2) ≥ 1 gives an acceptable contribution.

Proof of Probability Result 3. Writing cos(2πnθ) = e(nθ)+e(−nθ)
2 , and attempting to

mimic the proof of the Steinhaus case of Theorem 1.1 of Benatar, Nishry and Rodgers [1],

one finds that in place of the linear equations
∑j

i=1mi =
∑k

i=1ni that they encounter, we

must handle the more general situation where some of the mi and ni come with negative
signs (arising from the e(−nθ) terms). Using Claims 2 and 3 in place of Lemma 3.3 and

Corollary 3.5 of Benatar, Nishry and Rodgers [1], one can bound all the ‘off-diagonal’

contributions with the same quality bounds as Benatar, Nishry and Rodgers [1]. Thus,

it only remains to check that the diagonal contribution to the integral in Probability

Result 3 (coming when j = k, from summands in
(∑

n≤N anf(n)cos(2πnθ)
)k

that are

3Note that in general, we might need to swap the roles of m(2) and n(2); in other words, add
the left-hand side of our l = 1 equation to the right-hand side of our l = 2 equation.
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a permutation of the summands in
(∑

n≤N anf(n)cos(2πnθ)
)k

) is acceptably close to

k!( 12
∑

n≤N |an|2)k.
But we can write that diagonal contribution as

k!
∑

n1,...,nk≤N

|an1
|2...|ank

|2
∫ 1

0

cos2(2πn1θ)...cos
2(2πnkθ)dθ

+O

(
k!

∑
n1,...,nk≤N,

ni not all distinct

|an1
|2...|ank

|2
)
.

Since cos2(2πnθ) = 1
2 +

e(2nθ)
4 + e(−2nθ)

4 , we have
∫ 1

0
cos2(2πn1θ)...cos

2(2πnkθ)dθ = 1/2k

(coming from the term 1/2 in the expansion of all the factors cos2(2πnjθ)) except for

tuples n1, . . . ,nk satisfying additional linear relations (producing additional contributions

from a product of terms
e(2njθ)

4 ,
e(−2njθ)

4 ). The total of all such additional contributions,

together with the ‘big Oh’ term O

(
k!
∑

n1,...,nk≤N,
ni not all distinct

|an1
|2...|ank

|2
)
, is 	 k!k2Nk−1.

In order to bring Probability Results 2 and 3 to bear, we must show that averages

of Dirichlet characters behave similarly to averages of random multiplicative functions.

When averaging over all characters mod q, this will be straightforward (provided we keep

sufficient control on the lengths of the sums being averaged) thanks to orthogonality

of characters. When averaging only over Legendre symbols
(

·
q

)
with q prime, matters

are more subtle, and connected with the distribution of zeros of Dirichlet L-functions.

Nevertheless, there are various approaches that can be applied – for example, using the
explicit formula for character sums over primes along with results of Siegel and Linnik

type on exceptional zeros and (log-free) zero density. Since we will arrange our arguments

so that only upper bounds (rather than asymptotic equalities) for character averages
are needed, we instead proceed in a different way using the sieve, which will allow

quantitatively stronger conclusions about the density of PH in Theorem 3.

Number Theory Result 3 (See Lemma 9 of Montgomery and Vaughan [16], 1979).
Let f(n) be an extended Rademacher random multiplicative function. Then uniformly

for any large Q, any N ≤Q, and any complex coefficients (αn)n≤N , we have

logQ

Q

∑
Q≤q≤2Q,
q prime

∣∣∣∣∣∣
∑
n≤N

αn

(
n

q

)∣∣∣∣∣∣
2

	 E

∣∣∣∣∣∣
∑
n≤N

αnf(n)

∣∣∣∣∣∣
2

+
1

Q0.99

( ∑
n≤N

|αn|
√

s(n)

)2

	 E

∣∣∣∣∣∣
∑
n≤N

αnf(n)

∣∣∣∣∣∣
2

+
N

Q0.99

( ∑
n≤N

|αn|
)2

,
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say, where s(n) denotes the squarefree part of n (i.e., n divided by its largest square

factor).

Proof of Number Theory Result 3. This result is very close to Lemma 9 of Mont-

gomery and Vaughan [16], and would follow by tweaking the argument in Lemmas 4–9
of their paper. For convenience, and since it is neat and fairly short, we outline a self-

contained proof here.

Note first that if q is prime and n ≤ q, then
(

n
q

)
=

(
s(n)
q

)
, where s(n) denotes the

squarefree part of n. So we can rewrite
∑

n≤N αn

(
n
q

)
=
∑

s≤N,
s squarefree

(
s
q

)∑
n≤N,
s(n)=s

αn. We

also always have f(n) = f(s(n)), so it is easy to see that

E

∣∣∣∣∣∣
∑
n≤N

αnf(n)

∣∣∣∣∣∣
2

= E

∣∣∣∣∣
∑
s≤N,

s squarefree

f(s)
∑
n≤N,
s(n)=s

αn

∣∣∣∣∣
2

=
∑
s≤N,

s squarefree

∣∣∣∣∣
∑
n≤N,
s(n)=s

αn

∣∣∣∣∣
2

.

To execute the proof, the only (possibly) non-obvious step is the introduction of upper

bound sieve weights in place of the sum over primes q. At the level of precision we
are seeking, we have much flexibility in our choice of sieve. For example (following

the notation of Section 3.2 of Montgomery and Vaughan’s book [17] with z = Q0.005

and P =
∏

primes p≤Q0.005 p), we can use Selberg sieve weights λe = λ+
e satisfying λe = 0

whenever e > Q0.01, and
∑

e |λe| 	 Q0.01

log2Q
, and

∑
e|q λe ≥ 1p|q⇒p>Q0.005 for all q, and∑

Q≤q≤2Q

∑
e|q λe 	 Q

logQ . Thus, we have

logQ

Q

∑
Q≤q≤2Q,
q prime

∣∣∣∣∣∣
∑
n≤N

αn

(
n

q

)∣∣∣∣∣∣
2

≤ logQ

Q

∑
Q≤q≤2Q,

q odd

(
∑
e|q

λe)

∣∣∣∣∣
∑
s≤N,

s squarefree

(
s

q

) ∑
n≤N,
s(n)=s

αn

∣∣∣∣∣
2

=
∑

s1,s2≤N,
squarefree

(
∑
n≤N,

s(n)=s1

αn)(
∑
n≤N,

s(n)=s2

αn)
logQ

Q

∑
Q≤q≤2Q,

q odd

(
∑
e|q

λe)

(
s1s2
q

)
.

Here,
(

s
q

)
should be understood to mean the Jacobi symbol, which is well defined for all

odd q and all s, and agrees with the Legendre symbol when q is prime. See Section 9.3

of Montgomery and Vaughan’s book [17], for example.
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The contribution from the diagonal summands s1 = s2 is

∑
s≤N,

squarefree

∣∣∣∣∣
∑
n≤N,
s(n)=s

αn

∣∣∣∣∣
2
logQ

Q

∑
Q≤q≤2Q,

q odd

⎛
⎝∑

e|q
λe

⎞
⎠(

s2

q

)

≤
∑
s≤N,

squarefree

∣∣∣∣∣
∑
n≤N,
s(n)=s

αn

∣∣∣∣∣
2
logQ

Q

∑
Q≤q≤2Q

⎛
⎝∑

e|q
λe

⎞
⎠

	
∑
s≤N,

squarefree

|
∑
n≤N,
s(n)=s

αn|2 = E

∣∣∣∣∣
∑
n≤N

αnf(n)

∣∣∣∣∣
2

,

which is acceptable.

If s1 
= s2 are squarefree, then s1s2 is not a perfect square, and so the mapping q �→(
s1s2
q

)
is a non-principal Dirichlet character of conductor at most 4s1s2. Hence, we can

bound the contribution from s1 
= s2 by

logQ

Q

∑
e≤Q0.01,
e odd

|λe|
∑

s1 �=s2≤N,
squarefree

|
∑
n≤N,

s(n)=s1

αn||
∑
n≤N,

s(n)=s2

αn|
∣∣∣∣∣

∑
Q≤q≤2Q,

q odd,
e|q

(
s1s2
q

)∣∣∣∣∣

	 logQ

Q

∑
e≤Q0.01,
e odd

|λe|
∑

s1 �=s2≤N,
squarefree

|
∑
n≤N,

s(n)=s1

αn||
∑
n≤N,

s(n)=s2

αn|
√
s1s2 log(s1s2),

where the second line follows using the Pólya–Vinogradov inequality (see, for example,

Section 9.4 of Montgomery and Vaughan [17]) and a little manipulation. (Note that
because we switched to sums with sieve weights rather than sums over primes, here we

finally obtained character sums over (essentially) all integers q in an interval, for which we

have the strong Pólya–Vinogradov bound.) Since our weights λe satisfy
∑

e |λe| 	 Q0.01

log2Q
,

one can check that this expression is also acceptably small.

6. Proof of Theorem 3

In this section, we shall prove Theorem 3, our positive ‘almost all’ result for real

characters. The proof splits into four parts: first, we shall reduce the problem to one about

the distribution of sufficiently short exponential sums (this part will also be applicable
when handling the complex case in Theorem 4); second, we show that it will suffice to

bound mean square averages (over characters) of moment related objects involving those

exponential sums; third, we perform a technical ‘netting’ step allowing us to treat q/H(q)
as constant on dyadic ranges Q ≤ q ≤ 2Q, so that we can perform the desired averages

over q (this is only needed in the real case); and finally, we complete the analysis using

Probability Result 2 and Number Theory Result 3.
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6.1. Reduction to short partial Fourier series

If χ is an even non-principal Dirichlet character mod q (so that χ(−1) = 1, and therefore

χ(−k) = χ(k) for all k), then we can rewrite the Pólya Fourier expansion (3.1) in the

form

Sχ,H(X)√
H

=
τ(χ)

2πi
√
H

∑
1≤k<q/2

χ(k)

k

(
e(
kX

q
)(e(kH/q)−1)− e(−kX

q
)(e(−kH/q)−1)

)
+O(

logq√
H

)

=
τ(χ)

π
√
H

∑
1≤k<q/2

χ(k)

k
(sin(2πk(X+H)/q)− sin(2πkX/q))+O(

logq√
H

)

=
2τ(χ)

π
√
H

∑
1≤k<q/2

χ(k)sin(πkH/q)

k
cos(πk(2X+H)/q)+O(

logq√
H

).

The sum over k here would be too long for our subsequent calculations, in particular

to allow the computation of its high moments. However, if 1 ≤ k1,k2 < q/2 and if X ∈
{0,1, . . . ,q− 1} is uniformly random, then we have Ecos(πk1(2X +H)/q)cos(πk2(2X +

H)/q) = (1/2)1k1=k2
, and so

E

∣∣∣∣∣∣
2τ(χ)

π
√
H

∑
(q/H) log(q/H)≤k<q/2

χ(k)sin(πkH/q)

k
cos(πk(2X+H)/q)

∣∣∣∣∣∣
2

=
2q

π2H

∑
(q/H) log(q/H)≤k<q/2

sin2(πkH/q)

k2
	 1

log(q/H)
,

which tends to zero as q → ∞ under the conditions of Theorem 3 (or Theorem 4). It

follows that the part of the sum with k ≥ (q/H) log(q/H) tends to zero in probability, for
any choice of χ, so may be ignored in our investigation of the limiting distribution.

The form of the function cos(πk(2X +H)/q), with X ∈ {0,1, . . . ,q − 1} uniformly

random, is a bit ungainly. However, under the conditions of Theorems 3 and 4, it turns
out we can replace this by cos(2πkθ), where θ ∈ [0,1] is uniformly random. Indeed, if

X ∈ {0,1, . . . ,q−1}, then for any θ ∈ [X+H/2
q − 1

2q ,
X+H/2

q + 1
2q ] mod 1, we get

∣∣∣∣∣∣
2τ(χ)

π
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)

k
(cos(πk(2X+H)/q)− cos(2πkθ))

∣∣∣∣∣∣
	

√
q√
H

∑
1≤k<(q/H) log(q/H)

|sin(πkH/q)|
k

· k
q
	 (q/H)3/2 log(q/H)

q
,

which tends to zero (deterministically) as q → ∞. Here, we mildly use our assumption

that log(q/H)
logq → 0 as q→∞. Since choosing X ∈ {0,1, . . . ,q−1} uniformly at random, and
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then choosing θ ∈ [X+H/2
q − 1

2q ,
X+H/2

q + 1
2q ] mod 1 uniformly at random, is exactly the

same thing as choosing θ ∈ [0,1] uniformly at random, we only need to consider the latter
process.

In summary, for even characters χ, it will suffice to prove Theorem 3 (and Theorem 4)

with Sχ,H(X)/
√
H replaced by

2τ(χ)

π
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)

k
cos(2πkθ), θ ∼Uni[0,1].

For odd characters χ, where χ(−1) = −1 and therefore χ(−k) = −χ(k) for all k, one

similarly ends up with 2τ(χ)

πi
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)
k sin(2πkθ). The treatment

of either sum will be exactly similar, so for simplicity, we shall focus on the cosine case.
Note that we need not distinguish between even and odd characters in our subsequent

calculations because if 2τ(χ)

π
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)
k cos(2πkθ) has the desired

Gaussian limiting distribution for ‘almost all’ choices of χ (in the sense of Theorems 3

and 4), then, in particular, it has the desired limiting distribution for almost all choices

of even χ, similarly for 2τ(χ)

πi
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)
k sin(2πkθ).

Note also that when χ=
(

·
q

)
is real, one has τ(χ) =

√
q if χ is even (which occurs when

q ≡ 1 mod 4), and one has τ(χ) = i
√
q if χ is odd (which occurs when q ≡ 3 mod 4). See

chapter 9.3 of Montgomery and Vaughan [17]. Inserting these expressions above, we see

that when proving Theorem 3, we can work with

2
√
q

π
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)

k
cos(2πkθ), θ ∼Uni[0,1] (6.1)

and with
2
√
q

π
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)
k sin(2πkθ). These sums are visibly real-

valued when χ is real. And, in fact, we are free to work with these sums when
proving Theorem 4 as well, where we know that |τ(χ)| = √

q, but it is harder to

say a lot about the argument of τ(χ). That is because in Theorem 4, the target

distribution Z1 + iZ2 is rotationally invariant, so if this is the limiting distribution of,
for example, (6.1) for ‘almost all’ choices of χ, then it remains the limiting distribution

of 2τ(χ)

π
√
H

∑
1≤k<(q/H) log(q/H)

χ(k)sin(πkH/q)
k cos(2πkθ) for the same χ.

6.2. Working with moments

The method of moments for proving distributional convergence is discussed in a general

context in, for example, chapter 5.8.4 of Gut [8]. In particular, our N(0,1) target distri-

bution is determined by its moments, which are EN(0,1)j = (1/
√
2π)

∫∞
−∞ zje−z2/2dz =

1j even
j!

2j/2(j/2)!
, where 1 denotes the indicator function. So in view of (6.1), to prove

Theorem 3, it would suffice to show that there exists a subsequence PH of primes, with
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the density claimed in the theorem, such that for all j ∈ N, we have

∫ 1

0

⎛
⎝ 2

√
q

π
√
H

∑
1≤k<(q/H) log(q/H)

(
k
q

)
sin(πkH/q)

k
cos(2πkθ)

⎞
⎠

j

dθ → j!1j even

(j/2)!2j/2

as q →∞, q ∈ PH .

(Actually, we must also prove this for
2
√
q

π
√
H

∑
1≤k<(q/H) log(q/H)

( k
q )sin(πkH/q)

k sin(2πkθ),

but this will be exactly similar to the cosine case, so we shall only discuss the latter.)

Rewriting slightly, if we set ak = ak,q,H := q sin(πkH/q)
πHk , then we want to show the

existence of PH such that, for each fixed j ∈ N, we have

(
4H

q

)j/2

∣∣∣∣∣∣∣
∫ 1

0

⎛
⎝ ∑

k< q
H log(q/H)

ak

(
k

q

)
cos(2πkθ)

⎞
⎠

j

dθ− j!1j even

(j/2)!2j/2
(
q

4H
)j/2

∣∣∣∣∣∣∣→ 0

as q →∞, q ∈ PH .

Here, the coefficients ak are real, bounded in absolute value by 1 (thanks to the estimate

|sinx| ≤ |x|), and satisfy

1

2

∑
k<(q/H) log(q/H)

|ak|2 =
q2

2π2H2

∑
1≤k<(q/H) log(q/H)

sin2(πkHq )

k2

=
q2

4π2H2

∑
1≤|k|<(q/H) log(q/H)

sin2(πkHq )

k2
,

since sin2(πkH/q)
k2 is an even function of k. Using the fact that |sin(πkH/q)| =

(1/2)|e(kH/2q)− e(−kH/2q)|= (1/2)|e(kH/q)−1|, we can rewrite this further as

q2

16π2H2

∑
1≤|k|<(q/H) log(q/H)

|e(kHq )−1|2

k2

=
q2

16π2H2

( ∑
1≤|k|<q/2

|e(kHq )−1|2

k2
+O(

1

(q/H) log(q/H)
)

)

=
q

4H

(
1+O(

1

log(q/H)
)

)
,

where the final equality uses the calculation of q
(2π)2

∑
0<|k|<q/2

1
k2 |e(kH/q)−1|2 that we

performed in Section 3.
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To finish the proof, for each Q= 2r,r ∈ N, we would like to show that the averages

logQ

Q

∑
Q≤q≤2Q,
q prime

(
4H

q

)j

∣∣∣∣∣∣∣
∫ 1

0

( ∑
k<

q log(q/H)
H

ak

(
k

q

)
cos(2πkθ)

)j

dθ− j!1j even

(j/2)!2j/2

(
1

2

∑
k<

q log(q/H)
H

|ak|2
)j/2

∣∣∣∣∣∣∣
2

are ‘small’, implying that the number of ‘bad’ primes Q≤ q ≤ 2Q where the summand is

large is also small. Unfortunately, as Q≤ q≤ 2Q varies, it is not only the character χ(k) =(
k
q

)
(which we expect to behave like an extended Rademacher random multiplicative

function f(k)) that varies here, but also many other terms like
√
q/
√
H, sin(πkH/q), and

the length of the sum over k. In other words, the coefficients ak = ak,q,H may depend

a priori on q/H(q) as well as on k. Notice this issue will not arise in the non-real case
of Theorem 4, where we can average over all characters χ mod q whilst holding q, and

therefore H(q) and everything else, fixed.

6.3. Controlling the behaviour of q/H

To get around the problem just discussed, we will apply a ‘netting’ argument to the given

function H(q). Given Q = 2r,r ∈ N, let us define the small quantity η = ηH,Q > 0 by

η := 1
minQ≤q≤2Q log(q/H(q)) , say, and then define a family of functions Hn : [Q,2Q]→ R in

the following way:

Hn(q) :=
q

e1/η+nη
, 0≤ n≤ 1

η
( max
Q≤q≤2Q

log(q/H(q))− 1

η
).

For each Q ≤ q ≤ 2Q, there exists some n = n(q) for which q/Hn(q) ≤ q/H(q) ≤
eηq/Hn(q), and then

∫ 1

0

∣∣∣∣∣ 2
√
q

π
√
H

∑
1≤k<(q/H) log(q/H)

(
k
q

)
sin(πkH/q)

k
cos(2πkθ)−

− 2
√
q

π
√
Hn

∑
1≤k<(q/Hn) log(q/Hn)

(
k
q

)
sin(πkHn/q)

k
cos(2πkθ)

∣∣∣∣∣
2

dθ

=
2

π2

∑
1≤k<(q/Hn) log(q/Hn)

1

k2
|
√
q√
H

sin(πkH/q)−
√
q√
Hn

sin(πkHn/q)|2+O(
1

log(q/H)
)

	
∑

1≤k<(q/Hn) log(q/Hn)

1

k2
min

{
(ηk)2

(q/H)
,q/H

}
+

1

log(q/H)
	 η,

where the final line uses the fact that d
dt

√
tsin(πk/t)	 k

t3/2
for large t. The assumptions

of Theorem 3 imply that η → 0 as Q→∞, and so the difference between (6.1) and the

analogous sum involving Hn tends to zero in probability, uniformly for Q≤ q ≤ 2Q.
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Consequently, when proving Theorem 3, it will suffice to work with the particular
functions Hn(q), which have the property that q/Hn(q) = Q/Hn(Q) is constant for all

Q≤ q ≤ 2Q. More precisely: it will suffice to prove that for each

0≤ n≤ 1

η
( max
Q≤q≤2Q

log(q/H(q))− 1

η
)

and for all

1≤ j ≤min{ log
1/4(Q/Hn(Q))

50
,

logQ

4log(Q/Hn(Q))
},

say, we have

logQ

Q

∑
Q≤q≤2Q,
q prime∣∣∣∣∣∣∣

∫ 1

0

( ∑
k<

q log(q/Hn)
Hn

ak

(
k

q

)
cos(2πkθ)

)j

dθ− j!1j even

(j/2)!2j/2

(
1

2

∑
k<

q log(q/Hn)
Hn

|ak|2
)j/2

∣∣∣∣∣∣∣
2

	
(

Q

4Hn(Q)

)j

e−2log3/4(Q/Hn(Q)). (6.2)

Note that the coefficients ak here also depend on n, via the value of q/Hn(q).

For if (6.2) holds, then the proportion of ‘bad’ primes Q≤ q ≤ 2Q for which

(
4Hn(q)

q

)j

∣∣∣∣∣∣∣
∫ 1

0

( ∑
k<

q log(q/Hn)
Hn

ak

(
k

q

)
cos(2πkθ)

)j

dθ− j!1j even

(j/2)!2j/2

(
1

2

∑
k<

q log(q/Hn)
Hn

|ak|2
)j/2

∣∣∣∣∣∣∣
2

� e−0.1log3/4(Q/Hn(Q))

must be 	 e−1.9log3/4(Q/Hn(Q)), and so the proportion for which this holds for some

1≤ j ≤min{ log1/4(Q/Hn(Q))
50 , logQ

4log(Q/Hn(Q))} must be

	 log1/4(Q/Hn(Q))e−1.9log3/4(Q/Hn(Q)) 	 e−1.8log3/4(Q/Hn(Q)).

Finally, the proportion of primes Q≤ q ≤ 2Q that are ‘bad’ for some n will be

�
∑
n

e−1.8log3/4(Q/Hn(Q)) =
∑
n

e−1.8(1/η+nη)3/4 � 1

η2
e−1.8(1/η)3/4 � e−(1/η)3/4

= e−minQ≤q≤2Q log3/4(q/H).
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So if we define our subsequence PH of primes by discarding all the bad primes (in the

above sense4) in each dyadic interval [Q,2Q], then PH has the density required in Theorem

3. And since the assumptions of Theorem 3 imply that

min{ log
1/4(Q/Hn(Q))

50
,

logQ

4log(Q/Hn(Q))
}� min

Q≤q≤2Q
{log1/4(q/H(q)),

logq

log(q/H(q))
}→∞

asQ→∞, the range of j for which the j -th moment of

(∑
k<

q log(q/Hn)
Hn

ak

(
k
q

)
cos(2πkθ)

)j

approaches the desired Gaussian moment will grow to infinity as q →∞ with q ∈ PH .

6.4. The punchline

It now remains to establish (6.2). Recall that for the functions Hn(q) from Section 6.3,

the quantity q/Hn(q) is constant (depending on n) for all Q≤ q≤ 2Q, and the coefficients

ak = q sin(πkHn/q)
πHnk

depend only on k and n. Furthermore, by expanding the integral

∫ 1

0

( ∑
k<

q log(q/Hn)
Hn

ak

(
k

q

)
cos(2πkθ)

)j

dθ

=
∑

m≤(
q log(q/Hn)

Hn
)j

(
m

q

) ∑
k1,...,kj<

q log(q/Hn)
Hn

,

k1·...·kj=m

∫ 1

0

j∏
i=1

aki
cos(2πkiθ)dθ

we see the left-hand side in (6.2) is of the form treated in Number Theory Result 3. (The

subtracted term
j!1j even

(j/2)!2j/2

(
1
2

∑
k<

q log(q/Hn)
Hn

|ak|2
)j/2

in (6.2) may be thought of as part

of the coefficient α1 of the trivial Legendre symbol
(

1
q

)
.) Note also that provided Q is

large enough, we have

(
q log(q/Hn)

Hn
)j ≤ (

q log(q/Hn)

Hn
)

logQ
4 log(q/Hn) ≤Q0.26

on the range of j required in (6.2). So we may apply Number Theory Result 3, and deduce
(with a little manipulation of the error term) that

logQ

Q

∑
Q≤q≤2Q,
q prime∣∣∣∣∣∣∣

∫ 1

0

( ∑
k<

q log(q/Hn)
Hn

ak

(
k

q

)
cos(2πkθ)

)j

dθ− j!1j even

(j/2)!2j/2

(
1

2

∑
k<

q log(q/Hn)
Hn

|ak|2
)j/2

∣∣∣∣∣∣∣
2

4Again, to be completely correct, we must also discard those primes that will be bad for the

corresponding sine series
∑

k<
q log(q/Hn)

Hn

ak
(

k
q

)
sin(2πkθ).
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	 E

∣∣∣∣∣∣∣
∫ 1

0

( ∑
k<

q log(q/Hn)
Hn

akf(k)cos(2πkθ)

)j

dθ− j!1j even

(j/2)!2j/2

(
1

2

∑
k<

q log(q/Hn)
Hn

|ak|2
)j/2

∣∣∣∣∣∣∣
2

+
Q0.26

Q0.99

(( ∑
k<

q log(q/Hn)
Hn

|ak|
)j

+
j!1j even

(j/2)!2j/2

(
1

2

∑
k<

q log(q/Hn)
Hn

|ak|2
)j/2)2

,

where f(k) is an extended Rademacher random multiplicative function. As we noted in

Section 6.2, the ak are bounded in absolute value by 1, so the error term on the third line

is 	 Q0.26

Q0.99

(
( q log(q/Hn)

Hn
)j + jj/2( q log(q/Hn)

Hn
)j/2

)2

	 Q0.78

Q0.99 , which is negligible.

Finally, we apply the second part of Probability Result 2 to handle the expectation in
the above display. Since the ak are real valued, bounded in absolute value by 1, and we only

need to establish (6.2) for 1 ≤ j ≤min{ log1/4(Q/Hn(Q))
50 , logQ

4log(Q/Hn(Q))} ≤
log1/4(Q/Hn(Q))

50 ,

we see all the conditions of Probability Result 2 are satisfied. Recall once more that

q/Hn(q) =Q/Hn(Q) is constant for all Q≤ q ≤ 2Q. So our expectation is

	
(

Q

Hn(Q)

)j−1/15j

logj(Q/Hn(Q)) =

(
Q

4Hn(Q)

)j

e−
log(Q/Hn(Q))

15j (4 log(Q/Hn(Q)))j

≤
(

Q

4Hn(Q)

)j

e−
10 log3/4(Q/Hn(Q))

3 (4 log(Q/Hn(Q)))
log1/4(Q/Hn(Q))

50 ,

which is more than good enough to imply (6.2).

7. Proof of Theorem 4

The proof of Theorem 4 is very similar to, but simpler than, the proof of Theorem 3.

Recall the reductions from Section 6.1, and that our target distribution in Theorem 4

is Z1+ iZ2 with Z1,Z2 independent N(0,1/2) random variables, having moments E(Z1+

iZ2)
j(Z1+ iZ2)

k = 1
π

∫∞
−∞

∫∞
−∞(z1+ iz2)

j(z1− iz2)
ke−z2

1−z2
2dz1dz2 = k!1j=k. (This is easy

to check after rewriting the double integral in polar coordinates.) Then it will suffice to

show the existence of sets Gq,H of characters mod q, with the sizes claimed in the theorem,

such that for any choice of χ ∈ Gq,H and all j,k ≥ 0, we have

∫ 1

0

(
2
√
q

π
√
H

∑
1≤m<(q/H) log(q/H)

χ(m)sin(πmH/q)

m
cos(2πmθ)

)j

·

·
(

2
√
q

π
√
H

∑
1≤m<(q/H) log(q/H)

χ(m)sin(πmH/q)

m
cos(2πmθ)

)k

dθ→ k!1j=k as q →∞.

(As for Theorem 3, we actually need to show this with cos(2πmθ) replaced by sin(2πmθ)

as well, but that case will be exactly similar so we shall not discuss it further.)
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If we set am = am,q,H := q sin(πmH/q)
πHm , as in Section 6.2, then we can rewrite our goal as

being that for any choice of χ ∈ Gq,H and all j,k ≥ 0, we have(
4H

q

)(j+k)/2

∣∣∣∣∣
∫ 1

0

( ∑
m<

q log(q/H)
H

amχ(m)cos(2πmθ)

)j( ∑
m<

q log(q/H)
H

amχ(m)cos(2πmθ)

)k

dθ

−k!1j=k

(
1

2

∑
m<

q log(q/H)
H

|am|2
)(j+k)/2∣∣∣∣∣→ 0 as q →∞.

To establish this, it will suffice to show that for all 0≤ j,k≤min{ log1/4(q/H(q))
50 , logq

4log(q/H(q))},
say, we have

1

q−1

∑
χ mod q

∣∣∣∣∣
∫ 1

0

( ∑
m<

q log(q/H)
H

amχ(m)cos(2πmθ)

)j( ∑
m<

q log(q/H)
H

amχ(m)cos(2πmθ)

)k

dθ

−k!1j=k

(
1

2

∑
m<

q log(q/H)
H

|am|2
)(j+k)/2∣∣∣∣∣

2

	
( q

4H

)j+k

e−2log3/4(q/H). (7.1)

For if we have (7.1), then the proportion of χ mod q for which

(
4H

q

)j+k
∣∣∣∣∣
∫ 1

0

( ∑
m<(q/H) log(q/H)

amχ(m)cos(2πmθ)

)j

×
( ∑

m<(q/H) log(q/H)

amχ(m)cos(2πmθ)

)k

dθ

−k!1j=k

(
1

2

∑
m<

q log(q/H)
H

|am|2
)(j+k)/2∣∣∣∣∣

2

� e−0.1log3/4(q/H)

must be 	 e−1.9log3/4(q/H), and so the proportion for which this holds for some

pair of 0 ≤ j,k ≤ min{ log1/4(q/H)
50 , logq

4log(q/H)} must be 	 log1/2(q/H)e−1.9log3/4(q/H) 	
e−1.8log3/4(q/H). Excluding any such characters mod q, our remaining set Gq,H of ‘good’

characters will satisfy #Gq,H ≥ q(1−O(e−1.8log3/4(q/H))), which is more than good enough

for Theorem 4. And under the hypotheses of the theorem, we have e−0.1log3/4(q/H) → 0

as well as min{ log1/4(q/H(q))
50 , logq

4log(q/H(q))} → ∞ as q → ∞, so for any fixed j,k and for

χ ∈ Gq,H the moment will tend to the desired Gaussian moment.
Now it only remains to verify (7.1). But expanding the square on the left-hand

side there, using multiplicativity of χ and the condition that j,k ≤ logq
4log(q/H) , we

see the resulting expression only involves χ and χ applied to numbers that are
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≤ ((q/H) log(q/H))j+k ≤ q0.51, say (for large enough q). Since this is < q, the orthog-
onality of Dirichlet characters implies that the left-hand side in (7.1) is exactly equal to

E

∣∣∣∣∣
∫ 1

0

( ∑
m<

q log(q/H)
H

amf(m)cos(2πmθ)

)j( ∑
m<

q log(q/H)
H

amf(m)cos(2πmθ)

)k

dθ

−k!1j=k

(
1

2

∑
m<

q log(q/H)
H

|am|2
)(j+k)/2∣∣∣∣∣

2

,

where f(m) is a Steinhaus random multiplicative function. The desired bound now follows

immediately from Probability Result 3 and a small computation.
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