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Abstract
In this paper, we present the stationary axisymmetric configuration of a resistive magnetised thick accretion disc in the vicinity of external
gravity and intrinsic dipolarmagnetic field of a slowly rotating black hole. The plasma is described by the equations of fully general relativistic
magnetohydrodynamics (MHD) along with the Ohm’s law and in the absence of the effects of radiation fields. We try to solve these two-
dimensional MHD equations analytically as much as possible. However, we sometimes inevitably refer to numerical methods as well. To
fully understand the relativistic geometrically thick accretion disc structure, we consider all three components of the fluid velocity to be
non-zero. This implies that the magnetofluid can flow in all three directions surrounding the central black hole. As we get radially closer to
the hole, the fluid flows faster in all those directions. However, as we move towards the equator along the meridional direction, the radial
inflow becomes stronger from both the speed and the mass accretion rate points of view. Nonetheless, the vertical (meridional) speed and
the rotation of the plasma disc become slower in that direction. Due to the presence of pressure gradient forces, a sub-Keplerian angular
momentum distribution throughout the thick disc is expected as well. To get a concise analytical form of the rate of accretion, we assume
that the radial dependency of radial and meridional fluid velocities is the same. This simplifying assumption leads to radial independency of
mass accretion rate. The motion of the accreting plasma produces an azimuthal current whose strength is specified based on the strength of
the external dipolar magnetic field. This current generates a poloidal magnetic field in the disc which is continuous across the disc boundary
surface due to the presence of the finite resistivity for the plasma. The gas in the disc is vertically supported not only by the gas pressure but
also by the magnetic pressure.

Keywords: accretion – accretion discs – general relativistic magnetohydrodynamic – X-rays: binaries

(Received 17 July 2019; revised 3 November 2019; accepted 11 December 2019)

1. Introduction

Transforming gravitational energy into radiation in the most effi-
cient possible form takes place in accretion onto black holes. It
is certainly believed to be the primary power source behind the
most luminous astrophysical systems that range from quasars and
active galactic nuclei (AGNs) with very massive black holes to
X-ray binaries with stellar-mass black holes. Due to the suffi-
ciently high angular momentum content of the accreting matter,
accretion does not happen as direct free fall onto a central star.
Instead, it is expected to occur in the form of a disc. For formation
of an accretion disc, it is necessary that the angular momen-
tum is extracted from the inner to the outer regions of the disc.
The transport mechanism of this angular momentum is compli-
cated and not entirely clear (Lee & Ruiz 2002). Hence, regardless
of the physics behind the cause responsible for this transport,
Shakura & Sunyaev (1973) (hereafter SS73) suggested an enor-
mously productive Ansatz about viscosity that is parameterised
with an α-parameter. This parameterisation introduced by the
standard model has been quite successful in interpreting the gross
features of observational results.

It is generally believed that magnetic fields are ubiquitous in
accretion discs and play a relevant role in their physical scenarios.
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As a result, it is not unexpected that the magnetic fields are
involved in a broad variety of dynamical processes of accretion
discs. For instance, the magnetic stress may take the place of vis-
cous stress of the standard model. Similar to the results of α-viscid
disc of SS73, in a magnetised disc, about one-half of the released
gravitational energy can dissipate through the Joule dissipation
and the work done against the pressure force (Kaburaki 1986;
1987).

Knowing that the magnetic stress may drive disc turbulence
and the outward transport of angular momentum, the theory of
accretion disc is moving from the relatively simple parameterised,
one-dimensional standard model of SS73 towards more realistic
models. Considering the electrical conductivity for the plasma as
a dissipative factor may be one of the most effective steps towards
this aim. However, the underlying physics becomesmore complex,
especially when strong gravitational and external magnetic fields
are also present. On account of this complexity, some authors
intend to employ the limit of infinite conductivity, that is, the
so-called ideal magnetohydrodynamics (MHD). In a no-resistive
plasma, the magnetic lines of force freeze in and advect with the
plasma. Furthermore, conservation of the magnetic flux passing
through a moving surface in a no-resistive magnetofluid and no
change in the topology of the magnetic field lines are of the other
features of an ideal plasma. One important consequence of these
properties is that the crossed magnetic field lines are not permit-
ted to reconnect together in a perfectly conducting fluid (Eyink
& Aluie 2006). Ideal MHD approximation applies widely in many
astrophysical relevant situations including both theoretical models
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(Banerjee et al. 1997; Yuan & Narayan 2014) and numerical sim-
ulations (Koide, Shibata, & Kudoh 1999; De Villiers, Hawley, &
Krolik 2003; McKinney & Gammie 2004).

Nevertheless, there are other physical circumstances in which
this approximation no longer holds and it is important to include
the effects of finite conductivity. For instance, in cold, dense plas-
mas around protostars (Fleming & Stone 2003) or dwarf nova
systems (Gammie & Menou 1998), the ionisation fraction is so
small. Furthermore, in the radiatively inefficient accretion flows
(Foucart et al. 2016; 2017), despite the high temperature and fully
ionised gas, the mean free path for coulomb interactions between
charged particles is much larger than the typical size of the sys-
tem. The accreting matter, in these cases, is probably expected
to be nearly collisionless and its dynamical evolution may differ
significantly from ideal MHD predictions as well. Inclusion of a
finite resistivity as an angular momentum transport mechanism,
particularly, is essential for a non-viscous disc to liberate the grav-
itational energy (Kaburaki 1986; 1987; Tripathy, Prasanna, & Das
1990; Banerjee et al. 1995; Kudoh & Kaburaki 1996; Koide 2010).

Accretion discs surrounding the black holes are among the
most luminous objects in the universe. That is why they are the
centre of special observational attention. They are also of consid-
erable theoretical interest. To fully understand their structure and
evolution, and to compare accurately the theoretical results with
observational evidences, it is necessary to consider the influences
of plasma interaction with all possible fields. These fields include
a powerful relativistic gravitational field, a strong electromagnetic
field, and an intense radiation field (Gammie & McKinney 2003).
In this occasion, one encounters with a coupled set of partial
differential equations that are time-dependent, multidimensional,
and highly non-linear. Those equations may involve a large num-
ber of different physical quantities and free parameters. This, in
turn, may be an obstacle on the way of analytical solutions and
even numerical solutions of the equations due to the limitation
of the ability of today’s computers. Consequently, because of the
level of complexity that the radiation field introduces, as the first
feasible approximation, it seems reasonable that one ignores the
radiation field and studies the problem in a non-radiating MHD
mode.

The flows in the accretion discs may exhibit different mor-
phologies from the viewpoint of their geometrical shape. They are
generally divided into two distinct classes, thin discs and thick
discs. Theory of thin accretion discs is well developed and has
a fairly firm observational basis (SS73). However, thick accre-
tion discs suffer mainly from the lack of an universally accepted
model. Besides, their relevant observations are still rare and indi-
rect. Therefore, there are still many theoretical uncertainties about
their nature and structure. Nevertheless, observational and theo-
retical studies of thick accretion discs are of special astrophysical
importance. Since willy-nilly, such structures have been suggested
as models of quasars, AGNs, some X-ray binaries and are probably
present in the central engine of gamma-ray bursts (Abramowicz,
Karas, & Lanza 1998; Font & Daigne 2002).

Low-mass X-ray binaries are excellent laboratories for exper-
imenting accretion physics because they are much closer than
the AGNs and are therefore somewhat easier to observe
(Higginbottom 2018). When the central compact object is a black
hole, it is usual that the dynamics obey the general relativistic.
Accordingly, we pursue the fully general relativistic magnetofluids
around a typical black hole in a low-mass X-ray binary system such
as Cygnus X-1. In this context, we are motivated to put aside the
ideal MHD approximation and investigate the resistive accretion

disc structure without invoking the thin disc approximation in the
absence of the effects of radiation field.

Standard thin disc theory of SS73 is characterised by the
equilibrium of centrifugal and gravitational forces in the radial
direction. It leads to the Keplerian rotation law throughout the
disc. Whereas there is no net gas flow in the vertical direction,
momentum conservation equation in that direction reduces to
the hydrostatic equilibrium equation. Once the thin disc approx-
imation is laid aside, the vertical thickness becomes comparable
with its radial extension. The pressure gradient forces provide
an essential support in the radial as well as meridional direc-
tion. At this moment, gravity cannot be balanced by centrifugal
forces any more. The rotation law is no longer Keplerian and the
vertical hydrostatic equilibrium is abandoned. Another key char-
acteristic of SS73 theory is its subcritical luminosity. It means that
the maximum possible luminosity of the standard geometrically
thin discs is the Eddington luminosity. That is, the luminosity in
which the inward gravity on accreting fluid is precisely counterbal-
anced by the outward radiation pressure gradient force of photons.
Evidently, if the disc’s luminosity exceeds the Eddington value,
then some matter will be blown off by the pressure of the super-
critical radiation flux in the form of a wind or a collimated bipolar
jet (Okuda 2002; Takeuchi, Ohsuga, & Mineshige 2010; Takahashi
& Ohsuga 2015).

As a result, we are interested in relativistic accretion tori around
a slowly rotating black hole in the sub-Eddington regime and non-
radiating mode, considering all three components of flow velocity
to be non-zero. Particularly in what concerns the relativistic geo-
metrically thick accretion discs, most of the previous works are
mainly devoted to equilibrium toroidal configurations. That is, the
flow restricted to the azimuthal component only, with assumption
that the radial and meridional components are negligible in com-
parison with the azimuthal one (Banerjee et al. 1997; Kovar et al.
2011; Trova et al. 2018). Similar to our idea, both in Newtonian
regime (Tripathy, Prasanna, & Das 1990) and in relativistic regime
for a non-rotating Schwarzschild black hole without the verti-
cal component for the magnetofluid velocity (Shaghaghian 2016),
already have been done. It is known that almost all of the celestial
bodies have a non-zero spin, and thus, the Schwarzschild geome-
try does not tell the whole story. Thus, we extend this idea to the
case of slowly rotating black hole and let the magnetofluid flows in
all three directions.

The structure of this paper is organised as detailed below: we
begin in the next section, with a presentation of the theoretical
framework used to construct our desired model and to describe
the background geometry and the external magnetic field. Also,
we depict our disc scheme in this section. The general formal-
ism of the problem is discussed in Section 3. It includes the basic
equations governing the relativistic magnetised flow accreted from
the plasma around a slowly rotating black hole in the form of a
thick torus, as well as their self-consistent solutions along with the
physical simplifications of the problem. Our main conclusions are
summarised in Section 4.

2. The model

2.1. Spacetime

To investigate the relativistic accretion flows around a rotating
black hole, we follow closely the Boyer–Lindquist spherical coor-
dinates t, r, θ , ϕ with the origin fixed on the central black hole and
the z-axis chosen as the axis of rotation. Moreover, the self-gravity
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of the surrounding magnetofluid is considered to be negligible in
comparison with the gravitation of the central object. Thus, the
background geometry supporting the disc is entirely determined
by the central body and is defined by Kerr metric

ds2 =
(
1− 2r

�

)
dt2 + 4ar sin2 θ

�
dt dϕ − �

�
dr2,

−� dθ 2 − A sin2 θ
�

dϕ2, (1)

where �= r2 − 2r + a2, � = r2 + a2 cos2 θ and A= (r2 + a2)2 −
� a2 sin2 θ . Throughout this paper, we adopt geometric unitsM =
G= c= 1 as our basic scalings. Here, M, G, and c are the central
black holemass, the universal gravitational constant, and the speed
of light, respectively. This implies M = 10M� as a unit of mass,
and also m= GM

c2 and t0 = GM
c3 as the units of length and time,

respectively. Furthermore, rotation of the black hole is parame-
terised by Kerr parameter a, as the total angular momentum per
unit mass of the black hole (i.e. a= J

Mc ). Indeed, a may be mea-
sured in unit of length through a dimensionless spin parameter α
as a= αm.

It is widely believed that black holes are probably maximally
rotating (Koide 2010; Tchekhovskoy, Narayan, &McKinney 2011).
However, even on a test particle level, solutions using the fully
rotating black hole seem to be an extremely formidable task. To
avoid this complexity, astrophysicists in analytic modelling tend
to approximate the black hole to be non-rotating characterised by
the Schwarzschild metric or to be slowly rotating characterised by
the linearised Kerr metric. However, in simulation community,
this approximation is not popular (Porth et al. 2019). Note that
the slowly rotating regime which is an acceptable approximation
in the analytic astrophysics community means that one consid-
ers up to linear order of the Kerr-rotating parameter in the metric
functions, governing equations and physical quantities (Prasanna
1989; Rezzolla 2001; Shaghaghian 2011; Harko, Kovacs, & Lobo
2011). Therefore, the linearised form of metric (1) is summarised
as

ds2 =
(
1− 2

r

)
dt2 −

(
1− 2

r

)−1

dr2

−r2
(
dθ 2 + sin2 θdϕ2)+ 4a

r
sin2 θ dt dϕ. (2)

2.1.1. Locally non-rotating frame

Once the background spacetime geometry rotates, it is necessary
to establish an inertial frame in which the frame-dragging effects
of the hole’s spin are vanished. A set of local observers as zero
angular momentum observers are introduced (Yokosawa & Inui
2005). They rotate with the angular velocity ω and live at constant
r and θ , but at ϕ =ωt + const. This frame that becomes inertial
at a far distance from the hole is so-called locally non-rotating
frame (LNRF). Applying slowly rotating black hole approxima-
tion, the explicit transformations between the LNRF and the
Boyer–Lindquist frame given by Bardeen, Press, & Teukolsky
(1972) are simplified as

λ
(a)
i =

⎡⎢⎢⎢⎢⎢⎢⎣

(
1− 2

r
)1/2 0 0 0

0
(
1− 2

r
)−1/2 0 0

0 0 r 0

− 2 a
r2 sin θ 0 0 r sin θ

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and

λi(a) =

⎡⎢⎢⎢⎢⎢⎢⎣

(
1− 2

r
)−1/2 0 0 0

0
(
1− 2

r
)1/2 0 0

0 0 1
r 0

2a
r3
(
1− 2

r
)−1/2 0 0 1

r sin θ

⎤⎥⎥⎥⎥⎥⎥⎦ ,

satisfying

λi(a) λ
j
(b) gij = η(a)(b),

where gij and η(a)(b) are the metric and Minkowski tensors, respec-
tively. Noting here that parentheses around the indices represent
the components in LNRF. The physical variables are transformed
in this frame as follows:

F(α)(β) = λi(α) λ
j
(β) Fij,

J(α) = λ
(α)
i Ji,

Vα = λα(β) V (β) + λα(0)

λ0(β) V (β) + λ0(0)
,

where F and J are the electromagnetic field tensor and the 4-
vector electric current density, respectively. Moreover, Vα is the
spatial 3-velocity and is defined through the relation uα = u0Vα

to the 4-velocity u. We follow the (+,−,−,−) signature con-
vention and the 4-velocity normalisation condition as ui ui = 1. It
gives the following general definition for the zeroth component of
4-velocity u

u0 = (
g00 + 2 g0αVα + gαβVαVβ

)−1/2 ,

which in linearised Kerr metric [equation (2)] is simplified as

u0 =
(
1− 2

r

)−1/2 (
1−V2)−1/2 . (3)

The total fluid velocity V is related to its components as

V2 = [
V (r)]2 + [

V (θ)]2 + [
V (ϕ)]2 ,

wherein

V (r) =
(
1− 2

r

)−1

Vr ,

V (θ) = r
(
1− 2

r

)−1/2

Vθ ,

V (ϕ) = r sin θ
(
1− 2

r

)−1/2 (
Vϕ − 2 a

r3

)
.

Furthermore, the components of field tensor and current den-
sity tensor are transformed as

Br = r2 sin θB(r),

Bθ = r sin θ
(
1− 2

r

)−1/2

B(θ),
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Bϕ = r
(
1− 2

r

)−1/2

B(ϕ),

Er = 2 a
r2

sin θ
(
1− 2

r

)−1/2

B(θ) + E(r),

Eθ = −2 a
r

sin θ B(r) + r
(
1− 2

r

)1/2

E(θ),

Eϕ = r sin θ
(
1− 2

r

)1/2

E(ϕ),

Jr =
(
1− 2

r

)1/2

J(r),

Jθ = 1
r
J(θ),

Jϕ = 1
r sin θ

J(ϕ) + 2 a
r3

(
1− 2

r

)−1/2

J(t), (4)

Jt =
(
1− 2

r

)−1/2

J(t).

2.1.2. Innermost stable circular orbit

The minimum allowed radius of charged particle trajectory that
is able to maintain stable circular orbit and do not enter into
event horizon of black hole is called innermost stable circular orbit
(ISCO). In the accretion disc theory, ISCO is regarded as one of
the rotating black hole’s important features such as event horizon
and ergosphere. ISCO is expected to be the inner edge of an accre-
tion disc that rotates around a black hole. The radius of ISCO is
6 m in the case of a Schwarzschild black hole, while for a Kerr
black hole, it is dependent on the black hole’s spin by the following
formula:

Z1 = 1+ (1− a2)1/3
[
(1+ a)1/3 + (1− a)1/3

]
,

Z2 =
√
3 a2 + Z2

1,

rISCO = 3+ Z2 −√
(3− Z1) (3+ Z1 + 2 Z2).

In our model, we adopt the spherical coordinates of (r, θ , ϕ),
defining the polar axis θ = 0 and θ = π to be perpendicular to
the disc plane. We set a computational domain of rISCO ≤ r ≤ 50
m and π

6 ≤ θ ≤ π − π
6 . We draw the schematic depiction of our

disc in Figure 1. It shows that the meridional structure of the
disc extends to about π

3 on either side of the equatorial plane.
These ranges for the radius r and angular thickness of the disc are
assumed typically. Although, as we will see later, some physical
circumstances will vary these intervals.

2.1.3. Keplerian velocity distribution

In Newtonian gravity, angular momentum l∗ and angular veloc-
ity � are related by the formula l∗ = r2�, and therefore, there
is no ambiguity in defining a non-rotating frame as �= 0= l∗.
However, in the rotating Kerr geometry l∗ ∝ (�−ω), wherein
�= dϕ

dt is the angular velocity of the orbiting matter and ω=
− gtϕ

gϕϕ = 2a
r3 is that of the frame dragging of the LNRF relative

to distant observers. Generally, the azimuthal component of the
3-velocity in the LNRF reads V (ϕ) = dx(ϕ)

dx(0) , where x
(0) and x(ϕ) are

the time and spatial coordinates in the LNRF, respectively,
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Figure 1. Schematic sketch of the disc with the central black hole.

dx(0) = λ
(0)
i dxi =

(
1− 2

r

)1/2

dt,

dx(ϕ) = λ
(ϕ)
i dxi = r sin θ [dϕ −ω dt] .

Afterwards,

V (ϕ) = r sin θ
(
1− 2

r

)−1/2

[�−ω] .

If the matter follows nearly circular orbits characterised by the
Keplerian distributions of the angular velocity

�K = 1
r3/2 + a

,

then the azimuthal component of the Keplerian 3-velocity in the
LNRF is obtained as

V (ϕ)
K = r sin θ

(
1− 2

r

)−1/2 ( 1
r3/2 + a

− 2 a
r3

)
.

2.2. Seedmagnetic field model

As a matter of fact, in problem of magnetised accretion discs, the
magnetic field of a resistive disc is not totally arisen from the elec-
tric current of the plasma disc. Strength of the disc current is
determined in agreement with that of the external field as well.
In such a situation, there is always an external field penetrating the
disc (Kaburaki 1987). We describe the magnetic field as a super-
position of the seed field BS caused by some external sources and
the disc field BD induced by the current flowing in the disc

B= BS + BD.

Roughly speaking, magnetosphere develops well in the place
where the strength of the seed field exceeds that of the disc
field (i.e.

∣∣BS
∣∣≥ ∣∣BD

∣∣). And also, magnetodisc is the region where∣∣BS
∣∣<< ∣∣BD

∣∣. Thus, within the disc, B can be replaced by BD, with
a good accuracy. In this way, the magnetic field appearing in the
next sections is the same as BD, that its superscript D has been
dropped for simplicity. From now on, we put superscript just for
the seed field BS.

Realistic cases of a rotating black hole with a disc and mag-
netic field are likely to be extremely complicated. However, some
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authors have discussed themagnetic field associated with the black
hole as a somewhat poloidal structure and have modelled it as
being generated by some toroidal electric current rings exterior to
the black hole’s event horizon (Li 2000; Ghosh 2000; Tomimatsu
& Takahashi 2001). We apply this poloidal structure as a dipolar
model for the seed magnetic field (Prasanna & Vishveshwara 1978;
Takahashi & Koyama 2009)

BS
(r) = − 3μ

4γ 2
2 cos θ
r2�

{
W

(
1+ a2 sin2 θ

�

)

− sin2 θ
[
(r − 1) a2 − �a2

2γ
ln
(
r − r−
r − r+

)]}
,

BS
(θ) =

3μ
4γ 2

(
1− 2

r

)1/2 1
r�

(−2rW
�

+ ∂W
∂r

)
sin θ .

Here, μ is the magnetic dipole moment of the central black hole
which relates to its surface magnetic field Bs and radius R as
μ= BsR3. We take μ= 1260× 1027 Gauss.cm3, that is, an appro-
priate choice for the intrinsic magnetic moment of a typical 10M�
black hole (Robertson & Leiter 2002). It is worth noting that
� and � have the previous definitions and the other undefined
variables are

r± = 1± γ ,

γ =
√
1− a2,

Q= 1
2γ

ln
(
r − r−
r − r+

)
,

W = (r − 1) a2 cos2 θ + r
(
r2 + r + 2a2

)
− [

r
(
r3 − 2a2 + a2r

)+� a2 cos2 θ
]
Q,

∂W
∂r

= a2 cos2 θ + 3r2 + 2r + 2a2

− [
4r3 − 2a2 + 2a2r + 2a2 cos2 θ(r − 1)

]
Q

+ [
r(r3 − 2a2 + a2r)+�a2 cos2 θ

] 1
(r − 1)2 − γ 2 .

Figure 2 shows a typical profile of the dipolar magnetic filed
structure of central black hole at infinity (Appendix A).

3. General formalism

3.1. Basic equation

Fully general relativistic MHD equations governing the motion
of the resistive magnetised plasma accreted by a central compact
object are mass conservation or continuity equation

(ρ0ui) ; i = 0, (5)
and energy–momentum conservation law

Tij
; j = 0, (6)

supplemented by Maxwell equations

Fij
; j = −4π Ji, (7)

Fij,k + Fki,j + Fjk,i = 0, (8)
and the generalised Ohm’s law

Ji = σFi
ku

k, (9)

0 10 20 30 40 50
X

–100

–50

0

50

100

Z

Figure 2. Dipolar magnetic field model of the central black hole in the meridional
plane.

wherein σ is the electric conductivity which is assumed con-
stant for simplicity. It is worth noting here that semicolon stands
for covariant derivative and comma for partial derivative. Latin
indices denote spacetime components (0–3) and Greek ones
denote spatial components (1–3). Furthermore, we adopt the
standard convention for the summation over the repeated indices.

Our MHD system will be specified by the following choice for
the energy–momentum tensor

Tij = Tij
Fluid + Tij

Em.

It consists of a fluid part

Tij
Fluid = (

ρ + p
)
uiuj − p gij,

and an electromagnetic part

Tij
Em = − 1

4π

(
Fik F j

k − 1
4
gij Fkl Fkl

)
,

where p is the gas pressure and ρ = ρ0 + u is the total density of
mass–energy including the rest mass density ρ0 and the internal
energy per unit volume u. On the other hand, the electromagnetic
field tensor is related to the electric and magnetic fields through

Eα = Fαt , Bα = εαβγ Fβγ ,

where εαβγ is the Levi-Civita symbol. For an axisymmetric and sta-
tionarymagnetofluid disc, all flow variables that neither depend on
the time t nor on the azimuthal coordinate ϕ are functions of only
r and θ . Then, equations (7) and (8) may be expanded

4π Jr = − 1
r2 sin θ

(
1− 2

r

)
∂

∂θ

(
sin θBϕ

)
, (10)

4π Jθ = 1
r2
∂

∂r

[(
1− 2

r

)
Bϕ
]
, (11)

4π Jϕ = 1
r4 sin θ

∂

∂θ

(
Br

sin θ

)
− 1

r2 sin2 θ
∂

∂r

[(
1− 2

r

)
Bθ
]

− 2a
r2

[
∂

∂r

(
Er

r

)
+ 1

r3 sin θ

(
1− 2

r

)−1
∂

∂θ
(sin θEθ )

]
,

(12)
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4π Jt = − 1
r2
∂

∂r
(
r2Er

)− 1
r2 sin θ

(
1− 2

r

)−1
∂

∂θ
(sin θEθ )

− 2a
r5 sin θ

(
1− 2

r

)−1
∂

∂θ
(sin θBr)+ 2a

r2
∂

∂r

(
Bθ
r

)
,

(13)

∂Bθ
∂θ

+ ∂Br

∂r
= 0, (14)

∂Eθ
∂r

− ∂Er

∂θ
= 0, (15)

∂Eϕ
∂r

= 0, (16)

∂Eϕ
∂θ

= 0. (17)

3.2. Possible solutions

3.2.1. Simplifying assumptions

Equations (16) and (17) state that the toroidal electric field must
be constant. This constant value may be chosen equal to zero for
simplicity. Now, we need a wise assumption to simplify the highly
non-linear coupled equations (9)–(15). If we assume

Bϕ = bϕ
sin θ

(
1− 2

r

)−1

, (18)

wherein bϕ is constant, then Jr = Jθ = 0 through equations (10)
and (11). Also through the Ohm’s law (9), it results in

Er = Bθ Vϕ − Bϕ Vθ ,
Eθ = −Br Vϕ + Bϕ Vr ,

that keep the same forms in LNRF as
E(r) = B(θ) V (ϕ) − B(ϕ) V (θ), (19)

E(θ) = −B(r) V (ϕ) + B(ϕ) V (r). (20)
The other non-zero components of the Ohm’s law (9) gives

Jϕ = −σ (
Bθur − Bruθ

) [ 1
r2 sin2 θ

+ 2 a
r3

(
1− 2

r

)−1

Vϕ

]
,

Jt = −σ
(
1− 2

r

)−1 (
Bθur − Bruθ

) (
Vϕ − 2 a

r3

)

= − σ

r sin θ

(
1− 2

r

)−1/2 (
Bθur − Bruθ

)
V (ϕ),

that they find a more concise form, with the help of transforma-
tions (4)

J(ϕ) = −σu0
(
1− 2

r

)1/2 [
B(θ)V (r) − B(r)V (θ)] , (21)

J(t) = J(ϕ)V (ϕ). (22)
Defining the total derivative

D≡V (r) ∂

∂r
+
(
1− 2

r

)−1/2 V (θ)

r
∂

∂θ
,

and combining equation (5) and the zeroth component of equa-
tion (6), continuity equation is achieved in LNRF

(
ρ + p

) {∂V (r)

∂r
+ 2

r
V (r) + 1

r

(
1− 2

r

)−1/2 [
∂V (θ)

∂θ

+ cot θV (θ)]+ 6a
r3

(
1− 2

r

)−1/2

sin θ V (r) V (ϕ)

}

+D
(
ρ − p

)=
2
σu0

(
1− 2

r

)−1 [
J(ϕ)

]2 {1− [
V (ϕ)]2} , (23)

and also the momentum equations are obtained from the spatial
components of equation (6)(

ρ + p
) (

1−V2)−1
[
DV (r) − 1

r
{
[V (θ)]2 + [V (ϕ)]2

}
+ 1
r2

(
1− 2

r

)−1 {
1− [

V (r)]2}
−6 a

r3

(
1− 2

r

)−1/2

sin θ V (ϕ)
{
1− [

V (r)]2}]+ ∂p
∂r

−
(
1− 2

r

)−1/2

J(ϕ)B(θ)

{
1− [

V (ϕ)]2}= 0, (24)

(
ρ + p

) (
1−V2)−1

{
DV (θ) +

(
1− 3

r
)(

1− 2
r
) V (r)V (θ)

r

+6 a
r3

(
1− 2

r

)−1/2

sin θ V (r) V (θ) V (ϕ)

− cot θ
(
1− 2

r

)−1/2 [V (ϕ)]2
r

}
+
(
1− 2

r

)−1/2 1
r
∂p
∂θ

+
(
1− 2

r

)−1/2

B(r) J(ϕ)
{
1− [

V (ϕ)]2}= 0, (25)

DV (ϕ) +
(
1− 2

r

)−1 (
1− 3

r

)
V (r)V (ϕ)

r

+ cot θ
(
1− 2

r

)−1/2 V (θ)V (ϕ)

r

+6 a
r3

(
1− 2

r

)−1/2

sin θ V (r) [V (ϕ)]2 = 0. (26)

Equation (26) may be summarised as

DṼ (ϕ) = −6 a
r4

V (r) [Ṽ (ϕ)]2 , (27)

while we define a new variable

Ṽ (ϕ) = r sin θ
(
1− 2

r

)−1/2

V (ϕ).

To have an integrable form for equation (27), we multiply both its
sides, by an integration constant L,

L
DṼ (ϕ)[
Ṽ (ϕ)

]2 = −D
(
1− 2 a L

r3

)
.
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Now, it can integrate simply as

Ṽ (ϕ) = L
(
1− 2 a L

r3

)−1

.

Indeed, due to the dimensional considerations, L is defined as
L= l m c, wherein l is called the angular momentum parameter.
Ultimately, the final solution for the azimuthal velocity is obtained

V (ϕ) = L
r sin θ

(
1− 2

r

)1/2 (
1− 2 a L

r3

)−1

. (28)

Substituting equations (22) and (28), the transformation equation
(4) for Jϕ gets a shorter form as

Jϕ = 1
r sin θ

(
1− 2 a L

r3

)−1

J(ϕ).

To brief the appearance of the governing equations (23)–(26), we
multiply equation (24) byV (r), equation (25) byV (θ), and equation
(26) by V (ϕ) and adding

(
ρ + p

)
D ln

[(
1− 2

r

)(
1− 2 a L

r3

)−2 (
1−V2)−1

]

+2 D p= − 2
σu0

(
1− 2

r

)−1 [
J(ϕ)

]2 {1− [V (ϕ)]2
}
. (29)

Continuity equation (23) can be simplified too(
ρ + p

) [∇ · Ṽ +D ln
(
1− 2 a L

r3

)]
+D

(
ρ − p

)
= 2
σu0

(
1− 2

r

)−1 [
J(ϕ)

]2 {1− [V (ϕ)]2
}
, (30)

with a new definition for total fluid velocity as

Ṽ =V (r) r̂ + Ṽ (θ) θ̂ +V (ϕ) ϕ̂, (31)

wherein Ṽ (θ) =V (θ) (1− 2
r
)−1/2. As seen, right-hand side of these

latter two equations (29) and (30) are similar with opposite sign. It
motivates us to add them to get rid of this long term

∇ · Ṽ +D ln

[ (
ρ + p

) (
1− 2

r
)(

1− 2 a L
r3
) (

1−V2
)]= 0. (32)

Therefore, we have summarised the motion equations (23)–(26)
in an equation (32). To achieve an integrable form for it, we must
try to write the term ∇ · Ṽ in terms of the total derivative D. This
term may be written as

∇ · Ṽ =D ln
(
r2 sin θ V (r))+ Ṽ (θ)

r
∂

∂θ
ln

(
Ṽ (θ)

V (r)

)
.

In order to reach to an integrable form, we try to express the sec-
ond term in terms of D. To this aim, one may assume that the
poloidal component of total fluid velocity including V (r) and Ṽ (θ)

are two separable functions of their independent variables r and
θ as V (r) =V (r)

1 (r) V (r)
2 (θ) and Ṽ (θ) =V (θ)

1 (r) V (θ)
2 (θ), respectively.

Now, if their radial dependencies are presumed to be similar [i.e.
V (r)
1 (r)=V (θ)

1 (r)], then the term Ṽ (θ)

V (r) is a function only of θ as

Ṽ (θ)

V (r) = 1
C1(θ)

, (33)

and equation (32) is rewritten as

D ln

[ (
ρ + p

) (
1− 2

r
)(

1− 2 a L
r3
) (

1−V2
) r2 sin θV (r)

]
−D ln C1(θ)= 0. (34)

In fact, the term in bracket can be interpreted as mass accretion
rate (Shaghaghian 2016)

Ṁ =
(
ρ + p

) (
1− 2

r
)(

1− 2 a L
r3
) (

1−V2
) r2 sin θV (r). (35)

Thus, equation (34) leads to

Ṁ = Ṁ0C1(θ), (36)

wherein Ṁ0 is an integration constant and C1(θ) is an unknown
function that will be determined. We prefer a sub-Eddington
regime. Since as elucidates in the introduction, the super-
Eddington accretion discs are generally expected to possess vortex
funnels and radiation pressure driven jets (Okuda 2002). Although
this aspect is so noteworthy in recent decades, it is beyond the
scope of this paper and must be pursued separately. Thus, we
choose Ṁ0 = −10−8 M�

year , which is a normal mass accretion rate for
a typicalM = 10M� black hole (Koide 2010).

3.2.2. Disc magnetic field model

Now, it is time to return to the remainingMaxwell equations (12)–
(15) and rewrite them in LNRF with the aid of transformation
equations (4),

4π J(ϕ) = 1
r

(
1− 2 a L

r3

)[
∂B(r)

∂θ
− ∂

∂r

[
r
(
1− 2

r

)1/2

B(θ)

]

−2 a
r

{
r sin θ

∂

∂r

[
E(r)

r

]

+1
r

(
1− 2

r

)−1/2
∂

∂θ

[
sin θE(θ)

]}]
, (37)

4π J(t) = −1
r2

(
1− 2

r

)1/2
∂

∂

[
r2E(r)

]− 1
r sin θ

∂

∂θ

[
sin θE(θ)

]
.

(38)

sin θ
∂

∂r
[
r2B(r)

]+ r
(
1− 2

r

)−1/2
∂

∂θ

[
sin θ B(θ)

]= 0, (39)

∂

∂r
[
A B(r)

]+ 1
r

(
1− 2

r

)−1/2
∂

∂θ

[
A B(θ)

]= 0, (40)

where

A= 2 a
r

sin θ + r
(
1− 2

r

)1/2

V (ϕ).

As expected, due to the relations (19), (20), and (22), equa-
tions (37) and (38) are not independent and achieve a similar
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appearance

4π J(ϕ) = 1
r
∂B(r)

∂θ
− 1

r
∂

∂r

[
r
(
1− 2

r

)1/2

B(θ)

]

+ 6aL
r4

(
1− 2

r

)1/2 (
1− 2 a L

r3

)−1

B(θ)

+ 2a
r2

(
1− 2 a L

r3

) {
r sin θ

∂

∂r

[
B(ϕ)

V (θ)

r

]

−1
r

(
1− 2

r

)−1/2
∂

∂θ

[
sin θB(ϕ)V (r)]} . (41)

bϕ as a free parameter is chosen small, so that the last term in J(ϕ)
[equation (41)] may be ignorable. Because it is the product of two
small parameters a and bϕ .

Poloidal magnetic field of the disc is usually achieved through
the self-consistent solution of equations (39) and (40). This is what
happens in the case of Schwarzschild metric (Shaghaghian 2016).
However, in the case of Kerr metric, by virtue of the presence of
the term 2 a

r sin θ in A, the self-consistent solution that satisfies
these two equations simultaneously is not possible. Consequently,
to find the poloidal magnetic field, they have to be solved sep-
arately (Shaghaghian 2011). As a result, we go to equation (39)
which seems to be easier to solve. To this aim, we presume the fol-
lowing model for the poloidal component of the disc’s magnetic
field

B(r) = b1(r) cot θ b2(θ),
B(θ) = f (r) b1(r) b2(θ),

here

b1(r)= −B1rk−2
(
1− 2

r

)−k/2 (
1− 2 a L

r3

)k

,

wherein k and B1 are constants and b2(θ) and f (r) are the unknown
functions that must be determined. It is valuable to mention that
thismodel is inspired us by the self-consistent solution for poloidal
magnetic field in the Schwarzschild metric (Shaghaghian 2016).
Substituting this model in equation (39), we have(

1− 2
r
)1/2

r f (r) b1(r)
d
dr

[
r2b1(r)

]+ 1
b2(θ) cos θ

d
dθ

[
sin θ b2(θ)

]= 0.

As seen, functions of the variables r and θ have been separated.
Thus, each part must be constant

d
[
sin θ b2(θ)

]
b2(θ)

= k cos θ dθ ,

f (r)= 1
−k r b1(r)

(
1− 2

r

)1/2 d
dr

[
r2b1(r)

]
.

Solving these two equations, the unknown functions in our model
are obtained

b2(θ) = sink−1 θ ,

f (r) = −
(
1− 2

r

)−1/2

A1(r).

wherein

A1(r)=
[(

1− 3
r

)
+ 6 a L

r3

(
1− 2

r

)(
1− 2 a L

r3

)−1
]
.

0 10 20 30 40 50
X

–100

–50

0

50

100

Z

Figure 3. Structure of magnetic field lines in presence of disc field projected on the
meridional plane of the disc. The solid lines being the same as Figure 2 represent the
dipolar magnetic filed of the central black hole, while the dashed lines represent the
disc’s field in the case bϕ = 0. The different colours correspond to the different spin
parameter a: blue –· is a= 0, green dotted is a= 0.1, andmagenta−−denotes a= 0.2.

Then, the components of the poloidal magnetic field are achieved

B(r) = −B1 rk−2

(
1− 2 a L

r3
)k(

1− 2
r
)k/2 sink−2 θ cos θ , (42)

B(θ) = B1 rk−2

(
1− 2 a L

r3
)k(

1− 2
r
)(k+1)/2 A1(r) sink−1 θ . (43)

B1 is a definite constant that may be found as a result of continuity
of the magnetic field lines across the disc boundary surface(

BD)2 |r=r0, θ= π
6
= (

BS)2 |r=r0, θ= π
6
, (44)

where (
BD)2 = B2

(r) + B2
(θ),(

BS)2 = [
BS
(r)
]2 + [

BS
(θ)
]2 ,

and r0 is the radius where two field lines connect together. Ghosh
& Lamb (1979a, b) notified that the external magnetic field pen-
etrates the disc via a variety of processes owing to the presence
of a finite resistivity. In fact, electrical conductivity is treated as a
measure of the rate of field line slippage through the plasma disc.
Figure 3 shows the magnetic field lines of the disc connected with
the undistorted dipolar magnetic field lines of the central hole at
the surface of the disc. Additionally, it is evident that the magnetic
filed lines inside the disc are pushed outwards. As black hole spins
faster, this outward push becomes more (Appendix A).

Now, we profit this occasion and define the magnetic pressure
both in the disc as pDmag = (BD)

2

8π and within the magnetosphere sur-

rounding the central black hole as pSmag = (BS)
2

8π . We study the effect
of disc magnetic pressure via a new physical variable β defined as
the ratio of the gas pressure to the magnetic pressure in the disc.
Thus, β = p

pDmag
.

https://doi.org/10.1017/pasa.2019.50 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.50


Publications of the Astronomical Society of Australia 9

3.2.3. Analytical and numerical solutions

Substituting equations (42) and (43) in equation (41), the
azimuthal current density is obtained

J(ϕ) = − B1

4π
Y(r, θ) rk−3

(
1− 2 a L

r3
)k(

1− 2
r
)k/2 sink−1 θ , (45)

in which

Y(r, θ)=
{
(k− 2) cot2 θ − 2

(
1− 3

r

)
+ k

(
1− 3

r
)2(

1− 2
r
)

+
6 a L
r3(

1− 2 a L
r3
) [−5+ 7

r
+ 2 k

(
1− 3

r

)]}
.

We have derived two different expressions for the current density
J(ϕ) [equations (21) and (45)]. Evidently, they have to be consistent

V (r)A1(r)+
(
1− 2

r

)
cot θṼ (θ) = 1

4πσu0
Y(r, θ)

r
. (46)

Employing the assumption V (r) = C1(θ)Ṽ (θ) [equation (33)] and
the definition of u0 [equation (3)], in the above equation, it gives
the meridional velocity as

Ṽ (θ) = S0
√
I Y , (47)

wherein S0 = −1
4πσ has the dimension of magnetic diffusivity and

I = 1− [
V (ϕ)]2

S21 + (S0 Y)2
[(
1− 2

r
)+ C2

1(θ)
] ,

S1 =A1(r) r
(
1− 2

r

)−1/2

C1(θ)+ r
(
1− 2

r

)1/2

cot θ .

Function Y has a zero in a point between k= 2 and k= 3 for all
grid points in Figure 1. For k> 2, it is positive (Y > 0) and for
k≤ 2, it is negative (Y < 0). If we choose the second set (k≤ 2
and Y < 0), then as above, S0 must be negative, so that the verti-
cal velocity is positive to indicate inflows. If the first set (k> 2 and
Y > 0) is chosen, the only difference will be in the sign of S0 that
must be positive. Continuation of the story is the same as other set.

Up to now, both the radial and meridional velocities and
the mass accretion rate have been obtained in terms of C1(θ).
To define this unknown function, we aid from the integrability
condition of pressure

∂2 p
∂r ∂θ

= ∂2 p
∂θ ∂r

.

It provides a second-order ordinary differential equation for
C1(θ) as

d2C1(θ)
dθ 2

=�(r, θ),

where�(r, θ) is a known function of r and θ in terms of C1(θ) and
dC1(θ)
dθ that have been derived in Appendix B. The above differen-

tial equation can be solved numerically with appropriate bound-
ary conditions. Integration is initiated from the upper boundary
surface (i.e. θ = π/6) with the following boundary condition

C1(θ) |θ= π
6
= 0.1, &

dC1(θ)
dθ

|θ= π
6
= 1.

0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

C
1 

(  
)

r = rISCO

  = rISCO+ 40

  = rISCO+ 30

  = rISCO+ 20

  = rISCO+ 10

k = 1

k = 2

Figure 4. Profiles of C1(θ ) at the different dimensionless radial distances shown in the
key for two values of k. The other constant parameters are a= 0.1, l= 1, σ = 10, and
Ṁ0 = −10−8 M�

year .

After running a complicated code, C1 is achieved as an ascending
function of θ (Figure 4). C1 has been presumed to be dependent
just on θ . Thus, we have to choose the set of free parameters as
well as the boundary conditions in the manner that C1’s profiles in
different radii are coincident. Otherwise, the relevant radii must
omit from our allowed radial interval. This point determines for us
the allowed radius for the inner edge of our disc. For instance, we
discuss two sets of free parameters employed in plotting Figure 4.
For the set k= 1, we choose rISCO as the inner edge (i.e. rin = rISCO).
However, for the set k= 2, we choose rin = rISCO + 10. On account
of this fact that for k= 2, C1’s profile in rISCO is not coincident on
the others, but 10 units farther than ISCO, our expectation about
independency of C1 on the radial distance r is almost satisfied.

With specified C1(θ), we can obtain the radial and meridional
velocities, and mass accretion rate through equations (33), (47),
and (36), respectively. Both radial velocity and mass accretion rate
must be negative. This negativity indicates the inflow towards the
central black hole. Because, the positive radial direction is defined
in the direction of increasing r. Moreover, the positive meridional
direction is defined in the direction of increasing θ too (Figure 1).
Therefore, the negative meridional velocity denotes outflow which
is beyond the scope of this paper. Whereas the radial inflow veloc-
ity must be negative and the meridional velocity must be positive,
then we rewrite equation (33) as

V (r) = −C1(θ) Ṽ (θ).

At this time, there remains just two unknown physical vari-
ables, gas pressure and total density. Gas pressure may be achieved
from the pressure gradient terms in momentum equations [(24)
or (25)]. After some manipulations, these two equations change
to equations (B1) and (B2). We prefer to employ the radial com-
ponent of pressure gradient [equation (B1)], due to its simplicity
in integration. Because, C1(θ) behaves like a constant in radial
integration. It can be rewritten as

∂p
∂r

= χ(r, θ). (48)

In fact, we rename the right side of equation (B1) as χ(r, θ), which
is a known function of r and θ . Now, the gas pressure as a function
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Figure 5. Variation of (a) radial, (b) meridional, and (c) azimuthal velocities, in addition to (d) mass accretion rate, (e) total density, and (f) gas pressure along the radial direction
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of r and θ is obtained by integrating equation (48) with respect to
the radial distance,

p(r, θ)= pS0mag
+
∫ r

r0mag = rISCO−1
χ(r, θ) dr. (49)

Within the magnetosphere surrounding the black hole, the mag-
netic pressure dominates. We benefit from this fact to define the
integration constant pS0mag

as the magnetic pressure of the radius
r0mag in the magnetosphere. Besides, total density can be attained
through the definition of mass accretion rate [equation (35)]

ρ(r, θ)= Ṁ
r2 sin θ V (r)

(
1− 2aL

r3
)(

1− 2
r
) (

1−V2)− p. (50)

At present, all physical functions of the disc have been specified
in terms of some free parameters (i.e. σ , l, a, Ṁ0, and k). An appro-
priate set of these free parameters is a set that bothC1 does not vary
significantly with the radial distance r and the total density is posi-
tive throughout the disc. During running the code, it is possible to
encounter the situations that for a specific set of free parameters,
C1 is not necessarily independent on r (Figure 4) also the density
is negative from a certain radius to the next. Obviously, these fea-
tures are undesirable to have physically meaningful disc solutions.
Hence, in order to avoid these unpleasant cases, we forced to limit
the allowed interval for the disc’s radius.

Figure 5 gives both radial (left column) and meridional (right
column) variations of all the physical quantities of the disc. Close
to the inner edge of the disc, all three components of fluid
velocity are extremely high and gradually fall off radially out-
wards (Figure 5a1, b1, and c1). Azimuthal velocity of the surface
layer (θ = π

6 ) near ISCO is nearly super-Keplerian and reaches to
sub-Keplerian regime in the inner edge (rin = rISCO + 10). Thus,
in our allowed radial interval for k= 2 solution set, rotation
of the disc is sub-Keplerian all over the disc (Figure 5c1). The
horizontal constant lines in Figure 5d1 are a firm confirma-
tion on the radial independency of mass accretion rate. As we
get radially closer to the central black hole, the disc becomes
denser (Figure 5e1); however, its gas pressure falls off rapidly
(Figure 5f1).

From the disc surface (θ = π
6 ) towards the equator (θ = π

2 ),
radial inflow including radial velocity (Figure 5a2) andmass accre-
tion rate (Figure 5d2) becomes faster. Nonetheless, the meridional
(Figure 5b2) and azimuthal (Figure 5c2) velocities slow down.
The surface layer has a super-Keplerian rotation near ISCO and
sub-Keplerian one in the outer edge. The other layers obey the
sub-Keplerian regime all over the allowed radius. While the total
density remains nearly constant along the meridional direction
(Figure 5e2), pressure ascends from the surface up to around
θ = π

4 , then it becomes constant (Figure 5f2).
For the solution set k= 1, as mentioned above, disc starts on

ISCO up to around r = 25. It means that the radius of the disc
shrinks in this case with respect to the other set (Figure 6a1 and
b1). Mass accretion rate and fluid velocity behave in the same
manner of the solution set of k= 2 in the radial and meridional
directions. Comparing Figure 6a1 with Figure 5e1, it is seen that
the ascending behaviour of the total density in the radial direction
for the k= 1 solution set seems to be different with another solu-
tion set. Meridional behaviour of the total density in inner region
is constant like the k= 2 solution set. However, in outer region
(r = rISCO + 20), the total density finds the meridional angular
dependency (Figure 6a2). In both solution sets, pressure is an

ascending function of the radial distance. For the set k= 1, as r
increases, pressure tends to remain constant in outer region after
an initial ascent (Figure 6b1). However, for the other set (k=
2), pressure ascends rapidly towards the outer edge (Figure 5f1).
The meridional behaviour of pressure is just a little different for
both sets. It rises uniformly from the surface towards the equator
(Figure 6b2).

Density and pressure coloured distributions have been plotted
in Figure 7, as a strong verification on interpretations of profiles of
density and pressure in Figure 5e1, e2, f1, and f2.

In Figure 8, fluid flow has been represented in meridional plane
by arrows. The length and direction of the vectors indicate the
magnitude and orientation of the total fluid velocity, respectively.
Density coloured distribution is seen in the background of this
figure as well. The dark blue colour in the right column pan-
els indicates the region with negative density that is a forbidden
region. It demonstrates that for the k= 1 solution set (Figure 8b
and d), the radius of the disc shrinks with respect to the other set
(Figure 8a and c) and the outer edge becomes nearer to the inner
edge resting on ISCO. When rotation of the disc (Figure 5c1) is a
few orders of magnitude faster than the inflow velocity (Figure 5a1
and b1), plasma flows in the azimuthal direction (Figure 8a and b).
It likes an equilibrium toroidal configuration around the central
black hole. As l and σ decrease, azimuthal and inflow veloci-
ties become comparable. This is quite obvious from the vectors’
direction (Figure 8c and d).

3.2.4. Effect of free parameters

It is time to discuss the properties and the physical implications
that our achieved solutions involve. To conceive the role of free
parameters on MHD behaviour of the disc, we plot the meridional
dependency of the physical functions with respect to different val-
ues of these parameters. Incidentally, to have a better physical
sense and direct interpretation, we plot them in physical units (SI),
with the help of conversion factors calculated in Table 1.

Effect of electrical conductivity on some impressible physi-
cal variables has been represented in Figure 9. Once conductivity
grows large or resistivity becomes small, radial (Figure 9a) and
meridional (Figure 9b) fluid velocities slow down.While, gas pres-
sure (Figure 9c) and total density (Figure 9d) exceed, mass accre-
tion rate (Figure 9e), rotational velocity, andmagnetic pressure are
not affected by resistivity at all. Magnetic pressure invariability and
gas pressure ascent as σ goes up result in raising the ratio of gas to
magnetic pressure β (Figure 9f).

Disc’s rotation just influences the gas pressure, total den-
sity, and subsequently β (Figure 10). In other words, radial and
meridional velocities as well as mass accretion rate (Figure 10c)
and magnetic pressure are invariant relative to angular momen-
tum parameter l. As disc rotates faster, gas pressure decreases
(Figure 10a) and evidently via equation (50), disc becomes denser
(Figure 10b). Obviously, it results in falling off β in this occasion
(Figure 10d).

Although inflow velocity including radial and meridional com-
ponents of fluid velocity is not impressed by rotation of the disc,
they are affected by the spin of the central black hole. As central
object spins faster, inflow velocity becomes faster (Figure 11a and
b) and disc rotates faster too (Figure 11e). Gas pressure height-
ens (Figure 11c), while density falls off (Figure 11d). Descending
behaviour of β (Figure 11f) indicates that the increase in magnetic
pressure with accelerating the spin of the black hole is more than
gas pressure.
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In this interval, both C1 has to be independent on r and total
density must be positive. It means that if the profile of C1 in a spe-
cial radius does not coincident on that ofC1 in other radii also total

density is negative there, then that special radius must omit from
our allowed radial interval. For the set k= 1, the inner edge of the
disc rests on ISCO. However, for the other set (k= 2), disc starts
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Table 1. Physical constants and conversion factors between code and SI units.

Constant in SI units Code value

G= 6.67384× 10−11 N.m2/kg2 G= 1

M= 10M� = 20× 1030 kg M= 1

c= 3× 108 m/s c= 1

μ= 1260× 1017 T.m3 μ= 5.2× 10−11

Quantity SI units Geometric units Conversion factor to SI units

Length m GMc−2 1.4831× 104 m

Time s GMc−3 4.9436× 10−5 s

Velocity m/s c 3× 108 m/s

Accretion rate kg/s c3G−1 4.0456× 1035 kg/s

Rest mass density kg/m3 c6G−3M−2 6.1311× 1018 kg/m3

Internal energy per unit volume J/m3 c8G−3M−2 5.5180× 1035 kg/(m.s2)

Pressure pascal c8G−3M−2 5.5180× 1035 kg/(m.s2)

Electrical conductivity 1/s c3G−1M−1 2.0228× 104 1/s

Magnetic field T c4G−3/2M−1 7.4283× 1017 T

Magnetic dipole moment T.m3 G 3/2M2c−2 2.4232× 1030 T.m3
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Figure 8. Density coloured distributions andmeridional flow pattern for different values of k, l, and σ written in the title of each panel.

off 10 units farther than ISCO. Because next to ISCO, C1’s profile
seems to be dependent upon r (Figure 4). Besides the inner edge,
these two sets of solutions about the outer edge have significant

discrepancy too. Occasionally, after a specific radius, it is possi-
ble that the total density becomes negative. It results in truncating
the disc there. This is the event happened in the case of k= 1 and
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year .

restricts the disc’s outer radius. That is why the disc in this case is
radially shorter than the other case (Figure 6a1 and b1).

Larger the value of mass accretion rate constant Ṁ0
(Figure 12c), higher are the values of gas pressure (Figure 12a),
total density (Figure 12b), and the ratio of gas tomagnetic pressure
β (Figure 12d).

k ascent leads to decelerate the radial (Figure 13a) and verti-
cal (Figure 13b) inflow velocities and heightening the gas pressure
(Figure 13c), total density (Figure 13d), and mass accretion rate
(Figure 13e). In addition, it results in sharp variations in β around
the equator (Figure 13f).

4. Discussion and conclusion

Analytical and numerical (semi-analytical) investigations of thick
accretion discs around a rotating compact object in presence of an
external dipolar magnetic field considering all three components
of the fluid velocity have not been carried out in any detail so
far. In this paper, we have developed an axisymmetric stationary
two-dimensional model of the magnetised tori accreted from the
resistive plasma surrounding a rotating black hole. Importance of

the general relativity in the discussions of accretion physics around
a black hole is no secret to anyone and the full relativistic treat-
ment is required. Consequently, we have derived the governing
MHD equations in the full general relativistic framework. They
are a coupled set of highly non-linear equations that are in general
so difficult to solve. To avoid the mathematical complexities, we
employ the linear order approximation on the Kerr parameter a
and ignore the effects of radiation field.

These simplifying assumptions are indeed considered as practi-
cal approximations applicable to the full general relativistic MHD
system. Additionally, assumption of similar radial dependency for
the radial and meridional velocities resulting in a simple form for
mass accretion rate helps a lot in solving the equations.

Moreover, considering a special model for the toroidal mag-
netic field leads to the fact that the radial and meridional compo-
nents of the 4-vector current density are vanished. The azimuthal
current produced owing to the motion of the magnetofluid gener-
ates a poloidal magnetic field inside the disc as well. It has been
depicted that the disc’s poloidal magnetic field and the spin of
the central black hole are strongly related. Connection of the disc
field to the external dipolar field occurs due to the presence of
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the finite conductivity for the plasma. The meridional structure
of the disc is mainly on account of the balance of plasma pressure
gradient, magnetic force due to the poloidal magnetic field, and
the centrifugal force. In our scenario, different free parameters are
determinant and play a crucial role in calculating the accretion tori
features and have amajor influence on process of accretion around
a black hole.

In conclusion, we find that the self-consistent equilibrium solu-
tions in the relativistic framework do exist for a slowly rotating
black hole with a dipolar magnetic field accreting matter from
a disc having all the components of velocity non-zero without
invoking any thin disc approximations. The existence of such an
equilibrium structure encourages one to put aside our simplifying
assumptions gradually and look for generalisations of the analy-
sis to a rapidly rotating central black hole. On the other hand, yet
another important aspect to be considered is the generalisation of
the analysis to cases where a toroidal magnetic field is generated
by the inertia of the plasma and backward bending the external
dipolar magnetic field lines. This toroidal magnetic field is associ-
ated with a hoop stress that can collimate a hydromagnetic outflow
over large distances and form a jet.

This work can also be useful for the general relativistic MHD
simulations that suffer mainly from the lack of exact analytical
and semi-analytical solutions to use as initial conditions and to
compare their achieved results.
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Appendix A

A.1. Magnetic field lines

Magnetic field lines are curved lines drawn in space in such a way
that a tangent line at any point is parallel to the magnetic field
vector at that point. Slop of this line in any point (r, θ), in spher-
ical coordinate, is defined by dr

r dθ . On the other hand, slop of the
magnetic field in that point is defined by B(r)

B(θ)
. Thus, we have

dr
r dθ

= B(r)

B(θ)
. (A1)

It gives

−2 cot θ dθ = dr
r
, (A2)

for poloidal magnetic filed of the central black hole in the limit
(mr << 1), and gives

− cot θ dθ =
[
1
r

+
6 aL
r4

1− 2 aL
r3

]
dr, (A3)

for the disc. On account of the linearised approximation on a, it
is good to notify that the terms including a2 have been ignored.
Integrating the differential equation (A2), it yields

r = r0
sin2θ

,

for the seed field. Do the same work for equation (A3), it provides
an algebraic equation

r2
(
r − r0

sin θ

)
= 2 a L.

Solving it, we have

r = 1
6
Q+ 2

3
d2

Q
+ 1

3
d,

for the disc field. Where

Q=
(
108 b+ 8 d3 + 12

√
12 d3b+ 81 b2

)1/3
, (A4)

d = r0
sin θ

, (A5)

b= 2 a L, (A6)
and r0 is a constant of integration. Considering the toroidal
magnetic field and knowing the relation

dr
B(r)

= rdθ
B(θ)

= r sin θdϕ
B(ϕ)

,
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between the components of the magnetic field, we achieve

ϕ = ϕ0 + bϕ
B1

1
k− 1

r1−k

sink θ cos θ
.

To visualise the field line structure, it is usual to transform
to a Cartesian frame through the relations X = r sin θ cos ϕ, Y =
r sin θ sin ϕ, and Z = r cos θ .

Appendix B

B.1. Derivation of� (r, θ )

At first, rewrite equation (35) as

(
ρ + p

) (
1−V2)−1 = Ṁ0C1(θ)

r2 sin θ V (r)
(
1− 2

r
) (

1− 2 a L
r3
)−1 ,

and substitute it in momentum equations (24) and (25), to achieve
the components of pressure gradient

∂p
∂r

= −Ṁ0(
1− 2

r
) (

1− 2 a L
r3
)−1 r2 sin θ

N1(r, θ)

+
(
1− 2

r

)−1/2

J(ϕ)
[
B(θ)

{
1− [V (ϕ)]2

}+ B(ϕ)V (θ)V (ϕ)] ,
(B1)

∂p
∂θ

=−Ṁ0 C1(θ)
sin θ

{
1
r

(
1− 2 a L

r3

)
N3(r, θ)

+6 a L
r5

Ṽ (θ) − L2

r4 sin2 θ

(
1− 2 a L

r3

)−1 cot θ
C1(θ)Ṽ (θ)

}

− rJ(ϕ)
[
B(r)

{
1− [V (ϕ)]2

}+ B(ϕ)V (r)V (ϕ)] . (B2)

Then, calculate the pressure second derivatives

∂2 p
∂θ∂r

= −Ṁ0(
1− 2

r
) (

1− 2 a L
r3
)−1 r2 sin θ{

− cot θN1(r, θ)+ ∂N1(r, θ)
∂θ

}
+N2(r, θ), (B3)

∂2 p
∂r ∂θ

=−Ṁ0 C1(θ)
sin θ

{
N3(r, θ)

(−1
r2

+ 8 a L
r5

)

+ 1
r

(
1− 2 a L

r3

)
∂N3(r, θ)
∂r

− 30 a L
r6

Ṽ (θ) + 6 a L
r5

∂Ṽ (θ)

∂r

+ L2

r4 sin2 θ

(
1− 2 a L

r3

)−1 cot θ
C1(θ)Ṽ (θ)[(

4− 2 a L
r3

)
1
r

(
1− 2 a L

r3

)−1

+ 1
Ṽ (θ)

∂Ṽ (θ)

∂r

]}

−
[
B(r)J(ϕ) + r

∂B(r)

∂r
J(ϕ) + rB(r)

∂J(ϕ)

∂r

] {
1− [V (ϕ)]2

}
+ 2V (ϕ) ∂V (ϕ)

∂r
rB(r)J(ϕ)

−
[
J(ϕ)B(ϕ) + r

∂J(ϕ)

∂r
B(ϕ) + rJ(ϕ)

∂B(ϕ)

∂r

]
V (r)V (ϕ)

−
[
∂V (r)

∂r
V (ϕ) +V (r) ∂V (ϕ)

∂r

]
rJ(ϕ)B(ϕ), (B4)

where

N1(r, θ)= [C1(θ)]2
∂Ṽ (θ)

∂r
+ 1

r
C1(θ)

∂Ṽ (θ)

∂θ
+ 1

r
Ṽ (θ) dC1(θ)

dθ

− 1
r

[(
1− 2

r

)
Ṽ (θ) +

[
V (ϕ)]2
Ṽ (θ)

]

+
[
1
r2

(
1− 2

r

)−1

− 6 a L
r4

(
1− 2 a L

r3

)−1
]

×
[

1
Ṽ (θ)

− [C1(θ)]2 Ṽ (θ)
]
,

∂N1(r, θ)
∂θ

= 2
dC1(θ)
dθ

[
C1(θ)

∂Ṽ (θ)

∂r
+ 1

r
∂Ṽ (θ)

∂θ

]

+ [C1(θ)]2
∂2Ṽ (θ)

∂θ ∂r
+ 1

r
C1(θ)

∂2Ṽ (θ)

∂θ 2
+ 1

r
Ṽ (θ) d2C1(θ)

dθ 2

− 1
r

(
1− 2

r

)
∂Ṽ (θ)

∂θ
− 2

r
V (ϕ)

Ṽ (θ)

∂V (ϕ)

∂θ
+ 1

r

[
V (ϕ)

Ṽ (θ)

]2
∂Ṽ (θ)

∂θ

−
[
1
r2

(
1− 2

r

)−1

− 6 a L
r4

(
1− 2 a L

r3

)−1
]

[{
1

[Ṽ (θ)]2
+ [C1(θ)]2

}
∂Ṽ (θ)

∂θ
− 2 C1(θ)Ṽ (θ) dC1(θ)

dθ

]
,

N2(r, θ)=
(
1− 2

r

)−1/2 {[
∂B(θ)

∂θ
J(ϕ) + B(θ)

∂J(ϕ)

∂θ

] {
1− [V (ϕ)]2

}
−2V (ϕ) ∂V (ϕ)

∂θ
B(θ)J(ϕ)

}
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+
[
∂J(ϕ)

∂θ
B(ϕ) + J(ϕ)

∂B(ϕ)

∂θ

]
Ṽ (θ)V (ϕ)

+
[
∂V (θ)

∂θ
V (ϕ) + Ṽ (θ) ∂V (ϕ)

∂θ

]
J(ϕ)B(ϕ),

N3(r, θ)= ∂Ṽ (θ)

∂r
+ 1

r2

(
1− 2

r

)−1/2

Ṽ (θ)

+ 1
rC1(θ)

∂Ṽ (θ)

∂θ
+
(
1− 3

r

)(
1− 2

r

)−1 Ṽ (θ)

r
,

∂N3(r, θ)
∂r

= ∂2Ṽ (θ)

∂r2
+ Ṽ (θ)

r2

(
1− 2

r

)−2 [
−1+ 6

r

(
1− 1

r

)

+1
r

(
1− 2

r

)1/2 (
−2+ 3

r

)]

+ 1
rC1(θ)

(
−1
r
∂Ṽ (θ)

∂θ
+ ∂2Ṽ (θ)

∂r∂θ

)

+ 1
r

(
1− 2

r

)−1
∂Ṽ (θ)

∂r

[
1
r

(
1− 2

r

)1/2

+
(
1− 3

r

)]
.

Integrability condition for pressure

∂2 p
∂θ ∂r

= ∂2 p
∂r ∂θ

, (B5)

gives a second-order ordinary differential equation for C1(θ).
In order to ready this differential equation for computer code to
solve it numerically, we arrange it in the form

d2C1(θ)
dθ 2

=�(r, θ).

It means that we must sort the differential equation (B5) in
terms of d2C1(θ)

dθ 2 . This term, not only appears in the fifth term in
∂N1(r,θ)
∂θ

clearly, but also ∂2Ṽ (θ)

∂θ 2
includes it. Thus, equation (B5) may

be rewritten as
−Ṁ0(

1− 2
r
) (

1− 2 a L
r3
)−1 r2 sin θ

{
N4(r, θ)

+1
r
[
ψ(r, θ) C1(θ)+ Ṽ (θ)] d2C1(θ)

dθ 2

}
+N2(r, θ)= ∂2 p

∂r∂θ
,

wherein N4(r, θ)= − cot θ N1(r, θ)+ all the terms of ∂N1(r,θ)
∂θ

exclude the terms including d2C1(θ)
dθ 2 . Thus,

�(r, θ)=
− r2 sin θ

Ṁ0

(
1− 2

r
) (

1− 2 a L
r3
)−1

[
∂2 p
∂r∂θ −N2(r, θ)

]
−N4(r, θ)

1
r
[
ψ(r, θ) C1(θ)+ Ṽ (θ)

] ,

here

ψ(r, θ)= −S0
2

YI3/2

1− [V (ϕ)]2

[
2 S1A1 r

(
1− 2

r

)−1/2

+2 (S0Y)2 C1(θ)
]
.
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