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EVALUATION OF CERTAIN CLASSES OF
EISENSTEIN-TYPE SERIES
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Abstract

In this paper, we consider certain classes of Eisenstein-type series involving hyperbolic functions, and
prove some formulas for them which can be regarded as relevant analogues of our previous results.
We can also regard these formulas as certain generalizations of the famous formulas for the ordinary
Eisenstein series given by Hurwitz.
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1. Introduction

Let N be the set of natural numbers, Z the ring of rational integers, Q the field of
rational numbers, R the field of real numbers, R+ the set of positive real numbers
and C the field of complex numbers.

Cauchy [5], Mellin [8], Ramanujan (see [3, 4]), Berndt [2] and several other
mathematicians (for the details, see Berndt [2]) considered the following fascinating
formulas:

∑
m∈Z\{0}

(−1)m

sinh(mπ)m4k+3 = (2π)
4k+3

2k+2∑
j=0

(−1) j+1 B2 j (1/2)

(2 j)!

B4k+4−2 j (1/2)

(4k + 4− 2 j)!
, (1.1)

∑
m∈Z\{0}

coth(mπ)

m4k+3 = (2π)4k+3
2k+2∑
j=0

(−1) j+1 B2 j (0)

(2 j)!

B4k+4−2 j (0)

(4k + 4− 2 j)!
(1.2)

for k ∈N ∪ {0}, where sinh x = (ex
− e−x )/2, cosh x = (ex

+ e−x )/2, coth x =
cosh x/ sinh x and Bn(x) is the nth Bernoulli polynomial defined by

text

et − 1
=

∞∑
N=0

BN (x)
t N

N !
.
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240 H. Tsumura [2]

In particular, it is known that the formula (1.2) can be derived directly from the famous
formula given by Ramanujan:

α−N
{

1
2
ζ(2N + 1)+

∞∑
m=1

1

(e2mα − 1)m2N+1

}

= (−β)−N
{

1
2
ζ(2N + 1)+

∞∑
m=1

1

(e2mβ − 1)m2N+1

}

− 22N
N+1∑
m=0

(−1)m
B2m(0)
(2m)!

B2N+2−2m(0)
(2N + 2− 2m)!

αN+1−mβm,

where N is any nonzero integer, α and β are positive numbers such that αβ = π2

and ζ(s) is the Riemann zeta-function (see Ramanujan’s notebooks [3, (25.3), p. 293]).

Recently, in our previous paper [10], we studied certain Eisenstein-type analogues
of (1.1) defined by

Gk(i)=
∑
n∈Z
(−1)n

∑
m∈Z\{0}

1
sinh(mπ)(m + ni)k

(k ∈N), (1.3)

Hk(i)=
∑
n∈Z
(−1)n

∑
m∈Z\{0}

1
cosh(mπ)(m + ni)k

(k ∈N). (1.4)

Note that if k ≥ 2, then these series are absolutely convergent. Furthermore, even
if k = 1, then these series are convergent. In order to evaluate these values, we recall
that the Eisenstein series G4 j (i) can be expressed as

G4 j (i)=
∑

m,n∈Z
(m,n)6=(0,0)

1

(m + ni)4 j
=
(2$)4 j

(2 j)!
H4 j ( j ∈N) (1.5)

for i =
√
−1 and

$ = 2
∫ 1

0

dx
√

1− x4
= 2.622 057 . . . ,

where {H4m | m ∈N} are called the Hurwitz numbers defined as coefficients of the
Laurent series expansion of the Weierstrass p-function, namely,

H4 =
1
10
, H8 =

3
10
, H12 =

567
130

, H16 =
43 659

170
, . . . (1.6)
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(see [6]; also [1, 7]). By using these facts, we evaluated G2k+1(i) and H2k+2(i)
(k ∈N ∪ {0}) explicitly in terms of π and $ . For example, we gave

G7(i) =
∑

m,n∈Z
m 6=0

(−1)n

sinh(mπ)(m + ni)7

=
1

525
$ 8

π
+

7
5400

$ 4π3
−

127
75 600

π7
+

31
15 120

π6, (1.7)

H4(i) =
∑

m,n∈Z
m 6=0

(−1)n

cosh(mπ)(m + ni)4
=

1
15
$ 4
−

17
90
π4
+

1
2
π3 (1.8)

(see [10, Examples 4.1 and 4.2]).
In this paper, with the aim to giving Eisenstein-type analogues of Ramanujan’s

formula (1.2), we consider

Cνk (i)=
∑

m,n∈Z
m 6=0

(coth(mπ))ν

(m + ni)k
(1.9)

for k ∈N with k ≥ 3 and ν ∈ Z. Note that

C0
4 j (i)= G4 j (i)− 2ζ(4 j) ( j ∈N). (1.10)

By the same method as introduced in [10], we prove that

Cνk (i)=
∑

m,n∈Z
m 6=0

(coth(mπ))ν

(m + ni)k
∈Q

[
1
π
, π, $ 4

]
(1.11)

for k ≥ 3 and ν ∈N ∪ {0} with k ≡ ν (mod 2) (see Corollary 2.5). Actually, when
k, l ∈ Z with k ≥ 3, l ≥ 0 and k ≡ l (mod 2), we can express Cl

k(i) as a closed form in
terms of $ and π (see Example 2.6). Note that if k 6≡ l (mod 2), then Cl

k(i)= 0. In
particular, (1.11) in the case of (k, ν)= (4 j, 0) essentially implies (1.5) by (1.10).

For example, as analogues of Ramanujan’s formula (1.2), we obtain

C1
3(i) =

∑
m,n∈Z
m 6=0

coth(mπ)

(m + ni)3
=
$ 4

15π
+

4
45
π3
−

1
3
π2, (1.12)

C2
4(i) =

∑
m,n∈Z
m 6=0

(coth(mπ))2

(m + ni)4
=

2
45
$ 4
+

16
945

π4
−

4
45
π3 (1.13)

(see Example 2.6).
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2. Inductive relation formulas

As a generalization of Gk(i) and Hk(i), we define

Gl
k(i)=

∑
n∈Z
(−1)n

∑
m∈Z\{0}

(coth(mπ))l

sinh(mπ)(m + ni)k
(2.1)

for k ∈N and l ∈ Z. Note that G 0
k (i)= Gk(i) and G−1

k (i)=Hk(i). We prove the
following theorem which is essentially the main result in this paper.

THEOREM 2.1. For p ∈N and l ∈ Z,

C2l+1
2p+1(i) = −

2(−1)p

π

p∑
τ=1

ζ(2p − 2τ)(−1)τC2l
2τ+2(i)−

2(−1)p

π2 ζ(2p)C2l−1
3 (i), (2.2)

C2l
2p+2(i) = −

2(−1)p

π

p∑
τ=0

ζ(2p − 2τ)(−1)τC2l−1
2τ+3(i). (2.3)

In order to prove this theorem, we first prepare an analogous result of our previous
result.

LEMMA 2.2. For k ∈N and θ ∈ (−π, π),

1
2

∑
m∈Z\{0}

∑
n∈Z

(−1)n(coth(mπ))ν{e(m+ni)θ
− e−(m+ni)θ

}

sinh(mπ)(m + ni)k+2

=

[k/2]∑
j=0

Gν
k+1−2 j (i)

θ2 j+1

(2 j + 1)!
. (2.4)

PROOF. We only have to use the same method as in the proof of in [10, (3.7)]. Then
we can similarly obtain (2.4), so we omit the proof here. 2

Note that both sides of (2.4) are continuous for θ ∈ [−π, π ]. Hence, letting θ→ π

and using (e(m+ni)π
− e−(m+ni)π )/2= sinh(mπ)(−1)n , we can confirm that

Cνk+2(i)=
∑

m,n∈Z
m 6=0

(coth(mπ))ν

(m + ni)k+2 =

[k/2]∑
j=0

Gν
k+1−2 j (i)

π2 j+1

(2 j + 1)!
. (2.5)

Similarly, we can prove

1
2

∑
m∈Z\{0}

∑
n∈Z

(−1)n(coth(mπ))ν{e(m+ni)θ
+ e−(m+ni)θ

}

sinh(mπ)(m + ni)k+1 =

[k/2]∑
j=0

Gν
k+1−2 j (i)

θ2 j

(2 j)!
.

(2.6)
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Since coth x = cosh x/sinh x , letting θ→ π , we have

Cν+1
k+1(i)=

∑
m,n∈Z
m 6=0

(coth(mπ))ν+1

(m + ni)k+1 =

[k/2]∑
j=0

Gν
k+1−2 j (i)

π2 j

(2 j)!
(2.7)

for k ∈N with k ≥ 2.
Put k = 2p + µ for p ∈N and µ ∈ {0, 1} in (2.5) and (2.7). Then

Cν2p+µ+2(i)=
p∑

j=0

Gν
2p+µ+1−2 j (i)

π2 j+1

(2 j + 1)!
(2.8)

and

Cν+1
2p+µ+1(i)=

p∑
j=0

Gν
2p+µ+1−2 j (i)

π2 j

(2 j)!
. (2.9)

Note that (2.8) also holds for p = 0 if µ= 1, because (2.5) holds for k = 1. Now we
recall the following lemma.

LEMMA 2.3 [9, Lemma 4.4]. Let {P2h}, {Q2h}, {R2h} be sequences such that

P2h =

h∑
j=0

R2h−2 j
(iπ)2 j

(2 j)!
, Q2h =

h∑
j=0

R2h−2 j
(iπ)2 j

(2 j + 1)!
(2.10)

for any h ∈N ∪ {0}. Then

P2h =−2
h∑
τ=0

ζ(2h − 2τ)Q2τ (2.11)

for any h ∈N ∪ {0}.

In order to apply this lemma, we transform (2.8) and (2.9) into

(−1)p

π
Cν2p+µ+2(i)=

p∑
j=0

(−1)p− j Gν
2p−2 j+µ+1(i)

(iπ)2 j

(2 j + 1)!
(2.12)

and

(−1)pCν+1
2p+µ+1(i)=

p∑
j=0

(−1)p− j Gν
2p−2 j+µ+1(i)

(iπ)2 j

(2 j)!
. (2.13)

In Lemma 2.3, we put P0 = Q0 = R0 = Gν
µ+1(i) and

P2h = (−1)hCν+1
2h+µ+1(i), Q2h =

(−1)h

π
Cν2h+µ+2(i), R2h = (−1)h Gν

2h+µ+1(i)
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for h ∈N. Then it follows from (2.11) that

(−1)pCν+1
2p+µ+1(i)=−2

p∑
τ=1

ζ(2p − 2τ)
(−1)τ

π
Cν2τ+µ+2(i)− 2ζ(2p)Gν

µ+1(i)

(2.14)
for p ∈N.

Next we determine Gν
µ+1(i) for µ= 0, 1. As noted above, (2.12) holds for p = 0

when µ= 1. Hence, we can determine the case µ= 1, namely

Gν
2 (i)=

1
π

Cν3(i) (ν ∈ Z). (2.15)

Furthermore, in order to consider the case µ= 0, we need the following lemma.

LEMMA 2.4. For ν ∈ Z, πGν
1 (i)= Gν−1

2 (i).

PROOF. From the definition (2.1), we can see that Gν
k (i)= 0 when k ≡ ν (mod 2)

by changing the summation indices (m, n) into (−m,−n). Hence, if ν is odd, we
trivially obtain the assertion. So we assume that ν is even. If θ ∈ (−π, π), we see that
the left-hand side of (2.4) in the case k = 0 is absolutely convergent. Hence,

1
2

∑
m∈Z\{0}

∑
n∈Z

(−1)n(coth(mπ))ν{e(m+ni)θ
− e−(m+ni)θ

}

sinh(mπ)(m + ni)2

=

∞∑
m=1

∑
n∈Z

(−1)n(coth(mπ))ν{e(m+ni)θ
− e−(m+ni)θ

}

sinh(mπ)(m + ni)2

= Gν
1 (i)θ (θ ∈ (−π, π)), (2.16)

because ν is even. On the left-hand side of (2.16), we consider θ = π + (θ − π),
namely

e(m+ni)(π+θ−π)
= (−1)nemπe(m+ni)(θ−π).

Then the left-hand side of (2.16) can be written as

∞∑
m=1

∑
n∈Z

(coth(mπ))ν{emπe(m+ni)(θ−π)
− e−mπe−(m+ni)(θ−π)

}

sinh(mπ)(m + ni)2

=

∞∑
m=1

∑
n∈Z

(coth(mπ))ν{(emπ
− e−mπ )e(m+ni)(θ−π)

}

sinh(mπ)(m + ni)2

+

∞∑
m=1

∑
n∈Z

(coth(mπ))ν{e−mπ (e(m+ni)(θ−π)
− e−(m+ni)(θ−π))}

sinh(mπ)(m + ni)2

= 2
∞∑

m=1

∑
n∈Z

(coth(mπ))νe(m+ni)(θ−π)

(m + ni)2

+

∞∑
m=1

∑
n∈Z

(coth(mπ))νe−mπ
{e(m+ni)(θ−π)

− e−(m+ni)(θ−π)
}

sinh(mπ)(m + ni)2
. (2.17)
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For simplicity, we denote by ξ ν(θ) and ην(θ) the first term and the second term on the
right-hand side of (2.17), respectively. Then (2.16) can be rewritten as

ξ ν(θ)+ ην(θ)= Gν
1 (i)θ (θ ∈ (−π, π)). (2.18)

Furthermore, we similarly consider the left-hand side of (2.6) in the case k = 1 by
replacing ν by ν − 1, and by putting θ = π + (θ − π). Then, in the same way, we
have

ξ ν(θ)− ην−1(θ)= Gν−1
2 (i) (θ ∈ (−π, π)). (2.19)

Combining (2.18) and (2.19), we have

Gν
1 (i)θ − η

ν(θ)= Gν−1
2 (i)+ ην−1(θ) (θ ∈ (−π, π)). (2.20)

Note that if θ ∈ [π/2, π ], then ην(θ) is absolutely and uniformly convergent with
respect to θ . Hence, we have

lim
θ→π

ην(θ)= ην(π)= 0 (ν ∈ Z).

Therefore, by letting θ→ π in (2.20), we have the assertion. 2

PROOF OF THEOREM 2.1. Combining (2.15) and Lemma 2.4, we have

Gν
1 (i)=

1
π

Gν−1
2 (i)=

1

π2 Cν−1
3 (i) (ν ∈ Z). (2.21)

Hence, combining (2.14) and (2.21), we have the proof of Theorem 2.1. 2

From Theorem 2.1, we can inductively evaluate Cl
k(i) for k ≥ 3, l ∈N ∪ {0} with

k ≡ l (mod 2). First we check the case l = 0 in (2.2) and (2.3). In [10, Example 4.1],
we have already proved that

1

π2 C−1
3 (i)= G 0

1(i)=−1+
π

3
(2.22)

using (2.21). Moreover, we see that C0
2 j (i)= G2 j (i)− 2(−1) jζ(2 j) for j ≥ 2, where

G2 j (i) is the Eisenstein series. Note that G4 j (i) can be evaluated in terms of $
(see (1.5)) and G4 j+2(i)= 0 for j ∈N. Hence, we have C0

2 j (i) ∈Q[π, $ 4
] for j ≥ 2.

Therefore, by (2.2) and (2.22), we can see that C1
2p+1(i) ∈Q[1/π, π, $ 4

] for p ∈N.
Furthermore, using (2.2) and (2.3) alternately, we can easily prove the following
corollary by induction.

COROLLARY 2.5. For k, ν ∈ Z with k ≥ 3, ν ≥−1 and k ≡ ν (mod 2),

Cνk (i)=
∑

m,n∈Z
m 6=0

(coth(mπ))ν

(m + ni)k
∈Q

[
1
π
, π, $ 4

]
.
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EXAMPLE 2.6. By using (2.2) and (2.3), we can inductively obtain the following
concrete examples of Corollary 2.5, which are numerically correct:

C1
3(i) =

∑
m,n∈Z
m 6=0

coth(mπ)

(m + ni)3
=
$ 4

15π
+

4
45
π3
−

1
3
π2,

C2
4(i) =

∑
m,n∈Z
m 6=0

(coth(mπ))2

(m + ni)4
=

2
45
$ 4
+

16
945

π4
−

4
45
π3,

C5
5(i) =

∑
m,n∈Z
m 6=0

(coth(mπ))5

(m + ni)5
=

$ 8

315π3 +
46

2835
$ 4π +

52
31 185

π5
−

1
63
π4,

C4
6(i) =

∑
m,n∈Z
m 6=0

(coth(mπ))4

(m + ni)6
=

4$ 8

1575π2 +
62

14 175
$ 4π2

−
1024

467 775
π6
+

8
1575

π5,

C3
7(i) =

∑
m,n∈Z
m 6=0

(coth(mπ))3

(m + ni)7
=

$ 8

525π
−

1
14 175

$ 4π3
−

136
155 925

π7
+

2
525

π6.

Combining (2.5), (2.7), (2.21) and Corollary 2.5, we can obtain the following result
which is a certain generalization of our previous result in [10] because G 0

k (i)= Gk(i)
and G−1

k (i)=Hk(i).

COROLLARY 2.7. For k ∈N, ν ∈ Z with ν ≥−1 and k 6≡ ν (mod 2),

Gν
k (i)=

∑
n∈Z
(−1)n

∑
m∈Z
m 6=0

(coth(mπ))ν

sinh(mπ)(m + ni)k
∈Q

[
1
π
, π, $ 4

]
.

EXAMPLE 2.8. Combining (2.5), (2.7), (2.21) and Theorem 2.1, for example, we can
obtain the concrete examples of Corollary 2.7:

G 1
2(i) =

$ 4

15π2 +
4

45
π2
−

1
3
π,

G 3
2(i) =

$ 4

15π2 +
44

945
π2
−

1
5
π,

G 2
3(i) =

$ 4

30π
+

2
945

π3
−

1
30
π2,

G 1
4(i) =

1
90
$ 4
−

26
945

π4
+

7
90
π3,

G 5
4(i) =

$ 8

350π4 +
83

14 175
$ 4
−

1574
467 775

π4
+

1
126

π3,

G 4
5(i) =

$ 8

450π3 −
113

113 400
$ 4π −

1163
311 850

π5
+

1
72
π4.
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