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ON CERTAIN PROBLEMS IN THE THEORY
OF SEQUENCES

BY
RADA HIGGINS

1. Introduction. We are well-acquainted with the theorem about sequences
which states that, the existence of

lim Sa, (1)

n-o k=0
is sufficient to imply lim,_,,, a,=0. Partially out of a growing interest in the theory
of regularly varying sequences ([1]), and probably as an interesting problem, in
and of itself, some mathematicians have tried to find conditions weaker than (1)
that would guarantee lim,_, ,, a;,=0. This was the subject of a previous paper (See
[3D, in which I proved the following main theorem:

THEOREM 1. Let (a;) be a sequence of complex numbers, such that

) lim 3 a,

n— o0 k=[An]+1
exists for A=¢& and A=1—§&, where & is an irrational number in (0,1). Then
limk 00 ak=0.

In this paper, we ask under what conditions on a set E of real numbers will the
sequence (a,) converge to zero if

. [in]
A3) lim > a

n-w k=n+1

is equal to zero, for every fixed A € E?

Interestingly, (3) can hold for every A €Z*, but the sequence (a;) need not
converge to zero. The counterexample which verifies this assertion is based on a
construction of J. Galambos and E. Seneta ([2]). They define a sequence (5,) as
follows: For each n>2, let b,=w(n)+ (log log n)*/2, where w(n) denotes the num-
ber of prime divisors of n.

Using the fact that there exists a subsequence (p;) of primes, such that
w(p;,—1)~log log p, (n—>0), it is asserted in [2] that

(4) lim bp ,ﬂ/ b p,ﬂ—l

n- oo
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is equal to zero. Moreover, for k>1, it is shown that

) lim b,,,/b,,

is equal to 1.

From the above sequence (b,), it is easy to define a sequence (a,), such that (3)
holds for every neZ* and lim a,70. Define (a,) as follows: For each n>2,
let a,=log(b,/b,_,).

Then, by (5), we see that

nk
lim > a, =Ilimlog(b,,/b,) = 0.

n-* j=n+1 n—o

On the other hand, by (4), we have
lima, =Ilimlog(b, /b
Since (a,,ln) is a subsequence of (a,), we have lim,_,, a,#0. Therefore, the
sequence (a,) is a counterexample.
It is true, however, that if (3) holds for every 4 in E, a 2nd category subset of
(1, o0), then lim,_,  a, does equal zero.
We can state this result more precisely as the following theorem:

p,”—l) =—©

THEOREM 2. Let (a;) be a sequence of complex numbers, such that
inl

©) lm S a,= 42

n—>o k=n-+1
for every fixed A in a 2nd category subset E of (1, o). If ¢ is continuous on E, then
limk_,m ak=0.

The proof of Theorem 2 can be modified to deduce the following theorem as
well:

THEOREM 3. Let (a;) be a sequence of complex numbers, such that .

) lim i a, = (%)

n— oo k=[An}+1
Jor every fixed A in a 2nd category subset E of (0, 1). If ¢ is continuous on E, then
lim,_, , a,=0.

2. Proof of Theorem 2. Throughout this argument, 4,(4) will denote

[An]
a
k=n+1
Let £¢>0. For every positive integer N, define the sets Sy as follows:

Sy = {z: forall n> N, |4, (A)—¢@R)| < g]

Then, by hypothesis, S=U .5+ Sy is a 2nd category subset of (1, o).
By Baire’s Category Theorem, S cannot be the countable union of nowhere dense
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sets. Hence, there exists a positive integer N’, such that int@;);ég . Let o, be
an irrational number in int(TS‘;). Choose 6>0 so small that the interval /=
(cg—9, ay+9) is contained in .57-

We assert that every irrational number « €7 is also an element of Sy.. To see
this, let « € I be irrational. Since I< —S;, there exists a sequence (a,,) < Sy, such
that lim,,_, ,, a,,=a. Let n be any integer greater than N'. Clearly, lim,,_, , a,,n=an.
Since the greatest integer function [ ] is discontinuous only at integers and an
is irrational, [ ] is continuous at an. Hence, for m sufficiently large, we have
[a,,n]=[an]. This implies

[A4(2)— p(a)| = lim |4,(a,,)— H(«)]

m—> 0

< lim (|4,(a,)— $(a)| +1(a,)— $(0)])

m=— o

<

Nlm

Therefore, a € Sy..

Choose N” so large that «o/(N"—1) is less than . Let N=max(N’, N")+1.
For n>N, oy and «,+¢, are irrational numbers in I, where ¢,=a,/(n—1). Hence,
oo and ay+¢, are in Sy.. Therefore,

[A4,(eto)— $(ato)| < —;

and

|4 —(%oF£)— $(oF8,)] < 2
Since
] = |Apa(to+£)— A ()]

we have, by the triangular inequality,

Ianl S lAn—l(a0+€n) - ¢(a0+€n)| + lAn(aO) - ‘f’(“o)l + I ¢(“0+£n) - ¢(a0)l .
Therefore,
lim sup |a,] < e

n->wo

which proves our theorem.
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