
J. Fluid Mech. (2024), vol. 999, A77, doi:10.1017/jfm.2024.801

On statistical zonostrophic instability and the
effect of magnetic fields

Chen Wang1,2,3,†, Joanne Mason3 and Andrew D. Gilbert3

1Research Center of Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University,
Zhuhai 519087, PR China
2Department of Mathematical Sciences, BNU-HKBU United International College, Zhuhai 519087,
PR China
3Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, UK

(Received 12 December 2023; revised 9 May 2024; accepted 10 June 2024)

Zonal flows are mean flows in the east–west direction, which are ubiquitous on planets,
and can be formed through ‘zonostrophic instability’: within turbulence or random waves,
a weak large-scale zonal flow can grow exponentially to become prominent. In this paper,
we study the statistical behaviour of the zonostrophic instability and the effect of magnetic
fields. We use a stochastic white noise forcing to drive random waves, and study the
growth of a mean flow in this random system. The dispersion relation for the growth
rate of the expectation of the mean flow is derived, and properties of the instability are
discussed. In the limits of weak and strong magnetic diffusivity, the dispersion relation
reduces to manageable expressions, which provide clear insights into the effect of the
magnetic field and scaling laws for the threshold of instability. The magnetic field mainly
plays a stabilising role and thus impedes the formation of the zonal flow, but under certain
conditions it can also have destabilising effects. Numerical simulation of the stochastic
flow is performed to confirm the theory. Results indicate that the magnetic field can
significantly increase the randomness of the zonal flow. It is found that the zonal flow
of an individual realisation may behave very differently from the expectation. For weak
magnetic diffusivity and moderate magnetic field strengths, this leads to considerable
variation of the outcome, that is whether zonostrophic instability takes place or not in
individual realisations.
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1. Introduction

Zonal flows are mean flows in the east–west direction, and are commonly found on Earth
and other planets. They are perhaps most prominent on Jupiter, where belts of strong zonal
jets are the main visible feature of its surface. Numerous studies have been undertaken to
understand the properties of zonal flows. A review of this topic can be found in the recent
book by Galperin & Read (2019); here we summarise the representative literature most
relevant to our study.

Rhines (1975) identified that zonal jets have a scale associated with the wavenumber
kβ = √

β/2U, where U is the root-mean square (r.m.s.) zonal velocity and β is the
gradient of the Coriolis parameter. This scale is now known as the Rhines scale. Above
this length scale, the inverse cascade of turbulence is suppressed by the β-effect, and
turbulence transfers energy to the zonal jets. Williams (1978) performed numerical
simulations that reproduce the zonal flows on both Earth and Jupiter. From the conditions
under which zonal flows emerge, he concluded that the β-effect and forcing are the two
elements essential for the formation of zonal jets. Vallis & Maltrud (1993) identified the
important scales of turbulence in the zonal jets, and also showed that in addition to the
β-effect, topography can also generate zonal flows. Smith (2004) and Scott & Polvani
(2007) considered quasigeostrophic flows and found that the effect of introducing a finite
deformation radius is to increase the level of β required for zonal jets to form. When the
deformation radius is small enough, zonal jets are confined near the equator. Galperin
et al. (2006) studied the energy spectrum of turbulent flows with strong zonal jets, and
found that they exhibit a −5 power law, in what they termed a ‘zonostrophic regime’, and
in contrast to the celebrated Kolmogorov −5

3 power law of isotropic turbulence. Dritschel
& McIntyre (2008) proposed a mechanism for the formation of zonal jets: the mixing of
potential vorticity results in staircases in the potential vorticity profile.

To further understand mechanisms for jet formation, Farrell & Ioannou (2003, 2007)
established a compact system that combines the evolution of turbulence and mean flow.
They coined the term ‘stochastic structural stability’, and showed that the state with zero
mean flow can be unstable, leading to the formation of zonal jets. Srinivasan & Young
(2012) advanced the theory by undertaking an analytical study of the instability problem
and deriving an explicit dispersion relation, also introducing the term ‘zonostrophic
instability’. Parker & Krommes (2013, 2014) incorporated weak nonlinearity and derived
a Ginzburg–Landau equation for the zonal-flow amplitude, which they used to model the
generation of zonal jets in terms of pattern formation.

In astrophysical contexts, it is necessary to consider the effect of magnetic fields on the
flow and study the magnetohydrodynamic(MHD) problem. Diamond et al. (2005) have
given a comprehensive review of zonal flows in plasmas, where the magnetic field plays
a key role. Recent studies have also revealed the important link between zonal flows and
cross-helicity (Heinonen et al. 2023), which is a central topic of MHD. Zonal flows may
also be important for the structure of the solar tachocline, which is generally believed
to be the source of the Sun’s magnetic field (for a comprehensive review of the solar
tachocline, see the monograph edited by Hughes, Rosner & Weiss (2007)). In this vein,
Tobias, Diamond & Hughes (2007); Tobias, Dagon & Marston (2011) have undertaken
numerical simulation of MHD β-plane flow in Cartesian and spherical geometry. Their
results indicate that even a weak magnetic field can suppress the formation of zonal jets,
and this may explain the lack of observations so far of zonal jets in the Sun, where strong
magnetic fields interact with plasma flows. In terms of theory, Constantinou & Parker
(2018) presented an MHD zonostrophic stability analysis using the method of Srinivasan
& Young (2012). Their results confirmed that the magnetic field indeed reduces the growth
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rate of the zonostrophic instability. Durston & Gilbert (2016) and Algatheem, Gilbert &
Hillier (2023) considered MHD zonostrophic instability for large-scale shear flows and
for deterministic Kolmogorov flow, respectively. Analytical approximations can be made
by exploiting scale separation between large-scale flow and small-scale waves, and these
indicate that the magnetic field can inhibit the hydrodynamic zonostrophic instability, but
it can also generate a new branch of unstable modes for such shear flows.

While it appears that a magnetic field can suppress zonostrophic instability and zonal
flows, the underlying physical mechanism requires further exploration. To this end,
Constantinou & Parker (2018) and Parker & Constantinou (2019) considered magnetic
fields subject to the tilting present in shear flows. They showed that the Maxwell stress
imposed by the magnetic field opposes the Reynolds stress, and therefore inhibits the
formation of zonal flows. Chen & Diamond (2020) and Chen et al. (2021) considered
turbulent magnetic fields that are strong and highly disordered. Via averaging the system
over an intermediate scale, they showed that the resulting Maxwell stress again inhibits the
growth of any zonal flow.

In the present paper, we will study zonostrophic instability with an emphasis on its
statistical properties and the effect of magnetic fields. In particular, we consider the growth
of weak mean flows in a system of random waves driven by white noise. We derive a
dispersion relation for exponential growth of the expectation of the mean flow, and analyse
its properties in detail. We also compare the theory with numerical simulations of the
stochastic system, to assess its validity and the assumptions made. Our method for the
instability analysis differs from previous studies which are mainly based on spatiotemporal
correlation functions, e.g. Farrell & Ioannou (2003, 2007), Srinivasan & Young (2012)
and Constantinou & Parker (2018). The use of spatiotemporal correlation functions works
well for hydrodynamic zonostrophic instability, but becomes complicated when a magnetic
field is added. For example, Constantinou & Parker (2018) describe the calculations
leading to the dispersion relation for the MHD zonostrophic instability as ‘complicated and
unilluminating’, and they do not document its full expression. This is mainly because the
presence of the magnetic field introduces several new terms that are quadratic in the fields:
for example, one has to include the correlation between the velocity and the magnetic field
to close the system. Our study, on the other hand, directly analyses random waves and
minimises these complications. Our derivation only involves the temporal correlations of
the random waves, which significantly simplifies the mathematics. We are able derive a
compact dispersion relation in certain limiting cases of the parameters, which provides
simple scaling laws for the threshold of instability.

An outcome of our simplified dispersion relation is a clear explanation for the
mechanism by which the magnetic field affects zonostrophic instability. The physical
explanation of Constantinou & Parker (2018), Parker & Constantinou (2019), Chen &
Diamond (2020) and Chen et al. (2021) is based on the form of the magnetic terms in
the mean-flow equation. Our interpretation, on the other hand, is based on the dispersion
relation for zonostrophic instability, in which the effect of the magnetic field on the growth
of the mean flow is evident. Also, we do not assume a priori the time and length scales
of the flow but solve the full mathematical problem under the quasilinear approximation,
allowing a comprehensive survey of parameter space. With this, we observe further effects
that can arise in the presence of a magnetic field in addition to the Maxwell stress discussed
by previous authors: under certain conditions, the magnetic field can change the effective
viscosity of the flow, or affect the instability through the interaction between the mean
flow and the mean field.

In many previous studies of zonostrophic instability, an ergodic assumption has been
employed: namely that the zonal mean velocity in each realisation is the same as in
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the ensemble average, in other words the zonal flow itself has no stochasticity. This
ergodic assumption has been widely used for analyses of mean flows in various problems,
for example, zonostrophic instability (Srinivasan & Young 2012; Constantinou & Parker
2018), the structural stability of turbulent jets (Farrell & Ioannou 2003, 2007) and pattern
formation of zonal flows (Parker & Krommes 2013, 2014; Ruiz et al. 2016). Its validity
has not been established in general, though Bouchet, Nardini & Tangarife (2013) provide
a systematic argument based on separation of time scales between fluctuating and mean
fields, making use of a Fokker–Planck formulation. More recently, Allawala, Tobias &
Marston (2020) have shown that direct statistical simulation using an ensemble average
and a zonal average may not produce exactly the same results, making it reasonable to
question the ergodic assumption. In the present study, we will use numerical simulations
to examine the ergodic assumption in the context of zonostrophic instability with and
without a magnetic field. We run multiple simulations to see if individual realisations of
the mean flow behave similarly, or not.

Another issue that arises for MHD zonostrophic instability concerns modes with
complex growth rates. Constantinou & Parker (2018) showed that in the presence of a
magnetic field, zonostrophic modes can possess complex growth rates, a phenomenon
uncommon for pure hydrodynamic zonostrophic instability (e.g. Srinivasan & Young
(2012), but see Ruiz et al. (2016)). The nature of these modes remains poorly understood:
the real parts of the growth rates can be positive, but these modes lie in the parameter
regime where Tobias et al. (2007) reported no zonal flow formation, thus whether
zonostrophic instability takes place for these modes remains a question. We will undertake
numerical simulations to explore whether these modes are indeed unstable and give rise
to zonal flows.

The organisation of the paper is as follows. In § 2, we analyse purely hydrodynamic
zonostrophic instability. Although the hydrodynamic problem is relatively well
understood, we use it as a basic example to establish our method of analysis, and to
lay the foundation for the MHD problem. We present the governing equations and the
quasilinear approximation in § 2.1. Then we establish the ‘basic state’ in § 2.2, which is
a forced–dissipative system without mean flow. The stability of this state is studied in
§ 2.3, and a dispersion relation is derived for the growth rate of the zonal mean flow.
Its properties are briefly discussed in § 2.4. Finally in § 2.5, numerical simulations are
presented to verify the theory. The analysis for the MHD zonostrophic instability is
undertaken in § 3 following the same methodology, but it is a more complicated and
interesting problem. In particular, the full dispersion relation derived in § 3.3 is a rather
unwieldy expression; however, we derive simplified dispersion relations in § 3.4 in certain
asymptotic limits of the parameters. In the discussion of the dispersion relation in § 3.5,
we give a comprehensive investigation of the effect of the magnetic field strength and
magnetic diffusivity, and compare this with previous studies. In numerical simulations in
§ 3.6, we demonstrate the strong impact of the magnetic field on the stochasticity of the
evolving zonal flows. Concluding remarks are given in § 4.

2. Hydrodynamic zonostrophic instability

In this section, we present the analysis for the hydrodynamic zonostrophic instability. We
give a straightforward derivation of a dispersion relation for the unstable growth rate of
the zonal flow; this takes a relatively simple form and is equivalent to that obtained by
Srinivasan & Young (2012). We do this to set out the methodology for the magnetic
zonostrophic instability that will be studied in the next section.
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2.1. Governing equations
We start with the two-dimensional vorticity equation on the β plane:

ζt − ψyζx + ψxζy + βψx = F − μζ + ν∇2ζ, ζ = ∇2ψ. (2.1)

Here the x- and y-directions are the longitudinal and latitudinal directions, respectively, ψ
is the stream function, ζ is the vorticity, F is an external forcing which we will specify later,
μ is the bottom drag and ν is the viscosity. The variables have been non-dimensionalised
by characteristic length and time scales.

Despite the simplicity of (2.1), it is too difficult for an analysis of zonostrophic instability
as it is nonlinear. We make the ‘quasilinear approximation’ to proceed analytically. We
decompose the flow as

ψ = ψ̄( y, t)+ ψ ′(x, y, t), ζ = ζ̄ ( y, t)+ ζ ′(x, y, t), (2.2a,b)

where the overline represents the zonal average,

ψ̄ = k
2π

∫ 2π/k

0
ψ dx, ζ̄ = k

2π

∫ 2π/k

0
ζ dx, (2.3a,b)

and ψ ′ and ζ ′ are the fluctuating fields. Substituting (2.2a,b) into (2.1), we neglect all the
nonlinear terms except those with mean components. Using U = −ψ̄y to denote the mean
zonal velocity, we derive the equation for the fluctuating vorticity,

ζ ′
t + Uζ ′

x + (β − Uyy)ψ
′
x = F − μζ ′ + ν∇2ζ ′, ζ ′ = ∇2ψ ′. (2.4)

To find the evolution equation for U, we take the zonal average of (2.1) and find

Ut − (ψ ′
xψ

′
y)y = −μU + νUyy, (2.5)

taking the forcing F to have zero zonal average. Equations (2.4) and (2.5) constitute the
approximate quasilinear system that we will use to study the zonostrophic instability
analytically. We will also undertake numerical simulations to test the theory and the
validity of the quasilinear approximation using the full nonlinear equation (2.1).

We consider the forcing

F = σ ξ̂(t) exp(ikx)+ c.c., (2.6)

where σ is the strength of the forcing, k is the wavenumber in the x-direction, ξ̂ is a
complex Gaussian white noise and ‘c.c.’ represents the complex conjugate of the previous
term (or terms). The expectation of the white noise has the properties

E[ξ̂(t1)ξ̂∗(t2)] = δ(t1 − t2), E[ξ̂(t1)ξ̂(t2)] = 0, E[ξ̂(t)] = 0, (2.7a–c)

which indicate that the values of the white noise at two different times are independent
(2.7a), it has zero expectation (2.7c) and its statistical properties are independent of time.
Because of these properties, white noise forcing is a standard idealisation for stochastic
differential equations. In our problem, we use it to drive waves with random amplitudes,
as a very idealised model of turbulence. More details of the white noise and our numerical
implementation are given in Appendix A.

The forcing (2.6) is the same as that used by Farrell & Ioannou (2003, 2007). It also
has similarities with the approach of Srinivasan & Young (2012), who use a ‘ring forcing’,
namely the stochastic driving of a ring of wavenumbers of given radius in Fourier space
(for details, see Appendix B). The ring forcing is essentially isotropic, so the β-effect is
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necessary for the zonostrophic instability. This property of isotropy may be more relevant
to modelling the formation of zonal jets on planets. Our forcing (2.6), on the other hand,
has a single wavenumber in the x-direction whilst remaining uniform in the y-direction,
and is therefore a ‘point forcing’ which is anisotropic. Although not as realistic as the
isotropic ring forcing, it can still reveal key properties of zonostrophic instability. For MHD
instabilities, because of the complexity of the analysis, we simplify to a point forcing as a
first step, and leave any elaboration to an isotropic ring forcing for future research.

2.2. The ‘basic state’
We now consider the stability problem governed by (2.4) and (2.5). Because of the
white-noise forcing, ψ is stochastic, which complicates typical stability analyses. The
usual method to remove stochasticity is to use a spatiotemporal correlation function which
will evolve deterministically (Farrell & Ioannou 2003, 2007; Srinivasan & Young 2012).
We take a different approach: we directly solve for ψ in terms of the white noise and so
retain its randomness. When we proceed to the equation for the mean flow, where quadratic
terms of the fundamental waves will appear, we compute the expectation, taking advantage
of the properties of the white noise given in (2.7a–c).

The forcing F in (2.6) is independent of y and generates waves. We consider a state
in which there is zero zonal mean flow U as the ‘basic state’, upon which zonostrophic
instability develops. We thus take a solution of the form

ψ ′ = ψ1 = ψ̂1(t) exp(ikx)+ c.c., U = 0. (2.8)

Substitution into (2.4) yields

dψ̂1

dt
+
(

−i
β

k
+ μ+ νk2

)
ψ̂1 = − σ

k2 ξ̂ . (2.9)

The solution for ψ̂1 is then

ψ̂1 = − σ

k2 exp(λ1t)
∫ t

ξ̂(τ ) exp(−λ1τ) dτ, (2.10)

where

λ1 = −μ− νk2 + i
β

k
(2.11)

is the eigenvalue of the homogeneous system (2.9). We have omitted the lower integral
limit to relax the requirement on the initial condition, which has negligible effect on the
long-time behaviour of ψ̂1 given the damping Re(λ1) < 0.

The fluctuating flow ψ̂1 has the form of a damped Rossby wave, with its amplitude
driven by the white noise. It is unsteady and stochastic, but statistically, ψ̂1 has zero
expectation and its probability density will settle down to a steady distribution as t → ∞,
as can be checked by solving the corresponding Fokker–Planck equation.
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2.3. Instability analysis
We then study the stability of the basic state in the statistical sense, adding now small
perturbations ψ2 and U2:

ψ ′ = ψ1 + ψ2 + · · · , U = U2 + · · · . (2.12a,b)

Assuming that ψ2 and U2 are small, we substitute (2.12a,b) into (2.4) and (2.5), and then
linearise terms involving ψ2 and U2, which gives

ζ2,t + βψ2,x + μζ2 − ν∇2ζ2 = −U2ζ1,x + U2,yyψ1,x ζ2 = ∇2ψ2, (2.13)

U2,t + μU2 − νU2,yy = (ψ1,yψ2,x + ψ2,yψ1,x)y. (2.14)

We seek solutions in the form

U2 = Û(t) exp(imy)+ c.c., (2.15a)

ψ2 = ψ̂21(t) exp(ikx + imy)+ ψ̂22(t) exp(−ikx + imy)+ c.c., (2.15b)

that is, the mean flow U2 has a wavenumber m in the transverse direction, and ψ2 has a
wavenumber combination of the basic wave and the mean flow. Substituting into (2.13)
and (2.14), we obtain

dψ̂21

dt
− λ2ψ̂21 = −ikΛÛψ̂1, (2.16)

dψ̂22

dt
− λ∗2ψ̂22 = ikΛÛψ̂∗

1, (2.17)

dÛ
dt

+ (μ+ m2ν)Û = im2k(ψ̂21ψ̂
∗
1 − ψ̂22ψ̂1), (2.18)

where

λ2 = −μ− ν(k2 + m2)+ ikβ
k2 + m2 , Λ = k2 − m2

k2 + m2 . (2.19a,b)

The solutions of (2.16) and (2.17) are

ψ̂21 = −ikΛ exp(λ2t)
∫ t

Û(τ )ψ̂1(τ ) exp(−λ2τ) dτ, (2.20)

ψ̂22 = ikΛ exp(λ∗2t)
∫ t

Û(τ )ψ̂∗
1(τ ) exp(−λ∗2τ) dτ. (2.21)

We have omitted the lower integral limit again as we may ignore initial conditions in
determining exponential growth rates for the zonostrophic instability.

We substitute (2.20) and (2.21) into (2.18), and then obtain an equation for Û:

dÛ
dt

+ (μ+ νm2)Û

= m2k2Λ

∫ t
Û(τ )

{
ψ̂1(τ )ψ̂

∗
1(t) exp[−λ2(τ − t)] + ψ̂∗

1(τ )ψ̂1(t) exp[−λ∗2(τ − t)]
}

dτ.

(2.22)

This equation describes the evolution of the mean flow driven by Rossby waves. The
quantity Û is again stochastic, but our interest is its expectation E(Û). In particular, we
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look for the solution that grows exponentially, to indicate zonostrophic instability. Thus,
we consider

E[Û(t)] = Ũ exp(st), (2.23)

and the main objective of the analysis is to solve for the growth rate s.
In order to proceed mathematically, we need to make the assumption that the mean

flow Û(τ ) and the quadratic term of the fundamental wave ψ̂∗
1 (τ )ψ̂1(t) are statistically

uncorrelated, hence their expectations are separable,

E[Û(τ )ψ̂1(τ )ψ̂
∗
1(t)] = E[Û(τ )]E[ψ̂1(τ )ψ̂

∗
1(t)], (2.24)

thus the expectation of (2.22) becomes

dE(Û)
dt

+ (μ+ νm2)E(Û)

= m2k2Λ

∫ t
E[Û(τ )]

{
E[ψ̂1(τ )ψ̂

∗
1(t)] exp[−λ2(τ − t)]

+E[ψ̂∗
1(τ )ψ̂1(t)] exp[−λ∗2(τ − t)]

}
dτ. (2.25)

We do not have a proof for (2.24): it is an assumption that we will make to derive an
analytical dispersion relation, which we will test through comparison with numerical
simulations. But (2.24) is directly related to the assumption of zonal-mean ergodicity
that has been widely used in mean-flow dynamics (e.g. Srinivasan & Young 2012; Farrell
& Ioannou 2003; Marston, Conover & Schneider 2008). This assumption states that the
zonal-mean velocity of an individual realisation is equal to the ensemble average, or
expectation

Û = E[Û]; (2.26)

in this case since Û is no longer stochastic, (2.26) implies assumption (2.24). Indeed,
we will show that our result of zonostrophic instability is consistent with the result of
Srinivasan & Young (2012) based on the ergodic assumption. But unlike (2.26), our
assumption (2.24) still retains stochasticity in the mean flow and is therefore a weaker
assumption. We will refer to (2.26) as the ‘full ergodic assumption’ and (2.24) as the
‘partial ergodic assumption’ in what follows.

The expectation of the fundamental-wave term ψ̂∗
1 (τ )ψ̂1(t) in (2.25) may be computed

explicitly: applying property (2.7a) to (2.10), we find that for t > τ ,

E[ψ̂1(τ )ψ̂
∗
1(t)] = σ 2

k4 exp(λ∗1t + λ1τ)

∫ p=t ∫ q=τ
E[ξ̂∗( p)ξ̂(q)] exp(−λ∗1p − λ1q) dq dp

= σ 2

k4 exp(λ∗1t + λ1τ)

∫ p=t ∫ q=τ
δ( p − q) exp(−λ∗1p − λ1q) dq dp

= −σ
2

k4
1

λ1 + λ∗1
exp[λ∗1(t − τ)]. (2.27)

Note that the lower integral limits have been neglected as their contribution is
exponentially small for large t.

999 A77-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.801


Statistical zonostrophic instability with magnetic field

Substituting (2.23) and (2.27) into (2.25), we obtain the dispersion relation determining
the growth rate s:

s + μ+ νm2 = − m2σ 2Λ

k2(λ1 + λ∗1)
(

1
s − λ∗1 − λ2

+ 1
s − λ1 − λ∗2

)
. (2.28)

We rewrite the dispersion relation in terms of the original variables,

s + μ+ νm2 = m2σ 2(k2 − m2)

2k2(μ+ νk2)

1
(s + 2μ+ 2νk2 + νm2)(k2 + m2)+ iβm2/k

+ c.c.e.s.,

(2.29)

where the expression ‘c.c.e.s.’ represents the previous terms with all quantities complex
conjugated except s (cf. (2.28)); this notation is helpful to give succinct equations in this
paper, and we will use it repeatedly in the MHD case.

To reduce the number of independent quantities, we rescale according to

s = s�σ 2/3, m = m�k, μ = μ�σ
2/3, ν = ν�σ

2/3k−2, β = β�kσ 2/3. (2.30a–e)

This corresponds to a non-dimensionalisation based on the forcing strength σ , the
viscosity ν, and the scale k−1 of the forcing. The non-dimensional quantity obtained
from the viscosity may be linked to a Grashof number given by Gr = ν−2

� and β� is a
non-dimensional measure of the strength of the β-effect on the same basis (see Childress,
Kerswell & Gilbert 2001; Durston & Gilbert 2016). Under this rescaling the dispersion
relation (2.29) becomes

s�+μ�+ν�m2
� = m2

�(1 − m2
�)

2(μ�+ν�)
1

(s�+2μ�+2ν�+ν�m2
�)(1 + m2

�)+ iβ�m2
�

+ c.c.e.s. (2.31)

The rescaled parameters will be convenient for finding conditions for instability in the
parameter space, and for deriving asymptotic expressions for the dispersion relation of
MHD instabilities shown later on. However, when presenting general results, we will
mainly use the original parameters which are more relevant to the physics.

2.4. Results and discussion
We now briefly discuss the properties of the dispersion relation (2.29) or (2.31), which
governs hydrodynamic zonostrophic instability. First, we observe that our dispersion
relation would exactly result from the analysis in Srinivasan & Young (2012), if we apply
their derivation to our forcing. Although their discussion focused on a ring forcing, their
equation (C16) is a dispersion relation for general forms of forcing, and in our case results
in (2.29). We give the details in Appendix B, and note that the agreement is not trivial,
since we followed a very different derivation.

Focusing on geophysical applications, Srinivasan & Young (2012) studied the effects of
the drag coefficient μ in detail, and mostly set the viscosity ν to be zero. Our present study
focuses on astrophysical applications, and we will mainly consider the situation where the
drag μ is zero and study the effect of the viscosity ν. We will choose k = 16 and σ = 0.05
as the scale and amplitude of the forcing, respectively. Tobias et al. (2007) considered
wavenumbers with 14 < k < 20, which includes our k = 16. The small amplitude
σ = 0.05 is intended to generate weak turbulence where the quasilinear approximation
is expected to be valid (cf. Srinivasan & Young 2012), and it is also of the same order as
that used by Constantinou & Parker (2018).
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Figure 1. Dispersion relation for the hydrodynamic instability with k = 16, μ = 0, σ = 0.05. (a) Plots of the
growth rates at different ν with β = 5, and (b) plots of the growth rates at different β with ν = 10−4. Here
ν = 10−3 corresponds to ν� = 1.9, and β = 10 corresponds to β� = 4.6.

In figure 1, we show the (real) growth rate s versus vertical wavenumber m at different
ν and β in figure 1(a,b) respectively, calculated from the dispersion relation (2.29). One
feature of the dispersion relation is that as the drag coefficient μ is zero the growth rate
s approaches zero as m → 0. This contrasts with the case μ > 0 studied by Srinivasan
& Young (2012), where s is negative at m = 0. As seen in figure 1(a), increasing the
viscosity reduces the growth rate and finally suppresses instability, as one would expect.
In figure 1(b), we see that increasing β also reduces instability (Srinivasan & Young
2012), but the growth rates at smaller wavenumbers are unaffected, as is evident from
the dispersion relation (2.29). Note that zonostrophic instability continues to exist even
for β = 0. Even though there is now no background vorticity gradient present to give a
preferred direction in the system, the basic state of the fluid system remains anisotropic
because of the forcing we employ in (2.6). As is known, zonostrophic instability cannot
occur in fluid systems that are isotropically forced, without some further mechanism to
break symmetry, such as a β-effect or magnetic field (Srinivasan & Young 2012; Bakas &
Ioannou 2013).

From figure 1, we see that neutral stability s → 0 occurs in the limit m → 0. Applying
m → 0 to the dispersion relation (2.29) or (2.31) with μ = 0, we find that the condition
for zonostrophic instability is

ν�<2−1/3 or ν < 2−1/3kσ 2/3; (2.32)

the forcing must be strong enough to overcome the effect of viscous dissipation. As we
just discussed, β is absent from this condition, and we stress that (2.32) only applies to the
case μ� = 0, otherwise the instability threshold takes place at a finite m, which involves β
in the stability condition (cf. Srinivasan & Young 2012). In the rest of the paper, we will
mainly pay attention to the situation where μ� � ν� � 1 so that (2.32) is relevant, while
β� is of order of unity or larger.

We comment on another interesting relation between our dispersion relation (2.31) and
that of Srinivasan & Young (2012): both these dispersion relations have the properties that
all unstable modes have real s� and instability only exists for m� < 1, despite the difference
in the spatial structure of the forcing. Srinivasan & Young (2012) indicated that they
could not show these two important properties analytically in their case of ring forcing.
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Statistical zonostrophic instability with magnetic field

However, we can make some progress with our simpler dispersion relation: for real s�,
we need the right-hand side of (2.31) to be positive so that s� > 0 on the left-hand side
is possible, and this requires m� < 1. We have not yet been able to explain why s� is
always real when Re s� > 0. In any case, this appears not to be a generic property: Ruiz
et al. (2016) have shown that for forcing with other spatial structures, unstable modes with
complex growth rates indeed exist for hydrodynamic zonostrophic instability.

2.5. Numerical simulation
To verify our theory for hydrodynamic zonostrophic instability, we undertake numerical
simulations for the flow governed by (2.1), with further details in Appendix A. We use
a pseudospectral method with a spatial discretisation of 256 × 256 mesh points in the
domain [0, 2π/k] × [0, 2π/m]. For temporal discretisation, we use the Crank–Nicolson
method, with the nonlinear terms advanced using Euler’s method. Itô’s interpretation is
used for integration of the white noise. A very small time step of Δt = 0.005 is used
for both the temporal evolution and discretisation for the white noise, to ensure a good
approximation to the decorrelation property in (2.7a). We choose the parameters β = 5,
ν = 10−4, μ = 0, σ = 0.05, k = 16 and m = 5, corresponding to β� = 2.3, ν� = 0.19,
which have been used in figure 1. We take ψ = 10−4 cos(my) at t = 0 to render a very
weak zonal flow U = −∂yψ initially. Our main objective here is to verify the theory rather
than aim for physical realism, hence we only consider one Fourier mode for the initial
zonal flow to make comparison straightforward.

In figure 2, we show an example of the evolution of the vorticity field, alongside two
snapshots of the zonal mean flow profiles. At earlier times t ≤ 80, the vorticity field has
the same pattern as the forcing F (i.e. it is periodic in the x-direction and homogeneous
in the y-direction). Then unstable zonal flows gradually grow stronger, causing bending in
the y-direction visible at t = 100. At t = 110, we observe that nonlinear effects become
significant, generating a localised zonal jet near y = 1. The jet continues to grow stronger,
and then saturates and undergoes nonlinear evolution. At t = 180, another jet in the
opposite direction is visible around y = 0.2. Note that a simulation with a different white
noise results in a different flow pattern, but with qualitatively the same features as seen in
figure 2.

In figure 3, we plot the evolution of the zonal flow; figure 3(a) shows the density field
of U( y, t) in a Hovmöller diagram, giving the evolution of the mean flow with time on the
horizontal axis (snapshots of U( y, t) at t = 110 and t = 180 are shown in figure 2). The
formation of the two jets is clearly seen. Note that unlike previous studies on zonal jets
(e.g. Srinivasan & Young 2012; Parker & Krommes 2013), we do not see jet-merging in
our simulation. We think this may be due to the simple structure of the forcing that we use
to drive the waves (cf. (2.6)).

In figure 3(b), we show the r.m.s. velocity with respect to y, i.e.

Urms =
(

m
2π

∫ 2π/m

0
U2 dy

)1/2

. (2.33)

We also plot the prediction of zonostrophic instability, showing good agreement between
the theory and the simulation for t ∈ [80, 120] after some transient behaviour up to
t � 80. The good agreement justifies the theory, including the quasilinear approximation
and the assumption (2.24) of neglecting wave–mean flow correlation, used in the analysis.
To show the effect of different realisations of the forcing, in figure 4 we plot the evolution
of Urms for five different examples of the driving white noise. The exponential growth
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Figure 2. Numerical solution for the evolution of vorticity and zonal velocity without magnetic field: β = 5;
k = 16; ν = 10−4; μ = 0; σ = 0.05; m = 5; β� = 2.3; ν� = 0.19; m� = 0.31.
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Figure 3. Evolution of the zonal velocity U for figure 2. Panel (a) is a Hovmöller diagram showing U( y, t), and
(b) shows the r.m.s. value of U. The solid line is the solution of the numerical simulation, and the red straight
line is the exponential growth predicted by the dispersion relation (2.29), with growth rate s = 6.17 × 10−2.

of zonostrophic instability theory is plotted as a straight line. The Urms starts to grow
at different times for different realisations, but the growth rates are all very close to the
theoretical prediction.

The simulation results allow us to make further comments on the full assumption of
mean-flow ergodicity in (2.26), that is assuming the mean flow has no stochasticity. Our
simulations show that this assumption is clearly not satisfied, since Urms is different for
different realisations. But if our focus is on whether zonostrophic instability occurs or
not, then this assumption seems to be reasonable, because all realisations have periods of
growth at a similar rate as our prediction for the expectation, derived under the weaker
partial assumption (2.24). The underlying reason for this property, i.e. that the mean flow
exhibits similar growth rates in different realisations, however, remains elusive. Previous
theoretical studies have indicated that full mean-flow ergodicity holds when the flow
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Figure 4. Five realisations of Urms with different white-noise forcing; the parameters are the same as in
figure 2. The red straight line represents the exponential growth predicted by the dispersion relation (2.29).

reaches a statistically steady state (Marston et al. 2008), when the drag μ is sufficiently
strong (Bouchet et al. 2013), or when there is time scale or space scale separation between
the mean flow and the waves (Bouchet et al. 2013; Durston & Gilbert 2016). None of
these conditions applies to our case: the flow is in a transient state during the instability,
our simulations used zero drag μ = 0, and our mean flow and waves have similar length
scales. More theoretical work is required to understand when full or partial mean-flow
ergodicity holds.

3. The MHD zonostrophic instability

3.1. Governing equations
Following the same methodology, we study the MHD zonostrophic instability – we include
a constant magnetic field B0 in the x-direction and study its effect. The original MHD
equations for the two-dimensional flow are

ζt − ψyζx + ψxζy + βψx = −ayjx + axjy + F − μζ + ν∇2ζ, (3.1)

at − ψyax + ψxay = η∇2a, (3.2)

ζ = ∇2ψ, j = ∇2a. (3.3a,b)

Here a is the magnetic potential, i.e. the magnetic field is B = (−ay, ax, 0), and j is the
current density. We again apply the quasilinear approximation for this system. For the flow,
we apply the same decomposition as (2.2a,b). For the magnetic field, we decompose the
wave and mean by

a = ā( y, t)+ a′(x, y, t)+ · · · , j = j̄( y, t)+ j′(x, y, t)+ · · · , (3.4a,b)

and for the mean field we set

− āy = B0 + B( y, t), (3.5)

where B0 is the externally added constant mean field in the x-direction, while B is a
small variation of magnetic field averaged in the x-direction and caused by the flow, with
|B| � |B0|. For the analysis of zonostrophic instability, we again need the quasilinear
approximation; we substitute (3.4a,b) and (3.5) into (3.1) and (3.2), and then only keep
the nonlinear terms involving the flow velocity U and field B. The governing equations for

999 A77-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.801


C. Wang, J. Mason and A.D. Gilbert

the waves are

ζ ′
t + Uζ ′

x + (β − Uyy)ψ
′
x − (B0 + B)j′x + Byya′

x = −μζ ′ + ν∇2ζ ′ + F, (3.6)

a′
t + Ua′

x − (B0 + B)ψ ′
x = η∇2a′, (3.7)

and the mean flow and field evolve according to

Ut − (ψ ′
xψ

′
y − a′

xa′
y)y = −μU + νUyy, (3.8)

Bt − (a′ψ ′
x)yy = ηByy. (3.9)

Equations (3.6)–(3.9) constitute the quasilinear approximation for the MHD equations. Its
validity will be tested by numerical simulation of the full equations (3.1)–(3.3a,b) later in
§ 3.6. The term a′

xa′
y is often referred to as the Maxwell stress, which has the opposite sign

but a similar structure to the Reynolds stress ψ ′
xψ

′
y. Intuitively, one might expect that the

Maxwell stress is the mechanism by which a magnetic field can inhibit zonal flows, but we
need to solve the actual zonostrophic instability problem to reach a concrete conclusion.

3.2. Basic state
For the basic state, the forcing F generates waves with zero mean flow and perturbation
field, U = B = 0. With the forcing (2.6), we consider solutions of the form

ψ ′ = ψ1 = ψ̂1(t) exp(ikx)+ c.c., a′ = a1 = â1(t) exp(ikx)+ c.c., (3.10a,b)

and we seek the amplitudes ψ̂1(t) and â1(t). Substituting (2.6) and (3.10a,b) into (3.6) and
(3.7) yields two ordinary differential equations in t, which we write in vector form:

d
dt

(
ψ̂1
â1

)
=
( iβ

k
− μ− νk2 ikB0

ikB0 −ηk2

)(
ψ̂1
â1

)
+
(

− σ

k2 ξ̂

0

)
. (3.11)

Their solutions are

ψ̂1 = −Ψ+ exp(λ1+t)
∫ t

exp(−λ1+r)ξ̂(r) dr

+ Ψ− exp(λ1−t)
∫ t

exp(−λ1−r)ξ̂(r) dr, (3.12)

â1 = −A exp(λ1+t)
∫ t

exp(−λ1+r)ξ̂(r) dr

+ A exp(λ1−t)
∫ t

exp(−λ1−r)ξ̂(r) dr, (3.13)

where

Ψ± = σ

2k2Q

(
iβ
k

− μ− νk2 + ηk2 ± Q
)
, A = iσB0

kQ
,

λ1± = 1
2

(
iβ
k

− μ− νk2 − ηk2 ± Q
)
,

Q =
[(

iβ
k

− μ− νk2 + ηk2
)2

− 4k2B2
0

]1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)
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Statistical zonostrophic instability with magnetic field

Note that λ1± are the two eigenvalues of the matrix in (3.11). In the limit B0 → 0,

λ1+ → iβ
k

− μ− νk2 = λ1, λ1− → −ηk2. (3.15a,b)

Hence, λ1+ recovers the hydrodynamic eigenvalue of Rossby waves and λ1− is the rate of
Ohmic damping of a magnetic field mode.

3.3. Instability analysis
Upon the basic state, we add the disturbances of zonostrophic instability, denoted by a
subscript ‘2’:

ψ ′ = ψ1 + ψ2 + · · · , a′ = a1 + a2 + · · · , U = U2 + · · · , B = B2 + · · · .
(3.16a–d)

Substituting (3.16a–d) into (3.6)–(3.9) and then linearising the ‘2’ components, we obtain
for the fluctuating fields,

ζ2,t + βψ2,x − B0∇2a2,x + μζ2 − ν∇2ζ2

= −U2ζ1,x + U2,yyψ1,x + B2∇2a1,x − B2,yya1,x, (3.17)

a2,t − B0ψ2,x − η∇2a2 = −U2a1,x + B2ψ1,x, (3.18)

ζ2 = ∇2ψ2, (3.19)

and for the mean fields,

U2,t + μU2 − νU2,yy = ψ1,xψ2,yy + ψ2,xψ1,yy − a1,xa2,yy − a2,xa1,yy, (3.20)

B2,t − ηB2,yy = (a1ψ2,x + a2ψ1,x)yy. (3.21)

Note that here we are referring to B2 as the ‘mean’ (magnetic) field for succinctness, and
will continue to do so, though really it is only the perturbation component of the full mean
field B0 + B2( y, t)+ · · · , with the mean always taken in x.

Similarly to the hydrodynamic case, we seek solutions in the form

U2 = Û(t) exp(imy)+ c.c.,

ψ2 = ψ̂21(t) exp(ikx + imy)+ ψ̂22(t) exp(−ikx + imy)+ c.c.,

B2 = B̂(t) exp(ikx)+ c.c.,

a2 = â21(t) exp(ikx + imy)+ â22(t) exp(−ikx + imy)+ c.c.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.22)

Substituting (3.22) into (3.17)–(3.21), we obtain the evolution equations for the fluctuating
amplitudes,

d
dt

(
ψ̂21
â21

)
=
⎛
⎝ βik

m2 + k2 − μ− ν(m2 + k2) ikB0

ikB0 −η(m2 + k2)

⎞
⎠(ψ̂21

â21

)

− ik
(
Λ(ψ̂1Û − â1B̂)

â1Û − ψ̂1B̂

)
, (3.23)
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d
dt

(
ψ̂22
â22

)
=
⎛
⎝− βik

m2 + k2 − μ− ν(m2 + k2) −ikB0

−ikB0 −η(m2 + k2)

⎞
⎠(ψ̂22

â22

)

+ ik

(
Λ(ψ̂∗

1Û − â∗
1B̂)

â∗
1Û − ψ̂∗

1B̂

)
, (3.24)

and for the mean flow and field,

dÛ
dt

+ μÛ + νm2Û = ikm2(ψ̂∗
1ψ̂21 − â∗

1â21)− ikm2(ψ̂1ψ̂22 − â1â22), (3.25)

dB̂
dt

+ ηm2B̂ = ikm2(ψ̂∗
1â21 − â∗

1ψ̂21)− ikm2(ψ̂1â22 − â1ψ̂22). (3.26)

The solutions of (3.23) are

ψ̂21 =
∫ t {

[−ΛD+ψ̂1(τ )+ Mâ1(τ )]Û(τ )

−[Mψ̂1(τ )−ΛD+â1(τ )]B̂(τ )
}

exp[λ2+(t − τ)] dτ

+
∫ t {

[ΛD−ψ̂1(τ )− Mâ1(τ )]Û(τ )

+ [Mψ̂1(τ )−ΛD−â1(τ )]B̂(τ )
}

exp[λ2−(t − τ)] dτ, (3.27)

â21 =
∫ t {

[ΛMψ̂1(τ )+ D−â1(τ )]Û(τ )

−[D−ψ̂1(τ )+ΛMâ1(τ )]B̂(τ )
}

exp[λ2+(t − τ)] dτ

+
∫ t {

−[ΛMψ̂1(τ )+ D+â1(τ )]Û(τ )

+[D+ψ̂1(τ )+ΛMâ1(τ )]B̂(τ )
}

exp[λ2−(t − τ)] dτ, (3.28)

where

λ2± = iΩ2 − μ− (ν + η)k2
2 ± Q2

2
,

Q2 =
[
(iΩ2 − μ− νk2

2 + ηk2
2)

2 − 4k2B2
0

]1/2
,

D± = ik(iΩ2 − μ− νk2
2 + ηk2

2 ± Q2)

2Q2
,

M = k2B0

Q2
, Ω2 = βk

m2 + k2 , k2
2 = m2 + k2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.29)

For the solution of (3.24), we notice that the right-hand side of (3.23) is the complex
conjugate of the right-hand side of (3.24), except that Û and B̂ remain the same. Therefore,
we may find the solutions for the ‘22’ components by simply taking the complex conjugate
of (3.27) and (3.28), and then replace all occurrences of Û∗ and B̂∗ by Û and B̂.
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Statistical zonostrophic instability with magnetic field

We then substitute (3.27) and (3.28) into (3.25) and (3.26) to find a system of equations
for the mean velocity and field:

dÛ
dt

+ μÛ + νm2Û

= im2k
∫ t {

[−ΛD+ψ̂∗
1(t)ψ̂1(τ )+ Mψ̂∗

1(t)â1(τ )

−ΛMâ∗
1(t)ψ̂1(τ )− D−â∗

1(t)â1(τ )]Û(τ )

+ [−Mψ̂∗
1(t)ψ̂1(τ )+ΛD+ψ̂∗

1(t)â1(τ )+ D−â∗
1(t)ψ̂1(τ )

+ΛMâ∗
1(t)â1(τ )]B̂(τ )

}
exp[λ2+(t − τ)] dτ

+ im2k
∫ t {

[ΛD−ψ̂∗
1(t)ψ̂1(τ )− Mψ̂∗

1(t)â1(τ )

+ΛMâ∗
1(t)ψ̂1(τ )+ D+â∗

1(t)â1(τ )]Û(τ )

+ [Mψ̂∗
1(t)ψ̂1(τ )−ΛD−ψ̂∗

1(t)â1(τ )− D+â∗
1(t)ψ̂1(τ )

−ΛMâ∗
1(t)â1(τ )]B̂(τ )

}
exp[λ2−(t − τ)] dτ

+ c.c.e.Û.B̂., (3.30)

dB̂
dt

+ ηm2B̂

= im2k
∫ t {

[ΛMψ̂∗
1(t)ψ̂1(τ )+ D−ψ̂∗

1(t)â1(τ )

+ΛD+â∗
1(t)ψ̂1(τ )− Mâ∗

1(t)â1(τ )]Û(τ )

− [D−ψ̂∗
1(t)ψ̂1(τ )+ΛMψ̂∗

1(t)â1(τ )− Mâ∗
1(t)ψ̂1(τ )

+ΛD+â∗
1(t)â1(τ )]B̂(τ )

}
exp[λ2+(t − τ)] dτ

+ im2k
∫ t {

[−ΛMψ̂∗
1(t)ψ̂1(τ )− D+ψ̂∗

1(t)â1(τ )

−ΛD−â∗
1(t)ψ̂1(τ )+ Mâ∗

1(t)â1(τ )]Û(τ )

+ [D+ψ̂∗
1(t)ψ̂1(τ )+ΛMψ̂∗

1(t)â1(τ )− Mâ∗
1(t)ψ̂1(τ )

+ΛD−â∗
1(t)â1(τ )]B̂(τ )

}
exp[λ2−(t − τ)] dτ

+ c.c.e.Û.B̂. (3.31)

The notation ‘c.c.e.Û.B̂’. means the complex conjugate of the previous terms except Û
and B̂ remain unchanged (cf. ‘c.c.e.s.’ for (2.28) and (2.29)). There is a proliferation of
terms in the MHD mean flow and field equations compared with the hydrodynamic case
(cf. (2.22)), as we have doubled the number of fields and waves in the basic state (ψ̂1 and
â1) and in the harmonics (ψ21, a21, ψ22, a22), and now have two mean fields (Û and B̂).
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The next step is to take the expectation of (3.30) and (3.31), and to seek exponentially
growing solutions for the mean flow and mean field expectations,

E[Û(t)] = Ũ exp(st), E[B̂(t)] = B̃ exp(st). (3.32a,b)

As for hydrodynamic instability, we assume that the mean flow and the mean field are
both statistically uncorrelated with the fundamental waves, leading to the separation of
expectations following our partial ergodic assumption,

E[Û(τ )ψ̂∗
1(t)ψ̂1(τ )] = E[Û(τ )]E[ψ̂∗

1(t)ψ̂1(τ )],

E[B̂(τ )ψ̂∗
1(t)â1(τ )] = E[B̂(τ )]E[ψ̂∗

1(t)â1(τ )],

}
(3.33a,b)

and similarly for related terms. Equation (3.33a,b) again is weaker than the corresponding
full ergodic assumption, namely

Û = E[Û], B̂ = E[B̂], (3.34a,b)

that both the mean flow and field have no stochasticity (Constantinou & Parker 2018).
The expectations of the fundamental waves ψ̂∗

1 (t)ψ̂1(τ ), ψ̂∗
1 (t)â1(τ ), etc. can now be

computed as in (2.27), and then applying (3.32a,b) to the expectation of (3.30) and (3.31)
provides the dispersion relation, with details deferred to Appendix C. The final result is(

(s + μ+ νm2)Ũ
(s + ηm2)B̃

)
=
(

NUU NUB
NBU NBB

)(
Ũ
B̃

)
. (3.35)

The terms NUU , NUB, NBU and NBB, which are functions of s and the parameters, with
their expressions being given in (C9), have a clear physical meaning: NUB represents the
feedback to the mean flow Ũ from the mean field B̃, etc. The condition for a non-trivial
solution for Ũ and B̃ yields the dispersion relation which determines the eigenvalues s:

(s + μ+ νm2 − NUU)(s + ηm2 − NBB) = NUBNBU. (3.36)

When the basic state magnetic field is switched off, i.e. B0 = 0, the coupling terms NUB
and NBU are zero, and the two eigenvalues are given by

s + μ+ νm2 = NUU, s + ηm2 = NBB. (3.37a,b)

Expression (3.37a) is the dispersion relation for the hydrodynamic zonostrophic instability
(2.29), and (3.37b) is

s + ηm2 + m2σ 2

2k2(μ+ νk2)

(
1

s + μ+ νk2 + η(m2 + k2)+ iβ/k
+ c.c.e.s.

)
= 0. (3.38)

It always gives a negative growth rate, representing the damping of the mean magnetic
field by the flow. As in the hydrodynamic case, we undertake a rescaling to reduce the
number of parameters by applying (2.30a–e) together with

B0 = B0�σ
2/3k−1, η = η�k−2σ 2/3, (3.39a,b)

and then (3.36) can be expressed as

s�=s�(m�, μ�, ν�, β�,B0�, η�). (3.40)

It is difficult to compare our dispersion relation directly with that of Constantinou & Parker
(2018) because, as they state, their expression is complicated and uninformative, and so is
not published in their paper. Their result is also for ring forcing, unlike ours for point
forcing. Nonetheless, we will see that our numerical solution of the dispersion relation
bears some similarity to theirs.
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Statistical zonostrophic instability with magnetic field

3.4. Asymptotic dispersion relations in limiting cases
The expression for the full dispersion relation, (3.36) or (3.40), is complicated, but in
certain limits of the parameters, it is possible to obtain simpler expressions, as explained
in Appendix C, that can provide deeper insights into the effect of the magnetic field and
the mechanisms driving instability. These limits include strong magnetic diffusivity, and
weak magnetic diffusivity with strong and weak magnetic fields. When discussing the
applicability of these expressions, we assume μ� � ν� � 1, while β� is of order of unity
or larger, as previously.

3.4.1. The limit of large η�
In the limit η� → ∞, the dispersion relation approximates as

s�+μ�+ν�m2
�

= m2
�(1 − m2

�)

2

(
μ�+ν�+

B2
0�
η�

){
[s�+2μ�+ν�(m2

� + 2)](1 + m2
�)+ B2

0�
η�
(2 + m2

�)+ iβ�m2
�

}

+ c.c.e.s. (3.41)

For finite η�, (3.41) is valid when η� � β� and B2
0�/η� � 1. Equation (3.41) may be

interpreted as the hydrodynamic expression (2.28) with λ1 and λ2 replaced by λ1+ and
λ2+, which have the asymptotic expressions

λ1+ ∼ iβ
k

− μ− νk2 − B2
0
η
, λ2+ ∼ iβk

k2 + m2 − μ− ν(m2 + k2)− k2B2
0

η(m2 + k2)
,

(3.42a,b)

in the large η limit. Hence the action of the magnetic field is to enhance the damping of
the waves, and thus to have a stabilising effect.

The solutions of s� predicted by (3.41) are real, as in the hydrodynamic case. As B0�
increases, s� will reduce and finally become negative, so that the instability is suppressed
by the field. Equation (3.41) remains a sound approximation in this limit, as we will
demonstrate in § 3.5 via comparison with numerical solutions of the full dispersion
relation. Note that the right-hand side of (3.41) arises solely from the Reynolds stress,
which is strongly damped by the magnetic field; the Maxwell stress itself is negligible in
this regime.

3.4.2. The limit of small η� and small B0�
In the limit of B0�, η� → 0 while B2

0�/η� remains finite, the dispersion relation reduces to
a different expression

s�+μ�+ν�m2
� = m2

�(1 − m2
�)

2(μ�+ν�)
1

(s�+2μ�+2ν�+ν�m2
�)(1 + m2

�)+ iβ�m2
�

− m2
�B

2
0�

2η�β2
� s�

+ c.c.e.s. (3.43)

This expression corresponds to a simplified mean-flow evolution equation,

dÛ
dt

+ μÛ + νm2Û = mk2
∫ t {

Λψ̂∗
1(t)ψ̂1(τ ) exp[λ2+(t − τ)]

−â∗
1(t)â1(τ ) exp[λ2−(t − τ)] + c.c.

}
Û(τ ) dτ. (3.44)
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The magnetic term in (3.43) therefore comes from the quadratic term â∗
1(t)â1(τ ), its

negative sign exhibiting a stabilising effect of the magnetic field. From the original mean
flow equation (3.8), we observe that â∗

1(t)â1(τ ) and ψ̂∗
1 (t)ψ̂1(τ ) arise from the Maxwell

and Reynolds stresses, respectively, and so the stabilising effect of the magnetic field can
be interpreted as the Maxwell stress counteracting the Reynolds stress. The quadratic term
from the magnetic field shares similarities with equation (39) of Chen & Diamond (2020),
but our system incorporates more details of the time dependent waves, unlike in their
system where the stochastic magnetic field is taken to be static.

For finite η� and B0�, (3.43) is valid when η�,B2
0� � ν�. The magnetic term raises the

order of the equation from cubic in (2.31) to quartic, and with this we will shortly find
some branches of complex solutions for s�. The presence of complex eigenvalues s� has
important implications for the stochasticity of the flow, as we will see in § 3.6 via numerical
simulations. The expression (3.43) can be used to predict the field strength that makes s�
complex for all wavenumbers, but not to predict the field that makes Re s� < 0 and thus
suppresses the exponential growth. Such a magnetic field turns out to be very strong, and
we will demonstrate this regime subsequently in § 3.4.3.

3.4.3. The limit of small η� and large B0�
Finally we derive an asymptotic dispersion relation for a relatively strong magnetic field
and weak magnetic diffusivity. In the limit of η� → 0 and B0� → ∞, we find

(s�+μ�+ν�m2
�)s�=NUB�NBU�, (3.45)

with

NUB� = im2
�(m

2
� + 2)[iβ�−ν�(m4

� + m2
�)]

2B0�(μ�+ν�)(m2
� + 1)[ν�m4

� + (iβ�+2s�+2μ�+3ν�)m2
� + 2(s�+μ�+ν�)]

+ c.c.e.s., (3.46)

NBU� = −im2
�[2ν�(m

4
� + 2m2

� + 1)+ 2μ�(m2
� + 1)+ (2s�+iβ�)m2

�]
2B0�(μ�+ν�)[ν�m4

� + (iβ�+2s�+2μ�+3ν�)m2
� + 2(s�+μ�+ν�)]

+ c.c.e.s. (3.47)

Here (NUB�,NBU�) = σ−(2/3)(NUB,NBU) (see (3.36)), while NUU and NBB may be
neglected at leading order. The relation (3.45) has some distinctive properties. In the
previous two asymptotic dispersion relations (3.41) and (3.43), only NUU plays a role
(corresponding also to (3.37a,b)), hence the hydrodynamic instability still has a major
contribution, although it is modified by the magnetic field. On the contrary, in (3.45),
NUU becomes negligible and NUB and NBU are the leading-order terms. This means the
hydrodynamic instability is suppressed by the strong magnetic field, and the interaction
between the mean flow and mean field is the dominant effect, which can yield zonostrophic
instability. Another distinguishing feature of this dispersion relation is that η� does not
appear in (3.45)–(3.47). Hence when the magnetic diffusivity is weak enough, it no longer
affects the instability.

For finite B0� and η�, (3.45) is valid when B0� is at order ν−1
� or larger and η� is much

smaller than ν�. The eigenvalue s� in this regime is generally complex. The relation (3.45)
can be used to predict the transition from Re s� > 0 to Re s� < 0 as B0� increases, and so
provide insights about the instability threshold.
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Figure 5. The dispersion relation giving s for different magnetic field strengths B0 at η = 10−2, corresponding
to η� = 19. The other parameters are β = 5, σ = 0.05, ν = 10−4, μ = 0, k = 16 corresponding to β� = 2.3,
ν� = 0.19; B0 = 0.01 corresponds to B0� = 1.2. Solid lines represent numerical solutions, and dashed lines
represent the results of the asymptotic solution (3.41).

In the next section, we will compare the predictions of the asymptotic dispersion
relations with numerical solutions. We will also derive scaling laws for instability
thresholds.

3.5. Results and discussion
We now discuss the solution for the growth rate s determined by the full dispersion relation
(3.36), focusing on the effect of the magnetic field B0 and the magnetic diffusivity η. We
fix the other parameters at β = 5, σ = 0.05, ν = 10−4, μ = 0, k = 16 corresponding to
β� = 2.3, ν� = 0.19, as used previously for the hydrodynamic case.

Figure 5 shows s calculated from the dispersion relation for various B0 at a relatively
high magnetic diffusivity η = 10−2, corresponding to a large η� = 19. The solid lines are
the numerical solutions of (3.36), and the dashed lines are the results of the asymptotic
solution (3.41) derived under the condition of large η�. All the solutions for the growth
rate s are real. The agreement between the asymptotic and numerical solutions is good for
all of the cases presented. Increasing the magnetic field reduces the growth rate, through
damping the flow as discussed above, and finally suppresses the instability.

Figure 6 shows s calculated from the dispersion relation at a moderate magnetic
diffusivity η = 10−4, equal to the viscosity ν = 10−4. The red lines correspond to real
solutions for s, and the blue lines give complex solutions s = sr + isi. Unfortunately, we
do not have analytical results for a comparison in this regime and only show numerical
solutions. The magnetic field again has a stabilising effect, but the behaviour of the
dispersion relation is significantly different from figure 5. In particular, there are two
branches of real modes which can be unstable; the lower branch originates from the
stable modes at B0 = 0, corresponding to the dissipation of mean field governed by
(3.38). When two branches of real modes merge at a certain wavenumber (e.g. m ≈ 7 for
B0 = 0.01), a complex mode branches out. As the magnetic field increases, the waveband
of real modes shrinks and that of complex modes broadens. Complex modes can also
have sr > 0 and thus be unstable, but the real modes generally have larger growth rates.
A magnetic field reduces the real part of the growth rates (except for weak instabilities at
large wavenumbers), and suppresses instability when strong enough. The imaginary part
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Figure 6. The dispersion relation giving s for different magnetic field strengths B0 at η = 10−4, corresponding
to η� = 0.19; B0 = 0.01 corresponds to B0� = 1.2. The other parameters are the same as figure 5. The real part
sr of the growth rate is shown in (a) and the imaginary part si in (b). Red lines represent real solutions, and
blue lines represent complex solutions.

si first increases with the field, and then decreases when the field becomes strong. Our
dispersion relation in this case is similar to figure 2 of Constantinou & Parker (2018).

Figure 7 shows the dispersion relation at a weak diffusivity η = 10−5, corresponding to
η� = 0.019. In this situation, our approximate solutions give good predictions for different
regimes; the dashed lines are the results of the asymptotic dispersion relation (3.43) for
weak magnetic field, and the dash–dot lines are the result of (3.45) for a strong field. The
dispersion relation behaves very differently from the previous two cases (figures 5 and
6). For weak field B0 ≤ 0.0032, the curves for real modes form a family of closed loops,
and complex modes branch out at the left-hand and right-hand edges of each loop. The
loops shrink significantly as the field is increased from low levels, a behaviour that can be
predicted from (3.43), indicating that the Maxwell stress is responsible for the stabilising
effect. The loops of real modes disappear at B0 ≈ 0.0033, and for fields stronger than
this all unstable modes are complex. The growth rate of complex modes then reduces as
the field becomes stronger, but less dramatically; instability is suppressed only when B0
reaches the order of 0.1, corresponding to B0� = 12. The behaviour at such strong fields is
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η = 10–5

B0 = 0

0.01
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0
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m
Figure 7. The dispersion relation giving s for different magnetic field strengths B0 at η = 10−5, corresponding
to η� = 0.019; B0 = 10−3 corresponds to B0� = 0.12. The other parameters are the same as figure 5. The
solid lines are numerical solutions; the dash and dash–dot lines are the solutions of the asymptotic dispersion
relations (3.43) for weak field and (3.45) for strong field, respectively.

well captured by the asymptotic dispersion relation (3.45), indicating that the interaction
between the mean flow and mean field is the main source for the instability.

In figure 8, we show the stability diagram in the (B0, η) plane for zonostrophic instability
in the MHD system, summarising the stable and unstable regions given in figures 5–7.
The boundaries between the stable and unstable regions are indicated by the solid lines,
with data points represented by the stars. Scaling laws (to be derived shortly) are plotted
in dashed lines. If the magnetic field B0 is strong enough, it can suppress the instability
for any prescribed η and the flow is stable. On the other hand, for any fixed B0, if the
diffusivity η is high enough, it can counteract the effect of the field and we recover
the hydrodynamic instability. There is a region labelled ‘unstable with complex growth
rates’, which corresponds to the situation in figure 7(a): for 0.0032 < B0 < 0.5, there are
no growth rates that are real and positive, but complex growth rates may have positive
real parts. For typical flow instability problems, this region would be simply regarded
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Figure 8. Stability diagram of the mean flow/field zonostrophic instability in the (B0, η)-plane. The
classification is based on the maximum sr over all wavenumbers m. The parameters are β = 5, σ = 0.05,
ν = 10−4, μ = 0, k = 16 corresponding to β� = 2.3, ν� = 0.19. The region ‘unstable with complex growth
rates’ means all real growth rates are negative, but complex growth rates have positive real parts. Dashed lines
are the indicated scaling laws.

as ‘unstable’, but there are uncertainties around its interpretation for our problem which
concern the statistical behaviour of zonostrophic instability. Thus, we regard this region
with caution and will discuss its subtle properties later on.

We now derive scaling laws for the stability boundaries based on our reduced dispersion
relations, which will provide new insights and general conclusions. Again, we assume
μ� � ν� � 1 while β� is of order of unity or larger. At high magnetic diffusivity, the
instability threshold can be predicted by the asymptotic dispersion relation (3.41). For
neutral stability s = 0, if we balance the viscosity term on the left-hand side with the
right-hand side, assuming small m� (as we see in figure 5), we have

ν�m2
� ∼ m2

�

2 × (B2
0�/η�)× (B2

0�/η�)× 2
× 2, (3.48)

which yields a scaling law

B2
0� ∼ η�√

2ν�
or B2

0 ∼ ησ

k
√

2ν
. (3.49)

This scaling law provides the very precise prediction seen in the top right of figure 8.
At low magnetic diffusivity, the boundary between the region of ‘unstable’ and ‘unstable

with complex growth rates’ corresponds to when the loops of real modes disappear in
figure 7(a), and may be estimated using the asymptotic dispersion relation (3.43). When
the loops disappear, s� approximately reduces by half, so we may very roughly estimate
that the magnetic term in (3.43) reaches half of the hydrodynamic term. Noting s� � ν�
and m� is relatively small when the loop disappears, we have the balance

m2
�B

2
0�

2η�β2
� s�

∼ 1
2

× m2
�

2ν�s�
, (3.50)
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Statistical zonostrophic instability with magnetic field

and this provides the scaling law

B2
0� ∼ η�β

2
�

2ν�
or B2

0 ∼ ηβ2

2νk4 . (3.51)

As seen in figure 8, this scaling law also gives fairly good predictions, and agrees
qualitatively with that found by Tobias et al. (2007) and Parker & Constantinou (2019),
as we will elaborate subsequently.

Finally, the boundary between the region of ‘unstable for complex growth rates’ and
‘stable’ corresponds to when sr of the complex mode in figure 7(a) changes sign, which can
be described by the reduced dispersion relation (3.45). Due to the complicated expressions
for NUB� and NBU�, we are not able to factor out the real part of s�, and we will only roughly
estimate the threshold based on the orders of terms. Numerical solutions suggest that at
the stability threshold, the purely imaginary s� is of the order of ν� which is small, hence
we can deduce

NUB�,NBU� = O
(

1
β�B0�

)
. (3.52)

Note that the O(ν−1
� ) terms are cancelled by the c.c.e.s. Then balancing the left-hand and

right-hand sides of (3.45) indicates that B0� ∝ (β�ν�)
−1. At this point, we can only use

data fitting to find the constant factor in this relation: we find the factor 4 fits the numerical
solution well. Hence, we have the scaling law,

B0� ∼ 4
β�ν�

, B0 ∼ 4σ 2

βνk2 , (3.53a,b)

which appears in figure 8 as the vertical dashed line. Although we have fitted the constant
to obtain this law, the analysis reveals key underlying physics: we have B0� ∝ ν−1

� � 1,
showing that complex unstable modes survive strong magnetic fields, and that as η�
becomes small it no longer affects the stability boundary.

For moderate magnetic diffusivity η ∼ 10−4 = ν, we do not have an asymptotic
dispersion relation, unfortunately. We see that the stability behaviour in figure 8 is rather
complicated: the three regions are all present, and the boundaries wobble as η increases.
The explanation may be that since the magnetic diffusivity is similar in magnitude to
the viscosity, the interaction between the flow and the field is very active. All of the
mechanisms that we have identified (e.g. increased viscosity, Maxwell stress and mean
flow–mean field interaction) are all present. In other words, none of the terms or effects in
(3.30) and (3.31) may be neglected.

Tobias et al. (2007) and Constantinou & Parker (2018) also considered the stability
diagram in the (B0, η) parameter plane. We show their results in figure 9 and compare them
with our figure 8. Tobias et al. (2007) performed numerical simulations and examined
the conditions for which the large-scale zonal flows emerge. Their results are shown in
figure 9(a), where a plus or diamond sign represents conditions for which a large-scale
zonal flow did or did not emerge, respectively. From these data points, they found that the
boundary between these two situations obeys a scaling law B2

0/η = constant. Compared
with our study, this scaling law corresponds to our result (3.51) at low magnetic diffusivity,
which also obeys B2

0 ∝ η.
Constantinou & Parker’s (2018) study was based on a zonostrophic instability analysis.

One of their results is shown in figure 9(b), where a plus sign represents a real and positive
growth rate, a star represents a complex growth rate and a circle represents a real negative
growth rate. We see the structure of the three regions is similar to our figure 8 around
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Figure 9. Stability diagram in the (B0, η) plane taken from (a) Tobias et al. (2007) and (b) Constantinou &
Parker (2018) (figures reproduced with permission from the authors). In (a), the plus signs represent simulations
in which large-scale zonal flows emerge, and the diamond symbols simulations in which they do not. The solid
line is defined by B2

0/η = constant. In (b), the plus signs represent unstable modes with real growth rate, the
stars represent complex growth rates, and the circles represent stable modes. The solid line is defined by (3.54).

η ∼ 10−4 (however, we note a difference in definition: their region of complex growth
rates counts those with both positive and negative real part, while ours only includes those
with positive real part). Their empirical boundary is defined by

ω2
A

ω2
R

1 + Pr2
m

Prm
= 1, (3.54)

where ωA and ωR are the frequencies of shear Alfvén and undamped Rossby waves,
respectively, and Prm = ν/η is the magnetic Prandtl number. Translated to our notation,
this scaling law becomes

B2
0 = νηβ2

(η + ν)2k4 . (3.55)

For small magnetic field strengths, it agrees with our scaling law (3.51) up to a constant
factor. Constantinou & Parker (2018) inferred this scaling law from the form of the
spatiotemporal correlation function of the magnetic field. Our derivation further clarifies
the physics.

We will return to the discussion of the region of ‘unstable with complex growth rates’ in
our figure 8 shortly. Constantinou & Parker (2018) also reported complex growth rates with
a positive real part. However, compared with figure 9(a), this region seems to correspond
to the conditions where Tobias et al. (2007) found no zonal flow forms, i.e. which should
be regarded as zonostrophically stable. The properties of these modes therefore remain
curious. We will investigate the behaviour of these complex modes using numerical
simulations in the next section, considering in particular the stochastic behaviour of the
flow and field.

3.6. Numerical simulation
We now perform numerical simulations for the MHD flow governed by (3.1) and (3.2).
We use a pseudospectral method, as described for the hydrodynamic case, except that for
weak diffusivity η = 10−5 corresponding to η� = 0.019, we use a higher resolution of
512 × 512 mesh points. We use the same initial condition ψ = 10−4 cos(my) for the flow,
and there is no magnetic perturbation, B = 0 initially; only the uniform background field
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Figure 10. Numerical simulation for the MHD flow for B0 = 0.01, η = 10−2, β = 5, k = 16, ν = 10−4,
μ = 0, σ = 0.05, m = 5, corresponding to β� = 2.3, ν� = 0.19, B0� = 1.2, η� = 19, m� = 0.31. Panels (a,b)
show the evolution of vorticity ζ and current density j; panels (c,e) are the Hovmöller diagram for the mean
flow U( y, t) and field B( y, t) and panels (d, f ) show the r.m.s. value of U and B, respectively; solid lines are the
results of the numerical simulation, and the red straight lines are the theoretical prediction, with growth rate
s = 4.35 × 10−2.

B0 is present. We will consider various values of B0 and η, as studied in figures 5–7,
and use the same values for the other parameters, namely k = 16, m = 5, σ = 0.05,
β = 5, μ = 0, ν = 10−4, corresponding to β� = 2.3, ν� = 0.19, m� = 0.31, as we did in
the purely hydrodynamic simulation in § 2.5.

We first study the case of relatively high magnetic diffusivity η = 10−2, corresponding
to the dispersion relations shown in figure 5. The evolution of the vorticity ζ and current
density j are shown in figure 10(a,b), and the evolution of the mean flow U and mean field
B are shown in figure 10(c–f ). The behaviour of ζ and U is similar to the hydrodynamic
case – zonostrophic instability causes exponential growth of the zonal flow, forming two
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Figure 11. Temporal evolution of Urms for η = 10−2 (η� = 19) and (a) B0 = 0.01 (B0� = 1.2), (b) B0 = 0.03,
(c) B0 = 0.05. The other parameters are the same as in figure 10. Solid lines represent 10 realisations of the
numerical simulation of the stochastic flow, and the thick red lines give the theoretical prediction. In (d), the
ensemble average of the 10 realisations for each B0 is shown together with the theoretical prediction plotted in
straight lines.

zonal jets in opposite directions. The zonal jets shear the vorticity, causing sinuous winding
which becomes stronger over time. The exponential growth of Urms in figure 10(d) agrees
very well with that of the expectation predicted by theory. The spatial structure of j in
figure 10(b) behaves in a similar way to that of ζ in figure 10(a), but has a much weaker
amplitude. The mean field B grows exponentially during the exponential growth of the
zonal flow in figure 10( f ), but then falls back to very small values. It thus appears that the
field is largely controlled by the flow.

To further explore the stochastic behaviour of the MHD system, we consider three
different magnetic field strengths B0 = 0.01, 0.03, 0.05 at the same η = 10−2, and run
10 simulations for each case. The numerical results for Urms are shown in figure 11(a–c).
We also plot a thick straight line to indicate the exponential growth of the expectation,
as predicted by theory. The value of the growth rate s is indicated in the title of each
plot. Although there is significant variability, the theoretical prediction for the expectation
generally agrees with the growth or decay in each realisation, thus providing support for
the full ergodic assumption (3.34a,b). In figure 11(d), we show the ensemble averages
and the theoretical prediction. There is good agreement for all three cases, confirming the
theory. The stabilising effect of the magnetic field is also clearly demonstrated.

Next, we consider the zonostrophic instability at a moderate diffusivity η = 10−4;
results from the dispersion relation for this case have been set out in figure 6. In figure 12,
we present the evolution of j, η, U and B for one realisation with B0 = 0.01. Zonal flows
again emerge as a result of zonostrophic instability, but the weaker magnetic diffusivity
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Figure 12. Numerical simulation for the MHD flow for B0 = 0.01, η = 10−4 corresponding to B0� = 1.2,
η� = 0.19, with the theoretical growth rate s = 3.31 × 10−2. The other parameters and the contents of the
panels are the same as in figure 10.

results in a stronger influence of the magnetic field. For example, the strengths of j and B
are now of the same order as ζ and U, respectively, indicating similar importance of the
flow and the field. The spatial pattern of j in figure 12(b) is characterised by elongated thin
filaments, somewhat different from the vortices seen for ζ in figure 12(a). The growth of
Urms in figure 12(d) is somewhat faster than that predicted for the expectation by theory,
and the agreement is now only qualitative.

Following the typical realisation in figure 12 for a moderate diffusivity η = 10−4

with B = 0.01, we have undertaken a series of runs. Figure 13 shows 10 realisations
for each of the four magnetic field strengths B0 = 5 × 10−3, 10−2, 3 × 10−2 and 10−1

in figure 13(a–d); the theoretical growth rate of the expectation is plotted using thick
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straight lines. The ensemble average for each field strength is shown in figure 13(e) and also
compared with theory. The growth rates s for B0 = 3 × 10−2 and 10−1 in figure 13(c,d)
are complex, and we only plot the exponential growth or decay from the real part of s;
we will elaborate more on this issue shortly. Note that the wavenumber is fixed to be
m = 5 for different B0, hence the instability property of a particular (B0, η) simulation set
here could be slightly different from that in figure 8 which is based on the most unstable
wavenumber. For very weak magnetic field B0 = 5 × 10−3 in figure 13(a), each realisation
has a growth rate reasonably close to that the theory predicts for the expectation, with
good agreement for the ensemble average in figure 13(e), similar to the hydrodynamic
case. As B0 increases to 10−2 in figure 13(b), for realisations where exponential growth is
prominent, the theoretical result still captures the behaviour fairly well, resulting in good
agreement again for the average in figure 13(e). However, there are also many realisations
in figure 13(b) where the zonal flow does not grow (up to the length t = 200 of our
simulations), and the system now shows an increased degree of randomness.

At a stronger background field B0 = 3 × 10−2, where s = 3.2 × 10−3 + 6.5 × 10−3i
becomes complex, individual realisations become more chaotic, in figure 13(c): the
growing realisations often have much larger growth rates than the theory for the
expectation, while the decaying ones may reach very small amplitudes. Their ensemble
average in figure 13(e) also shows a poorer agreement with the expectation. Finally, at
the largest B0 = 0.1, the theory predicts that the expectation should decay; individual
realisations may again behave differently, but these appear less chaotic in nature. At earlier
times, the ensemble average has good agreement with the expectation, whilst at later
times, occasional growth of some realisations make the ensemble average diverge from the
expectation. In summary, at this lower value η = 10−4 of the magnetic diffusivity, zonal
flows of individual realisations have a higher degree of randomness and their growth may
diverge from that of the expectation as predicted by theory. The full ergodic assumption
for the mean flow and field stated in (3.34a,b) is therefore very questionable here, and in
fact does not appear to operate in any meaningful, qualitative, way. However, our instability
analysis does not use the full ergodic assumption in the form (3.34a,b). Rather, we used the
partial ergodic assumption (3.33a,b) which allows variation of individual realisations from
the expectation, and is thus a better approximation in this situation. The use of the partial
ergodic assumption is supported by the fairly good agreement between the expectation
from the theory and the ensemble average of the simulations.

In figure 13(c,d), we also observe prominent high-frequency oscillations of the zonal
flow. We find their frequencies are very well described by

ω = 2kB0, (3.56)

i.e. the zonal flow oscillates at twice the characteristic Alfvén wave frequency. We have
confirmed that this frequency is not the frequency of the magneto-Rossby waves of either
the basic state or the disturbances, represented by the imaginary parts of λ1± and λ2±
(cf. (3.14) and (3.29)), respectively. Nor is it related to the imaginary part of s whose
physical meaning as yet remains obscure. Our understanding of this oscillation remains
limited. From the appearance of (3.56), the oscillation results from the coupling between
the forcing with wavenumber k and the basic magnetic field B0, but we do not have a
quantitative argument to describe this. We have confirmed that this oscillation also appears
in the linearised mean flows described by (3.30) and (3.31), but not in their expectations
(C3) and (C4), thus it seems that the flow stochasticity is a key element to excite this
oscillation.

Finally, we explore the case of very weak magnetic diffusivity η = 10−5, corresponding
to the zonostrophic instability studied in figure 7. In figure 14, we show a realisation for
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Figure 13. Temporal evolution of Urms at η = 10−4 (η� = 0.19) and (a) B0 = 5 × 10−3, (b) B0 = 10−2

(B0� = 1.2), (c) B0 = 3 × 10−2, (d) B0 = 10−1. The other parameters are the same as in figure 10. Solid lines
represent 10 realisations of the numerical simulation of the stochastic flow, and the thick red lines represent
the prediction of the zonostrophic instability. In (e), the ensemble average of the 10 realisations for each B0 is
shown by solid lines, compared with the red straight lines giving theoretical growth rates.

B0 = 0.01. The weak magnetic diffusivity renders very fine filaments in the spatial pattern
of the current j, which also influences the pattern of ζ . The exponential growth of Urms
and Brms is much faster than that predicted by the theory for the expectation, indicating
a high degree of stochasticity. The oscillations of the mean flow and the mean field with
frequency twice the Alfvén frequency become more prominent. A key point we emphasise
is that as the theoretical growth rate of zonostrophic instability is s = 0.016 + 0.039i, this
case falls into the regime of ‘unstable with complex growth rates’ in figure 8. Hence, in
contrast to Tobias et al. (2007) who found this region to be stable, we have a concrete
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Figure 14. Numerical simulation for the MHD flow for B0 = 0.01, η = 10−5, corresponding to B0� = 1.2,
η� = 0.019, with theoretical growth rate s = 1.60 × 10−2 + 3.94 × 10−2i. The other parameters and panels
are the same as in figure 10. In (d, f ), only the real part of s has been used to plot the theoretical growth.

example of zonostrophic instability taking place and generating zonal flows. The data of
the white noise for this realisation has been documented and is available online (see the
data access statement at the end of the paper).

We then show 10 realisations at various magnetic field strengths B0 = 2.5 × 10−3,

10−2, 2 × 10−2 and 5 × 10−2 with η = 10−5 fixed in figure 15. The behaviour shows
many similarities to figure 13, but our main objective is to confirm the statistical
behaviour of modes which are unstable with complex growth rates. At the low diffusivity
of η = 10−5, a wide range of field strengths B0 fall into this category, and as
shown in figure 7, unstable complex modes are dominant for stronger magnetic fields.
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Figure 15. Temporal evolution of Urms for η = 10−5 (η� = 0.019) and (a) B0 = 2.5 × 10−3, (b) B0 = 10−2

(B0� = 1.2), (c) B0 = 2 × 10−2, (d) B0 = 5 × 10−2. Other information is the same as in figure 13.

In figure 15, the cases of B0 = 10−2 and 2 × 10−2 in figure 15(b,c) are unstable with
complex growth rates. As we see, the realisations for B0 = 10−2 and 2 × 10−2 are highly
chaotic. The theory developed predicts an exponential growth of the expectation, but
individual realisations either have much faster growth or decay significantly; very few
evolve as theory predicts. The high frequency oscillations with frequency twice the
Alfvén frequency also become very strong, making the evolution even more disorganised.
There appear to be more decaying realisations for B0 = 2 × 10−2 than for B0 = 10−2,
an indication of the stabilising effect of the field. The agreement between the ensemble
average over the 10 realisations simulated and the growth rate of the expectation shown
in figure 15(e) for B0 = 10−2 and 2 × 10−2 is adequate, but not as good as the case of
B0 = 2.5 × 10−3 where the growth rate is real and positive. At an even stronger field
B0 = 5 × 10−2 when sr becomes negative, individual realisations remain highly chaotic,

999 A77-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.801


C. Wang, J. Mason and A.D. Gilbert

but there is good agreement between their ensemble average and the decay predicted by the
theory at the early stage. Hence, we have confirmed that the modes that are unstable with
complex growth rates are highly stochastic; for an individual realisation, zonal flow may
or may not emerge, and the growth rate predicted for the expectation of the mean fields
has little relevance. While the full ergodic assumption (3.34a,b) clearly does not work, the
partial ergodic assumption (3.33a,b) is also put into doubt given the theoretical prediction
does not agree well with the numerical ensemble average. We could also question the
validity of the quasilinear approximation (3.6)–(3.9), which is a fundamental assumption
employed by the theory.

Our conclusion seems different to that of Tobias et al. (2007) who suggest that the region
of ‘unstable with complex growth rates’ in figure 8 should have no zonal flow formation.
We think the reason for this disparity may lie in the forcing: our simulations indicate that
different realisations yield wildly different evolution of the mean flow, so that any single
simulation is unrepresentative. It is also possible that the spatial structure of the forcing
could make a difference: our forcing only has one wavenumber in the x-direction, while
Tobias et al. (2007) used a range of wavenumbers in both the x and y-directions. We leave
the issue of more realistic forcing for further investigation.

Despite our investigations of the modes with complex growth rates, there are still
many aspects that we do not fully understand, in particular the physical meaning of the
imaginary part of s. A straightforward interpretation is that it represents oscillation of
the expectation, but oscillation is more a property of waves than mean flows. Indeed,
the ensemble mean from numerical simulations does not pass through zero as the theory
would otherwise predict. Mainly for this reason, we have not included the imaginary part
of s in comparisons with the numerical simulations. On the other hand, when s is complex
with a positive real part, the agreement between the theory and the simulations is not so
good, suggesting that the imaginary part of s has a role that we do not yet understand.
Linked with this is the observation that when s is complex, runs show highly disorganised
evolution of mean flow and field; we do not know if these are related, nor can we currently
explore this in depth given the expense of computing a sufficiently large ensemble. Since
complex growth rates can also arise for hydrodynamic zonostrophic instability with a more
complicated forcing structure (Ruiz et al. 2016), we suspect similar phenomena could take
place in these non-magnetic systems. Studying this further, perhaps via a Fokker–Planck
equation, is a topic for future research.

4. Conclusions and remarks

In this paper, we have studied zonostrophic instability focusing on its statistical properties
and the effect of a magnetic field. We apply a stochastic forcing with its amplitude varying
in the form of a white noise, which generates random waves. Weak zonal flows can then
grow exponentially to generate strong and stable zonal jets. We study the expectation of the
zonal flow and we have derived the dispersion relation for its exponential growth. We have
also undertaken numerical simulations of many realisations of stochastic flows to compare
with theory, and examined the validity of the widely used mean-flow ergodic assumption,
which assumes the zonal mean flow remains the same in different realisations.

In the zonostrophic instability analysis, we have developed a method that does
not depend on the spatiotemporal correlation functions employed in many previous
studies. Instead, we analyse stochastic waves directly taking advantage of the temporal
delta-correlation property of white noise. This allows us to derive simplified dispersion
relations in the limits of weak and strong magnetic field and magnetic diffusivity. Our
analysis has revealed the key role played by the temporal correlation of the stochastic
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waves in the zonostrophic instability. Regarding the mean-flow ergodicity, our derivation
depends on a weaker assumption compared with previous studies. We assume that the
mean flow can still be stochastic, but its stochasticity is uncorrelated to the stochasticity of
the waves. We refer to our assumption as a ‘partial ergodic assumption’, in contrast to the
‘full ergodic assumption’ where the mean flow has no stochasticity.

The dispersion relations that we derive provide straightforward insights into the effect
of the magnetic field and scaling laws for the instability thresholds. We find that when the
magnetic diffusivity is strong, the effect of the magnetic field is equivalent to increasing
the damping of the waves. When the magnetic diffusivity is very weak, for weak uniform
magnetic fields, it acts through the Maxwell stress to counteract the Reynolds stress,
whereas at strong magnetic field, the interaction between the mean flow and mean field
is the dominant dynamics. The magnetic field mainly plays a stabilising role and inhibits
zonal flows, but in the regime of weak diffusivity and strong field, the interaction between
the mean flow and mean field can have a destabilising effect.

In the numerical simulations, we have seen the unstable formation of zonal flow. In order
to take into account the stochastic nature of the system, we have run multiple simulations in
each parameter regime. Comparing the ensemble average of the mean flow with the growth
of expectation predicted by the zonostrophic theory, we find good agreement in general.
When comparing the theoretical expectation with individual realisations, we find that there
is good agreement in the purely hydrodynamic case, or if the magnetic field is weak or if
the magnetic diffusivity is strong. Otherwise, significant differences between individual
realisations and the theoretical growth of the expectation typically take place. Specifically,
when the growth rate of the zonostrophic instability is complex with positive real part, the
individual realisations can have very chaotic behaviours, bearing rather weak relation to
the expectation, and whether the zonal flow will emerge for any one realisation is highly
unpredictable. Use of the full ergodic assumption, i.e. assuming the mean flow to be the
same in different realisations, thus appears to be very questionable in these situations.
The partial ergodic assumption, on which our analysis is based, is found to be a better
approximation as it allows stochasticity of the mean flow.

The increased randomness of the zonal flow caused by the magnetic field for weak
magnetic diffusion deserves further research. For example, what is the mechanism by
which the magnetic field makes the zonal flow more disorganised? Is there a way to
quantify and analyse this, for example through the covariance of the stochastic process? We
may also explore the effect of more realistic forcing, for example, an isotropic ring forcing
with wavevectors in all directions. The stochasticity of the zonal mean flow was often
neglected in previous studies (e.g. Farrell & Ioannou 2003; Srinivasan & Young 2012). In
those cases, the equations of the mean flow are deterministic, controlled by cumulants or
correlation functions. Our finding that the magnetic field can make the mean flow much
more stochastic needs further study.
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Appendix A. The white noise

In this appendix, we give a brief introduction to white noise, which can be found in
standard textbooks on stochastic processes or stochastic differential equations, and outline
its implementation in our numerical simulations. We first introduce the Wiener process or
Brownian motion W(t): its probability density at time t given its value w′ at t′ < t is

ρ(w, t | w′, t′) = 1√
2π(t − t′)

exp
(

−1
2
(w − w′)2

t − t′

)
. (A1)

A (real) white noise is then defined as

ξ(t) = W(t + Δt)− W(t)
Δt

, (A2)

in the limit Δt → 0. It has the property

E[ξ(t1)ξ(t2)] = δ(t1 − t2), (A3)

i.e. white noise at two different times is decorrelated. While (A3) is reached in the limit
Δt → 0, from a practical point of view, Δt should be much smaller than any other time
scale of the flow. To obtain a complex white noise, we define

ξ̂(t) = ξr(t)+ iξi(t)√
2

, (A4)

where ξr and ξi are two independent real white noises. Expression (A4) is the white noise
we use for our forcing (2.6) and it satisfies the properties given in (2.7a–c). For each
numerical realisation, we generate a Brownian motion evaluated at discrete times t1, t2,
. . ., governed by (A1), and then compute the white noise at these time steps via (A2) with
time step Δt. The temporal scheme that we use for our governing equations (2.1) with (2.6)
is
ζ(tn+1)− ζ(tn)

tn+1 − tn
+ (−ψyζx + ψxζy + βψx)t=tn

= σ ξ̂(tn) exp(ikx)+ c.c.− 1
2
μ[ζ(tn+1)+ ζ(tn)] + 1

2
ν[∇2ζ(tn+1)+ ∇2ζ(tn)]. (A5)

We use a Crank–Nicolson scheme for the dissipation term to avoid numerical instability.
We evaluate the white noise at the starting time point tn, as per the Itô interpretation. We
have checked that for a given Brownian motion, reducing our usual time step Δt = 0.005
to 0.0025 does not change the solution, and hence the numerical solution is robust.

999 A77-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

80
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

www.dirac.ac.uk
https://github.com/Chen-UIC/MHD-zonostrophic-instability
https://github.com/Chen-UIC/MHD-zonostrophic-instability
https://orcid.org/0000-0002-3577-7245
https://orcid.org/0000-0002-3577-7245
https://orcid.org/0000-0002-2669-0199
https://orcid.org/0000-0002-2669-0199
https://orcid.org/0000-0002-6940-1801
https://orcid.org/0000-0002-6940-1801
https://doi.org/10.1017/jfm.2024.801


Statistical zonostrophic instability with magnetic field

Appendix B. Comparison with the results of Srinivasan and Young

In this appendix, we show that our dispersion relation for hydrodynamic zonostrophic
instability is identical to the result of Srinivasan & Young (2012), provided that the same
forcing is applied. These authors defined a forcing with the property

E[F(x1, y1, t1)F(x2, y2, t2)] = δ(t2 − t1)F(x1 − x2, y1, y2). (B1)

The δ-function indicates a rapid decorrelation in time, and the dependence on x1–x2
indicates that the flow is zonally homogeneous. With the properties of white noise listed
in (2.7a–c), our forcing (2.6) satisfies (B1), where the spatial structure function is

F = 2σ 2 cos kΔx, (B2)

and Δx = x1 − x2. Its Fourier transform is

F̃ =
∫∫

F exp[−i( pΔx + qΔy)] dΔx dΔy = 4π2σ 2[δ( p − k)+ δ( p + k)]δ(q). (B3)

To compare with the result of Srinivasan & Young (2012), we need to consider a variable
a defined by F = ∇2a, where a is the forcing potential in the corresponding momentum
equation. It also has the spatiotemporal correlation function

E[a(x1, y1, t1)a(x2, y2, t2)] = δ(t2 − t1)A(x1 − x2, y1, y2). (B4)

The Fourier transform of A is

Ã = F̃
( p2 + q2)2

= 4π2σ 2[δ( p − k)+ δ( p + k)]δ(q)
( p2 + q2)2

. (B5)

Srinivasan & Young (2012) derived a dispersion relation for a general Ã( p, q), which is
their (C16),

s̄ =
∫∫

p2(h2++ − h2)h2(h2 − m2)

s′h2h2++ + iβp(h2++ − h2)

Ã
2μ+ 2νh2

dp dq
(2π)2

, (B6)

where

s̄ = s + μ+ νm2, s′ = s + 2μ+ 1
2
νm2 + 2ν

[
p2 +

(
q + 1

2 m
)2
]
,

h =
√

p2 + q2, h++ =
√

p2 + (q + m)2.

⎫⎪⎪⎬
⎪⎪⎭ (B7)

We note that for s′ given by their (C12), one should replace q by q + 1
2 m (see the paragraph

below their (C15)). If we substitute (B5) and (B7) into (B6), then after basic algebra, we
obtain exactly the same result as our (2.29).

Appendix C. Details of MHD zonostrophic instability

In this appendix, we provide some more details of the analysis of the MHD zonostrophic
instability. We first provide some more steps to derive (3.35) from (3.30) and (3.31).
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In (3.30) and (3.31), the expectations of quadratic terms of the fundamental waves are
derived using a similar method to that used for (2.27). We have

⎛
⎜⎜⎝

E[ψ̂∗
1(t)ψ̂1(τ )]

E[ψ̂∗
1(t)â1(τ )]

E[â∗
1(t)ψ̂1(τ )]

E[â∗
1(t)â1(τ )]

⎞
⎟⎟⎠ =

⎛
⎜⎝

Wψψ+ Wψψ−
Wψa+ Wψa−
Waψ+ Waψ−
Waa+ Waa−

⎞
⎟⎠
(

exp[λ∗1+(t − τ)]
exp[λ∗1−(t − τ)]

)
, (C1)

where

Wψψ+ = Ψ ∗+Ψ−
λ∗1+ + λ1−

− |Ψ+|2
λ∗1+ + λ1+

, Wψψ− = Ψ+Ψ ∗−
λ∗1− + λ1+

− |Ψ−|2
λ∗1− + λ1−

,

Wψa+ = Ψ ∗+A
λ∗1+ + λ1−

− Ψ ∗+A
λ∗1+ + λ1+

, Wψa− = Ψ ∗−A
λ∗1− + λ1+

− Ψ ∗−A
λ∗1− + λ1−

,

Waψ+ = A∗Ψ−
λ∗1+ + λ1−

− A∗Ψ+
λ∗1+ + λ1+

, Waψ− = A∗Ψ+
λ∗1− + λ1+

− A∗Ψ−
λ∗1− + λ1−

,

Waa+ = |A|2
λ∗1+ + λ1−

− |A|2
λ∗1+ + λ1+

, Waa− = |A|2
λ∗1− + λ1+

− |A|2
λ∗1− + λ1−

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C2)

We take the expectations of (3.30) and (3.31), assuming the expectations of the
fundamental wave and the mean flow or mean field are separable as in (3.33a,b), then
substitute in (C1) and (C2). After collecting terms with the same exponentials, we arrive at

dE[Û]
dt

+ μE[Û] + νm2
E[Û]

=
∫ t {

DD++ exp[(λ2+ + λ∗1+)(t − τ)] + DD+− exp[(λ2+ + λ∗1−)(t − τ)]

+ DD−+ exp[(λ2− + λ∗1+)(t − τ)]

+DD−− exp[(λ2− + λ∗1−)(t − τ)] + c.c.
}

E[Û(τ )] dτ

+
∫ t {

DM++ exp[(λ2+ + λ∗1+)(t − τ)] + DM+− exp[(λ2+ + λ∗1−)(t − τ)]

+ DM−+ exp[(λ2− + λ∗1+)(t − τ)]

+DM−− exp[(λ2− + λ∗1−)(t − τ)] + c.c.
}

E[B̂(τ )] dτ + c.c.e.Û.B̂, (C3)

dE[B̂]
dt

+ ηm2
E[B̂]

=
∫ t {

MD++ exp[(λ2+ + λ∗1+)(t − τ)] + MD+− exp[(λ2+ + λ∗1−)(t − τ)]

+ MD−+ exp[(λ2− + λ∗1+)(t − τ)]

+MD−− exp[(λ2− + λ∗1−)(t − τ)] + c.c.
}

E[Û(τ )] dτ

+
∫ t {

MM++ exp[(λ2+ + λ∗1+)(t − τ)] + MM+− exp[(λ2+ + λ∗1−)(t − τ)]
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+ MM−+ exp[(λ2− + λ∗1+)(t − τ)]

+MM−− exp[(λ2− + λ∗1−)(t − τ)] + c.c.
}

E[B̂(τ )] dτ + c.c.e.Û.B̂, (C4)

where DD++, DD+−, etc. are constants with expressions

DD++ = im2k(−ΛD+Wψψ+ + MWψa+ −ΛMWaψ+ − D−Waa+),

DD+− = im2k(−ΛD+Wψψ− + MWψa− −ΛMWaψ− − D−Waa−),

DD−+ = im2k(+ΛD−Wψψ+ − MWψa+ +ΛMWaψ+ + D+Waa+),

DD−− = im2k(+ΛD−Wψψ− − MWψa− +ΛMWaψ− + D+Waa−),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C5)

DM++ = im2k(−MWψψ+ +ΛD+Wψa+ + D−Waψ+ +ΛMWaa+),

DM+− = im2k(−MWψψ− +ΛD+Wψa− + D−Waψ− +ΛMWaa−),

DM−+ = im2k(+MWψψ+ −ΛD−Wψa+ − D+Waψ+ −ΛMWaa+),

DM−− = im2k(+MWψψ− −ΛD−Wψa− − D+Waψ− −ΛMWaa−),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C6)

MD++ = im2k(+ΛMWψψ+ + D−Wψa+ +ΛD+Waψ+ − MWaa+),

MD+− = im2k(+ΛMWψψ− + D−Wψa− +ΛD+Waψ− − MWaa−),

MD−+ = im2k(−ΛMWψψ+ − D+Wψa+ −ΛD−Waψ+ + MWaa+),

MD−− = im2k(−ΛMWψψ− − D+Wψa− −ΛD−Waψ− + MWaa−),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C7)

MM++ = im2k(−D−Wψψ+ −ΛMWψa+ + MWaψ+ −ΛD+Waa+),

MM+− = im2k(−D−Wψψ− −ΛMWψa− + MWaψ− −ΛD+Waa−),

MM−+ = im2k(+D+Wψψ+ +ΛMWψa+ − MWaψ+ +ΛD−Waa+),

MM−− = im2k(+D+Wψψ− +ΛMWψa− − MWaψ− +ΛD−Waa−).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C8)

Applying the exponential form (3.32a,b) to (C3) and (C4), we obtain (3.35) with constants

NUU = DD++
s − λ2+ − λ∗1+

+ DD+−
s − λ2+ − λ∗1−

+ DD−+
s − λ2− − λ∗1+

+ DD−−
s − λ2− − λ∗1−

+ c.c.e.s.,

NUB = DM++
s − λ2+ − λ∗1+

+ DM+−
s − λ2+ − λ∗1−

+ DM−+
s − λ2− − λ∗1+

+ DM−−
s − λ2− − λ∗1−

+ c.c.e.s.,

NBU = MD++
s − λ2+ − λ∗1+

+ MD+−
s − λ2+ − λ∗1−

+ MD−+
s − λ2− − λ∗1+

+ MD−−
s − λ2− − λ∗1−

+ c.c.e.s.,

NBB = MM++
s − λ2+ − λ∗1+

+ MM+−
s − λ2+ − λ∗1−

+ MM−+
s − λ2− − λ∗1+

+ MM−−
s − λ2− − λ∗1−

+ c.c.e.s.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C9)

When B0 = 0, only DD++ and MM−+ are not zero, which corresponds to the two
dispersion relations in (3.37a,b).

Next, we give the main steps used to derive the simplified dispersion relations in
the parameter limits discussed in § 3.4. For convenience, we use the parameters before
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rescaling. In the limit of large η

λ1− ∼ −ηk2, λ2− ∼ −η(k2 + m2) (C10a,b)

grow very large, in contrast to λ1+ and λ2+ that remain bounded (cf. (3.42a,b)). Hence in
(C9), all terms with λ1− and λ2− become negligible. A more detailed analysis indicates
that DM++, MD++ ∼ η−1 and so are also small, making the coupling terms NBU and NUB
negligible. Hence the only leading-order term left is the DD++ term.

In the limit of small η and B0, the derivation of (3.43) requires careful analysis of the
orders of various terms in (C9). The outcome is that only the DD−− ∼ O(B2

0/η) in NUU

remains at leading order. The contribution from other terms is either at O(B2
0) or O(B4

0/η)
or smaller.

In the limit of small η and large B0, while NBU and NUB are at O(B−1
0 ), NUU and NBB

are at O(B−2
0 ) and thus drop out of the leading-order terms of (3.36), given that s is also

small. Equations (3.45)–(3.47) correspond to η = 0; including small η only adds O(η/B0)
corrections to NUU and NBB which are of order O(1/B0). We have used the software
Maplesoft to derive the asymptotic dispersion relation in this limit.
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