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University of Oxford

Abstract: This chapter is a tutorial about some of the key issues in semantics of the
first-order aspects of probabilistic programming languages for statistical modelling –
languages such as Church, Anglican, Venture and WebPPL. We argue that s-finite
measures and s-finite kernels provide a good semantic basis.

2.1 Introduction

This Chapter is about a style of probabilistic programming for building statis-
tical models, the basis of languages such as Church (Goodman et al., 2008),
WebPPL (Goodman and Stuhlmüller, 2014), Venture (Mansinghka et al., 2014),
Anglican (Wood et al., 2014) and Hakaru (Narayanan et al., 2016).
The key idea of these languages is that the model is a combination of three things:

Sample: A generative model is described by a program involving not only bi-
nary random choices but also by sampling from continuous real-valued
distributions. In Bayesian terms, we think of this as describing the prior
probabilities.

Observe: Observations about data can be incorporated into the model, and these
are typically used as weights in a Monte Carlo simulation. In Bayesian
terms, we think of this as describing the likelihood of the data.

Normalize: Given a model, we run an inference algorithm over it to calculate the
posterior probabilities.

Probabilistic programming languages bring many of the abstract ideas of high-level
programming to bear on statistical modelling. Perhaps the most compelling aspect is
the idea of rapid development, first of quickly creating models, and second quickly
combining them with inference algorithms.
a From Foundations of Probabilistic Programming, edited by Gilles Barthe, Joost-Pieter Katoen and Alexandra
Silva published 2020 by Cambridge University Press.

43

https://doi.org/10.1017/9781108770750.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.003


44 Staton: Probabilistic Programs as Measures

There remain many practical and theoretical challenges with probabilistic lan-
guages of these kinds. The purpose of this chapter is to explain, for simple first order
programs, how we can understand them as measures in a compositional way.
We begin in Section 2.2 by introducing the general approach to probabilistic

programming and giving informal consideration to various aspects of the semantics
of probabilistic programs. We are led to the issue of unnormalizable posteriors
(§2.2.4). In Section 2.3 we develop the informal semantics from a measure-theoretic
perspective, demonstrating through examples why a naive semantics is not so
straightforward (§2.3.3).
In Section 2.4 we give a formal semantics for first order probabilistic programs as

measures. We do this by understanding expressions with free variables as s-finite
kernels (Def. 2.6). An s-finite kernel is, roughly, a parameterized measure that is
uniformly built from finite measures. Once this semantics is given, one can easily
reason about probabilistic programs in a compositional way by using measure theory,
the standard basis of probability. We give some simple examples in Section 2.5.

2.2 Informal semantics for probabilistic programming

2.2.1 A first example: discrete samples, discrete observation

To illustrate the key ideas of probabilistic programming, consider the following
simple problem, which we explain in English, then in statistical notation, and then
as a probabilistic program.

(i) I have forgotten what day it is.
(ii) There are ten buses per hour in the week and three buses per hour at the weekend.
(iii) I observe four buses in a given hour.
(iv) What is the probability that it is the weekend?

This is a very simple scenario, to illustrate the key points, but in practice, probabilistic
programming is used for scenarios with dozens of interconnected random parameters
and thousands of observations.
We assume that buses arrive as a Poisson process, meaning that their rate is given

but they come independently. So the number of buses forms a Poisson distribution
(Figure 2.1). We model the idea that the day is unknown by putting a prior belief that
all the days are equiprobable. The problem would be written in statistical notation
as follows:

(i) Prior: x ∼ Bernoulli( 27 )
(ii) Observation: d ∼ Poisson(r) where r = 3 if x and r = 10 otherwise;
(iii) d = 4;
(iv) What is the posterior distribution on x?
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Figure 2.1 The Poisson distributions with rates 3 and 10.

We describe this as a probabilistic program as follows:
1. normalize(
2. let x = sample(bernoulli( 27 )) in
3. let r = if x then 3 else 10 in
4. observe 4 from poisson(r);
5. return(x))

Lines 2–5 describe the combination of the likelihood and the prior. First, on line 2,
we sample from the prior: the chance that it is the weekend is 27 ; this matches line (i)
above. On line 3, we set the rate r of buses, depending on whether it is a week day.
On line 4 we record the observation that four buses passed when the rate was r,
using the Poisson distribution. So lines 3 and 4 match lines (ii) and (iii) above (but
not individually). The normalize command on line 1 is wrapped around the whole
program up to the return value on line 5, and corresponds to line (iv) above.

There are three naive ways to calculate the answer:

Posterior calculation 1: direct calculation using Bayes’ law. The first approach
is to calculate the posterior probability using Bayes’ law directly

Posterior ∝ Likelihood × Prior. (2.1)

For a discrete distribution, the likelihood is the probability of the observation
point d, which for the Poisson distribution with rate r is 1

d!r
de−r .

• The prior probability that it is the weekend is 27 , and then the likelihood of the
observation is 1

4!3
4e−3 ≈ 0.168; so the posterior probability that it is the weekend

is proportional to 0.168 × 2
7 ≈ 0.048 (likelihood×prior).

• The prior probability that it is a week day is 57 , and then the rate is 10 and the
likelihood of the observation is 1

4!10
4e−10 ≈ 0.019. So the posterior probability

that it is a week day is proportional to 0.019 × 5
7 ≈ 0.014.

https://doi.org/10.1017/9781108770750.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108770750.003
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• The measure (true �→ 0.048, false �→ 0.014) is not a probability measure because
it doesn’t sum to 1. To build a probability measure we divide by 0.048 + 0.014 =
0.062, to get a posterior probability measure (true �→ 0.22, false �→ 0.78).
The normalizing constant, 0.062, is sometimes called model evidence; it is an
indication of how well the data fits the model.

Posterior Calculation 2: Monte Carlo simulation with rejection. In more com-
plicated scenarios, it is often impractical to manage a direct numerical calculation
like the above, and so people often turn to approximate simulation methods. A
simulation with rejection works as follows:

• We run through the inner program (lines 2–5) a large number of times (say N).
• At a sample statement, we randomly sample from the given distribution. In Line 2,
there is a Bernoulli trial that produces true with probability 2

7 and false with
probability 5

7 . We might perform this by uniformly generating a random number
between 1 and 7 (the day of the week) and then returning true if the number is 6
or 7.

• At an observe statement, we also randomly sample from the given distribution,
but we reject the run if the sample does not match the observation. In Line 4, we
would sample a number k from the Poisson distribution with rate either 3 or 10,
depending on the outcome of Line 2 (according to Line 3) and then reject the run if
k � 4. This amounts to running a simulation of the bus network, but then rejecting
the run if the outcome of the simulation did not match our observation. That is to
say, we disregard or ignore the runs where the prior sample is inconsistent with
the observation.

• Line 5 says that the result of the run is x = true if it is the weekend on that run.
• Line 1, wrapped around the whole program, says that of the non-rejected runs,
we see what proportion of runs returns x = true. As N → ∞, the ratio will
tend towards (0.22 : 0.78), the true posterior distribution. Thus the normalize
command converts the sampler described by Lines 2–5 into a proper probability
distribution.

Posterior Calculation 3: Monte Carlo simulation with weights. The rejection
method is rather wasteful, and doesn’t scale clearly to the continuous situations that
we turn to later. An alternative is a simulation with likelihood weights, which works
as follows:

• We run through the inner program (Lines 2–5) a large number N of times.
• As before, at a sample statement, we randomly sample from the given distribution.
• At an observe statement, we do not sample. Rather, we use the density function
of the given distribution to weight the run. In Line 4, the density function of the
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Figure 2.2 The exponential distributions with rates r = 3 and r = 10.

Poisson distribution is 1
d!r

de−r , so we weight the run by either 0.168 or 0.019,
depending on the outcome of Line 2. In a program with multiple observations,
we accumulate the weights multiplicatively. (In practice it is numerically prudent
to use log-weights and add them.)

• Looking at all the runs, we see what weighted proportion of runs returns x = true.
As N → ∞, the ratio will tend towards (0.22 : 0.78).

In this discrete setting we can encode rejection sampling using a Monte Carlo
simulation with weights, by replacing Line 4 with

4′. let d = sample(poisson(r)) in observe 4 from dirac(d)
so that the weight will be either 1 (if d = 4) or 0 (if d � 4). When the weight is zero
the run is as good as rejected.

2.2.2 A second example: discrete samples, continuous observation

Now consider the following situation, which is almost the same but the observation
is different: we observe a 15 minute gap rather than four buses.

(i) I have forgotten what day it is.
(ii) There are ten buses per hour in the week and three buses per hour at the weekend.
(iii) I observe a 15 minute gap between two buses.
(iv) What is the probability that it is a week day?

In this example, since the buses are run as a Poisson process, the gap between them
is exponentially distributed (Figure 2.2). The exponential distribution is a continuous
probability measure on the positive reals; when the rate is r it has density function
t �→ re−rt . which means that the probability that the gap between events will lie in a
given interval U is given by

∫
U

re−rt dt.
In statistical notation, this example would be described as follows:
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(i) Prior: x ∼ Bernoulli( 27 )
(ii) Observation: d ∼ Exponential(r) where r = 3 if x and r = 10 otherwise;
(iii) d = 15

60 = 0.25;
(iv) What is the posterior distribution on x?

The program for this example differs from the previous one only on Line 4:

4′′. observe 0.25 from exponential(r);

Posterior calculation 1 (direct mathematical calculation) is easily adapted to this
situation. Here the likelihood of the observation (15mins) is again the value
of the density function, which is 3 × e−3×0.25 ≈ 1.42 when it is the weekend
and 10 × e−10×0.25 ≈ 0.82 when it is a week day. So the unnormalized
posterior has (true �→ 2

7 × 1.42 ≈ 0.405, false �→ 5
7 × 0.82 ≈ 0.586). In this

example the normalizing constant is 0.991, and the normalized posterior is
(0.408 : 0.592). Notice that likelihood is not the same as probability — it is
not even less than 1.

Posterior calculation 2 (rejection sampling) cannot easily be adapted to this situa-
tion. The problem is that although sampling from an exponential distribution
will often produce numbers that are close to 0.25, it will almost never produce
exactly 0.25, so almost all the runs will be rejected.

Posterior calculation 3 (weighted sampling) is easily adapted to this situation. The
weight on Line 4′′ will either be 1.42 or 0.82.

Calculation Method 2 (Rejection) is perhaps the most intuitive, so it is unfortunate
that it does not apply to this situation – not even theoretically. One way to resolve
this is to say that our observation is not precisely 15 minutes, but 15 ± ε minutes.
For all ε > 0 we can make a rejection sampling algorithm which rejects all runs
where the gap is not within 15 ± ε . In an analogous way to line 4′, we can encode
rejection sampling in an interval with weighted sampling, by replacing line 4′′ by

4′′′a. let d = sample(exponential(r)) in
4′′′b. observe d from uniform(0.25 − ε,0.25 + ε)

As ε → 0, in this example, the posterior probability from rejection sampling tends
to the posterior probability from weighted sampling.
(This is not a practical approach at all because, for small ε , the vast majority of

runs will be rejected. One practical solution to soften the hard rejection constraint
using noise from a normal distribution, e.g.

4′′′b′. observe d from normal(0.25, ε2 )
Here we use ε

2 as a small standard deviation.)
The correctness of this argument depends on some continuity issues, which have

been investigated in the setting of conditional probability by Tjur (1980, §9.12) and
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Figure 2.3 Discontinuous density functions for the GPA problem. See also Wu et al. (2018) and
Section 2.3.2. The idea is this: suppose that grades are distributed uniformly, except the top 1%
are given the maximum grade, which is 4 in the US and 10 in India. The problem is: given that I
observe a GPA of 4, what is probable nationality of the student? The answer: certainly US.

Ackerman et al. (2015). On the other hand, densities that arise in practice are not
always continuous: the GPA problem is an example of this that has been studied in
the probabilistic programming context (see e.g. Figure 2.3, and §2.3.2, and Nitti
et al., 2016; Wu et al., 2018).
In order to describe a situation as a program in this way, especially in a way that

is amenable to Calculation Method 3 (Weighted sampling), the likelihood function
of the observation distribution must be known. Research on automatic density
calculation is ongoing (Bhat et al., 2017; Gehr et al., 2016; Ismail and chieh Shan,
2016).

2.2.3 A third example: continuous samples, continuous observations

For a third example, we use a similar story but now with bikes rather than buses,
and rather than guess the day of the week we guess the time of day.

(i) I have forgotten what time it is.
(ii) The rate of bikes per hour is determined by a function of the time of day.
(iii) I observe a 1 minute gap between two bikes.
(iv) What time is it?

We model the idea that the time is unknown by picking the uniform distribution on
the continuous interval (0,24). Suppose that we have some idea of the number of
bikes per hour; the rate f (t) will vary according to the time t. A possible f is given
in Figure 2.4. In statistics notation, we would write:

(i) Prior: t ∼ Uniform(0,24);
(ii) Observation: d ∼ Exponential( f (t));
(iii) d = 0.0167;
(iv) What is t?

The program for this example has the same outline as the previous one:
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Figure 2.4 The rate of bikes as a function of the current time. The function is fictitious but based
on real observations by “Bells on Bloor” in Toronto (Koehl et al., 2017).

1. normalize(
2. let t = sample(uniform(0,24)) in
3. let r = f (t) in
4. observe 0.0167 from exponential(r);
5. return(x))

Now to make Calculation Method 3 (weighted sampling) work, we need to accept
that the prior and posterior distributions are on an uncountable space. On a discrete
computer it is not really possible to sample from an uncountable continuous
distribution. One way to deal with this is to approximate the prior (and hence
the posterior) by discrete distributions; the finer the granularity the closer the
approximation is to the continuous distribution.
A secondary problem is that even a discretized sample space is too large to explore

naively; many runs will have low weights (i.e. improbable) which is a waste of
resources. There are Monte Carlo algorithms that perform this more efficiently, and
can be applied to probabilistic programs, for example:

• Markov Chain Monte Carlo / Metropolis Hastings: with each run, we do not
resample all the random choices, but only some, and we randomly reject or accept
the resample depending on the change in weight. In other words, we build a
Markov chain from the program and perform a random walk over it.

• Sequential Monte Carlo: we can run N times up to a checkpoint (typically an
observation), pause, and redistribute the effort so that not too many of the running
threads have low weight.

There are elaborations and combinations of these methods, together with other
methods (such as variational ones). The introduction by van de Meent et al. (2018)
covers many of these different methods.
For Posterior Calculation 1 (direct mathematical calculation), in this instance, we
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Figure 2.5 Posterior density for the current time given that I noticed a one minute gap between
bikes when the rate is as shown in Figure 2.4. The probability that the time is between 4am and
7am is the purple area.

can give a posterior probability in terms of a probability density function. Recall that
the meaning of density functions applied to probabilities (as opposed to likelihoods)
is as follows: although the probability that the time is exactly 05:30 is zero, we can
give a probability that the time is in some interval (more generally, a measurable
set), as the integral of the density function. For instance, the posterior probability
that the time is between 4am and 7am is shaded in Figure 2.5. The density function
in this case is given by multiplying the likelihood function by the density of the prior
distribution, which is uniform:

Posterior ∝ Likelihood × Prior
posterior-pdf(t) ∝ f (t)e−0.016× f (t) × 1

24

The density function t �→ f (t)e−0.016× f (t) × 1
24 is not normalized, but we can divide

by the normalizing constant to get a true posterior density function:

t �→
f (t)e−0.016× f (t) × 1

24∫ 24
0 f (t)e−0.016× f (t) × 1

24 dt
=

f (t)e−0.016× f (t)∫ 24
0 f (t)e−0.016× f (t) dt

(2.2)

In general, we cannot naively use density functions for a full compositional
semantics because some basic programs do not have density functions. We return to
this point in Section 2.3.

Aside on probabilistic programming for rapid prototyping
To briefly demonstrate the power of probabilistic programming for rapid prototyping,
we consider a few elaborations on the last example. Supposing that the frequency
f (t) is uncertain, say we only know the frequency ±1, then we can quickly introduce
an extra random variable by changing line 3 to
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3’. let r = sample(normal( f (t),1)) in . . .
If the error in the frequency f (t) is itself unknown, we can introduce yet another
random variable σ for the error, for example,

3”a. letσ = sample(inv-gamma(2,1)) in
3”b. let r = sample(normal( f (t), σ)) in . . .

2.2.4 Unnormalizable posteriors

This chapter is about semantics of probabilistic programs and so it is informative to
consider some corner cases. Recall that when we calculate a posterior we must divide
by a normalizing constant. If this constant is 0 or∞, we cannot find a posterior. In
practice, if the constant is very low or very high, it suggests the model is bad, and it
is numerically inconvenient to find the posterior, but if it is 0 or∞ it is impossible
even in theory.

Zero normalizing constant
A normalizing constant of 0 occurs when an observation is not only improbable, but
impossible. For example, in the first example, suppose that we say that we claim to
observe (−42) buses – a negative number of buses. This is impossible, nonsense,
and the likelihood is not just very small but 0. In the rejection sampling semantics,
all runs will be rejected.
Whether a normalizing constant is 0 is undecidable in general. For example,

consider a Turing machine M with initial tape, and the following scenario.

(i) We toss a coin repeatedly until the outcome is heads. Call the number of tosses
k.

(ii) We observe that Turing machine M terminates after exactly k steps.
(iii) What is k?

The prior distribution on k is a geometric distribution. The normalizing constant is
non-0 if and only if the machineM terminates, in which case the posterior probability
is the Dirac distribution on the number of steps required. For this reason, finding the
normalizing constant is undecidable in general.
This manifests in practice as follows. For many Monte Carlo methods, it is

guaranteed that sampling will converge eventually. However, it is difficult in practice
to know when a Monte Carlo process has converged, and as this example shows, it
may be impossible to know.
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Infinite normalizing constant
Very high normalizing constants can occur when the observations are considerably
more likely for improbable prior parameters. To demonstrate this we consider a
scenario of a similar shape to the previous stories. An astronomer has invented a
telescopic device which she is using to measure the distance between two stars,
which are in fact precisely 1 light-year apart.

(i) The device is unreliable and breaks down every hour on average.
(ii) Every 2.89 hours that she uses the device, she is able to double the precision
(inverse variance) of her measurement; the initial precision is 6.3 ly−2. At the
point that the machine breaks down, she estimates that the distance is 1 light-year
– coinciding with the true distance.

(iii) How long was the scientist using the machine for?

The story is set up so that the likelihood is inverse to the prior. The numbers have
been chosen so that the initial precision (6.3) is approximately 2π, and the precision
doubles every 2

ln 2 hours (≈ 2.9), so that the precision τt at time t is approximately
τt = 2πe2t . If we model the measurement inaccuracy by a normal distribution, the
likelihood function of data d is

√
τt
2π e− 1

2 (d−1)2τt . When d = 1, the likelihood is et .
So the prior density is e−t , but the likelihood is et .
In statistical notation:

(i) Prior: t ∼ Exponential(1);
(ii) Likelihood: d ∼ Normal(1, (2πe2t )− 1

2 ), with d = 1;
(iii) What is the posterior probability on t?

As a probabilistic program:
1. normalize(
2. let x = sample(exponential(1)) in
3. observe 1 from normal(1, (2πe2t )− 1

2 );
4. return(x))

In the Posterior Calculation Method 3, the problem is that we are very unlikely to
pick long times, but when we do they receive very high weights.
In the Calculation Method 1, the unnormalized posterior density is

Posterior ∝ Likelihood × Prior
posterior-pdf(t) ∝ et × e−t

and so the probability that the time lies in a set U is∫
U

ete−t dt =
∫
U

1 dt (2.3)
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Figure 2.6 The posterior distribution on time spent using the device t given the observation d,
in the context of the story about the scientist measuring the distance between stars. Notice that
when d = 1 the unnormalized posterior density is constant, and the normalization constant is
infinite.

which is the Lebesgue measure. For instance, on an interval (a, b), the unnormalized
posterior is b − a. Across the entire positive reals (0,∞), the normalizing constant
is infinite. So the question does not have an answer. We cannot form a posterior
probability on the time that the scientist used the device: every time is equiprobable.
There are several contrivances in the story, the most ridiculous of which is

that the observed distance happens to perfectly match the true distance. If the
observed distance had been even slightly different from the true distance, the infinite
normalization constant would not occur. Indeed, if the observed distance was very
different from the true distance, we could easily conclude that the device broke
quickly (see Fig. 2.6). This means that in practice we do not need to worry about
the story, because a problem-causing observation almost never occurs. In principle,
however, we do need to consider infinite measures like this, in part because they
can legitimately arise as fragments of reasonable programs, as we now discuss.
(For further examples of improper posteriors such as this, see e.g. Robert, 2007,
Ex. 1.49–1.52.)

Improper priors and posteriors
When a normalizing constant is infinite, this is sometimes called an ‘improper’
distribution. Although an improper distribution is problematic as the end result of
an inference problem, the distributions are incredibly useful when used as part of
a model. To analyze this we consider a construction score(r) which weights the
current run by r . This is equivalent to observe 0 from exponential(r).
Suppose for a moment that we have a program Lebesgue, such as Lines 2-4 of

our astronomy example, that behaves as the Lebesgue measure. Suppose too that
we have a probability distribution on [0,∞) that has a probability density function
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f : [0,∞) → [0,∞), and we want to sample from it. We can do this by:

let x = Lebesgue in score( f (x)); return(x)

since this is the definition of density functions. This composite program has
normalizing constant 1. In fact, when we expand the definition of Lebesgue as above,
this becomes the “importance sampling algorithm”:

let x = sample(exponential(1)) in score(ex); score( f (x)); return(x)

In words: to build a sampler for one distribution from a sampler for another
distribution, sample from the first distribution and then weight each run by the ratio
of the density functions.
So although infinite normalizing constants are problematic at the top level, it

is often useful to reason about programs where subexpressions do have infinite
normalizing constants.

2.2.5 Summary of informal semantics

We have discussed three approaches to semantics for probabilistic programs:

• mathematical semantics defined using densities and measures;
• Monte Carlo semantics with rejection;
• Monte Carlo semantics with weighting.

In Section 2.2.4, we have seen that, no matter what approach is taken, some care is
needed because the normalizing constant may be infinite or zero.

2.3 Introduction to measurability issues

In Section 2.4 we will give a formal semantics for probabilistic programs in terms of
measures. In this section, we introduce the basics of a measure-theoretic approach
to probability (see also Pollard, 2002) and use it to illustrate why such a formal
semantics is not entirely trivial.
The idea of weighted simulation already gives us an interpretation of a probabilistic

program. We define an underlying probability space Ω = [0,1]d where d is the
number of sample statements in the program. If the program includes recursion,
d may be countably infinite, but that is not a problem. We can think of each
element of Ω as a list of random seeds. Given such a list, we can execute a
program deterministically, leading to a weight (the product of all the observes) and
a deterministic result, because the results of the sample statements are fixed.
(Here we are using the fact that uniform random numbers in [0,1] are a sufficient

seed for sampling from any probability distribution with parameters. For example,
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Figure 2.7 A dartboard with the areas scoring 20 highlighted in black. Reproduced under a
Creative Commons Licence from Robert Bonvallet.

sampling from a Bernoulli distribution can be simulated by testing the position of a
uniform random number,

sample(bernoulli(r)) = let x = sample(uniform) in return(x < r)

and more generally, sampling from a general distribution can be simulated using the
inverse-cdf method, e.g.:

sample(normal(m, s)) =
let x = sample(uniform) in return(norm-invcdf(m, s, x)).)

Thus a probabilistic program of type X determines two functions:

result : Ω→ X weight : Ω→ [0,∞) (2.4)

and each run of the weighted simulation corresponds to randomly picking seeds
ω ∈ Ω and returning the pair (weight(ω), result(ω)).
In general this (2.4) is a very intensional representation of a probabilistic program:

programs that describe the same probabilistic scenarios have different different
representations, because the functions result and weight will differ. For example, the
following two programs implementing sample(bernoulli2/7):

let x = sample(uniform) in return(x < 2
7 )

let x = sample(uniform) in return(x > 5
7 )

will have different representations; introducing redundant sample statements will
give different representations; and so on. What we ultimately care about is the
posterior probability on the results. In general, this will be a measure.
Measure theory generalizes the ideas of size and probability distribution from

countable discrete sets to uncountable sets. To motivate, think of the game of darts.
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No matter how good a player I am, the chance of hitting the point at the centre of
the dartboard is zero. The chance of hitting any given point is zero. Nonetheless
I will hit a point when I throw. We resolve this apparent paradox by giving a
probability of hitting each region. The probability of scoring 20 points is the sum of
the probabilities of hitting one of the three regions that score 20 points (Figure 2.7).
And so on. We can think of these regions of the dartboard as measurable sets with
positive probability.
With this in mind, we are interested in the posterior probability that the result of a

probabilistic program is within a certain set; for example, that the day is a weekend
day, or that the time is between 4am and 7am, or that I scored 20 on the dartboard.
If we run a weighted simulation k times, picking seeds ω1 . . . ωk ∈ Ω, we obtain an
empirical posterior probability that the result is in the set U:∑k

i=1[result(ωi) ∈ U] · weight(ωi)∑k
i=1 weight(ωi)

(2.5)

(Here and elsewhere we regard a property, e.g. [x ∈ U], as its characteristic function
X → {0,1}.) Although this empirical probability is itself random, in that it depends
on the choices ωi , we would like to use the law of large numbers to understand that
as k → ∞ the empirical posterior (2.5) converges to a true posterior∫

Ω
[result(ω) ∈ U] · weight(ω) dω∫

Ω
weight(ω) dω

. (2.6)

Then two programs should be regarded as the same if they give the same posterior
probability measure. There are two issues:

• We need to understand why the integrals in (2.6) exist;
• We need to also understand program fragments in this way, so that we can reason
about program equality bit by bit, compositionally.

To address these, we interpret probabilistic programs as unnormalized measures and
kernels.

2.3.1 Rudiments of measure-theoretic probability

We recall some basic definitions of measure theory. These are well-motivated by the
illustration in Figure 2.7: the probability of scoring 20 is the sum of the probabilities
of hitting the three regions shown. Thus countable disjoint unions are crucial for
formulating measures.

Definition 2.1 A σ-algebra on a set X is a collection of subsets of X that contains
∅ and is closed under complements and countable unions. A measurable space
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is a pair (X,ΣX) of a set X and a σ-algebra ΣX on it. The sets in ΣX are called
measurable sets.

For example, we equip the set R of reals with the Borel sets. The Borel sets are
the smallest σ-algebra on R that contains the intervals. The plane R2 is equipped
with the least σ-algebra containing the rectangles (U × V) with U and V Borel. For
example, the dartboard (Fig 2.7) is a subset of R2, and the set of points that would
score 20 points is measurable.

Definition 2.2 A measure on a measurable space (X,ΣX) is a function μ : ΣX →
[0,∞] into the set [0,∞] of extended non-negative reals that is σ-additive, i.e. μ(∅) =
0 and μ(

⊎
n∈NUn) =

∑
n∈N μ(Un) for anyN-indexed sequence of disjoint measurable

sets U. A probability measure is a measure μ such that μ(X) = 1.

For example, the Lebesgue measure λ on R is determined by saying that the
measure of a line segment is its length (λ(a, b) = b − a), and the Lebesgue measure
on R2 is determined by saying that the measure of a rectangle is its area. For any
x ∈ X , the Dirac measure δx has δx(U) = [x ∈ U]. To give a measure on a countable
discrete measurable space X it is sufficient to assign an element of [0,∞] to each
element of X . For example, the counting measure γ is determined by γ({x}) = 1 for
all x ∈ X .
Measures can be equivalently understood as integration operators. A function

between measurable spaces, f : X → Y , is said to be measurable if f -1(U) ∈ ΣX
when U ∈ ΣY . If f : X → [0,∞] is measurable and μ is a measure on X then we
can integrate f with respect to μ, written

∫
μ

f (x) dx, giving a number in [0,∞].

2.3.2 Relationship to Bayesian statistics

The measure-theoretic semantics that we discuss in this chapter is inspired by
Bayes’ law, but it is not tied to it. Indeed, sometimes a language for weighted
Monte Carlo simulation is useful without a formal Bayesian intuition; for example,
one might use weights coming from image similarity without making a formal
connection to likelihood. Nonetheless in this section we make a connection with the
measure-theoretic treatment of Bayes’ law.
Measures are closely related to density functions.

Definition 2.3 If f : X → [0,∞] is measurable, and μ is a measure on X , then

ν(U) =
∫
μ
[x ∈ U] f (x) dx

is also ameasure.We say that ν has density f with respect to μ. A density is sometimes
called a Radon-Nikodym derivative. If ν(X) = 1, it is a probability density. If a
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measurable function f : X × Y → [0,∞] has the property that
∫
μ

f (x, y) dx = 1 for
all y then it is a conditional probability density with respect to μ.

For example, the density function of the exponential distribution (r, x) �→ re−x

is a conditional density with respect to the Lebesgue measure, and this induces
the exponential probability measures on R. The Dirac measure has no density with
respect to the Lebesgue measure, but it does have a density with respect to itself, as
does every measure.
Throughout the above analysis, we have used densities as weights. The observed

data has been fixed in our examples, for example, 4 buses or 15 minutes, but
it would be reasonable to make the function weight : Ω → [0,∞) parametrized
in the data. Thus, supposing our data lies in a space D, the data-parameterized
weight function is a measurable function likelihood : D × Ω → [0,∞), such that
weight(ω) = likelihood(d,ω) where d is the specific data that is hard-coded into
the program. The Bayesian approach is that likelihood should be a conditional
probability density with respect to some measure λ on D.
The posterior (2.6) can then be made a measurable function of y ∈ D, i.e. a

regular conditional probability:

qy(U) =

∫
Ω
[result(ω) ∈ U] · likelihood(y,ω) dω∫

Ω
likelihood(y,ω) dω

.

This can also now be connected formally to Bayes’ theorem of conditional probability,
see e.g. Schervish (1995, Thm. 1.31). In Section 2.2.4 we discussed the point that
although the denominator may be 0 or∞, for a whole program, this almost-never
happens. This can now be made precise:

γ(U0,∞) = 0

where γ(V) =
∫
D

∫
Ω
[y ∈ V] · likelihood(y,ω) dω dy is the prior predictive measure,

and U0,∞ = {y |
∫
Ω

likelihood(y,ω) dω ∈ {0,∞}}.
We conclude by mentioning, as an aside, that in complex situations, the Bayesian

requirement of a single base measure λ on D can be subtle. The density functions
for the GPA problem in Figure 2.3 are densities with respect to the mixed measure
(lebesgue + δ4 + δ10). The theory of conditional probability densities requires a
single common base measure for all the different parameters. The following program
will only give the right result if we use the same base measure (lebesgue + δ4 + δ10)
on R for the likelihood functions for all the different if-then-else branches.
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let american = sample(bernoulli(0.5)) in
let brilliant = sample(bernoulli(0.01)) in
ifamerican then

ifbrilliant then observe 4 from dirac(4) else observe 4 from uniform(0,4)
else

ifbrilliant then observe 4 from dirac(10) else observe 4 from uniform(0,10)
return(american)

This is subtle because the density of the Indian distribution uniform(0,10) with
respect to the base lebesgue measure is the constant 0.1 function, but the density
of uniform(0,10) with respect to the base measure (lebesgue + δ4 + δ10) must take
value 0 at 4, as in Figure 2.3. Overall, then, the program is a Dirac measure at
american = true.

In summary, the meaning of a closed probabilistic program is an unnormalized
measure, thought of as the nominator in Bayes’ rule. For a program expression that
has free variables, its interpreation should be measurable in the valuation of those
variables.

• Sampling from a probability measure is a measure.
• An observation observe x from d is a one point measure whose value is the density
of d at x.

• The sequencing let x = t in u means, roughly, integration:
∫
t
u dx.

• The simple statement return(t) means the Dirac delta measure.

We make this precise in Section 2.4.

2.3.3 Obstacles to measurability

We now illustrate why measurability of programs is not entirely trivial. Our
counterexamples are based on the counting measure on the real numbers. This
is an unnormalized distribution that assigns 1 to every singleton set. It turns out
that although some infinite measures are definable in a probabilistic programming
language, the counting measure on R is not definable – we show this in Section 2.5.2.
But for now let us suppose that we add it to our language, as a command counting,
and see what chaos ensues. (For now, we retain an intuitive view of measurability;
precise definitions are in Section 2.4, with a precise version of the arguments in this
section given in Section 2.5.2.)
As before, for any set U we can consider a function [x ∈ U] which returns true if
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x ∈ U and false otherwise. For example, we might write [x ∈ {0,1,2,3}], [x > 0],
[x = 42], and so on. The following lemma gives some intuition for the counting
measure.

Lemma 2.4 For any (measurable) set U, the program

let r = counting in return[r ∈ U]

gives weight #U to true and #(R \ U) to false, where #U is the cardinality of U if U
is finite, or ∞ otherwise.

In this extended language, the fundamental law of exchangeability is violated: the
order of draws matters, as we now explain. Notice that let s = counting in return[r =
s] has the same semantics as return(true), for all r, because there is exactly one s
that is equal to any given r (Lemma 2.4). So

let r = uniform(0,1) in let s = counting in return[r = s] (2.7)

is an equivalent program to return(true). But

let r = uniform(0,1) in return[r = s]

has the same semantics return(false), for all s, because any r is almost surely different
from a given s. So

let s = counting in let r = uniform(0,1) in return[r = s] (2.8)

has the same semantics as return(false). Comparing (2.8) to (2.7), we see that
programs involving the counting measure cannot be reordered.
In fact, the measure-theoretic semantics of the language extended with counting is

not always even fully defined. For an example of this, we recall that there exist Borel-
measurable subsetsU of the planeR2 for which the projection π[U] def

= {x | ∃y. (x, y) ∈
U} is not Borel-measurable in R. (In general π[U] is called ‘analytic’.) Now the
program

let s = counting in return[(r, s) ∈ U]

puts a non-zero weight on true if and only if r ∈ π[U]. So this program is not
measurable in r , and so programs built from it, such as

let r = uniform(0,1) in let s = counting in return[(r, s) ∈ U]

are not well defined.
As we will see in Section 2.4 (Lemma 2.7), this problem cannot arise in the

language without the countingmeasure: every term is compositionally well-behaved.
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2.4 Formal semantics of probabilistic programs as measures

We now turn to give a precise semantics of probabilistic programs. To this end we
set up a typed language with a precise syntax.
In the previous section we have considered programs as Bayesian statistical

models. However, this is only an intuition, and the semantics is given in terms of
weighted simulations and measure theory. Moreover, some applications of weighted
simulation are beyond the realms of Bayesian statistics.
For these reasons, the precise language that we now consider will have the keyword

score(r), which weights the run by r , instead of the keyword observe. The two are
inter-definable:

observe r from p = score( f (r)), where f is the density of p

score(r) = observe 0 from exponential(r)

2.4.1 Types

In what follows it is helpful to consider a typed programming language. We will
consider types such as natural numbers, real numbers, tuples of real numbers, and
lists of real numbers. In practice many probabilistic programming languages do
not perform type checking, but having a type greatly simplifies the mathematical
semantics. Moreover, types play an intuitive role, because a probabilistic program
may describe a measure on the space of natural numbers, or the space of real
numbers, or on the real plane. With this intuition, a type is just a syntactic description
of a space. For instance, we can understand an expression of real type as a measure
on the real line; an expression of integer type as a measure on the space of integers,
and so on.
Our types are generated by the following grammar:

A,B ::= R | P(A) | 1 | A × B |
∐

i∈I Ai

where I ranges over countable, non-empty sets. The type
∐

i∈I Ai is sometimes
called a labelled variant or a tagged union. The type P(A) is a type of distributions
on A. Here are some examples of types in the grammar:

• The type R of the real line, and type R × R of the plane;
• The type (1 + 1) of booleans (true/false), the type

∐
i∈N 1 of natural numbers;

• The type
∐

i∈N R
i of sequences of reals of arbitrary length;

• The type P(1 + 1) of probability distributions over the booleans, and the type
P(R) of probability distributions on the reals.

To keep things simple we do include function types such as (R → R) and (R →
R) → R. Also, this is not a type system that can be automatically checked in a
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computer because we include infinite sum types rather than recursion schemes. We
do this primarily because countably infinite disjoint unions play such a crucial role
in classical measure theory, and constructive measure theory is an orthogonal issue
(but see e.g. (Ackerman et al., 2011)).

2.4.2 Types as measurable spaces

Types A are interpreted as measurable spaces �A�, by induction on their structure,
as follows. To be precise we distinguish between the syntactic name of the type A
and the space �A� which interprets it.

• �R� is the measurable space of reals, with its Borel sets. The Borel sets are the
smallest σ-algebra on R that contains the intervals. We will always consider R
with this σ-algebra.

• �1� is the unique measurable space with one point.
• �A × B� is the product space �A� × �B�. The σ-algebra Σ�A×B� is the least one
containing the rectangles (U × V) with U ∈ Σ�A� and V ∈ Σ�B� (e.g. Pollard,
2002, Def. 16)).

• �
∐

i∈I Ai� is the coproduct space
⊎

i∈I�Ai�, the disjoint union. The σ-algebra
Σ�

∐
i∈I Ai� is least one containing the sets {(i,a) | a ∈ U} for U ∈ Σ�Ai�. For

example, the type N is interpreted as the space �N� of natural numbers with the
discrete σ-algebra, where all sets are measurable.

• We let �P(A)� be the set P(�A�) of probability measures on �A� together with the
least σ-algebra containing the sets {μ | μ(U) < r} for eachU ∈ ΣX and r ∈ [0,1]
(the ‘Giry monad’ (Giry, 1982)).

2.4.3 Typed program expressions

We consider programs built from the following grammar:

t, t0, t1 ::= (i, t) | case t of {(i, x) ⇒ ui}i∈I | () | (t0, t1) | projj(t) | f (t) | x

| return(t) | let x = t in u | sample(t) | score(t) | normalize(t)
(2.9)

The first line of (2.9) contains standard deterministic expressions, for example
destructing union and product types, with intended equations such as the following:(

case ( j, t) of {(i, x) ⇒ ui}
)
= u j[t/x] projj(t0, t1) = tj .

We also include some basic functions f , and in fact, we may as well include all
measurable functions in our language, including arithmetic operations and constants
(e.g. +, ×, k10), comparison predicates (e.g. =, <), and parameterized probability
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measures (e.g. normal, bernoulli). There are also variables x that are bound by case
and let.
In a real computer language, operations over infinite structures such as lists and

numbers are given by induction or recursion. In this chapter, rather than worry about
this, we simply allow the programmer to give a different case for every index into
the infinite structure. This means that the case syntax is potentially infinite, since
the set I might be (countably) infinite. It is routine to build a finite language with
inductive primitives and translate it into this one.
The second line of (2.9) containsways of combining programs (let) and sequencing,

as well as the three crucial primitives of probabilistic programming: sample, score
and normalize.
In this simple language, there is little syntactic sugar, and so the program about

buses in Section 2.2.1 would be written:

1. normalize(
2. let x = sample(bernoulli(27 )) in
3. let r = case x of {(1,_) ⇒ return(k3()) , (2,_) ⇒ return(k10())} in
4. let _ = score( 14!r

4e−r ) in
5. return(x))

(2.10)
where k3, k10 : 1 → R are the obvious constant functions, which are measurable.

Typed terms. We distinguish typing judgements: Γ �d t : A for deterministic
terms, and Γ �p t : A for probabilistic terms. Here the context Γ is of the form
(x1 : B1, . . . , xn : Bn). The intuition is that if Γ �z t : A then the free variables of t
are contained in x1 . . . xn, and given values of the right type for each free variable,
then the expression t will return something of type A, either deterministically or
probabilistically. For example, the entire program in (2.10) is a deterministic term
returning a distribution, whereas lines 2–5 form a probabilistic term of type (1 + 1).
Neither have any free variables. The term score( 14!r

4e−r ) is a probabilistic term with
a real free variable r : real, so we write r : real �p score( 14!r

4e−r ) : 1.
We have already explained that each type A is understood as a measurable space.

Formally, a context Γ = (x1 : A1, . . . , xn : An) is also interpreted as a measurable
space �Γ�

def
=

∏n
i=1�Ai� of well-typed valuations for the variables. As will be seen in

the next section, deterministic terms Γ �d t : A denote measurable functions from
�Γ� → �A�, closed probabilistic terms �p t ′ : A denote measures on �A�, and open
probabilistic terms Γ �p t ′ : A denote kernels �Γ� � �A�. We give a syntax and type
system here, and a semantics in Section 2.4.4.
We specify the valid judgements Γ �d t : A and Γ �p t : A as the least relations

closed under the following rules.
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Sums and products. The type system allows variables, and standard constructors
and destructors for sum and product types.

Γ, x : A,Γ′ �d x : A
Γ �d t : Ai

Γ �d (i, t) :
∐

i∈I Ai

Γ �d t :
∐

i∈I Ai (Γ, x : Ai �z ui : B)i∈I
Γ �z case t of {(i, x) ⇒ ui}i∈I : B

(z ∈ {d,p})

Γ �d () : 1
Γ �d t0 : A0 Γ �d t1 : A1
Γ �d (t0, t1) : A0 × A1

Γ �d t : A0 × A1
Γ �d projj(t) : Aj

If the reader is not familiar with type systems, they might consult the early chapters
of (Harper, 2016). We give an example of a typing derivation later, in (2.12). For
instance, the rule for (t0, t1) says that “if term t0 has type A0 and term t1 has type A1
then the pair (t0, t1) has type (A0 × A1)”.
In the rules for sums, I may be infinite. In the last rule, j is 0 or 1. We use

some standard syntactic sugar, such as false and true for the injections in the type
bool = 1 + 1, and if for case in that instance. The continuations of case expressions
may be either deterministic or probabilistic, as indicated.

Sequencing. We include the standard constructs for sequencing (e.g. Levy et al.,
2003; Moggi, 1991).

Γ �d t : A
Γ �p return(t) : A

Γ �p t : A Γ, x : A �p u : B
Γ �p let x = t in u : B

Notice that, in this simple language, everything probabilistic must be explicitly
sequenced. For example, if Γ �p t0 : A0 and Γ �p t1 : A1, we cannot conclude that
Γ �p (t0, t1) : A0 × A1. Rather, we have to explicitly write

Γ �p let x0 = t0 in let x1 = t1 in return(x0, x1) : A0 × A1
or Γ �p let x1 = t1 in let x0 = t0 in return(x0, x1) : A0 × A1

Later (§2.5.1) we will show that the order of evaluation doesn’t matter, so we could
use (t0, t1) as an unambiguous syntactic sugar, but it makes the formal semantics
simpler to insist that the order of evaluation is given explicitly.

Language-specific constructs. We also include constant terms for all measurable
functions. Recall that a function f : X → Y between measurable spaces is itself
measurable if the inverse image of a measurable set is again measurable.

Γ �d t : A
Γ �d f (t) : B ( f : �A� → �B� measurable) (2.11)
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Thus we assign suitable types to the arithmetic operations and constants (e.g. + :
R × R → R, k10 : 1 → R), predicates (e.g. (=) : R × R → bool) and probability
measures (e.g. normal : R × R → P(R)). For instance, we have a judgement
μ : R, σ : R �d normal(μ,σ) : P(R). (Some families are not defined for all parameters,
e.g. the standard deviation should be positive, but we make ad-hoc safe choices
throughout rather than using exceptions or subtyping.)
For example, the expression (if x then 3 else 10) is shorthand for

(case x of {(1,_) ⇒ k3() ; (2,_) ⇒ k10()})

We derive that the expression has type R when x has type bool, by deriving it from
the rules as follows.

−
x : bool �d x : bool

−
x : bool, z : 1 �d () : 1

x : bool, z : 1 �d k3() : R

−
x : bool, z : 1 �d () : 1

x : bool, z : 1 �d k10() : R
x : bool �d case x of {(1, z) ⇒ k3() ; (2, z) ⇒ k10()} : R (2.12)

The core of the language is the constructs corresponding to the terms in Bayes’
law: sampling from prior distributions, recording likelihood scores,

Γ �d t : P(A)
Γ �p sample(t) : A

Γ �d t : R
Γ �p score(t) : 1

and calculating the normalizing constant and a normalized posterior.

Γ �p t : A
Γ �d normalize(t) : R × P(A) + 1 + 1

As we discussed in Section 2.2.4, normalization will fail if the normalizing constant
is zero or infinity; so it produces either a normalization constant together with
a normalized posterior distribution (R × P(A)), or exceptionally one of the two
failure possibilities (+1 + 1). In a complex model the normalized posterior could
subsequently be used as a prior and sampled from. This is sometimes called a ‘nested
query’ (see for instance Stuhlmuller and Goodman, 2014), but it remains to be seen
whether it is computationally practical (Rainforth et al., 2018).

2.4.4 Expressions as s-finite kernels, programs as measures

In this section we will give an interpretation of closed programs �p t : A as measures
on A. To do this, we must also interpret open programs Γ �p t : A, which will be
families of measures on �A� that are indexed by the valuations of the context �Γ�.
These are called kernels. (Warning: the word kernel is over-used and has other
meanings.)
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s-Finite kernels
A kernel k from X to Y is a function k : X × ΣY → [0,∞] such that each k(x,−) :
ΣY → [0,∞] is a measure and each k(−,U) : X → [0,∞] is measurable. Because
each k(x,−) is a measure, we can integrate any measurable function f : Y → [0,∞]
to get

∫
k(x) f (y) dy ∈ [0,∞]. We write k : X � Y if k is a kernel. We say that k is a

probability kernel if k(x,Y ) = 1 for all x ∈ X .
We need to further refine the notion of kernels, because arbitrary kernels do not

behave well. The following result is a step towards the central notion of s-finite
kernel.

Proposition 2.5 Let X,Y be measurable spaces. If k1 . . . kn · · · : X � Y are
kernels then the function (

∑∞
i=1 ki) : X × ΣY → [0,∞] given by

(
∑∞

i=1 ki)(x,U) def
=

∞∑
i=1

(ki(x,U))

is a kernel X � Y . Moreover, for any measurable function f : Y → [0,∞],∫
(
∑∞

i=1 ki )(x)
f (y) dy =

∞∑
i=1

∫
ki (x)

f (y) dy.

Definition 2.6 Let X,Y be measurable spaces. A kernel k : X � Y is finite if there
is finite r ∈ [0,∞) such that, for all x, k(x,Y ) < r .
A kernel k : X � Y is s-finite if there is a sequence k1 . . . kn . . . of finite kernels

and
∑∞

i=1 ki = k.

Note that the bound in the finiteness condition, and the choice of sequence in the
s-finiteness condition, are uniform, across all arguments to the kernel.
If the reader is familiar with the notion of σ-finite measure, they will note that this

is different. In fact, an s-finite measure is the same thing as the push-forward of a
σ-finite measure (Getoor, 1990; Sharpe, 1988). The definition of s-finite kernel is not
so common but appears in recent work by (Kallenberg, 2014) and Last and Penrose
(2016, App. A). It was proposed as a foundation for probabilistic programming by
the author (Staton, 2017), but it has since attracted further use and development (e.g.
Bichsel et al., 2018; Ong and Vákár, 2018).

Composition of kernels
Before we give the semantics of our language, we need a lemma which is central to
the interpretation of let.

Lemma 2.7 Let X,Y, Z be measurable spaces, and let k : X × Y � Z and
l : X � Y be s-finite kernels (Def. 2.6). Then we can define a s-finite kernel
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(k � l) : X � Z by

(k � l)(x,U) def
=

∫
l(x)

k(x, y,U) dy

so that ∫
(k�l)(x)

f (z) dz =
∫
l(x)

∫
k(x,y)

f (z) dz dy

A proof is given in (Staton, 2017), building on a well-known fact that the the
property holds for finite kernels (e.g. Pollard, 2002, Thm. 20(ii)). The example in
Section 2.3.3 shows that if we generalize to arbitrary kernels, we cannot construct
k � l in general. In detail, let X = Y = R and let Z = 1 = {∗}. Pick a Borel subset
U ⊆ R × R whose projection is not Borel. Let k(x, y, {∗}) = [(x, y) ∈ U], and let
l(x,−) be the counting measure on R. Then (k � l)(x, {∗}) is non-zero if and only if
x ∈ π[U], and so it is not measurable in x, and so it is not a kernel.

Semantics
Recall that types A are interpreted as measurable spaces �A�. We now explain how
to interpret a deterministic term in context, Γ �d t : A, as a measurable function
�t� : �Γ� → �A�, and how to interpret a probabilistic term in context, Γ �p t : A, as
an s-finite kernel �t� : �Γ� � �A�.
The semantics of the language, beginning with variables, sums and products, is

roughly the same as a set-theoretic semantics. For each typed term Γ �d t : A, and
each valuation γ ∈ �Γ� of values for variables, we define an element �t�γ of A, in
such a way that the assignment is measurable in γ. We do this by induction on the
structure of typing derivations:

�x�γ
def
= γx �(i, t)�γ

def
= (i, �t�γ)

�case t of {(i, x) ⇒ ui}i∈I�γ
def
= �ui�γ,d if �t�γ = (i, d)

�()�γ
def
= () �(t0, t1)�γ

def
= (�t0�γ, �t1�γ) �πj(t)�γ

def
= di if �t�γ = (d0, d1)

Here we have only treated the case expressions when the continuation ui is
deterministic; we return to the probabilistic case later.
For each typed probabilistic term Γ �p t : A, and each valuation γ ∈ �Γ�, and each

measurable setU ∈ Σ�A�, we define a measure �t�γ;U ∈ [0,∞], in such a way that �t�
is an s-finite kernel �Γ� � �A� (Def. 2.6). The semantics of sequencing are perhaps
the most interesting: return is the Dirac delta measure, and let is integration.

�return(t)�γ;U
def
=

{
1 if �t�γ ∈ U

0 otherwise
�let x = t in u�γ;U

def
=

∫
�t�γ

�u�γ,x;U dx

The interpretation �return(t)� is finite, hence s-finite. The fact that �let x = t in u� is
an s-finite kernel is Lemma 2.7: this is the most intricate part of the semantics.
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We return to the case expression where the continuation is probabilistic:

�case t of {(i, x) ⇒ ui}i∈I�γ;U
def
= �ui�γ,d;U if �t�γ = (i, d).

We must show that this is an s-finite kernel. Recall that �ui� : �Γ × Ai� � �B�,
s-finite. We can also form �ui� : �Γ� ×

⊎
j�Aj� � �B� with

�ui�γ,(j ,a);U
def
=

{
�ui�γ,a;U i = j

0 otherwise

and it is easy to show that �ui� is an s-finite kernel. Another easy fact is that a
countable sum of s-finite kernels is again an s-finite kernel, so we can build an
s-finite kernel (

∑
i �ui�) : �Γ� ×

⊎
j�Aj� � �B�. Finally, we use a simple instance

of Lemma 2.7 to compose (
∑

i �ui�) with �t� : �Γ� →
⊎

j�Aj� and conclude that
�case t of {(i, x) ⇒ ui}i∈I� is an s-finite kernel.
The language specific constructions are straightforward.

�sample(t)�γ;U
def
= �t�γ(U) �score(t)�γ;U

def
=

{
|�t�γ | if U = {()}
0 if U = ∅.

In the semantics of sample, we are merely using the fact that to give a measurable
function X → P(Y ) is to give a probability kernel X � Y . Probability kernels are
finite, hence s-finite.
The semantics of score is a one point space whose measure is the argument.

(We take the absolute value of �t�γ because measures should be non-negative. An
alternative would be to somehow enforce this in the type system.) We need to show
that �score(t)� is an s-finite kernel. Although �score(t)�γ;1 is always finite, �score(t)�
is not necessarily a finite kernel because we cannot find a uniform bound. To show
that it is s-finite, for each i ∈ N0, define a kernel ki : �Γ� � 1

ki(γ,U) def
=

{
�score(t)�γ;U if �score(t)�γ;U ∈ [i, i + 1)
0 otherwise

So each ki is a finite kernel, bounded by (i + 1), and �score(t)� =
∑∞

i=0 ki, so it is
s-finite.
We give a semantics to normalization by finding the normalizing constant and

dividing by it, as follows. Consider Γ �p t : A and let evidenceγ,t
def
= �t�γ;�A�.

�normalize(t)�γ
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(0, (evidenceγ,t,

�t�γ;(−)
evidenceγ,t )) evidenceγ,t ∈ (0,∞)

(1, ()) evidenceγ,t = 0
(2, ()) evidenceγ,t = ∞
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2.5 Reasoning with measures

Once a formal semantics of probabilistic programs as measures is given, one can
reason about programs by reasoning about measures. Moreover, since the semantics
is compositional, one can build up properties of programs in a compositional way.
We consider two examples.

2.5.1 Reasoning example: Commutativity

We can quickly verify the following law

let x0 = t0 in let x1 = t1 in return(x0, x1)
= let x1 = t1 in let x0 = t0 in return(x0, x1)

(2.13)

whenever Γ �p t0 : A0 and Γ �p t1 : A1. To do this we recall that �t0�γ;− and �t1�γ;− are
measures on A0 and A1 respectively, and calculate that

�let x0 = t0 in let x1 = t1 in return(x0, x1)�γ;U

=

∫
�t0�(γ)

∫
�t1�(γ)

[(x0, x1) ∈ U] dx1 dx0

is the definition of the product measure on A0 × A1. Product measures are not
well-defined in general, but they are well-defined for finite measures, and this extends
to s-finite measures. Indeed to conclude (2.13), one would notice that for any s-finite
measures μ0, μ1 on A0 and A1, the product measures on A0 × A1 are equal:∫

μ0

∫
μ1

[(x0, x1) ∈ U] dx1 dx0 =
∫
μ1

∫
μ0

[(x0, x1) ∈ U] dx0 dx1

This is known as the Fubini-Tonelli theorem, which holds for s-finite measures (e.g.
Sharpe, 1988; Staton, 2017).

2.5.2 Reasoning example: Non-definability

We have seen in Section 2.3.3 that the counting measure on R, which assigns to
each set its size, is problematic for a probabilistic programming language. We now
show that it is not definable. It is sufficient to show that it is not s-finite, since every
definable program describes an s-finite measure. To show this we show that for every
s-finite measure μ, the set {r | μ({r}) > 0} is countable. The counting measure
violates this invariant. Since a countable union of countable sets is countable, it
suffices to show that {r | μ({r}) > 0} is countable when μ is a finite measure. To see
this, notice that for each positive integer n the set {r | μ({r}) > 1

n } must be finite,
and so {r | μ({r}) > 0} =

⋃
n∈Z+{r | μ({r}) > 1

n } must be countable.
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2.6 Other approaches to semantics and open questions

2.6.1 Different approaches to semantic definitions

In other work (Staton et al., 2016) we have considered a semantics based on a monad

X �→ P([0,∞) × X)

on the category of measurable spaces. This arises from combining the writer monad
for the monoid ([0,∞),+,0) of scores with the probability monad P. This naturally
matches the two constructions (score for [0,∞) and sample for P), and it fits the
weighted simulation semantics: the meaning of a program is a distribution over runs,
each of which has a weight and a result. This semantics distinguishes things that
should arguably be considered equal. For example, the semantics will distinguish

let x = sample(bernoulli(0.5)) in if x then score(4) else score(6); return(42)

from
score(5); return(42)

This semantics can be translated to the less discriminating semantics in this chapter
as follows. Every measurable function

f : Y → P([0,∞) × X)

can be translated to an s-finite kernel f � : Y � X where

f �(y,U) =
∫
f (y)

r · [x ∈ U] d(r, x).

In fact, every s-finite kernel arises in this way. This translation preserves all the
structure. Thus the monadic interpretation of the language can be translated into the
s-finite semantics compositionally.
In Section 2.3 we considered an even more fine-grained approach, where a

program − �p t : A is interpreted as a measurable function Ω→ �A�, i.e. a random
variable on some basic probability space, together with a separate likelihood function
Ω→ [0,∞). (See also e.g. Holtzen et al., 2018; Hur et al., 2015). By considering
the law of the pairing Ω → [0,∞) × �A� we arrive at a probability measure in
P([0,∞) × �A�), and every such probability measure arises as the law of some
such pairing. Another way to include weightings is to consider Ω to be a subset of
some plane Rn with an unnormalized Lebesgue measure. It turns out that an s-finite
measure on a standard Borel space X is the same thing as the pushforward measure
of a Lebesgue measure along a measurable function Ω → X , where Ω ⊆ Rn. So
these different semantic methods all agree on what can be considered.
Although s-finite measures and kernels behave very well and have many charac-

terizations, it is currently an open question whether the category of s-finite kernels is
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itself the Kleisli category for a monad. Recently we have proposed to use quasi-Borel
spaces as generalized measurable spaces. S-finite kernels between quasi-Borel spaces
do form the Kleisli category for a monad (Scibior et al., 2018).

2.6.2 Other semantic issues

In this chapter we have focused on giving a simple, measure-theoretic semantics
to the programs in the simple first-order language through s-finite kernels. The
semantics is clear, but subtle, because of issues of infinite normalization constants
and measurability issues. But this simple semantics is only a very first step. Beyond:

• Statisticians and probabilists are interested in other issues such as convergence and
relative entropy, which might also be analyzed in a compositional way, together
with their relationships to computability (e.g. Ackerman et al., 2011; Huang and
Morrisett, 2017).

• We might also add different modes of conditioning, such as conditioning by
disintegration rather than density (e.g. Shan and Ramsey, 2016).

• We might add other typical language features such as higher order functions (e.g.
Staton et al., 2016; Heunen et al., 2017), higher order recursion (e.g. Ehrhard
et al., 2018; Vákár et al., 2019), and abstract types (e.g. Staton et al., 2018).

• Other languages have additional, non-functional primitives, based on logic
programming (e.g. Nitti et al., 2016; Wu et al., 2018).
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