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Owing to its curiously low solubility in acidic solutions, the oxalate anion has long been recognized as an excellent 

precipitating agent for trivalent lanthanides and actinides [1]. It is well established that f-element oxalates precipitate 

as agglomerates and are preserved in the oxide phase following calcination [2].  Multiple distinct morphologies are 

possible depending on the solution formation conditions.  It is hypothesized that it is possible to predict an f-element 

oxide morphology based on its formation conditions. Furthermore, the formation conditions could be deduced from 
the observed oxide agglomerate morphology.  Analysis of the particle nucleation and growth with in-situ electron 

microscopy is an effective method for probing the particle formation dynamics and therefore has been performed 

on many other chemical systems [3, 4].  As f-element oxalates are subject to rapid nucleation and growth, cryo 
transmission electron microscopy (TEM) was employed to freeze and capture those early stages of  formation that 

result from the reaction of the f-metal nitrate and oxalic acid.  The full growth cycle was investigated using a 

combination of optical and electron microscopies. 

U nitrite was reacted with oxalic acid.  Both optical microscopy (OM) and scanning electron microscopy (SEM) 
were used to observe the growth of oxalates in-situ.  The OM used was a Nikon 600MEL metallurgical microscope 

with a Linkham thermal stage and the SEM was a FEI (ThermoFisher Inc., Hilsboro, OR) Quanta 250FEG 

Environmental SEM. For cryo-TEM analysis the mixture was rapidly frozen in liquid ethane. Detailed 
characterization was performed using a JEOL (JEOL USA Inc., Peabody, MA) GrandARM™ 300F probe corrected 

TEM operated at 300 kV.  Cryo-analysis was carried out in a Gatan liquid nitrogen cryo-transfer holder, and Serial 

EM was used to control electron dose. All the equipment is part of the Radiochemical Microscopy Suite in the 

Radiochemical Processing Laboratory at PNNL.  

The initial stages of the U oxalate formation are displayed in Figure 1. The reaction was halted by vitrifying the 

reactants on a TEM grid. This way, the early, meta-stable stages of particles could be investigated. Precipitate sizes 

and morphologies can be analyzed as a function of reaction time. Figure 2 shows STEM-EELS images acquired 
from a non-cryo STEM-EELS.  Images after 10 sec show the larger particles consisting of agglomerates of smaller 

particles grown by a particle attachment process. Cryo-TEM will show the intermediate stages of this non-classical 

growth process. [5] 

 
Figure 1. (A and B) CryoEM TEM images of U(IV) oxalate showing the distribution of nanoparticles that 

form the larger observable structures. The line across the middle is an artifact from the camera system. 
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Figure 2. STEM-EELS of U(IV) Oxalate formation at (A) 0 secs and (B) 10 secs.  The images show a high 

magnification view and elemental mapping with EELS showing uranium distribution in the particle 

agglomerates. The larger particles in the (B) are agglomerates of smaller ones. 
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