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BRAUER GROUP ANALOGUES 
OF RESULTS RELATING THE WITT RING 
TO VALUATIONS AND GALOIS THEORY 

YOON SUNG HWANG AND BILL JACOB 

ABSTRACT. Let F be a field of characteristic different from p containing a primitive 
/7-th root of unity. This paper studies the cup product pairing Hl(F,p) x Hl(F,p) —• 
H2{F,p) and its relationship to valuation theory and Galois theory. Sufficient conditions 
on the pairing which guarantee the existence of a valuation on the field are described. In 
the non/7-adic case these results provide a converse to the well-known structure theory 
in this situation. In the/?-adic case, the pairing is described using the notion of "relative 
rigidity". These results are analogues of results in quadratic form theory developed in 
the past decade, which cover the special case/? = 2. Applications to the maximal pro-/? 
Galois group of F are also described. 

In recent years, one of the interesting applications of quadratic form theory has been 
its use in determining the structure of the maximal pro-2 Galois group of a field F of 
characteristic different from 2. As examples we cite the papers [B], [W 1], and [JWr 1, 
2]. In this paper we develop a theory which extends some of these results to the pro-/? 
Galois group where/? is an odd prime. A first difficulty in trying to generalize the results 
just cited for odd primes is that there is no usable version of Witt ring for higher degree 
forms. This difficulty is circumvented in the present work by instead generalizing the 
notion of a quaternionic pairing. Quaternionic pairings were developed in [MY] as a 
tool for studying abstract Witt rings. The first section of this paper is devoted to this 
topic. The main objective of this paper is to illustrate some of the relationships between 
the higher quaternionic pairings of a field F, valuations on F9 and the maximal pro-/? 
Galois group of F. The second section deals with valuation theory. In particular, using 
an analogue of the notion of rigidity from quadratic form theory, criteria for detecting 
valuations using the quaternionic pairing are developed. In the third section, the notion 
of relative rigidity in quadratic form theory is generalized to the Brauer group setting. 
The main result is the theorem which guarantees the existence of a splitting tower for the 
maximal pro-/? Galois group. 

1. Basic notions. Throughout the following/? will denote an arbitrary prime. All 
fields considered will have characteristic different from/? and will always contain a primi­
tive/?-th root of unity. If Fis such a field we denote by G pip) the Galois group of the maxi­
mal pro-/? Galois group of F, and will use If{F,p) to denote the Galois cohomology group 
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If(GF(p\ZlpZ). We shall utilize the familiar identifications Hl(F,p) ^ F*/F*P and 
H2(F,p) = p Br(F), the elements of order p in the Brauer group Br(F) of F. The class of 
the element a £ F inside Hx (F,p) under this identification is denoted as usual by (a), and 
we will usually denote the cup-products as (a)U(b) = (a, b) and (a)U(b)U(c) = (a, b, c). 

An easy, but important observation in the theory of quadratic forms is that the group 
Hx (F, 2), the cup-product pairing Hx (F, 2) x H1 (F, 2) —> H2(F, 2), together with knowl­
edge of the class (—1) G Hl(F, 2) completely determines the Witt ring WF. (This obser­
vation, in fact, led to the consideration of abstract quaternionic pairings in the theory of 
quadratic forms.) The idea in this paper is to apply an analogue of abstract quaternionic 
pairings to the study of pro-/? Galois theory. These objects are defined next. 

DEFINITION 1.1. Suppose that G and Q are two elementary abelian/?-groups and that 

l:Gx G->Q 

is a surjective skew-symmetric bilinear pairing. For any a G G we denote by N-y(a) the 
radical of a under 7, that is, N7(a) = {b G G | 7(<z, b) = 0}. We shall say that the pairing 
7 : G x G - > g satisfies M(n) if whenever t\, a\, ^ , #2, • • •, tn, an G G and 

7(ri,fli) + 7(/2,û2) + --- +7fe,a„) = 0 G Q 

then 
aie n N^q-^y 

I < I I < P - I 
0< /2 , . » , ïn<P- l 

A p-quaternionicpairing is a surjective skew-symmetric bilinear pairing 7 : G x G - > 2 
which satisfy the conditions M{ri) for all n > 2. 

In the sequel we will apply the obvious categorical notions to the class of p-quaterni­
onic pairings, omitting the definitions when no confusion can arise. We will also use the 
the theory of abstract Witt rings as well as the algebraic theory of quadratic forms. All 
our notation is standard, and we give the books [L] and [M 1] as references. 

FACT 1.2. Whenever F is a field containing a primitive p-th root of unity we denote 
by 

lF:Hl(F,p) x Hl(F,p) -> H2{F,p) 

the cup-product pairing. The conditions M(n) are all true for this pairing 7F- This is 
consequence of [Me, Proposition 4] and the Merkurjev-Suslin theorem. In fact, these 
conditions are crucial to the proof of the Merkurjev-Suslin theorem. 

REMARK 1.3. When/? = 2 the condition M(2) is equivalent to the condition that the 
pairing 7: G x G —» Q be linked in the sense of [MY]. Recall that 7 being linked means 
that whenever a,b,c,d G G and 7(a, b) = 7(c, d) then there exists some £ G G with 
7(a, b) — l(a, £) = 7(c, £). To see this equivalence, suppose that 7 satisfies M(2), and 
assume that l(a,b) = l(c,d). Since7(a,6)+7(c,d) = 0 G g, M(2) gives that b = a(3 for 
some a G N^a) and f3 G N^ac). We find that 7(a, b) = 7(<z, /?) = 7(c, (3) showing that 
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7 is linked. Conversely, if l(a,b) + l(c,d) = 0 G Q, then the linkage condition shows 
there exists some I with 7(a, b) = 7(fl, £) = 7(c, I). Expressing b = (b£)£, and noting 
that as l(a, b£) = 0 = l(ac, £) we have bl G Wy(fl) and l G N>y(ac), which establishes 
M(2). 

In the sequel, we shall reserve the phrase "linked quaternionic pairing" for those pair­
ings which satisfy M(2), but do not necessarily satisfy M(n) for n > 2. 

REMARK 1.4. It is possible for any n > 3 to construct a skew-symmetric bilinear 
pairing 7 : G x G - > Q which satisfies M(2) through M(n — 1), but for which M(n) 
fails. As an example let G be the elementary abelian /7-group of rank 2n with basis 
t\,a\9t2,a2,...9tn9an and let 7 be the composite pairing 

GxG-+GAG->[(GAG)/(tiAai+t2Aa2 + '-+tnAan)] := Q. 

It is easy to check that 7 A : G X G —> G A G is a/7-quaternionic pairing using the fact 
that NlA(g) = (g) for all g G G. As n > 3, we also have iV7(g) = (g) since the element 
t\ A a\ +12 A (22 + • • • + tn A an cannot be expressed as a sum of fewer wedges in G A G. 
From this it follows that M(n — 1) must hold while M(n) fails. As a consequence of this, 
one sees that there are linked quaternionic parings which are not the quaternionic parings 
of any field. 

In [MY] it was shown that one can associate an abstract Witt ring to every linked 
quaternionic pairing in a natural way. However, Remark 1.4 shows that the category of 
linked quaternionic pairings cannot be embedded as a subcategory of the category of 
abstract Witt rings. In [M 2], this problem was resolved by considering only the quater­
nionic set rather than the group Q, that is only the quaternionic mapping (rather than 
pairing) is considered. (In a quaternionic mapping the group Q is dropped and the subset 
S Ç Q consisting of the the elements 7(0, b) for a, b G G of g is considered.) Marshall 
proved that the category of linked quaternionic mappings (or quaternionic structures) is 
equivalentto the category of abstract Witt rings. In the next proposition we use Marshall's 
result to show that the quaternionic pairings that satisfy all the conditions M(n) embed 
in the category of abstract Witt rings. This result is not needed for the latter sections of 
this paper, but is included to illustrate the power of the properties M(n). 

PROPOSITION 1.5. Suppose that G\, G% Q\ and Q2 are elementary abelian 2-groups 
and that 1 \\ G\ x G\ —> Q\ and72.G2 x G2 —» Q2 are 2-quaternionicpairings that 
have the same Marshall-Yucas Witt ring. Then 7i andl2 are isomorphic, in other words, 
the category of 2-quaternionic pairings embeds as a full subcategory of the category of 
abstract Witt rings. 

PROOF. In view of Marshall's result just mentioned, it suffices to show that 7i and 
72 are isomorphic whenever they have the same quaternionic structure. Hence we can 
assume that G\ = G2 and we have the same quaternionic mapping into the same set S 
embedded in Q\ and Q2 for each pairing. Since each Qt is generated by S, the quaternionic 
pairings will be the same if we show that whenever t\,a\9t2,a2,...9tr,ar G G, then 
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{tua\) + (t2,a2) + - - -+( t ,û r ) = 0G Q\ if and only if (tuax) + (t2,a2) + • • • + (tr,ar) = 
0 G £?2. We proceed by induction on r, the case of r — 1 is given by the quaternionic 
mapping. Observe that if (t\, a \ ) + (t2, a2) + • • • + (tr, ar) = 0 G gi , then by M(r) we can 
express a\ — II(/2,...,zv) a(i2,...Jr) where oc{i2,..jr) G A ^ ^ i ^ • • • f;) and /, G {0,1}. Using the 
fact that (*i, <*(/2,...,/r)) = (42 * ' * 4r> a(/2,...,/V)) m £?i together with the bilinearity of 71, we 
find that we can express 

(ti,ai) + (t2,a2) + - • • +(fr,ar) = fe62) + • • • + ( t , W in ôi 

where the b[ G G arise as products of the various oc(i2,..jr) and a/. However, we know that 
Niiig) — Nl2{g) for all g G G, so the bilinearity of 72 gives the same expression in Q2 

as well. The result now follows by applying the induction hypothesis to (t2, b2) + • • • + 
(tr,br). m 

One can carry out many of the same constructions for/?-quaternionic pairings that one 
has for abstract Witt rings and linked quaternionic pairings. In the study of finitely gen­
erated Witt rings the notion direct product and group extension are crucial. We conclude 
this section by giving their analogues for/7-quaternionic pairings. 

DEFINITION 1.6. (a) Suppose that 1\\G\ x G\ —> Q\ anài2\G2 x G2 —> Q2 are 
p-quaternionic pairings. Then the direct product of 7i and 12 is the pairing 

7i 0 72: (Gi 0 G2) x (Gx ® G2) -+Q\®Q2 

defined in the obvious way. 
(b) Suppose that 7: G x G —> Q is ap-quaternionic pairing and let / /be an elementary 

abelianp-group. Then the group extension ofl by H is the pairing 

lxH:(G®H)x(G®H)-+Q®(G®H)®(HAH) 

defined by7 x H((guhi),(g2,h2)) =7 (g i , g 2 ) e f e i Ofc - gi ®hx) © /n A/z2. 
Using a straight-forward calculation one can show that the direct product of/7-quater­

nionic pairings is also ap-quaternionic pairing. Whenever 7 is the/7-quaternionic pairing 
of a field F and H = (Z//?Z)W, then it is well-known that 7 x H is the /7-quaternionic 
pairing of the iterated Laurent series field F((t\)) • • • ((/„))• Therefore these two opera­
tions provide a method for obtaining new/7-quaternionic pairings from old ones. Those 
fields whose /7-quaternionic pairings are nontrivial group extensions carry /?-henselian 
valuations. This is proved in Section 2. 

2. Rigidity and valuations. We continue to assume that F is a field containing a 
primitive/?-th root of unity. In this section we shall consider subgroups T,H C F* /F*p 

with special properties. We will always assume that — 1 G F*p, which is not a restriction 
if p is odd. For analogous results in this section in the case where /? = 2 and — 1 ^ F*p 

we refer the reader to [AEJ]. For convenience we will frequently abuse notation and 
identify an element x G F with its coset xF*p G F* /F*p whenever no confusion may 
arise. Therefore, at times we will view T and H as subgroups of F* as well. We denote 
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by (71, F) and (//, H) the subgroups of pBr{F) generated by the elements (t,f) and (h \, h2) 
respectively where t G T,f G F* and h\, /*2 G //. 

DEFINITION 2.1. We say that^BrCF) is T-rigid if F* /F*p ^ T0//,^Br(F) = (7, F ) 0 
(H,H), and (H,H) = H AH where the wedge denotes the exterior product (as Z/pZ-
vector spaces). 

Suppose that F = F((77i))((72)) • • • ((Tn)) is an iterated formal Laurent power series 
field. If we let T = F*/F*p C F*/F*P and H = (Tu T2,.. •, 7;) C F 7 F * , then well-
known calculations showthat^B^F) is T-rigid. More generally, if v. F —» F is a valuation 
and if one sets T = L^F*77 C F*/F*p and lets / / denote an inverse image of T/pT in 
F*/F*p, then pBr(F) is T-rigid. Our goal in this section is to show that pBr(F) being T-
rigid corresponds to the existence of valuations on F, thereby providing a partial converse 
the examples just given. 

LEMMA 2.2. IfpBr(F) is T-rigid and y G F* - T, then 

T+TyÇ TUTyUTfu--'UT/~]. 

PROOF. AS Ty = Tyo for some yo G H, we may assume that y £ H. For a given 
element t + t[y oïT+Ty with /, t\ G T we can express / + ^ j — t!2h for some t'2ÇLT and 
h £ H. Multiplying this expression by t~x we have 1 + t\y = f2̂  for some *i, fe £ ^- It 
follows, in pBr(F) that 

0 = (txy91 + f^) = (tiy, t2h) = (t\y, t2) + (h, A) + (y, A). 

Since ^Br(F) = (7, F) 0 (H A //) we have (y, A) = 0 in H A //. This shows that h G 
{ 1 , ^ , / , . . . ,yP~1} in i/and t + t[y G TU TyU Ty2 U • • • U Ty7"1 follows. • 

In the algebraic theory of quadratic forms, rigidity was originally defined for field 
elements. We give these definitions next. 

DEFINITION 2.3. Let T be a subgroup of F* containing F*p. An element x G F* is 
called T-prerigid (in F) if 1 + JC G TU xT and is called T-rigid (in F) if T+xT C 7UxT. 
If x is not T-rigid, then x is called T-basic, and the set of all T-basic elements in F is 
denoted by BF(T). 

We will show in the next two propositions that if pBr(F) is T-rigid, then there is at 
most one element a lying outside T such that x is T-prerigid for all x $ (T,a), where 
(T,a) denotes the subgroup of F* generated by T and a. 

PROPOSITION 2.4. Suppose that pBr(F) is T-rigid. Assume that there is an element 
a£F* - Tsuch that 1 - a G T but 1+agT.IfxeF*- (T9a) then 

(a) 1 — x G T if and only if\+xET. (So, 1 — x G xT if and only if\+x£ xT.) 
(b) x is T-prerigid. 

PROOF, (a) Asx= -xeF*/ 7, it suffices to show that if 1 - x G T, then 1 + x G T. 
Suppose not, that is, l+x $ T. By Lemma 2.2 we can express l+a e aeT and 1 +x G x^T 
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for 1 < e,f < p — 1. So, multiplying by a, we find a — axeaT and a + ax G axfT. Since 
1— a G Tand 1+a G a T , Lemma 2.2 gives further that 1— ax = (1—a)+(a —ax) G alT 
and 1 - a x = (1 +a)-{a + ax) G a ^ ^ V ^ f o r 0 < i,y < / ? - 1. But, sincex g (T,a), 
we havey = 0 and 1 — ax G a*T. However, Lemma 2.2 shows that 1 — ax G (ax)kT for 
some £, a contradiction, establishing (a). 

For (b), applying Lemma 2.2, 1 — x G x T and 1 + x G xnT for 0 < ra, n < p — 1. 
This shows that a — ax G a x T and a + ax G axnT. Since 1 — a G T and 1 + a G 
a T we find again applying Lemma 2.2 that 1 — ax = (1 — a) + (a — ax) G (ax™)1!, 
1 — ax = (1 + a) — (a + ax) G ae(ax~exnyT, and 1 — ax G (ax)kT for some z,y, and A;. 
So zm = / = e + (1 — e)/ = jn (mod /?). If / ^ 0 (mod /?), then m = 1 (mod /?), and 
consequently 1 — x G xT. In this case 1 + x G x7 follows by (a). If / = 0 (mod /?), then 
jn = e + (1 — e}/ = 0 (mod /?), and since e ^ 0 (mod /?), we havey ^ 0 (mod p). This 
shows that n = 0 (mod /?) and we have 1 + x G T, establishing (b). m 

PROPOSITION 2.5. Suppose thatpBr(F) is T-rigid. Assume for allx G F* — T, 1 - x G 
T z/awo7 o«/y z/T +x G T. If there is an element a G F* — T such that I —a £ aaT where 
1 < a <p, then every element y G F* — (7", a) is T-prerigid. 

PROOF. By assumption it suffices to show that 1— y £ T or I — y £ yT. Suppose 
not, then there is some b e F* - (T,a) such that 1 - b G b^T with 1 < / ? < / ? . So, 
a-ab G aZ^r. Since 1-a G aa 7 we find by Lemma 2.2 that \-ab = ( l -a)+(a-a/3) G 
aa(al-abPyT and 1 - a/3 G (a*yr for some / J . So, a + i(l - a) = //? (mod /?). Hence 
/(a — 1 + /?) = a (mod /?). Since a ^ 0 (mod /?), a — 1 + /3 =̂  0 (mod /?), we find 
l-abe (ab)aiTwhere «i = a/3/(a - 1 + /3) (mod/?). 

We denote by [a, /3] = a/3/(a—I +/?). By applying the same argument as above to the 
equations 1 -a G a a r and 1 -ab G (a/3)ai T, we find that 1 -a2/3 G (a2b)a2T where a2 = 
[a ,a i ] = a 2 / 3 / ( ( a - l ) 2 + / 3 [ a 2 - ( a - l ) 2 ] ) ( m o d ^ ) , a n d ( a - l ) 2 + / 3 [ a 2 - ( a - l ) 2 ] ^ 0 
(mod/?). Applying this same argument repeatedly, we find that 1 — amb G (amb)amT for 
1 < /w < p - 1, where am = oT(5/((a - l)w + ^a" 1 - (a - \)m]) (mod/?), and 
(a - \)m + ̂ [a^ - (a - l)m] ^ 0 (mod /?). 

We now claim that (J3 — l)//3 ^ ((a — l ) / a ) , the subgroup of (Z/pZ)* generated by 
(a—1)/a, from which we will find a ^ f3 (mod/?), as desired. Suppose that (j3—\)/(3 = 
[a/(a - l)]Wo (mod p) for m0 with 0 < m0 < p - 1. Then a"*0/? - (a - l)w°(/3 - 1) = 
(a — l)m° + ^[a™0 — (a — l)w°] = 0 (mod /?), which contradicts what we just proved. 

Let n be the order of (a — I)/a in (Z//?Z)*. Then a" = (a — 1)" (mod/?) and a„ = /3 
(mod/?). Note that 1 - anb G (aw/3)a"7 and 1 - b G Z^r. Since b g (T,a) and/? does not 
divide n, b $ (T, anb). So by the same argument used in proving that a ^ (3 (mod /?) 
above, we have an^ (3 (mod /?). This contradiction completes the proof. • 

Suppose pBr(F) is T-rigid. Let R = (7, a) be a subgroup of F* generated by T and a 
where a G F* — T satisfies either 1 — a G T but 1 + a ^ T or 1—aG aaT for some a 
with 1 < a < /? if such an element exists, and let R = T otherwise. With this notation, 
Propositions 2.4 and 2.5 give the following. 
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COROLLARY 2.6. IfpBr(F) is T-rigid and ifR is as just described, then BF(T) Ç R. 

PROOF. According to Propositions 2.4 and 2.5, if x G F* — R, then x is prerigid. 
Now consider any t\,t2 G T. Since jcff!^ is prerigid, we know that 1 -HJC/J-1^ G TUx7\ 
Multiplying by t\ we find that t\ +xt2 G TUx^and consequently JC is T-rigid. From this, 
BF(T) Ç i? follows. • 

Corollary 2.6 shows that T and R satisfy the conditions given in Notation 2.1 of [AEJ] 
(except we use R where [AEJ] used //) , and therefore all the results of [AEJ] apply. We 
next recall some of the key definitions from [AEJ] (also see [W 2]). 

DEFINITION 2.7 ([AEJ]). We define 
Of(R, T) := {x G F | x gR and 1 + JC G T} 
0+

F(R, T):={x£F*\x<ER andxOF(R, T) Ç 0F(R, T)} 

0F(R, T) := Oj(R, T) U 0+
F(R, T). 

0F(R, T) is calledpreadditive if 0F(R, 7> Oj{R, T) Ç 1 - T, that is, if JC, y G OF(R, T), 
then 1 — xy G T. (See [AEJ, Lemma 2.6.]) 

We next give the main theorem of this section. 

THEOREM 2.8. Suppose thatp is an odd prime, ^Br(F) is T-rigid andR is as above. 
Then OF(R, T) is preadditive. Consequently, A := OF(R, T) is a valuation ring of F such 
that UA • T Ç R and 1 + MA Ç T where UA and MA denote the units and maximal ideal 
of A respectively. 

PROOF. Let x and y be elements of OF(R, T). Then 1 + x = t\ and 1 + y = t2 for 
t\,t2 £ T. Hence,x + xy = xt2 and 1 —xy= (1 +JC) — (x+xy) = t\ — xt2 G (1 +jc/)rfor 
some t G T. As JC ^ R and t G T Ç i?, we have xt $ R and consequently jcf is T-prerigid 
by Propositions 2.4 and 2.5. This shows that 1 — xy G T or JC7. 

We first suppose that yT ^ xT. In this case, since 1 — y G T and j — xy G y71 we have 
1 — xy = (1 — j ) + (y — xy) G T or yT. As yT ^ xT we find that 1 — xy G Tas required. 

We now suppose that y = xt for some t G T. Since/? is odd, we know x2 g R and 
we have 1 — xy = 1 — x2t G T or x2T by Propositions 2.4 and 2.5. Since xT ^ x2Twe 
conclude that 1 — xy G T as required. 

The remaining assertions of the theorem follow from Theorem 2.10 of [AEJ]. This 
concludes the proof. • 

In the sequel we shall use v: F —> YA to denote the valuation associated with the 
valuation ring A = 0F(R, T). The condition that 1 + MA Ç T means that A is a T-
compatible valuation ring (see [AEJ, Definition 1.7]). A key property of T-compatible 
valuation rings of the form 0F(R, T) is that v(R) does not contain any non-trivial convex 
subgroups of the value group TA (see [AEJ, Lemma 3.1]). The next lemma is a result 
about jp-adic valued fields. 

LEMMA 2.9. Suppose that v.F^T isa valuation on a field F containing a primitive 
p-th root of unity and char(F) = p. Assume that x, y G F satisfy 0 < v(y) < v(p), and 
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either v(x) and v(y) are linearly independent in T/pT or we may assume that v(y) (j£pT 
andx G UA with x gF*p. Then (1 -y,x) ^ 0 G pBr(F). 

PROOF. We observe that the extension L\ — F(jfx) is either ramified with value 
group r^, = r(-v(x)), or else is unramified with residue class field the purely insepa­
rable extension F(tf£). We next observe that the extension L2 — F({/1 —y) is ramified 
with value group TLl = r(-v(y)). To see this, for z G L2 we express 1 — y = (1 — zf — 
1 -pz+ • • • +pzP-1 -zP. Since v(-pz+ • • • +pz?~l) > v(p) > v(y) we find that v(y) = vif) 
as required. We now apply [JWd, Corollary 2.6] in case v(x) Ç-pT or [JWd, Corollary 2.9] 
in case x G UA to the symbol algebra D = ( 1 —y, x) to see that the valuation on F extends 
to D. Consequently, D is a division algebra and the lemma is proved. • 

In the next lemma we refine our knowledge of the valuation OF(R, T) in some special 
cases. 

LEMMA 2.10. Suppose that R ^ F* and A = Of(R, T) is a T-compatible valuation 
ring and that To C T is a subgroup containing F*p with the property that whenever 
x G T - T0 and y G F* - R, one has (x,y) ^ 0 G pBr(F). Then, (1 + MA) C T0. 
Furthermore, if for every t G To there exists some x G T — To with (t, x) = 0 G pBv(F), 
then A = Op(R, T) is non p-adic, that is, char(F) ^ p. 

PROOF. We begin by observing that whenever j> G F* — R, as pTA = v(UAF*p\ 
the fact that UAT Ç R shows that v(y) $pTA. Further, suppose that x G T. Then either 
v(x) G pT or else v(x) and v(y) are linearly independent in T/pT. (For if x = y?zpu where 
0 < s <p and u G UA, we find as UA • F*P Ç R thatx gR.) 

For the first statement we let AW G MA. If /w E F* — R, then as 1 + m G 71 and 
as (1 + w, —m) = Owe conclude by our hypothesis on To that 1 + m G 7o. Next, we 
suppose that m G R. Then, since v(Z?) cannot contain any nontrivial convex subgroup of 
T^ we know there exists y G F* — R with 0 < v(y) < v(m). (For, the convex subgroup 
generated by v(m) cannot be contained in v(R) and hence there exists some z G F* — R 
and n G N with nv(m) < v(z) < (n + l)v(m). We may then set>> = zm~n.) We also 
know that both 1 + my~l +m G T and l + m + j + m y G T since v(my-1 + m) > 0 and 
v(m +y + my) > 0. We find that —y{\ + my~l + /w) = —(/w + j + my) G F* — R and that 
(l + m + j> + my, —(m +>> + my)) = 0 G ^Br(F). Again, our hypothesis on r0 shows that 
(1 + m + y + my) = (1 + m)(l +7) G 7o. Since we already know that 1 + y G 7b, we 
conclude that 1 + m G r0 as required. 

Now suppose that char(F) = p. Then/? G MA and as above there exists y e F* — R 
with 0 < v(y) < v(p). We know that 1 — y G To. Suppose that x G T — To is chosen with 
(1 — y,x) = 0 G /?Br(F). By the above, either V(JC) and v(y) are linearly independent in 
T/pT or we may assume that x £ UA.ln the latter case, as x $ To and as ( 1+MA )F*P Ç To, 
we conclude that x $ F*p. Applying Lemma 2.9 we find that (1 — y,x) ^ 0 G pBr(F), a 
contradiction. This proves the lemma. • 

Recall that a valuation on a field F is calledp-henselian if Hensel's lemma holds for 
/^-extensions. When F has a primitive p-th root of unity and the valuation is non/?-adic, 
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this is equivalent to 1+MA Ç F*P. The next theorem characterizes the case when Of(R, T) 
is non/?-adic andp-henselian. 

THEOREM 2.11. Suppose thatp is an odd prime and the p-quaternionic pairing of 
the field F is a nontrivial group extension, that is, we can decompose Hl (F,p) = G®H 
so that the cup-product pairing becomes 

(G®H)x(G®H)^Q®(G®H)®(HAH) 

where Q is the subgroup (G, G) C pBv(F). If we set T' = G, then pBr(F) is T-rigid and 
the valuation ring 0F(R, T) is non p-adic andp-henselian. 

PROOF. The 7-rigidity oîpBx{F) is clear. Since G = 7 Ç R, the condition that T®H 
embeds in pBr(F) shows that the hypotheses of Lemma 2.10 are satisfied with TQ — F*p. 
Consequently, Op(R, T) is non/?-adic and 1 + MA Ç F*p. The proof is complete. • 

In the study of pro-2 Galois groups, whenever WF = R\ x R2 in the category of 
abstract Witt rings, a crucial problem is to find realizations of the factors R\ and R2. This 
means that one tries to find (usually infinite) 2-extensionsLi and72 of F with WLt = Rt 

such that the projection maps WF —> Rt correspond to the maps WF —* WLt induced by 
field inclusion. We have the analogous notion for/7-quaternionic pairings. Suppose that 
1F decomposes as a direct sum lF = 7i 0 72: (G\ 0 G2) x (Gi 0 G2) —• Q\ 0 Q2. We 
say that a field extension L realizes the factor 7i of 7 ifF*/F*p —• L*/L*p is surjective 
with kernel G2 and if the identification G\ = L*/L*p arising from the field inclusion 
F C L induces an isomorphism Q\ = p Br(L). We note in particular that this means 
7i coincides with 7i under these identifications. This next result is the analogue of the 
Realization Theorem [AEJ, Theorem 4.8] for decomposition of/7-quaternionic pairings. 

REALIZATION THEOREM 2.12. Suppose thatp is an odd prime and the p-quaternionic 
pairing 7 of the field F decomposes as a direct sum 7 = 7i 0 7 2 : (G\ 0 G2) x (G\ 0 G2) —» 
ôi © ft where 11 is a nontrivial group extension 71 = 77 x //: (Gi 0 / / ) x (Gi © //) —> 
(G7, G7) 0 (G7 0 //) 0 (H A //). (So, we /zave F* / F*p *î (Ch ® H) ® G2). Then the factor 
7i w realized by some (possibly infinite) p-extension L ofF. 

PROOF. We set T = ~G[ 0 G2 and 7b = G2 and we let R be as in Corollary 2.6. We 

first assume that R ^ F*. One readily checks that the fact that 7i = 7T X H guarantees 
thatpB^F) is 7-rigid and since R ^ F* all the hypotheses of Lemma 2.10 are satisfied 
for these To C T. Consequently, the valuation given by A = Op(R, T) is non/?-adic and 
\+MA CT0. 

We next claim that (1 +MA)F*P = T0 = G2. We already know that (1 +MA)F*P Ç 7b. 
Conversely, assume x G 70. Let 3; G (F" — #) H G\. By the first paragraph in the proof 
of Lemma 2.10, either v(x) G pT or else v(x) and v(y) are linearly independent in T/pT. 
In the latter case, we know by [JWd, Corollary 2.6] that D = (x,y) is a totally ramified 
F-division algebra, contrary to the fact thatx G G2 and>> G Gi gives (x,y) = 0. In the 
former case, multiplying x by an element of F*p we may assume that JC G UA. In case JC ^ 
F*^, [JWd, Corollary 2.9] gives that D = (x,y) is a semiramified F-division algebra (with 
residue field F ( ^ ) ) . This contradiction shows that JC G F*p and (1 +MA)F*P = T0 = G2 

has been established. The theorem when R ^ F* now follows from the following lemma. 
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LEMMA 2.13. Let v:F —> Y be a non p-adic valuation on afield F containing a 
primitive p-th root of unity. Suppose that IF decomposes as a direct sum IF = 7i © 
12'- (G\ © G2) x (Gi 0 G2) —>Q\®QI where G2 = (1 +MV)F*P. IfL is ap-henselization 
of F with respect to v, then L realizes the factor1\. 

PROOF. When L is a p-henselization of F, it is well-known that F*/F*p —> L*/L*p 

is surjective andker(F7F^ -+ L*/L*p) = (1 + MA)F*P/F*P. Consequently, U jUp ^ 
(F*/F*p)/G2 = G\.lt remains to show that Qx = pBv(L) and that 1L coincides with 
7i with these identifications. The Merkurjev-Suslin theorem shows thatp Br(L) is gen­
erated by the symbols {a, b) with a,b G G\ C F*/F*p, and consequently the homomor-
phism Q\ —> p Br(L) induced by the inclusion F —> L is surjective. To prove this map 
is injective, in view of the Merkurjev-Suslin theorem it suffices to show that whenever 
x G L* and g,gi G Gx C F*/F*p are such that g ^ [JC], gi »-> [1 - JC] G UjUp, 
then (g,g\) — 0 G pBr(F). (For, the Merkurjev-Suslin theorem shows that the kernel of 
L* /L*p ® L* /L*p —» p Br(L) is generated by the elements (JC) 0 ( 1 — JC), and consequently 
the kernel of Q\ —> p Br(L) is generated by symbols which would have been shown to 
be zero.) 

We now note that if v(x) > 0, then 1 — x G L*p and consequently g\ = 1 G G\, so 
the result is clear in this case. Similarly, if V(JC) < 0, then [x] = [1 — x] G L*/L*p so that 
g = g\ E G\ and again the result is clear. So we may assume that x is a unit in L. Since 
F = L and as G2 = (1 +MV)F*P we may assume (modifying g by a/7-th power from F as 
needed) that g — x when viewed as L-elements. It then follows that \— g— 1 — JC and 
consequently gi(l - g)~x G (1 +MV)F*P = G2. In particular, gx = (1 - g)g2 G F*/F*p 

for some g2 G G2. We now find, (g,gi) = (g, 1 — g) + (#,£2) = 0 + 0 since g G Gi and 
g2 G G2. The lemma is proved. • 

Returning to proof of the theorem, we next consider the case where R = F*. Since 
[i? : 7] < p we must be in the situation where \H\ = p. Suppose first that G\ — {1}. 
Then (G\ ,G\) = 0 follows. In this case we let L be any/?-extension of F maximal with 
respect to the property that G\ embeds in L* /L*p, and the desired properties of L are 
clear. 

So we may now assume that \G\\ > p and H = (h) has order p. In this case we 
arbitrarily choose some T\ C ~G~\ with \G~X : Y{\ = p, and we set T' = T\ © G2 C T. 
Suppose g G G7 is chosen so that G[ = Y\ © (g). We have Gi = 77 © (g, A), and further, 
since (g,h)^0 we find (Gi, Gi) = (f~u GX ) © ((g, h) A (g, A)). From this it follows that 

pBr(F) is F7-rigid. 
We let R' be the R arising in Corollary 2.6 for J7. Then, as [Rf : V] < p and as 

[F* : F7] = /?2, we know that i?7 ^ F* and by Theorem 2.8 0F(^' , T7') is a F7-compatible 
valuation subring of F. In casei?7 = F, it follows that 0F{R\ Tf) = 0F(T, T') = OF(T, T) 
is a valuation ring and we are done since we find that our original R — T. So we may 
assume that R' ± F. We set ~G~X' := (R' n Gx)/F*p. Then G T = (TV, Ag7) for some 
g7 G Gi. If g7 ^ Fi, then G\ = T\ © (g7) and the homomorphism Gi —• gi given 
by z 1—»• (z, A) is injective since the analogous homomorphism Gi —> gi *s injective. 
We conclude that 7i = l\ x / / where 7J is the pairing 7Î : G[' X G[7 —> (G^, G7') 
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in this case. If g' G Tu then ~G~l = Tx 0 (A). We let g\ e~G~\-Tu and note that the 
homomorphism G\ —> Q\ given by z i—» (z, Agi) is injective. In this case we conclude 
that 7i = 7i x (//gi ), and we are in the former situation replacing H by (hg\). But now, 
Of(Rf, T') = Of(R\Rf) is a valuation ring, and we are reduced to the situation above 
Lemma 2.13 by replacing our original T with R'. This concludes the proof. • 

REMARK 2.14. Theorems 2.11 and 2.12 provide all the technicalities necessary to 
generalize the main results of [JWr 1] to the case of pro-/? groups. To describe this, let 
£b denote the category of finite /?-quaternionic pairings generated from the pairings of 
non/7-adic local fields using the operations of direct product and group extension. Then 
the class of pro-/? groups Gp(p) where the/?-quaternionic pairing of F lies in £o can be 
described completely by an inductive procedure corresponding to the inductive decom­
position of IF in £o. The possibilities for GF(P) will depend upon the structure of 7 F 
and the cyclotomic character GF(P) —» Aut(/Xp°o) where /y» c F*sep is the subgroup of 
all/^-th roots of unity for all n. The details can be obtained by imitating the proofs in 
[JWr 1] and will not be described here. 

3. Relative rigidity. The notion of relative rigidity in quadratic form theory was 
introduced in [J] as an axiomatic approach to the structure of the Witt rings of field with 
dyadic henselian valuations. The main result proved there is the existence of splitting 
towers for the pro-2 Galois group, providing insight into how the Witt ring determines 
its structure. In this section we show how to extend these results to the pro-/? case. In 
order to better illustrate the techniques developed we limit the discussion in this section 
to the case where n = 2, the general case is indicated in Remark 3.6. 

Recall that p is a fixed (not necessarily odd) prime and that F is a field containing a 
primitive/?-th root of unity. Foranya G F we denote by NF{a) := NF^y F(F(^a)*>j / F*p 

Ç F* /F*p, the image of the norm map. Whenever / G F* /F*p we use (t) to denote 
the cyclic subgroup of F* /F*p = Hl(F,p) generated by /, and we use (t,F) to denote 
the subgroup of p Br(F)(= H2(F,p)) generated by cyclic algebras (cup products) of the 
form (t,f) for a l l / G F*/F*p. The next definition is the analogue of a Witt ring being 
2-relatively rigid given in terms of the cohomology ring H*(F,p). 

DEFINITION 3.1. Let tu t2 G F* and let HF be a subgroup of F*/F*p such that cup 
product mapping HF —> H3(F,p) given by h i—> (t\ ,ti,h) is injective. Then the/?-torsion 
component^ Br(F) of the Brauer group is called relatively rigid mod Hp for t\, t2 if: 

(i) F*/F*p = NF(tx)NF{t2)NF{txt2)NF{txt2
2)• • • NF(hf-x)®HF 

(ii) Whenever gogig2 •••g, = l G F*/F*p where go G NF(t\), g\ G NF(ti\ gi G 
NF(t\t2\...,gp G NF(tif2~

l), then necessarily g0 G (t\),g\ G (t2),g2 G (t\t2), 

(iii) pBr(F) = (tuF) + (t2,F). 
The most interesting examples of fields F for which p Br(F) is relatively rigid mod HF 

for t\,t2 are the generalized local fields of level 2 considered by Kato in [K]. In this 
case HF = Z/pZ. More generally, if F is complete with respect to a discrete valuation 
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with uniformizing parameter t\, and if F has characteristic p with a /?-basis the single 
element lî where t2 is a unit of F, then p Br(F) is relatively rigid moàHF for t\, t2 where 
///r = F J (p(F)+Ef=/ 7f ̂ ) • For further discussion in the case/? = 2we refer the reader 
to Section 6 of [J]. 

Whenever/? = 2 and L/F is a quadratic extension, one knows that the restriction-
corestriction sequence//"(F, 2) —> //"(/,, 2) —> //"(F, 2) is exact. However, when/? > 2 
and L / F is a cyclic /?-extension, this zero sequence is no longer exact. Because this 
exactness is a central tool in the theory of quadratic forms, some understanding of the 
homology of this sequence is crucial in order to generalize results. Hilbert's Theorem 90 
for K2 gives some useful information about the kernel of corestriction in the relatively 
rigid case as the next lemma shows. 

LEMMA 3.2. Suppose that pBr(F) is relatively rigid mod HF for t\,t2. Let L = 
F(^7T). Thenkex(corL/F:pBr(L)^ pBr(FJ) Ç fe,L). 

PROOF. Let ,4 G ker(corL/F) and let a be a generator of the Galois group Gal(L/F). 
Using Hilbert's Theorem 90 for K2, p Br(F) 9* K2(F)/pK2(F) (the Merkurjev-Suslin 
theorem), and using the fact that cor o res: p Br(F) —> p Br(F) is zero, we find that 

A = aA i - A ! + resL/F(C) in p Br(L) 

for some A\ G p Br(L) and C G ^Br(F). Since pBr(F) = (*i,F) + (t2,F), we find that 
^ = aA\ -Aimod(t2,L). 

Next, using^ Br(F) = (/i,F) + (t2,F), we express 

corL/F(^i) = (tuc\) + (t2,c2) for some ci,c2 eF*. 

Using F*/F*P = iVK î )NF{ti)NF{h t2)NF(tx tj)-- NF(h f2~
l)®HF together with the fact 

that (t2,x) G (t\,F) wheneverx G NF{t\tf2) for / = 1,2,...,/?— 1, we may assume that 
<?2 = NL/p((x)h with a G L and A G ///r. Setting B\ — A\ — (tft\,c\) — (t2, ot) we have 
C0TL/F(BI) — (h,h). However, as 0 = coxL/F{B\) U (t\) = (t\,t2,h), we find by our 
hypotheses on HF that h = 1 and consequently corL ipiBx) = 0. 

We next observe that a(tfh,c\) - (<tft[,c\) = (£,ci) G TQSL/F[PBr(F)) Ç (/2,L) 
(£ is some primitive/?-th root of unity), and a(t2, a) — (t2, a) = (t2,^~l^a) G (t2,L). This 
shows that °A\ —A\ = aZ?i —#i (mod t2,L) and consequently^ = aB\ —B\ (mod t2,L) 
with corL/f{Bi) = 0. By applying the same arguments to B\ instead of̂ f, we can express 
B\ = °B2 — B2 (mod t2,L) for some B2 G pBr(L) with corL/F(B2) = 0. Iterating this 
argument gives (mod t2,L) 

A = ^ B l = ^ 1 > 2 5 2 = <°-VB3 = • • • = ( f f - i r ' V i 

where 5, G , Br(L) with corL/F(Bi) = 0 for 1 < / < / ? - 1. Since (-1)* ( P ~ * j = 1 

(mod /?) we find that (mod t2, L) 

p- i . 
A = E ^ ^ P - I = r e si/F(corL/ jP(^_i)) = 0. 
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This shows that A G (t2,L), proving the lemma. • 
One of the principal objectives of this section is to show that relative rigidity is inher­

ited under certain cyclic extensions. The next lemma shows how to describe the behavior 
of norm subgroups under these extensions. 

LEMMA 3.3. Suppose that t\ and t2 are elements ofF* /F*p which are Z/pZ-linearly 
independent and satisfy condition (ii) of Definition 3.1. LetL = F(j/t\). Then 

NL(ti) = iLiF{NF{t2)NF{txt2)NF{txti) • • • NF(txf-
xj). 

PROOF. We must show the inclusion Ç, the reverse inclusion is clear. Suppose that 
<x G NL(t2). Since (Y2,<*) = Owe have that (t2,NL/F(a)) = 0 e pBr(F). Thus, NL/F{a) G 
Nf{t\)nNp{t2) and consequently by condition (ii) of Definition 3.1 we have NLip{a) — 1 
in F* /F*p. Applying Hilbert's Theorem 90 we can express a = c\ • ( a_1 )ai for some 

c\ G F, ct\ G L where a is a generator for Ga\(L/F). Since (— l)k , = 1 (mod p) 

we find (a~iy~l ocx = NLjF(a\) (mod L*p). Therefore in^ Br(L), since (t2, a) = 0 

o = fe^-'^a) = (t2,<-°-vr*Cx.«>->r'ai) = (t2,NL/Fiai)). 

Since ker(resI//F:^ Br(F) —> p Br(L)) = (t\,F) it follows we can express (jt2,NL,F(a\fj 
= (t\, c) G p Br(F) for some c G F. Applying the condition M(2) together with condition 
(ii) of Definition 3.1 shows that 

NL/A<*i) G (NFiWfiht^Nfit^). • -NfitiÇ-1)) nNF(tY) = (tx) C F / F * 

Applying Hilbert's Theorem 90, a\ = (tft\)lc\ • ( a _ 1 )a2 for some c\ G F and a2 G L. 
Direct calculation then gives that ( a_1 )ai = Ç •(CT_1) a2 and therefore 

(*) a = cl'
(a-l)al =c2-^-l)2a2 

where c2 = c\Ç G F. Repeating the process leading to expression (*) iteratively p — 3 

times and using (—if I » = 1 (mod/?) gives 

a = Cp-x • (a~lf cxp-x = cp-iNL/F(ap-i) 

in L*/L*p for some cp-\ G F and ocp-\ G L. Set d = cp-iNL/F(ap-i) G F, noting that 
h I Ad) = a e L*/L*p. Then in p Br(L) we have (t2, a) = (t2,d) = 0. Consequently in 

p Br(F) we have (t2,d) = (t\ ,e) — Q for some e G F. Applying condition M(2) we have 
that d G NF(t2)NF(t\ t2)NF(t\ %) • • • iYH* I ̂ ~1 ) from which the lemma follows. • 

We are now ready to prove the main result of this section. 
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THEOREM 3.4. Suppose that F is relatively rigid mod HFfor t\, t2. Then L = F(f/t[) 
is relatively rigid modHL := iLjF(HF)for tft[, t2. 

PROOF. We must verify that conditions (i), (ii) and (iii) of Definition 3.1 hold for L. 
We begin with (i). Let a G L*. By condition (iii) for F we can express corL iF((tft\, a)) = 
(t\,c\) + (t2, ci) G p Br(F) for some c\,C2 G F. Applying condition (i) for F together with 
the fact that (t^, x) G (t\, F) wheneverx G NF(t\ f2)fori = 1,2,...,/?— 1, we may assume 
thatci G iVF(r2)iVf (fi r2)iVf (?i /2

2) • • • iV/r(/i l^"1) ® //F and c2 G NF(tx ) ® HF. We express 
c2 = NL/F(ë)h (in F*/F*P) where 5 G I and A G //F. Then inp Br(F) we have 

™*LlF(«fTuac^x) - (t2,8J) = (t2,h). 

We set D = (^/Tuac\x) - (/2,£) G pBr(L). Then 0 = fa) U corL/F(D) = (t\,t2,h) 
shows that h = 1 G F*/F*p and consequently corL/F(D) = 0. Applying Lemma 3.2 we 
know that £> = fa, 7) for some 7 G L. This shows that (tfTu acf*) = fa,<*>7) G p Br(L). 
Applying M(2) we find that 

a q 1 G NL(^)NL(^t2)NL(^r4) • • • ^ ( ^ T ' ) • 

By construction we have that 

d £Nf(t2WF{tit2WKti$)''-NF{tlF
l)®HF 

from which it follows that 

a = (ac^)cx G ^ ( ^ " ) ^ f e W i ( ^ 2 ) ^ ( ^ " ^ ) • • • NL«/Txf-
X) 0 //L. 

This proves condition (i) for L. 
We next prove condition (iii) for L. Let A E p Brfa). Applying condition (iii) for 

F we find that covL/F(A) = (t\,c\) + fa, ^2) for some ci,C2 G F, where as above we 
may assume that c2 = NLiF(b)h with 5 £ L and A G ftr. We obtain that 
C0TL/F(A ~ ({/h,c\) — fa,£)) = (t2,h). As shown for D above in the proof of (i), 
we can express A — (j/t\,c\) — fa,<5) = fa>7) for some 7 G L. It now follows that 
Ae(tfï9L) + (t29L). 

We conclude by establishing condition (ii). We suppose that gogigi • • • gp — 1 G 
L*/L*^ where g0 G A^^TT), gi G Afc(fe), g2 G Afr^Tfe), ...,gPe NL(^hffl). We 
proceed in two steps. 

STEP 1. Applying Lemma 3.3 we find that g\ — a\a2 • • • ap in L*/L*p where ai G 
NF{t2\ a2 G NF(txt2\...,ap G NF(txf-

x). Since g0gi •• -gP = 1 in L*/L*^ and 
(^T,go) = Whhtgi) = • • • = ( ^ f i ^ g , , ) = 0 G p Brfa) we obtain 

(*) 0 = (^7,glg2 • • • gp) = G^7, flifl2 ' • - up) + (*2,g2lg32 ' « * V-V2)&)-

Let a = g^^â"2 * ' ' SÔ-T &• applying the corestriction to (*) we obtain 

(ti,a{a2 •••«/,) + (t2,NL/F(<xj) = 0 G pBr(F). 
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Applying condition M(2) together with condition (ii) for F we find that A^/F(a) G 
Nf^Nfit^Nfititl) • • • NF(txf-

xYWF(tx) =(h)c F*/F*p. We express NL/F(a) = tx 

inF*/F*P. Replacinggp,g0, andgi by (j/tlq^gp, (tfhfgo,andç'gi,respectively, we 
may assume that NL/p(a) = 1 G F*/F*p. Consequently, {t\, #1^2 • • • ap) = 0 G p Br(F) 
and a\a2 •• •#/? £NF(t\). Since a 1 £ NF(t2), 02 £ NF(t\t2),...,ap G NF(t\Ç~l), applying 
condition (ii) for F we find that «i G ̂ 2), «2 G (*i £ ) , . . . , 0^ E (*i ̂ _ 1 ). This shows that 
gi = #102 - - ap e (t2) in L* /L*p, say «1^2 • • • Op = 4- Equation (*) now becomes 

(**) (</Tu 4) + fe, « ) - 0 G , Br(Z). 

Since NL/F(a) = 1 G F* /F*p, applying the corestriction to (**) we have (t\, t%) = 0 G 
j , Br(F), so k = 0, that is, gi = 1 G L*/L*P. NOW, by (*) we find that fe, a) = 0 G p Br(L) 
so a G NL(t2). 

STEP 2. Since g^ = ag2g$ • • -g^Ip g\ = 1 and g0gi • • >gp = 1 in L*/L*p, we 

have that g0«g2«3---gpî = 1 in L*/L*P, where go G NL{^TX\ a G NL(t2), & G 

Afc^Tfe), • • • ,Sp i G ^ ( ^ T ^ " 2 ) . We relabel a, g i g i . . . , g £ j as gl,g2,g3, .-.,gp-l 

again. Then we have 

(a) g0glg2---gP-x = leL*/L*P. 

Applying the same arguments in Step 1 to (a), after a suitable modification of gp-\, go, 

andgi, we havegi = 1 andgp_i = a\gf]gf] • • - gfj^ for some ax G NL(t2). Apply­

ing (a) we have that goccxgf)+Xgf^1 • • • ̂ J2
2)+l = 1 in L*/L*P. By letting au gf+ 1 , 

g*P+\... ,4-2 2 ) + 1 b e 8i>22, • • • ,g/>-2, respectively, again we have 

(b) gogigi'••&-!= I £L*/L*P. 

By repeating this process again and again (and after modifying), we have finally, 

(c) gogig2g3 = leL*/L*r. 

By applying the same arguments as in Step 1 to expression (c), after a suitable modifi­
cation of g3, go andgi, we havegi = 1 and a'Q := g2

lgj2 G NL/F(t2). So, 

(d) g3 = 06g,
2

 a n d go<xo£l = leL*/L*P 

where/ = (—2)_1 in (Z/pZ)*' and OCQ — (a^y G NL/F(t2). By repeating the same argu­
ments used in Step 1, we may assume that a0 = 1. As g2 G NL(tft[t2\ andgo G NL(tft[), 
0 - ( £ 0 , ^ 2 ) = (go,'2) in pBr(L). It follows that g0 G Afc(f2). By Lemma 3.3, 
we find go = c in U jUp for some c G NF(t2)NF(t\t2)NF(txtl) • • • NF(tit%~~1). Also, as 
go G NL(tfT\\ 0 = (go, ̂ TT) = (c, tfF\) inpBr(L). Applying the corestriction, we find 
that (c, t\) — 0 in^ Br(F), and c G NF(t\). Applying condition (ii) for F we find c G ( / i ) 
in F* /F^ . Hence go - 1 in L*/I*^ and from (d) we have g^+1 = 1 in V jVp. It now 
follows thatg2 = 1 = g3 in L*/L*p, since; = (-2)"1 ^ - 1 in (Z/p/Z)*. 
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Going back to the previous stages repeatedly, the same arguments show (with modi­
fications) that g4 = 1 = gs = • • • = gp in I* jL*p. Throughout the process our modifica­
tions have included raising our original g/'s to prime to p exponents, or multiplying by 
some product of tft[ with suitable powers of ti. The conclusion that condition (ii) holds 
for L follows. • 

In the next corollary we apply Theorem 3.4 to show that the pro-/? Galois group of a 
relatively rigid field has a Zp 0 Zp "splitting tower". (Here, Zp denotes the free rank 1 
pro-/? group MmZ/pnZ.) 

COROLLARY 3.5. Suppose that F is relatively rigid mod Hp for t\,h .Set L\ — 
F{^Tu^/Ti), L2 = F(<^T, ifhX...,U = F(t/ru <fh) and set L := Ui£NU Then 
p Br(Z) = 0. Consequently, one obtains a short exact sequence 

0-+f-*GF(p)->M->0 

where !f is a free pro-p group and M is a metabelian pro-p group. Moreover, if F contains 
allpn-th roots of unity for all n, then M=Zp(& Zp, otherwise M is a s emidirect product 
ZpX(Zp(BZp). 

PROOF. Theorem 3.4 shows that p Br(Lt) = ( i/t[9Li) + ( ifh,Li) and p Br(Z) = 0 
follows from this. If we let l! — L{\ipoo) be the field obtained from L by adjoining all 
the /7w-th roots of unity for all n, then l! is Galois over F. The result follows setting 
? := GL,(p) and M := G^L'/F). m 

REMARK 3.6. It is possible to generalize Definition 3.1 and consider a notion of 
the Brauer group being relatively rigid modHf for t\,t2,...,tn. For this one needs to 
reformulate the notion of «-relative rigidity introduced in [J] for the cohomology ring 
H*(F,p). It should be possible to generalize Theorem 3.4 to this setting. Details will not 
be given here. 

REFERENCES 

[AEJ] J. Arason, R. Elman and B. Jacob, Rigid Elements, valuations, and realization of Witt rings, J. Algebra 
110(1987), 44^-467. 

[B] E. Becker, Formal-reel le Kôrper mit streng-auflôsbarer absoluter Galoisgruppe, Math. Ann. 238( 1978), 
203-206. 

I J] B. Jacob, Quadratic forms over Dyadic Valued Fields II, Relative Rigidity and Galois Cohomology, J. 
Algebra 148(1992), 162-202. 

[JWd] B. Jacob and A. Wadsworth, A New Construction of Nuncrossed Product Algebras, Trans. Amer. Math. 
Soc. 293(1986), 693-721. 

[JWr 1] B. Jacob and R. Ware, A Recursive Description of the Maximal Pro-2 Galois Group Via Witt Rings, 
Math. Z. 200(1989), 379-396. 

[JWr 2] , Realizing dyadic factors of elementary type Witt rings and pro-2 Galois groups, Math. Z. 
208(1991), 193-208. 

[L] T.-Y. Lam, Algebraic Theory of Quadratic Forms, W. A. Benjamin Inc., 1973. 
[K] K. Kato, A generalization of local class field theory by using K-groups, I, II, J. Fac. Sci. Univ. Tokyo Sect. 

IA Math. (2) 26(1979), 303-376; (3) 27(1980), 603-683. 
[M 1] M. Marshall, Abstract Witt Rings, Queen's Papers in Pure and Appl. Math. 57, 1980. 
[M 2] , Classification of finitely generated Witt rings which are strongly representational, preprint. 

https://doi.org/10.4153/CJM-1995-029-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-029-4


BRAUER GROUP ANALOGUES 543 

[MY] M. Marshall and J. Yucas, Linked quaternionic mappings and their associated Witt rings, Pacific J. Math. 
95(1981), 411-426. 

[Me] A. S. Merkmjev, K2 and the Brauer Group, Contemp. Math. 55(1986), 529-547. 
[W 1] R. Ware, Quadratic Forms andProfinite 2-groups, J. Algebra 58(1979), 227-237. 
[W 2] , Valuation Rings and rigid elements infields, Canad. J. Math. 33(1981), 1338-1355. 

Korea University 
Seoul 136-701 
Korea 

University of California-Santa Barbara 
Santa Barbara, California 93106 
U.S.A. 

https://doi.org/10.4153/CJM-1995-029-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-029-4

