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Machine Learning for Archaeological Applications in R 1

1 Introduction
1.1 Overview of this Volume

In recent decades, the number of archacometric investigations that make use
of physical-chemical techniques for the analysis of the composition of
various archaeological materials continues to grow, as evidenced by the
increasing number of publications in this area. One example of this type of
studies is provenance analysis, which tries to relate archacological materials
to their original natural sources by discriminating their characteristic chem-
ical fingerprint. In brief, it tries to determine the geological or natural origin
of materials found in different archaeological contexts to establish the
places of acquisition and production of the raw materials. We have chosen
to approach this complex subject in two different ways, both based on very
similar datasets.

In this Element, we take an applied, practical approach, allowing the
reader to experiment with the provided datasets and scripts to be used in
the R software package. In Statistical Processing of Quantitative Data of
Archaeological Materials, we take a more theoretical and mathematical
avenue, allowing the reader to amend and apply the discussed methods
freely. These two Volumes can be used independently as well as complemen-
tary, throughout both ample cross-references are provided to facilitate the
latter. As an introduction to the subject, let us first remember that the
methods, basic principles and when to apply different statistical processing
depends on three data scenarios: (1) when dealing with high-dimensional
spectral data, (2) when employing compositional data, and (3) when managing
a combination of compositional and spectral data.

Case 1 considers high-dimensionality data (n < p, where n relates to the
number of observations and p are the number of variables) using full
spectrum readings, such as those obtained with Fourier transform infrared
spectroscopy (FT-IR), Raman spectroscopy, or X-ray fluorescence (XRF)
spectroscopy. For this type of data, the suggested approach is to apply
chemometric techniques and unsupervised machine learning methods.
First, the spectra are preprocessed by filtering the additive and multiplica-
tive noise, correcting misaligned peaks, and detecting outliers by robust
methods. Afterwards, the data are clustered using a parametric Bayesian
model that simultaneously conducts the tasks of variable selection and
clustering. The variable selection employs mixture priors with a spike and
slab component, which make use of the Bernoulli distributions and the
Bayes factor method to quantify the importance of each variable in the
clustering.
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2 Current Archaeological Tools and Techniques

Case 2 contemplates low-dimensional data (n > p) where the recorded data
have been converted to chemical compositions. For this case, the recom-
mended approach is to adopt the methodology proposed by Aitchison (1986),
which discusses some of the algebraic—geometric properties of the sample
space of this type of data and implements log-ratio transformations.
Respecting adequate preprocessing of compositional data, such as robust
normalization and outlier detection, the use of model-based clustering that
fits a mixture model of multivariate Gaussian components with an unknown
number of components is proposed. This allows choosing the optimal num-
ber of groups as part of the selection problem for the statistical model.
Mixture models have the advantage of not depending on the distance matrix
used in traditional clustering analyses. Instead, the key point of the model-
based clustering is that each data point is assigned to a cluster from several
possible k-groups according to its posterior probabilities, thus determining
the membership of each of the observations to one of the groups.

For Case 3, if reliable calibrations are available to obtain compositional
data, this information can be combined with the spectra to obtain groups. For
handling the data, a combination of chemometric techniques is used. In this
case, a dependent variable y (or compositional values) is related to the
independent variables x (or spectral values). The preprocessing is performed
similarly as in Case 2; this allows calibrating a model of predictive purposes
that can discriminate those variables that provide significant information to
the analysis and eliminating the redundancy of information as well as collin-
earity. Once the selection of variables has been made, a new methodology
called Databionic Swarm (DBS; implemented by Thrun, 2018) is applied for
clustering the data.

To fully understand how the proposed methods work and how to apply
them to your own data, these are exemplified in this Element with different
case studies using quantitative data acquired from archaeological materials.
The datasets used in the examples are provided in the electronic format of
this Element as worksheet files with the “csv” extension. To process the data
according to the exercises, the selected dataset must be imported and the
source code executed in the R environment (R Development Core Team,
2011); we used version 3.6.1 on a 64-bit Windows system, although more
recent versions of R are now available. R is a programming language for
statistical analysis and data modeling that is used as a computational envir-
onment for the construction of predictive, classification, and clustering
models. R allows you to give instructions sequentially to manipulate, pro-
cess, and visualize the data. The instructions or scripts employed for each
part of the process are detailed in the case studies. To learn how to employ the
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Machine Learning for Archaeological Applications in R 3

scripts in each step of the data processing, we encourage the reader to consult
the videos associated with this Element in the electronic format of the
Element.

1.2 Introduction to R

R is a public domain language and environment managed by the R Foundation
for Statistical Computing (© 2016 The R Foundation) that has the virtue of
being an exceptional tool for data statistical analysis and projection. This
project contains a large collection of software, codes, applications, documenta-
tion, libraries, and development tools that users are free to copy, study, modify,
and run. Therefore, it can be seen as a collaborative project in which anyone is
invited to contribute. Although initially written by Robert Gentleman and Ross
Thaka, since 1997, it has been operated by the R Development Core Team. From
early 2000 until now, it has become a kind of “standard of the scientific
community.” There are many publications and tutorials on its use aimed at all
levels of different areas and specializations, some of which focused on the most
technical and computational aspects of the language.

1.2.1 Getting Started

First, search online for CRAN R (the Comprehensive R Archive Network) or
follow the link http://cran.r-project.org/ that will direct you to the web page and
the instructions to download and install the latest version of R in various
platforms (Linux, MacOS and Windows).

1.2.2 Data Import

Once R is installed, the next step is to call our data in the R window to be able to
process them. In the screen, the indicator “>" appears and is where we must
define what task we want to perform. The most commonly used configurations
to perform data analysis in R are data frames, which are two-dimensional
(rectangular) data structures. As in this case, we deal with datasets of low or
high dimensionality, which must be arranged so that the rows in a data frame
represent the cases, individuals or observations, and the columns represent the
attributes or variables (see example in Table 1). These data frames must be
prepared in a folder available for import and analysis.

The working directory is the place on our computer where the files we are
working with are located. You can find what the working directory is with the
function “> getwd () ”. You only have to write down the function and execute
it. You can change the working directory using the function “setwd ()”,
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4 Current Archaeological Tools and Techniques

defining the path of the directory you want to use [e.g., setwd (”C: \obsid-
ian”) ]. Although there is extensive documentation on how to import/export
data to R, we use the traditional method, as our data are usually in a spreadsheet
with a csv extension. In R, it is sufficient to use the following command:

>data <- read.csv (”C:\\obsidian\\mydataset.csv”, header=T)

This command line provides the path to the folder where the data are found;
the command “read. csv” indicates that a file with a “csv” extension is read
from the “obsidian” folder located in the C root directory, and it is indicated
that the data contain a name for each variable with the command
“header=T". The symbol “<-” is only used for assignment; in the previous
example, the file name “mydataset.csv” refers to the name of the data
frame that you are going to work with in R. To see the structure of the data,
write down the next command.

str (data)

Another way is by selecting the option “Change directory” from the File menu
and navigating to the folder where our file is located. Once this path is
established, you must go to the folder where your dataset is, select it and
drag it with the mouse to the R console and, later, copy that path from the
console and paste it into the command “read . csv”. To see the dimensions
of the dataset, you can write the function “dim (data)”; “names () ” shows
the names of the columns. In R, the “summary” function shows a general
summary of the data frame variables (minimum, maximum, mean, median,
first, and third quartile).

To perform an algebraic operation on a data frame such as the one exempli-
fied in Table 1, the first column containing the identifier of each sample would

have to be excluded; this is achieved by typing the following command:

Table 1 Example of a data frame of chemical concentrations
of obsidian samples.

ID Mn Fe Zn Ga Th Rb Sr Y Zr Nb  Source

Ahuisculco 378 7468 47 18 10 109 45 20 143 19 1
Ahuisculco 379 7889 166 19 9 113 50 19 146 21 1

El Chayal 476 8162 33 17 11 146 154 20 100 9 12
El Chayal 486 8799 45 18 11 151 158 20 104 8 12
El Chayal 545 8309 36 17 10 140 151 19 101 9 12
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Machine Learning for Archaeological Applications in R 5

datal <-data [, 2:11]

In this way, only numerical variables are considered. Now you can transform all
the data in the data frame, such as base 10 logarithms:

data2 <- 1logl0 (datal)

If you also would like to transform negative values with logarithms you can use
DataVisualizations::SignedLog(). Depending on the application this can be
meaningful (cf, Aubert et al., 2016), even if in a strictly mathematical sense it
is not allowed. If you want to see the values of a specific variable, you can do it
with the following command:

data2$Na.

Some analyses require that the data be recognized as a matrix. In R, a
matrix is a data structure that stores objects of the same type, conversely to
a data frame, which is a rectangular array of data consisting only of
numeric values. To convert a data frame to a matrix, you can use the
following command:

newdata <- as.matrix(data2) .
To save a file that has been transformed, just type the following command:
write.csv (newdata, file="my data.csv”).

This will save the file named “my_data” with a “.csv” extension to the working
folder.

1.2.3 Functions

Once a dataset has been loaded, a large number of operations can be
performed on it. If, for example, you have a variable “Na” from which you
want to produce a histogram, it is enough to write the “hist (Na)” function
to produce a bar graph of the variable. In R, the “plot ()” function is
generally used to create graphs. This function always asks for an argument
for the axis of the abscissa (x) and another for the ordered (y). If two
variables, x and y are available, say Sr and Zr, and you want to see how
these variables relate, “plot (Data2$Sr, Data2$Zr) ” is enough to get
the graph. The “plot ()” function allows you to customize the graph by
entering titles or changing the size of the dots, the color, etc.

In addition to the “plot ()” function, there are other functions that
generate specific types of graphs. In Windows, right clicking the graph
can be copied to the clipboard, either as a bitmap or as a metafile. There
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6 Current Archaeological Tools and Techniques

are a variety of graphic packages for R that extend their functionality or
are intended to optimize things for the user. If you have any questions
about any other function, you can always access Help documentation
using the “help ()” command. For example, “> help (mean) ” directs
us to a web page where we can obtain information about the concept
“mean” that corresponds to the arithmetic average.

1.2.4 Packages

R has a large number of packages that offer different statistical and graphical
tools. Each package is a collection of features designed to meet a specific task.
For example, there are specialized packages for data grouping, others for
visualization or for data mining. These packages are hosted on CRAN
[https://cran.r-project.org/]. A small set of these packets is loaded into the
processor’s memory when R is initialized. You can install packages using
the “install.packages ()” function, and typing in quotation marks the
name of the package you want to install. They can also be installed directly from
the console by going to the R menu and then selecting “Packages.” For example,
to install the “cluster” package, type the following:

install.packages (”cluster”) .

After you complete the installation of a package, you can use its functions by
calling the package with the “1ibrary (cluster)” command. Every time
an operation is performed in R, it is important to use the “rm (list = 1s
())” command to delete all objects in the session and to be able to start
without any remaining objects stored in the program memory. Additionally,
when calling any file, it is recommended to use the “str ()” command to
know the structure of the data object.

1.2.5 Scripts

Scripts are text documents with the “.R” file extension. The scripts are the
same as any text documents, but R can read and execute the code they contain.
Although R allows interactive use, it is advisable to save the code used in an R
file; this way, it can be used as many times as necessary. In this Element, we
made use of the scripts published by the authors of the packages available for
R. An advantage of these scripts and packages is that you can make use of the
tutorials available for each. For example, to transform the data to the isometric
log-ratio (ilr), go to CRAN [https://cran.r-project.org/] and look for the “com-
positions” package of van den Boogaart, Tolosana-Delgado and Bren (2023).
You will find that the related script is the following:
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Machine Learning for Archaeological Applications in R 7

## log-ratio analysis

# transformation of the data to the ilr log-ratio

library (compositions)

xxatl <- acomp (data) # “acomp” represents one closed composition;
with this

#command the dataset is now closed

xxat2 <- 1lr(xxatl) # isometric log-ratio transformation of the
data

str (xxat2)

write.csv (xxat2, file="ilr-transformation.csv”)

In this script, the command “acomp” tells the system to consider the argument
as a set of compositional values, implicitly forcing the data to close to 1.
Subsequently, following Egozcue et al. (2003), the “1i1r” command is used to
transform the data to the isometric log-ratio, which produces compositions
that are represented in Cartesian coordinates.

A more complex task can be done with R. For example, let us say that you
want to implement a Principal Component Analysis with the idea of exploring
the data and seeing if the first components can reveal the existence of a pattern
in the data. By installing the “ggfortify” package (Horikoshi et al., 2023), it is
easy to perform the analysis and graphical display of the data. For example,
suppose we have a matrix of n x p with untransformed data and whose
eleventh column indicates the natural source from which some obsidian
samples come, such as the one in Table 1. The first step is to call the package
“ggfortify” and read the data.

library(ggfortify)

data <- read.csv (”Sources.csv”, header=T) ## Sources.csv is an
example file name

str(data)

autoplot (stats: :prcomp (datal[-11])) ## PCAwithout labels; the
11th column ##is

deleted

In this script, the function “prcomp” will perform a principal component analysis
of the data matrix and return the results as a class object; in turn, the “autoplot”
function will provide the graph of the first two components. To produce a plot of
the first two components that includes the provenance label for each sample and a
color assignation to each group, use the following command line:

autoplot (stats: :prcomp (data[-11]), datal =data, colour =
‘Source’)

## ' Source’ specifies column name keyword in your dataset
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8 Current Archaeological Tools and Techniques

A biplot of the components that explain most of the variance of the data using
the loading vectors and the PC scores is obtained through the following
command line:

autoplot (stats::prcomp (data[-11]), label=TRUE,
loadings=TRUE, loadings.label=TRUE)

Assuming the grouping variable is available, the following command line
automatically locates the centroid of each group and performs a PCA with 95
percent confidence ellipses:

autoplot (stats: :prcomp (datos[-11]),datal=data, frame=TRUE,
frame.type=‘t’, frame.colour=" Source’)
## ' Source’ specifies column name keyword in your dataset

In R, there are numerous clustering algorithms ranging from distance-based
algorithms (e.g., to determine whether the data present a clustering structure) to
more formal statistical methods based on probabilities, such as Bayesian
methods or model-based clustering. For instance, for conventional clustering,
the package “cluster” can be used (Maechler et al., 2022). With this package,
several classical classifications can be performed by selecting both the metric
used to calculate the differences between the observations and the grouping
method, among which are average, single, weighted, ward, and others.

This Element provides the scripts to perform all the proposed preprocessing
and clustering techniques so that the user can easily execute the commands by
copying and pasting them into the R environment. For example, in Section 3, we
worked with model-based clustering; for this, we employed the R libraries
“Rmixmod” (Lebret et al., 2015) and “ClusVis” (Biernacki et al., 2021):

library (Rmixmod)

out data<-mixmodCluster (data2,nbCluster=2:8)
summary (out data)

plot (out data)

library (ClusVis)
clusvisu<-clusvisMixmod (out data)

plotDensityClusVisu (clusvisu)

By using the command “mixmodCluster”, an unsupervised classification
based on Gaussian models with a list of clusters (from two to eight clusters) is
performed, determining which model best fits the data according to the BIC
information criterion. In turn, the “plot ()” command provides a 2D repre-
sentation with isodensities, data points, and partitioning. . Alternatively, two-
dimensional density-based structures can be visualized with “ScatterDensity”
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(Brinkmann et al., 2023). Similarly, the “ClusVis” package (Biernacki et al.,
2021) is used to obtain a graph of Gaussian components that supplies an
entropic measure on the quality of the drawn overlay compared to the
Gaussian clustering of the initial space. For this, only two commands are
needed, “clusvisMixmod” and “plotDensityClusVisu”, which are
provided by the package authors.

Thus, the user has free access to the tutorials and scripts of each of the algorithms
used in this Element. In many cases, the only thing that needs to be done is to replace
the author’s data with your own. You can also experiment with other strategies for
the analysis by changing the parameters, such as the number of iterations, the
initialization method, and the model selection criteria. The instructions to do so,
as well as a variety of examples that the same user can reproduce, can be consulted
in the documentation associated with each R package or script. It is very important
to remember that the theoretical assumptions of each model must be respected,;
unfortunately, the data do not always conform to these. That is why it is recom-
mended that the reader pay close attention to the theory of each method and to the
behavior of his data, since a violation of the theoretical assumptions can lead to an
incorrect interpretation of the data.

2 Processing Spectral Data
2.1 Applications and Case Studies

This section presents the numerical experiments conducted on archaeological
materials using spectral data and the Bayesian approach. Although only examples
of X-ray fluorescence data are used in this Element, the proposed methods can be
applied in the same way to any other spectrometric technique such as Raman or
FT-IR. To exemplify the performance of the proposed methods, two analyses were
carried out, one with 156 obsidian geological samples that served as a control test
(matrix available in the supplementary material as file ‘Obsidian_sources.csv’)
and a second one using 185 ceramic fragments of archaeological interest (matrix
available in the supplementary material as file ‘NaranjaTH_YAcim.csv’). For the
analysis of all samples, we employed a TRACER III-SD XRF portable analyzer
manufactured by Bruker Corporation, with an Rh tube at an angle of 52°, a drift
silicon detector and a 7.5 pm Be detector window.

The instrument was set with a voltage of 40 kV, a current of 30 pA, and a
measurement time of 200 live seconds. Only for the case of the obsidian
samples was employed a factory filter composed of 6 pm Cu, 1 um Tl and 12
um Al A spectrum of each sample was obtained by measuring the photon
emissions in 2048 channel intervals (corresponding to the energy range of 0.019
to 40 keV of the detector resolution). Is important to remember that portable
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XRF is more effective for detecting Na to U elemental concentrations, which is
the range that corresponds to 1.040 (in the K-alpha layer) to 13.614 keV (in the
L-alpha layer). Therefore, any peaks outside of this range supply no useful
information. That is the reason why the original 2,048 channels were reduced by
cutting the tails of the spectra that corresponded to noninformative regions, such
as low Z elements (lower than Na), the Compton peak, and the palladium and
rhodium peaks (K-alpha and K-beta). For example, in the obsidian exercise, the
data that were not in the range from channel 38 to channel 900 were manually
deleted, leaving only the central 862 channels that correspond to the energy
range of 0.74 to 17.57 keV of the detector resolution (Figure 1).

Using the numerical values obtained from the photon counts in each energy
interval or channel, two n X p matrices were constructed (where # refers to the
samples and p to the channel count interval):

1. Ann =149 x p = 862 matrix for the obsidians (available in the supplemen-
tary material as file ‘Obsidian_Sources 38 900.csv’).

2. Ann =185 x p = 791 matrix for the pottery fragments (available in the
supplementary material as file ‘NaranjaTH YAcim40 830.csv’).

The spectral intensities (photon counts) sampled at the given intervals (chan-
nels) represent the quantitative data employed in the statistical analysis instead
of the major and trace element concentrations traditionally used for this pur-
pose. Both datasets were preprocessed the same way. First, the EMSC algo-
rithm, to filter the dispersion effects, and the smoothing procedure with the
Savitzky—Golay algorithm were applied. With this methodology, it is not
necessary to standardize each variable before using the model-based clustering
since applying the EMSC filter to the data are equivalent to normalizing it. If
your own spectra show any peak displacement, you should apply at this point
the CluPa algorithm for peak alignment. Before developing the classification
model, the atypical values were detected, removing from the matrix the samples
that recorded high values in their orthogonal and score distances with the
ROBPCA algorithm. It is important to note that the clustering model presup-
poses that all the variable-wise centers equal zero.

2.2 Exercise 1: Obsidian Samples

As mentioned in Section 2.1, the control set consisted of 149 obsidian samples
of known origin and p = 862 energy intervals (channels). These obsidian
samples were collected from 12 Central Mexico (Figure 2). The number of
samples analyzed from each source is specified in Table 2. A full description of
the geological setting of the obsidian sources can be found in Argote Espino et
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Figure 1 Comparison between the full spectrum of an obsidian sample (top) and
a reduced spectrum containing only the informational region (bottom). Color
version available at www.cambridge.org/argote machine-learning

al. (2010), Argote-Espino et al. (2012), Cobean (2002), and Lopez-Garcia et al.
(2019). These samples served as a controlled experiment for assessing the
efficiency of the proposed method. The procedure is described step by step in
the supplementary video “Video 1.”
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PROCESSING
SPECTRAL DATA
Exercise 1:

Obsidian samples

Video 1 Step-by-step video on how to process spectral data of obsidian samples
used in Video 1. Video files available at
www.cambridge.org/argote_machine-learning

0 100 200 400 500 800
Sources Km

Figure 2 Geographical location of the obsidian deposits. The numbers
correspond to the following sources: (1) El Chayal, (2) Ixtepeque, and (3) San
Martin Jilotepeque in Guatemala; (4) La Esperanza in Honduras; and (5—-6)
Otumba volcanic complex, Edo. México; (7) Ahuisculco, Jalisco; (8) El
Paredon, Puebla; (9) El Pizarrin-Tulancingo, Hidalgo; (10) Sierra de Pachuca,
Hidalgo; (11) Zacualtipan, Hidalgo; (12) Zinapécuaro, Michoacan. Color
version available at www.cambridge.org/argote machine-learning
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Table 2 Number of obsidian samples per location.

Source name Sample ID n

1 El Chayal (Guatemala) 1-17 17
2 La Esperanza (Honduras) 18-33 16
3 Ixtepeque (Guatemala) 34-50 17
4 San Martin Jilotepeque (Guatemala) 51-67 17
5 Ahuisculco (Jalisco) 68—76 9
6 Otumba (Soltepec) 77-86 10
7 Otumba (Ixtepec-Pacheco-Malpais) 87-110 24
8 El Paredon (Puebla) 111-117 7
9 El Pizarrin-Tulancingo (Hidalgo) 118—-122 5
10 Sierra de Pachuca (Hidalgo) 123-132 10
11 Zacualtipan (Hidalgo) 133-142 10
12 Zinapecuaro (Michoacéan) 143-149 7
Total: 149

The reduced obsidian sample spectra were filtered using a combination of
the EMSC + Savitzky-Golay filters; the script to perform this task is presented
below.

## Script tofilter with the EMSC algorithmversion 0.9.2 (Liland
and Indahl, 2020)

rm(list =1s())

library (EMSC) #Package EMSC (Performs model-based background
correction and

# normalisation of the spectra)

dat <- read.csv (”Obsidian source 38 900.csv”, header=T) # To
call the spectral data file

str (dat) # to see the data structure

datl <- dat[2:863] # Toeliminate the first column related to the
sample identifier

str(datl)

Obsidian.polyé6 <- EMSC (datl, degree = 6) #Filters the spectra
with a 6th order

#polynomial

str (Obsidian.polyé6)

write.csv(Obsidian.poly6$corrected, file="Obsidian EMSC.csv”)
# to save the datafile

#filtered with the EMSC. The User can choose other file names

#To filter the spectra with the SGfilter, use the ‘prospectr’ pack-
age (Stevens and
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#Ramirez-Lopez (2015)

library (prospectr) ## Miscellaneous functions for processing and
sample selection of

## spectroscopic data (Stevens et al., 2022)

dat2 <- read.csv (”Obsidian EMSC.csv”, header=T) # Calls thefile
with EMSCfiltered

#data

str (dat2)

sg <- savitzkyGolay (Obsidian.polyé6Scorrected, p=3, w=11, m=0)
write.csv(sg, file="Obsidian EMSC SG.csv”) # The user can choose

another file name

Figure 3 shows the result of the filtered spectra compared to the untransformed
raw data. Notice that the information was not altered. It is important to note that
because we determined a polynomial of the sixth order for the SG filter, the
initial matrix with p = 862 was reduced to p = 852, eliminating five channel
intervals from each extreme of the data matrix.

Because the original spectra were not shifted or the intensity peaks were
misaligned, it was not necessary to apply the CluPa algorithm. Nevertheless, if
anyone finds it necessary, the peaks can be aligned with the following script
(published by Lopez-Garcia et al., 2019):

# Run the whole script at one time

devtools::install github (”Beirnaert/speaqg”) # download latest
“speaqg” package once!

library (speaq)

# Change file folder

your file path= “/Users/”

# Get the data (spectra inmatrix format)

matrix3 = read.csv2 (file.path (your file path, “your file.csv”),
header =F, sep=","”,colClasses = “numeric”, dec=".")
spectra.matrix = as.matrix (matrix3)

index.vector = seq(1l, ncol (spectra.matrix))

# Plot the spectra

speaq: :drawSpec (X = spectra.matrix, main = ‘mexico’, xlab =
“index")

# Peak detection

peaks <- speaq: :getWaveletPeaks (Y.spec = spectra.matrix,
X.ppm = index.vector,
nCPU=1,
raw_peakheight = TRUE)

# Grouping
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Figure 3 Raw data (above) and EMSC + Savitzky—Golay filtered spectra
(below). Color version available at
www.cambridge.org/argote machine-learning

groups<- PeakGrouper (Y.peaks = peaks)
# If the peaks arewell formed and the peak detection thresholdis
set low, thefilling step
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#1is not necessary and can be omitted
peakfill <- PeakFilling(groups rawlIntensity,
spectra.matrix,
max.index.shift =5,
window.width = “small”,
nCPU=1)
Features <- BuildFeatureMatrix (Y.data = peakfill,
var = “peakValue”,
impute = “zero”,
delete.below.threshold = FALSE,
baselineThresh =1,

snrThres = 0)

# Aligning the raw spectra

peakList = 1ist ()

for (s in 1:length (unique (peaks$Sample))) {
peakList [[s]] = peaks$peakIndex [peaks$Sample == s]

}

resFindRef<- findRef (peakList) ;

refInd <- resFindRefSrefInd;
Aligned.spectra <- dohCluster (spectra.matrix,
peakList = peakList,
refInd = refInd,
maxShift =5,
acceptLostPeak = TRUE,
verbose=TRUE) ;
drawSpec (Aligned. spectra)
write.csv (Aligned.spectra, file =" aligned.csv”)

After preprocessing the spectra, it is important to diagnose the data and detect
outliers. For this task, use the following script extracted from the “rrcov”
package (Todorov, 2020):

## Script to diagnose outliers

rm(list=1s())

library (rrcov)

dat <- read.csv(File X, header=T)

str(dat)

pca <- PcaHubert (dat, alpha = 0.90, mcd = FALSE, scale = FALSE)
pca

print (pca, print.x=TRUE)

plot (pca)

summary (pca)
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The results can be observed in Figure 4. Hubert et al. (2005) define this figure as
a diagnostic plot based on the ROBPCA algorithm; it allows distinguishing
regular observations and different types of outliers under the assumption that
the relevant information is stored in the variance of the data (Lopez-Garcia et
al., 2020; Thrun et al., 2023). In Figure 4, a group of orthogonal outliers (located
at the top left quadrant of the graphic) that correspond to El Pizarrin-Tulancingo
and Zinapecuaro source samples can be discriminated. According to this figure,
there are ten observations with distances beyond the threshold of X? that can be
considered bad leverage points or outliers; the rest are regular observations. The
bad leverage points correspond to the samples from Sierra de Pachuca, which
have contrasting higher chemical concentrations of Zr, Zn, and Fe than the rest
of the sources (Argote-Espino et al., 2010). Therefore, they cannot be con-
sidered properly as outliers, but observations with a different behavior should
not be deleted.

Once the earlier steps were concluded, we can now classify the samples. In
the Bayesian paradigm, the allocation of the samples in a cluster is regarded as
a statistical parameter (Partovi Nia and Davison, 2012). In general, it is better
to work with the Gaussian distribution and set the default values of the
hyperparameters given by the “bclust” algorithm. For this step, use the
following script for R:

## bclust algorithm

rm(list =1s())

library (bclust) # Partovi Nia and. Davison (2015)

datx <- read.csv(File X, header=T)

str (datx)

dat2x <- as.matrix (datx)

str(dat2x)

Obsidian.bclust<-bclust (x=dat2x,
transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68))

par (mfrow=c(2,1))

plot (as.dendrogram (Obsidian.bclust))

abline (h=0Obsidian.bclusts$cut)

plot (Obsidian.bclust$clust.number,Obsidian.bclust$logpos-
terior,

xlab="Number of clusters”,ylab="Log posterior”, type="b")
abline (h=max (Obsidian.bclust$logposterior))

str (Obsidian.bclust)
Obsidian.bclust$optim.alloc # optimal partition of the sample
Obsidian.bclustSorder

# produces teeth plot useful for demonstrating a grouping on

clustered subjects
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Figure 4 Diagnostic plot of the obsidian samples based on the ROBPCA
algorithm. Color version available at
www.cambridge.org/argote_machine-learning

Obsidian.bclust<-bclust (dat2x,
transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68))
dptplot (Obsidian.bclust, scale=10,varimp=imp (Obsidian.
bclust) $var,
horizbar.plot=TRUE,plot.width=5,horizbar.size=0.2,ylab.
mar=4)

#unreplicated clustering
wildtype<-rep(1l,55) #initiate a vector
wildtype[c(1:3,48:51,40:43)]<-2 #associate 2 towildtypes
dptplot (Obsidian.bclust, scale=10,varimp=imp (Obsidian.
bclust) $var,

horizbar.plot=TRUE, plot.width=5,horizbar.size=0.2,vert-
bar=wildtype,

vertbar.col=c(”white”,”violet”) ,ylab.mar=4)
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Table 3 Partition of the sample space
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The result is displayed in the dendrogram of Figure 5, as well as in the partition
of the sample space of Table 3. As expected, the Bayesian method clustered the
obsidian samples into twelve groups (going from bottom to top in the dendro-
gram), all related to their geological sources: [1] Zacualtipan (ID. 133-142),
which, according to the dendrogram, is subdivided into two subsources: [2]
Zinapecuaro (ID. 143-149); [3] Ahuisculco (ID. 68-76); [4] El Paredon (ID.
111-117); [5] Otumba-Ixtepec, Pacheco, and Malpais (ID. 87-110); [6]
Otumba-Soltepec (ID. 77-86); [7] El Pizarrin (ID.118-122); [8] Sierra de
Pachuca (ID. 123-132), [9] El Chayal (ID. 1-17), which is also subdivided
into two subsources: [10] La Esperanza, Honduras (ID.18-33); [11] San Martin
Jilotepec (ID. 51-67), also subdivided into two subsources; and [12] Ixtepeque
(ID. 34-50).

The Bayes factor (B'®) can be regarded as a measure of the importance that
each variable holds in the classification. To determine which oligo-elements
are important, the algorithm provides a list of the potentially important
variables that contribute to the grouping. The following script is used for
this purpose:

# This function plots variable importance using a barplot
Obsidian.bclust<-bclust (dat2x,
transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68),
var.select=TRUE)

Obsidian.imp<-imp (Obsidian.bclust)

#plots the variable importance

par (mfrow=c(1,1)) #retrieve graphic defaults
mycolor<-Obsidian.imp$var

mycolor<-c ()

mycolor [Obsidian.imp$var>0]<-"black”

mycolor [Obsidian.imp$var<=0]<-"white”

viplot (var=Obsidian.impSvar,xlab=0Obsidian.imp$labels,
col=mycolor)
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Figure 5 Dendrogram and optimal grouping found by the Gaussian model for
the obsidian source data. The dendrogram visualizes the ultrametric portion of
the selected distance (Murtagh, 2004). The method proposed twelve groups.
Color version available at www.cambridge.org/argote machine-learning

#plots important variables in black

viplot (var=Obsidian.imp$var,xlab=0Obsidian.imp$labels,
sort=TRUE, col=heat.colors (length (Obsidian.imp$var)),
xlab.mar=10,ylab.mar=4)

mtext (1, text = “Obsidian”, line=7,cex=1.5)# add X axis label
mtext (2, text = “Log Bayes Factor”, line =3,cex=1.2) #adds Y
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axis labels

#Sorts the importance and uses heat colors; adds some labels to
the X and Y axes

str (Obsidian. imp)

Obsidian.impS$var

Obsidian.imp$order

The relevant variables can be separated from the nonrelevant variables by looking
for the inflection point in the Gaussian variable selection model, such as the one
observed in Figure 6, that is, the point in the distribution curve where the factor
value of the variables stabilizes or stays more constant. For this case, the inflection
point is presented at Log B'®> 1.57E+07; therefore, values of B'® > 1.57E+07 are
considered relevant variables. The higher Bayes factors correspond to the posi-
tions of Zr, Nb, and Sr peaks (Figure 7), indicating the relative importance of
these elements in the classification task. The rest of the elements had negligible
and negative Bayes factors (B'® <1.57E+07) and hence were irrelevant.
Although discriminating groups of samples with a similar spectral profile
is not a simple task, the results obtained with this clustering algorithm leave
no doubt of its accuracy. First, the structure of the dendrogram was clear, and
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Figure 6 Log Bayes factor of variables (logB'’) for the Gaussian variable

o
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selection model of the obsidian data. Color version available at
www.cambridge.org/argote_machine-learning
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Figure 7 XRF spectrum of an obsidian sample. Color version available at
www.cambridge.org/argote _machine-learning

atypical values were not observed. Second, it is possible to observe that the
samples are not mixed with other groups and that each group remains
characterized by its place of origin. Third, the number of groups calculated
by the algorithm is correct, corresponding to the number of geological
sources introduced. This allows us to conclude that each geological source
has its own spectral signature, which is different from those of the other
sources. It should be noted that to accurately identify the groups, it is
necessary to always refer to the observations that serve as control samples
(e.g., known sources).

2.3 Exercise 2: Thin Orange Pottery Samples

Thin orange ware, as its name says, is a light orange ceramic with very thin
walls that became one of the main interchange products of the Classic period in
Central Mexico. Its distribution over a large expanse of Mesoamerica has been
considered to be closely related to the strong cultural dominion of Teotihuacan.
Its wide geographical circulation has been documented in many places far from
Teotihuacan (Kolb, 1973; Lopez Lujan et al., 2000; Rattray, 1979), including
Western Mexico, Oaxaca, and the Mayan Highlands (i.e., Kaminaljuyt, Tikal,
and Copan). The use of this ware type had a broad extension over time, starting
in the Tzacualli phase (ca. 50-150 AD), peaking at the Late Tlamimilolpa and
Early Xolalpan phases (350—550 AD), and declining at approximately 700 AD
(Kolb, 1973; Miiller, 1978).

According to Rattray (2001), the suggested chronology of the different ceramic
forms of the Thin orange ware is the following. In the Tzacualli-Miccaotli phase
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(ca. 1-200 AD), some of the common forms are vessels with composite silhou-
ettes, everted rims and rounded bases, vases with straight walls, pedestal base
vessels, pots and a few miniatures; simple incised lines and red color decorations
are present in some pieces. Some sherds found in archaeological contexts from
the Miccaotli phase suggest that hemispherical forms were present. Nevertheless,
the hemispherical bowls with ring bases, the most representative form in Thin
orange, occur in the Early Tlamililolpan phase (ca. 200300 AD) and continue
until the end of the Metepec phase (ca. 650 AD).

Archaeological and petrographic studies performed in the 1930s (Linné,
2003) found that the components of Thin orange pastes were homogeneous
and of a nonvolcanic origin. Therefore, if Teotihuacan city was settled
within a volcanic region, then the production center (or at least the raw
material source) should be somewhere else. These findings opened the
discussion about why the most distinctive ware of Teotihuacan culture was
not produced there. In the 1950s, Cook de Leonard proposed that the natural
clay deposits were located south of the state of Puebla based on the material
excavated from some tombs in an archaeological site near Ixcaquixtla
(Brambila, 1988; Cook de Leonard, 1953).

Rattray and Harbottle performed neutron activation and petrographic ana-
lyses on samples classified as fine Thin orange ware and a coarse version of
this ware called San Martin orange (or Tlajinga), the last one locally produced
in Acatlan de Osorio, south of Puebla state (Rattray and Harbottle, 1992). In
their conclusions, they proposed that the clay deposits and the production
centers of Thin orange pottery were in the region of Rio Carnero, 8 km south
of Tepeji de Rodriguez town, south of Puebla state. Summarizing several
former investigations about the compositional pattern of Thin orange ware,
the following groups have been established:

1. A main ‘Core’ group, with clay and temper of homogeneous characteristics.
Rattray and Harbottle (1992) and Lopez Lujan et al. (2000) mentioned that
its chemical profile is characterized mainly by high concentrations of Rb, Cs,
Th, and K. This group was acknowledged as “Core Thin orange” by Abascal
(1974), “Thin Orange” by Shepard (1946), “group Alfa” by Kolb (1973),
and “group A” by Sotomayor and Castillo (1963).

2. A coarser second group, used for utilitarian purposes (domestic ware), is
characterized by having different percentages of the minerals present in the
first group. This group corresponds to the “group Beta” (Kolb, 1973) and the
“Coarse Thin orange” group (Abascal, 1974). Rattray and Harbottle (1992)
assume that this group is formed by local imitations of the original Thin
orange ware.
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In this exercise, the purpose of this application is to determine possible
differences in the manufacturing techniques of the Thin Orange pottery,
providing a better understanding of the underlying production processes.
The focus is on identifying natural groups with homogeneous chemical com-
positions within the data, leading to the determination of whether this ceramic
type was crafted following a unique recipe (clay and temper) or if there were
several ways to produce it. By comparing our results with those obtained by
other researchers on the conformation of a single ‘core’ group (Abascal, 1974;
Harbottle et al., 1976; Rattray and Harbottle, 1992; Shepard, 1946), new
evidence could be provided that might help refine the current classification
of this significant ware.

The procedure is shown step by step in the supplementary video
“Video 2. The archaeological pottery set consisted of 176 ceramic frag-
ments and 9 clay samples (extracted from a natural deposit near the Rio
Carnero area). Both sets of materials were analyzed with a portable X-ray
fluorescence spectrometer. To conduct the comparative analysis with
adequate variability, it was necessary to collect several samples of the
same ceramic type from different locations and contexts. Therefore, the
pottery samples were provided by different research projects that performed
systematic excavations at various Central Mexico archaeological sites
(Figure 8; Table 4).

PROCESSING
SPECTRAL DATA h
. Ti Crman Nljcu Zn
Exercise 2: I

Ceramic ]

samples I

- keV -

Video 2 Step-by-step video on how to process spectral data
of ceramic samples used in Video 2. Video files available at
www.cambridge.org/argote_machine-learning
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Table 4 Number of Thin orange pottery samples and locations

Archaeological site Mexican state N
Teteles de Santo Nombre Puebla 23
Izote, Mimiahuapan, Mapache, and other sites Puebla 22
Huejotzingo Puebla 6

Xalasco Tlaxcala 53
Teotihuacan Mexico 72
Clay source Puebla 9

Total: 185

Pottery is a very heterogeneous material; therefore, the ceramic samples were
treated differently. Following the recommendations of Hunt and Speakman
(2015), the ceramic samples were prepared as pressed powder pellets. From
each pottery sherd, a fragment weighing approximately 2 g was cut. The
external surfaces of each fragment were abraded with a tungsten carbide
handheld drill, reducing the possibility of contamination from depositional
processes. The residual dust was removed with pressurized air, and the frag-
ments were pulverized in an agate mortar. After grinding and homogenizing, the
powder was compacted into a 2-cm diameter pellet by a cylindrical steel plunger
with a manually operated hydraulic press. No binding agent was added. These
pellets provided samples that were more homogeneous and with a uniformly flat
analytical surface.

Figure 9 displays an example XRF spectrum of one Thin orange pottery
sample. The main elements in the ceramic matrix are iron (Fe), followed by
calcium (Ca), potassium (K), silicon (Si), and titanium (Ti); aluminum (Al),
manganese (Mn), nickel (Ni), rubidium (Rb), and strontium (Sr) are also present
at lower intensities. Sulfur (S), chromium (Cr), copper (Cu), and zinc (Zn) can
be considered trace elements.

In this case, the matrix has many more variables than observations (n < p),
with p = 2,048; thus, much of the information contained was irrelevant for
clustering. As mentioned at the beginning of this section, it was decided to
manually cut some readings as they contained values close to zero or corres-
ponded to undesirable effects, such as light elements below detection limits, the
Compton peak, Raleigh scattering and palladium and rhodium peaks (produced
by the instrument). The cuts were made at the beginning (from channel 1 to 39)
and end (from channel 831 to 2,048) of the spectrum, retaining the elemental
information corresponding to the analytes between channels 40 and 830, related
to the energy range of 0.78 to 16.21 keV of the detector resolution. In this way,
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0 125 25 50 75 100

Figure 8 Geographical location of the archaeological sites from
which the Thin orange pottery samples were collected. Color version available
at www.cambridge.org/argote_machine-learning

only p = 791 channel intervals were kept. This matrix can be found in the
supplementary material as file ‘NaranjaTH YAcim40 830’. It should be noted
that because there were no displacements in the spectra, it was not necessary to
use the peak alignment algorithm.

The next step was to filter the spectra as in the previous study case, using only
the EMSC, as the spectrum did not contain scattering effects. For this purpose,
use the following script:
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Figure 9 XRF spectrum of a representative sample of Thin orange pottery.
Color version available at www.cambridge.org/argote machine-learning

## Script tofilter with the EMSC algorithm

rm(list =1s())

library (EMSC) #Package EMSC (Performs model-based background
correction and

# normalization of the spectra)

dat <- read.csv(“C:\\NaranjaTH YAcim40 830.csv”, header=T) #
Calls the spectral data

#file

str(dat) # to see the structure of the data

datl <- dat[2:792] # Eliminates the first column related to the
sample identifier

str (datl)

pottery.polyé6 <- EMSC(datl, degree = 6) #Filter spectrawitha
6th-order polynomial

str (pottery.polyé)

write.csv(pottery.poly6scorrected, file="pottery EMSC.csv”)
# to save the datafile

# filtered with the EMSC

Once filtering was performed, the diagnosis of outliers was performed with the

following script:

## Script to diagnose outliers (Todorov, 2020)
rm(list=1s())

library (rrcov)
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dat <- read.csv(File X, header=T)

str(dat)
pca <- PcaHubert (dat, alpha =0.90, mcd = FALSE, scale = FALSE)
pca

print (pca, print.x=TRUE)
plot (pca)

summary (pca)

In the outlier detection with the ROBCA algorithm (Figure 10), most of the
ceramic sample data vectors have regular patterns with normal punctuation and
orthogonal distances. We can distinguish seventeen orthogonal outliers in the
upper left quadrant of the graph, one observation with an extreme orthogonal
distance (observation no. 126), and a small group of ten bad leverage points in
the upper right quadrant. The robust PCA high-breakdown method treats this
last group as one set of outliers. An interesting fact about the set of detected bad
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Figure 10 Outlier map of the Thin Orange pottery dataset computed with
ROBPCA based on five principal components. Color version available at
www.cambridge.org/argote machine-learning

Downloaded from https://www.cambridge.org/core. IP address: 18.118.141.122, on 24 Dec 2024 at 12:13:07, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009506625


http://www.cambridge.org/argote%5Fmachine-learning
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009506625
https://www.cambridge.org/core

Machine Learning for Archaeological Applications in R 29

leverage points is that nine of them correspond to clay deposits (cases no. 177
to 185); only one sample (case no. 115) is related to an archaeological site in
Puebla that shows a low amount of manganese content. Therefore, instead of
just being measurement errors, outliers can also be seen as data points that
have a different origin from regular observations, such as the case of the pure
clay samples. According to this, no observations were removed from the
analysis.

For the Bayesian clustering, the model parameters were set the same way as
in the obsidian case. The algorithm provides a list of the potentially important
variables that contribute to the clustering. In this case, the variable selection
extension of the Gaussian model (Figure 11) selected 22 of the 791 initial
variables as the most important ones. These twenty-two variables (channels)
corresponded to the energy ranges of Fe (6.3 to 6.55 and 7 to 7.11 KeV) and Ca
(3.7 to 3.75 KeV) chemical elements. Calcium and iron oxides (such as hema-
tite) are two components that are commonly found in pottery and mudrock
composition at variable concentrations depending on the parental material
(Callaghan et al., 2017; Minc et al., 2016; Ruvalcaba et al, 1999; Stoner,
2016). These results are different from Rattray and Harbottle (1992) analysis
in which the pottery was mainly determined by high concentrations of Rb, Cs,
Th and K. On the other hand, Kolb (1973) found that Fe and Ti were important
elements present in his Alpha and Beta groups.

_______________
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Figure 11 Log Bayes factor (logB'®) for the Gaussian variable selection model
of Thin orange data. The Bayes factors are computed for the optimal grouping
found by agglomerative clustering using the Gaussian model. Color version
available at www.cambridge.org/argote machine-learning
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The resulting dendrogram (Figure 12) grouped the data into two main clusters
(I and II) subdivided into six (1 to 6) and two subgroups (7 and 8), respectively.
Subgroups 7 and 8 showed chemical differences that distinctively separated them
from the rest of the groups. The number of samples () assigned to each subgroup
were as follows: Group 1 =23, Group 2 =51, Group 3 = 16, Group 4 = 36, Group
5 =13, Group 6 = 12, Group 7 = 18, and Group 8 = 16. Samples from group 1
come mostly from the archaeological site of Xalasco. Samples from Groups 2, 3,
6, 7, and 8 come from Teotihuacan, Xalasco, and several Puebla sites. Group 4
contains samples from some sites in Puebla State and the northeastern sector of
Teotihuacan city. Group 5 has samples mainly from Teteles del Santo Nombre
and a few from Xalasco and Teotihuacan. Groups 4 and 6 contain the clay samples
from the Rio Carnero area. Table 5 summarizes the ceramic shapes included in
each group, showing a great variability of forms in each group.

The results obtained in this spectral analysis revealed the existence of two large
groups subdivided into several subgroups that exhibit a certain degree of chemical
differentiation, indicating that different raw materials were used to produce the
Thin Orange ware. Pottery is produced by mixing clays and aplastic particles or
temper, with the clay predominating over the temper. In this case, the clay deposit
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Figure 12 Dendrogram and optimal grouping found by the Gaussian model for
the Thin Orange samples. The horizontal bar at the bottom refers to
the optimal grouping found by the Gaussian model. Color version available at
www.cambridge.org/argote machine-learning
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Table 5 Number of samples (7) and ceramic forms included in each subgroup:

Group 1
(n=23)

Group 2
(n=51)

Group 3
(n=16)

Group 4
(n=36)

Hemispherical bowl with ring
base (13 sherds)

Vase with incised exterior
decoration (1 sherd)

Tripod vase with nubbin supports
( 1 sherd)

Jar with incurved rim and incised
simple double-line (1 sherd)

Jar with incised exterior
decoration (1 sherd)

Pot (1 sherd)

Undetermined shape (5 sherds)

Hemispherical bowl with ring
base (12 sherds)
Hemispherical bowl
(6 sherds)
Vessel with convex wall
(4 sherds)
Cylindrical vase (5 sherds)

Tripod vase with nubbin
supports ( 2 sherds)
Vase with small appliqués
(1 sherd)
Tripod vessel with deep
parallel grooves (1 sherd)
Vessel with pedestal base
(1 sherd)
Miniature vessel (1 sherd)
Undetermined shape
(18 sherds)

Bowl with ring base
(4 sherds)
Cylindrical vase (4 sherds)

Jar with incised exterior
decoration (2 sherds)
Tripod vase with nubbin
supports ( 1 sherd)
Undetermined shape
(5 sherds)

Bowl with ring base (11 sherds)

Hemispherical bowl (3 sherds)

Cylindrical vase (4 sherds)

Incense burner (1 sherd)

Basin (1 sherd)

Vessel with pedestal base (1
sherd)

Vessel with incised exterior
decoration (1 sherd)

Tzacualli phase Pot (1 sherd)

Undetermined shape (12 sherds)
Natural clay deposit (1 sample)
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Table 5 (cont.)

Group 5
(n=13)

Group 6
n=12)

Group 7
(n=18)

Group 8
(n=16)

Bowl with ring base (4 sherds)

Vessel with pedestal base
(1 sherd)

Vessel with incised exterior
decoration (1 sherd)
Cylindrical vase (3 sherds)

Vessel with convex wall and
flat-convex base (1 sherd)
Undetermined shape (3 sherds)

Hemispherical bowl with ring
base (3 sherds)

Jar with incised exterior
decoration (1 sherd)

Natural clay deposit
(8 samples)

Hemispherical bowl with ring
base (7 sherds)
Hemispherical vessel
(2 sherds)

Vessel with recurved
composite wall (1 sherd)
Vessel with exterior punctate

decoration (1 sherd)

Pot (1 sherd)

Hemispherical bowl with ring
base (5 sherds)

Annular-based hemispherical
bowls and incised exterior
decoration (1 sherd)

Tripod vessel with everted rim
(1 sherd)

Vessel with red pigment and
incised exterior decorat
ion (1 sherd)

Jar with incised exterior
decoration (1 sherd)

Undetermined shape (6 sherds)
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samples were classified inside the main group I (in subgroups 1 and 6); thus, it can
be assumed that, for manufacturing the pieces related to this main group, clay
banks from the same geological region were used. The Rio Carnero region is
shaped by a set of deep barrancas (canyons) predominantly from the Acatlan
Complex, the geological vestige of a Paleozoic ocean formed between the Cambro-
Ordovician and late Permian periods (Nance et al., 2006). This region contains
banks of schists rich in hematite located in the ravines of Barranca Tecomaxuchitl
and Rio Axamilpa. On the other hand, the chemical differences of main group IT
(with only 34 samples) indicate the extraction of clay from a different region.

According to the results, an interpretation can be as follows. The division of the
samples into two main groups seems to be associated with two different clay
deposit regions from which the raw material was exploited. The internal differences
in their chemical composition, probably related to differences in temper, influenced
the clustering algorithm to classify them into separate subgroups. This could mean
that the aplastic particles used in the mixture for manufacturing the ceramic pieces
did not naturally occur in the clay and were added by the artisans. The last
observation is consistent with Kolb (1973), who stated that the temper was
deliberately added and is not found in situ in the natural clay deposit.

The considerable variety of patterns presented by each of the eight subgroups
suggests that the recipe for manufacturing the pieces was not used uniformly and
that multiple ceramic production centers existed, employing their own and
specific production recipes. In other words, each center would have produced
its version of the Thin orange pottery with a standardized composition, and this
was different to some extent from the ceramic made in other workshop centers.
The results also support the idea that there was compositional continuity through
time, despite the different shapes of the analyzed pieces.

3 Processing Compositional Data
3.1 Applications and Case Studies

In this section, data from published case studies were used to illustrate the
techniques for processing compositional data. In summary, the steps for handling
all datasets are as follows. First, the data are rescaled in such a way that the sum of
the elemental concentrations row is equal to 100 percent. Afterwards, the data are
transformed to log-ratios using the i/r transformation, translating the geometry of
the Simplex into a real multivariate space. Once the ilr coordinates are obtained,
data are standardized using a robust min/max-standardization. Any observation
with a value equal to zero is imputed. As a diagnosis method, an MCD estimator
is applied to identify the presence of outliers in the data. Then, model-based
clustering is employed for the classification and visualization of the data. Finally,
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an SBP is calculated and graphically represented using the CoDa-dendogram for
understanding differences in the composition of the clusters.

3.2 Exercise 1: Unsupervised Classification of Central Mexico
Obsidian Sources

In this case study, the compositional values of obsidian samples collected from
different natural sources (Table 6) located in Central Mexico, published by Lopez-
Garcia et al. (2019), and Guatemala, retrieved from Carr (2015), were processed.
The procedure is described step by step in the supplementary video “Video 3”. The
intention of this analysis is to demonstrate the performance of the model-based
clustering and an unbiased visualization system in a controlled environment. The
dataset was ideal for the analysis because the correct number of clusters and the
cluster to which each of the observations belonged were known.

PROCESSING COMPOSITIONAL DATA

Exercise 1: Unsupervised Classification of

Central Mexico Obsidian Sources
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Video 3 Step-by-step video on how to process compositional data of the
obsidian samples used in Video 3. Video files available at
www.cambridge.org/argote_machine-learning

The dataset consisted of n = 136 samples with p = 10 variables containing the
elemental composition of the samples (Mn, Fe, Zn, Ga, Th, Rb, Sr, Y, Zr, and
Nb), obtained with a portable X-ray fluorescence (pXRF) instrument. This
matrix is available in the supplementary material as file “Mayas_sources_onc.
csv”. In this example, we considered the problem of determining the structure of
the data without prior knowledge of the group membership. The estimation of
the parameters was performed with the maximum likelihood, and the best
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Table 6 Samples collected from Mesoamerican obsidian sources.”

Geographic Sample ID
Source name region no. N
Ahuisculco Jalisco 1-9 9
El Chayal Guatemala 10-25 17
San Martin Jilotepeque Guatemala 26—-39 14
Ixtepeque Guatemala 40-55 16
Otumba (Soltepec) Edo. de México 56—65 10
Otumba (Ixtepec- Edo. de México 66—88 23
Malpais)
Oyameles Puebla 89-95 7
Paredon Puebla 96—102 7
Tulancingo-El Pizarrin Hidalgo 103-107 5
Sierra de Pachuca Hidalgo 108—-117 10
Zacualtipan Hidalgo 118—-127 10
Zinapécuaro Michoacéan 128-134 8

* The compositional values of samples from El Chayal, San Martin Jilotepeque, and
Ixtepeque were retrieved from Carr (2015).

model was selected using the ICL criterion, resulting in K = 12 components.
Compositional data are constrained data and therefore must be translated into
the appropriate geometric space. To convert the data to completely compos-
itional data, the following code from the “compositions” package in R is used
(van den Boogaart et al., 2023):

rm(list=1s()) #Delete all objects inR session

## log-ratio analysis

# load quantitative dataset. The name of thefile for this example
is Sources.csv. You can

#change it for the location and name of your own data file.

data <- read.csv (”C:\\obsidian\\Mayas_ sources_onc.csv”,
header=T)

str (data) #displays the internal structure of thefile, including
the format of each column

dat2 <-datal[2:11] # delete data identification column

str (dat2)

# transformation of the data to the ilr log-ratio

library (compositions) ## van den Boogaart, Tolosana-Delgado and
Bren (2023)

xxatl <- acomp (dat2) # the function “acomp” representing one
closed composition.
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#With this command, the dataset is now closed.

xxat2 <- 1lr (xxatl) # isometric log-ratio transformation of the
data

str (xxat2)

write.csv (xxat2, file="ilt-transformation.csv”) #You can

choose a personalizedfile name

In the isometric transformation output file, the geometric space is D — 1. Once
the data have been taken to the Simplex geometry, it is important to normalize
them robustly so that there are no variables with greater weight. This is achieved
by loading the clusterSim package in R with the normalization option = na3
using the code presented below:

# Robust normalization

# In our case, thefile “xxat2” that contains the isometric
transformation of the #compositional data was normalized with
the robust equation presented in the #transformations section.
library(clusterSim) ## Walesiak and Dudek (2020)

zll<- data.Normalization (xxat2, type="n3a”,normalization=
"column” ,na.rm=FALSE)

# This corresponds to the robust normalization described in
‘Compositional and

#Completely compositional data’ Section of Volume I.

# n3apositional unitization ((x-median)/min (x) - max (x))

z12 <- data.frame(z1l1l) # After the previous operations, it is
necessary to convert the

#data output to a data frame to tell the program that the
observations are in the

#rows and columns represent the attributes (variables)
str(zl2)

After transforming the data through robust normalization, it is convenient to verify
that there are no values equal to 0. In this example, no zero values were present;
thus, no imputation was needed. In the case that your data have values equal to zero,
it is recommended to employ an imputation algorithm such as Amelia II:

# Imputation of data
# Loads the user interface to perform the imputation of values
Library (Amelis)

AmeliaView ()

Afterwards, to identify the presence of outliers in the data, a diagnosis is
performed through the MCD estimator of the rrcov package (Todorov and
Filzmoser, 2009):
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# Parameters of the model

# kmax maximal number of principal components to compute. The
default is kmax=10.

# Default k= 0; if we do not provide an explicit number of compo-
nents, the algorithm

# chooses the optimal number. alpha: 0.7500; this parameter
measures the fraction

# of outliers the algorithm should resist (default) .

# The matrix dimension in this example isn=136andp =10
library (rrcov) ## Todorov (2020)

MCD 1D <- data.matrix(zl2[, 1:9])

cv <- CovClassic (MCD_1D)

plot (cv)

rcv <- CovMest (MCD_1D)

plot (rcv)

summary (MCD_1D)

Figure 13 shows the distance—distance plot, which displays the robust
distances versus the classical Mahalanobis distances (Rousseeuw and van
Zomeren, 1990), allowing us to classify the observations and to identify the
potential outliers. Note that the choice of appropriate distance metric is
essential (Thrun, 2021a). The dotted line represents points for which the
classical and robust distances are equal. Vertical and horizontal lines are
plotted in values x =y = \/sz, 0.975; points beyond this threshold are con-
sidered outliers. While the robust estimation detects many observations whose
robust distance is above the threshold, the Mahalanobis Distance classifies all
points as regular observations. Observations with large robust distances are not
candidates for outliers because they do not have an impact on the estimates. The
only two observations that exceed the values of X” are those with ID numbers 9
and 136, which are convenient to eliminate from the estimate and leave only
n =134 samples in the dataset.

Once the preprocessing of the data has concluded, the mixed model of
multivariate Gaussian components is adjusted for clustering purposes using
the Rmixmod and Clusvis packages:

# Classification with Mixture Modeling: Clustering in Gaussian
case

# To fit the mixture models to the data and for the classification,
two additionaL

#programs must be loaded.

rm(list=1s())

library (Rmixmod) ## Lebret et al., 2015)
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Figure 13 Distance—distance plot of the samples from obsidian sources.
Color version available at
www.cambridge.org/argote_machine-learning

library (ClusVis) ## (Biernacki et al., 2021)

fammodel <- mixmodGaussianModel (family="general” 6 equal.
proportions=FALSE)

Modl<-mixmodCluster (data, 12, strategy =mixmodStrategy (algo=
“EM” , nbTryInInit = 50, nbTry=25))

#EM (Expectation Maximization) algorithm

# nbTryInInit: integer defining the number of tries in the
initMethod algorithm.

# nbTry: integer defining the number of tries

summary (Mod1l)

Modl ["partition”] # partition output made by mixing model

## Gaussian-Based Visualization of Gaussian and Non-Gaussian
Model-Based Clustering

library (ClusVis) ## (Biernackietal., 2021)

resvisu <- clusvisMixmod (Modl) # Gaussian-Based Visualization
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of Gaussian Model-Based #Clustering
plotDensityClusVisu (resvisu) #probabilitiesof classification

are generated by using the model #parameters.

In this script, the command mixmodGaussianModel is an object defining the list
of models to run. The function mixmodCluster computes an optimal mixture
model according to the criteria supplied and the list of models
defined in [Model] using the algorithm specified in the command ‘strategy’
[strategy =mixmodStrategy (algo= “CEM”, nbTryInInit =50,
nbTry=25) | (Lebret et al., 2015). The estimation of the mixture parameters can
be carried out with a maximum likelihood using the EM algorithm (Expectation
Maximization), the SEM (Stochastic EM), or by maximum likelihood classifica-
tion using the CEM algorithm (Clustering EM). In this example, we use the EM
algorithm. With the general family command, it is possible to give more flexibil-
ity to the model that best fits the data by allowing the volumes, shapes, and
orientations of the groups to vary (Lebret et al., 2015).

Because our groups had different proportions (each group had a different
sample size), the FALSE command was established as Z12 in the data frame.
As an output of this estimation step, the program provides a partition and
other parameters, including the proportions of the mixed model in each
group, their averages, variances and likelihood, and the associated source
of each group obtained for this example. Table 7 shows the output of the
algorithm; in this table, it can be observed that although the analysis was
carried out without labeling the observations, they were correctly assigned
to their corresponding source group, except for a single observation of
the Otumba (Ixtepec-Mailpais) subsource that was assigned to Otumba
(Soltepec).

In this case, the model that best fitted the data turned out to be
“Gaussian_pk Lk C” with the following cluster properties: Volume = Free,
Shape = Equal, and Orientation = Equal. It is also possible to analyze the
clustering results graphically. It is important to note that the graphics produced
by the “ClusVis” package may vary in the output. The authors state that, for
some specific reproducibility purposes, the Rmixmod package allows the ran-
dom seed to be exactly controlled by providing the optional seed argument
(“set.seed: number’). However, despite having performed multiple tests with
different seeds, the resulting graphics tend to vary. Figure 14 displays the
bivariate spherical Gaussian visualization associated with the confidence
areas; the size of the gray areas around the centers reflects the size of the
components. The accuracy of this representation is given by the difference
between entropies and the percentage of inertia of the axes.
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Table 7 Assignation of the mixing proportions with Rmixmod (z-partition of the obsidian sources).

Cluster Proportion Group assigned n Source

1 0.1269 6,6,6,6,6,6,6,6 8 Ahuisculco

2 0.0746 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 17 El Chayal

3 0.0522 4,4,44,4444444444 14 San Martin Jilotepeque
4 0.1045 12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12 16 Ixtepeque

5 0.0522 8,8,8.,8,8,8,8,8,8,8.8 11 Otumba (Soltepec)

6 0.0597 7,7,7,,1,1,1,177,1,,1,1,1,7,7,7,7,1,7,7 22 Otumba (Ixtepec-Malpais)
7 0.1642 5,5,5,5,5,5,5 7 Oyameles

8 0.0821 11,11,11,11,11,11,11 7 Paredon

9 0.0746 10,10,10,10,10 5 Tulancingo-El Pizarrin
10 0.0373 22222222272 10 Sierra de Pachuca

11 0.0522 9,9,9,9,9,9,9,9,9,9 10 Zacualtipan

12 0.1194 3,3,3,3,3,3,3 7 Zinapécuaro
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Figure 14 Component interpretation graph of the obsidian sources. Color
version available at www.cambridge.org/argote machine-learning

In the graph, it can be observed that the mapping of f'is accurate because the
difference between entropies is zero: dg(f, &) = 0. The first dimension provided
by the LDA mapping was the most discriminative, with 55.7 percent of the
discriminant power; the sum of the inertia of the first two axes was 55.7 +23.22
= 78.92 percent of the discriminant power; thus, most of the discriminant
information was present on this two-dimensional mapping. Components
12, 7, 4, and 2 contain most of the observations. The components that show
the greatest difference in their chemical composition are the samples from
Components 1 and 6 (El Chayal and Ahuisculco, respectively) and Components
2 and 10 (Pachuca and Pizarrin) in the other extreme. Components 5 and 11
(Oyameles and El Paredon) are the ones that are closest to each other (regarding
their mean vectors) and slightly join without meaning that the observations
are mixed, as seen in the partition results of Table 7. An important
observation about these results is that there are no overlaps between any of
the sources used in the classification, hence fulfilling all the conditions of a
good classification.

3.3 Exercise 2: Obsidian Sources in Guatemala

Carr (2015) performed a study to identify obsidian sources and subsources in the
Guatemala Valley and the surrounding region. In his project, he analyzed a total of
215 samples from El Chayal, San Martin Jilotepeque, and Ixtepeque geological
deposits with pXRF spectrometry. Of these samples, n = 159 were collected from 36
different localities in El Chayal, n = 34 were gathered from eight sampling localities
in San Martin Jilotepeque, and n = 22 were collected from four sampling locations
in Ixtepeque. The data matrix for this example can be found in the supplementary
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Figure 15 Bivariate plot using Rb (ppm) and Fe (ppm) concentrations of El
Chayal, San Martin Jilotepeque, and Ixtepeque obsidian source systems
(graphic reproduced with data from Carr, 2015). Color version available at
www.cambridge.org/argote _machine-learning

file “Obs_maya.csv”. To discriminate between these three main obsidian sources,
Carr (2015) used bivariate graphs, plotting the concentrations of Rb versus Fe
(see the graphic reproduced from his data in Figure 15). In the figure, it is
possible to discriminate three different groups, but it is difficult to distinguish
between different subsources. In addition, there is a great dispersion of the
points from the El Chayal and Ixtepeque sources.

Carr (2015) also intended to examine the chemical variability of the samples to
discriminate subsources within each of the main sources. For this purpose, the
author analyzed the samples from each of the regions separately. For the El Chayal
region, he used Rb versus Zr components in a bivariate display that resulted in five
different subsources. Using this procedure, the author determined the existence of
two distinct geochemical groups for the San Martin Jilotepeque obsidian source and
two for Ixtepeque. To support the bivariate classification, Carr calculated the
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Mabhalanobis distances (MD) to obtain the group membership probabilities of the
observations, making use of the following set of variables: St/Zr, Rb/Zr, Y/Zr, Fe/
Mn, Mn, Fe, Zn, Ga, Rb, Sr, Y, Zr, Nb, and Th. It should be noted that this was not
possible for El Chayal Subgroups 4 and 5 because their sample size was too small,
preventing the calculation of their probabilities.

From his study, several observations can be made. First, the data were
processed without any transformation. Therefore, it is advisable to open the
data to remove the constant sum constraint. Second, the author managed to
establish a total of nine obsidian subsources using bivariate graphs for each
of the regions separately. Third, the calculation of probabilities to determine
group memberships using the MD was not possible in all cases due to the
restrictions imposed by the sample size. Furthermore, if Carr (2015) data
were processed according to one of the commonly established methodolo-
gies, that is, transforming the data to log;y, and applying a PCA, the
explained variance of the first two components would have been only
56.53 percent, and six PCs would have been needed to explain 95.58 percent
of the variance.

By plotting all the data of the nine subsources together using a PCA
(Figure 16), including the information about the origin of the samples, it
can be observed that the overlap between the different groups is unavoid-
able. In this way, it can be concluded that this methodology is not able to
differentiate the chemical characteristics of the samples. Therefore, the
discrimination of sources using concentrations is a procedure that requires
nonconventional methods. According to this, we can assume that many of
the published classifications that follow preestablished methods have
incurred serious classification errors.

Employing the same data contained in Carr (2015), it was applied the
methodology described in the associated section in Statistical Processing of
Quantitative Data of Archaeological Materials www.cambridge.org/Argote.
The entire procedure is described step by step in the supplementary video
“Video 4”. First, as part of the preprocessing, the data were transformed to the
isometric log-ratio and then robustly standardized. Afterward, and as an
essential step, the diagnosis of the data was made with the robust MCD
estimator (see the scripts for this part of the procedure in the previous exer-
cise). Figure 17 shows the distance-distance plot in which eleven outliers were
detected (92, 115, 142, 150, 166, 189, 190, 191, 192, 193, 204), displayed in
the right half of the graph. In this case, it was decided not to exclude them from
the analysis because part of these observations (190 to 193) corresponded to
the samples identified by Carr (2015) as belonging to the Jilotepeque 2
subsource (FPO1, SAIO1, SAIO3, SAI04).
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Video 4 Step-by-step video on how to compositional
data of the obsidian samples used in Video 4. Video files available at
www.cambridge.org/argote_machine-learning

Once the diagnosis was performed, unsupervised classification was carried
out using the Gaussian mixture model with the Rmixmod and clusVis packages.
The data matrix for this example consisted of n =215 observations and D = 10
parts representing the Simplex. If the number of components is unknown and is
to be estimated from the data, Rmixmod includes the parameter nbCluster to run
a cluster analysis with a list of clusters (from 2 to n clusters). In this example,
this parameter was set to “1” for the minimum number of components and “9”
as the maximum number. Using the Gaussian mixture model, the Maximum
likelihood inference was performed, and model selection was performed by the
ICL criterion, detecting nine components. The output of the Rmixmod algorithm
can be found in Table 8. The model that best fitted the data turned out to be
Gaussian_pk Lk C, with clusters with the following properties: Volume =
Free, Shape = Equal, and Orientation = Equal. The script used is the following:

rm(list=1s())

library (Rmixmod)

library (ClusVis)

data <- read.csv (”C:\\Cobean\\Nueve grupos\\robust n-imp5.
csv” ,header=T)

str (data)

fammodel <- mixmodGaussianModel (family="general” 6 equal.
proportions=FALSE)

Modl<-mixmodCluster (data, 1:9, criterion = “ICL”, strategy =

mixmodStrategy (algo = “CEM”, nbTryInInit = 50, nbTry=25))
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Figure 16 Plot of the two principal components of the samples from nine
subsources in Guatemala valley. Color version available at
www.cambridge.org/argote_machine-learning
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Figure 17 Distance—Distance plot of the samples of obsidian sources. Color

version available at www.cambridge.org/argote machine-learning
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Table 8 Output of the Rmixmod algorithm.

Rk b Sk R Rk kb I R Rk kR R R

* Number of samples = 215

* Problemdimension = 9

R R S ok S bk I bk S I S b 2 S R S Rk I O bk b I R I I O
* Number of cluster =9

* Model Type = Gaussian pk Lk C

* Criterion =ICL(-3126.1685)

* Parameters = list by cluster

truncated output

z-partition
88888888888888888555555555555555555555555555959555555555999959999999955
55559555995555595555955955999955999999999999955555555555555222242222224
25224444444445999111131311111111111111111113113777766666666666666666666
66

ICL(-3117.1847)

Log-likelihood =1963.1254
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summary (Modl)

Modl ["partition”]

resvisu <- clusvisMixmod (Modl)

plotDensityClusVisu (resvisu, add.obs =F, positionlegend =
“topleft”)

The partition of the sample space of Figure 18 presents the Gaussian-like
component overlap on the most discriminative map, where the difference between
entropies is almost zero [Jg(f,&) = —0.01]. The sum of the inertia of the first
two axes is 61.62 + 18.93 = 80.55 percent of the discriminant power. The groups
with more observations are numbers 8, 3, 1, and 6. The most isolated groups are
1, 6, and 7; their position on opposite sides suggests that their chemical signa-
tures are entirely different with respect to the rest of the subsources, with
Component 7 differing the most. This component corresponds to Jilotepeque 2.

Difference between entropies: -0.01
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Figure 18 Component interpretation graph of the Mayan obsidian sources.
The component numbers indicate the following subsources: [1] Jilotepeque 1,
[2] El Chayal 3, [3] El Chayal 2*, [4] El Chayal 4, [5] Ixtepeque 2, [6] Ixtepeque

1, [7] Jilotepeque 2, [8] El Chayal 2, and [9] El Chayal 1. Color version
available at www.cambridge.org/argote machine-learning
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The first thing that we can observe in these results is that the algorithm
estimates the optimal number of groups as K = 9 components, which would
correspond to the 9 subsources registered for the region. Therefore, it can be
concluded that the chemical variability of each subsource is sufficiently differ-
ent from the others, allowing recognition of its origin with adequate accuracy.
However, the assignments of the samples to the components are different than
the assignment made by Carr, as seen in the assignment of the units to each one
of the components or subsources displayed in Table 9. This is because the
mixture model is more robust for modeling group analysis.

Table 9 shows the z-partition of the Gaussian mixture model. In the first
column are the nine subsources classified by Carr (2015). In the second column,
the sample size of each subsource estimated by the author is tabulated. In the
third column, the z-partition of nine components of the sample can be observed.
The number of observations assigned to each component is recorded in the
fourth column, and the proportions of each component are recorded in the fifth
column. In the last column are the differences between the algorithm assigna-
tion and the classification provided by Carr.

In this example, the first component coincides with Carr’s classification; that
is, the same 17 sample units were assigned to the El Chayal 1 subsource. For the
El Chayal 2 subsource, Carr classified 113 samples to this subsource, while the
mixture model assigns only 78 observations to this component and 40

Table 9 Assignation of the mixture proportions with Rmixmod (z-partition of
Guatemala obsidian sources and subsources).

Rmixmod Rmixmod
Carr (2015) Carr (2015) component sample
Subsource sample size (n)  group ID assignation Proportion z-partition
El Chayal 1 17 8 17 0.0791 El Chayal 1
El Chayal 2 113 5 78 0.3628 El Chayal 2

9 40 0.1860 El Chayal 2*
El Chayal 3 16 2 13 0.0605 El Chayal 3
El Chayal 4 10 4 11 0.0512 El Chayal 4
El Chayal 5 3
Jilotepeque 1 30 1 26 0.1209 Jilotepeque 1

3 4 0.0186 Jilotepeque

1 *

Jilotepeque2 4 7 4 0.0186 Jilotepeque 2
Ixtepeque 1 17 6 22 0.1023 Ixtepeque 1
Ixtepeque 2 5
Total = 215 215 1.0000

Log-likelihood = 1963.1254 ICL(-3117.1847)

Downloaded from https://www.cambridge.org/core. IP address: 18.118.141.122, on 24 Dec 2024 at 12:13:07, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009506625


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009506625
https://www.cambridge.org/core

Machine Learning for Archaeological Applications in R 49

observations to component 9, now marked as El Chayal 2*. In other words, the
original El Chayal 2 subsource was divided into two subsources by the mixture
model, separating 35 samples from the original El Chayal 2 and transferring two
samples from El Chayal 3 and three from El Chayal 5 to the new El Chayal 2*
subgroup. Carr classified 16 observations in the El Chayal 3 group and 10
samples in the El Chayal 4 group, but the mixing model classification assigned
only 13 samples to the El Chayal 3 group and 11 to the El Chayal 4 group. Due
to the new assignations, the original El Chayal 5 subsource in Carr’s classifica-
tion was eliminated.

For Jilotepeque, Carr identified two subsources: Jilotepeque 1 and
Jilotepeque 2, with 30 and 4 observations, respectively. The mixture model
also identified two subsources but with slight differences in sample size for the
case of Jilotepeque 1, with 26 observations in one component and 4 observa-
tions in another subsource marked as Jilotepeque 1*. The case of Jilotepeque 2
still consisted of four samples. For the Ixtepeque subsources, Carr identified two
subsources: Ixtepeque 1 with 17 observations and Ixtepeque 2 with five obser-
vations. Conversely, the mixture model did not find significant differences to
divide this source into two subsources, so the 22 original observations were
assigned to a single component (Ixtepeque 1).

The Mahalanobis distance (MD) has been widely used as a classification
technique in archaeometry to estimate relative probabilities of group member-
ship. However, as discussed in the introduction of Statistical Processing of
Quantitative Data of Archaeological Materials www.cambridge.org/Argote,
this statistic presents several drawbacks that can cause serious problems in the
calculation of group memberships. For example, Glascock et al. (1998) ana-
lyzed the provenance of obsidian samples from Central Mexico using the first
three principal components, which explained approximately 92 percent of the
variance. The author used the MD to calculate relative probabilities for the assign-
ment of samples to the groups and obtained erroneous results for the sources of
Santa Elena (Hidalgo) and the subsources of Pachuca. This exhibits that using a
technique such as MD to make assignments can force some observations to belong
to one of the groups. Furthermore, it was shown that multimodal distance distribu-
tions are preferable (Thrun, 2021b), which is a property that MD rarely possesses.

In contrast, model-based clustering produces an association weight based on
a formal probability, called the posterior probability of each observation belong-
ing to each group. The partition is derived from a maximum likelihood estima-
tor using the MAP procedure (see the section on model-based clustering in
Statistical Processing of Quantitative Data of Archaeological Materials
www.cambridge.org/Argote). This procedure is carried out through the EM
algorithm or one of its variants. Parameter estimation using the EM algorithm
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calculates the weights for each observation, given the parameter values of the
mixture components and the overall mixture weights (Kessler, 2019). These
weights are used as measures of the strength of the association between each
observation and the groups in the model in such a way that, in the model-based
method, the observations in the same cluster are generated from the same
probability distribution of the cluster (Griin, 2019).

To exemplify this procedure, the groups established by Carr (2015) were
contrasted according to his scatter diagrams and the probabilities obtained from
the calculation of the MD made by the same author and the probabilities
calculated using the mixture model. The reader can directly contrast the results
of the calculation of the probabilities of membership obtained with both
methods by directly consulting the work of Carr (2015) and computing the
model-based clustering probabilities with the following command:

(Modl@bestResult@proba) # Calculation of probabilities with
the mixture model

By making this comparison, one can appreciate that the memberships calculated
with the MD do not coincide with the groups designated by Carr for each of the
localities in the region. It is important to note that, in some cases, the MD
underestimates and, in others, overestimates the probabilities of belonging to a
group. The MD sometimes assigns the observations to the groups even when
their probability of membership to a group is well below 50 percent. This fact
has to do with the clear violation of the assumption of normality established by
the MD method. On the other hand, the probabilities obtained by the mixture
model are usually above 90 percent, except for three cases.

If the number of components is small and the sample size is large, the ClusVis
program allows a pseudoscatter plot of the observation memberships to be
obtained. In this plot, each observation is projected as colored dots representing
the partition membership z; the information about the uncertainty of the classi-
fication is given by the curves of the iso-probability of classification, and
information about the visualization accuracy is given by the difference between
entropies and the percentages of inertia (Biernacki et al., 2021). In this case, it
was considered to use only the five subsources belonging to El Chayal, forming
a data matrix with n = 159 and D = 10; the processing was done the same way as
for the previous case.

In Figure 19, we can see that the difference between entropies is almost zero
[0e(f,&) = —0.01]. The sum of the inertia of the first two axes is 61.94 +26.98
= 88.92 percent of the discriminant power. Three probability levels of classifi-
cation were obtained for El Chayal samples (0.50, 0.80, and 0.95); the observa-
tions are represented with the label of the component maximizing the posterior
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Difference between entropies: —=0.01

Dim2 (26.98%)

-10

Dim1 (61.94%)

Figure 19 Bivariate scatter plot of the observation memberships of samples
from El Chayal, Guatemala. Component 1 corresponds to El Chayal 3,
component 2 to El Chayal 1, component 3 to El Chayal 2, component 4 to El
Chayal 4, and component 5 to El Chayal 2 *. Color version available at
www.cambridge.org/argote_machine-learning

probability of classification. Only four of the 159 observations were misclassi-
fied into component 4; in the rest of the components, there are no misclassified
observations, and the membership of the observations is above 0.80 percent and
0.95 percent. To obtain the pseudoscatter plot of the observation memberships,
the following command is used:

plotDensityClusVisu (resvisu, add.obs =T, positionle-
gend = “ topleft”)

At times it is important to have an idea of the chemical variation of each of the
existing subsources and, for this, it is not enough to compare the vectors of means or
their standard deviations. To obtain a better notion of the variability between
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subsources, one can turn to the definition of Binary Sequential Partition (SBP) of
parts that defines an orthonormal basis in the Simplex (see the section on
Compositional and Completely Compositional Data in Statistical Processing of
Quantitative Data of Archaeological Materials www.cambridge.org/Argote). The
partition criterion must be based on a wide knowledge of the association and affinity
between parts (van den Boogaart and Tolosana-Delgado, 2013) but can also be
obtained through the variation matrix of the log-ratios or the implementation of
compositional biplots obtained from the variance and covariance matrices using the
clr transformation (Pawlowsky-Glahn and Egozcue, 2011).

Another option is to group the parts by means of a hierarchical cluster analysis,
such as the Ward method, and use the variation matrix to calculate the distances
between the parts. With this method, a signed matrix is built, containing the bases
from which an i/r definition matrix is obtained. The employment ofthe SBP allows
the bases to be obtained to generate a CoDa-dendogram (Parent et al., 2012). To
calculate the SBP and the CoDa-dendogram, it is necessary to include in the data
matrix a column that identifies the group to which each of the samples belongs. As
an example, the matrix in Table 10 illustrates the ordering of the groups.

To obtain the SBP, use this script:

rm(list=1s())

datl <- read.csv (X, header=T) #uploads the datafile X arranged by
groups

str(datl)#view the file structure

library (compositions) #uploads the package

x =acomp (datl[,-c(1:2)]) #applies the closure operator only to
numeric data

x#fto see the closed data

gr =datl[,2] #assigns the variable class togr=to identify the
obsidian groups (useful afterwards)

gr#to observe if the variable was correctly assigned

#Use anilr basis coming froma clustering of parts

dd =dist (t(clr(x))) #computes the Euclidian distances of the
variationmatrix

hcl = hclust (dd, method="ward.D2”) #builds the dendrogramwith
the Ward method

plot (hcl) #dendogram

mergetree=hclSmergettbasis touse, described as a merging tree
color=c(”"green3”,”darkviolet”,”red”, “blue”, “orange”)
CoDaDendrogram (X=acomp (x) ,mergetree=mergetree,col="black”,
range=c(-6,6) ,type="1")

xsplit = split(x,gr)

for(iin1:5){
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Table 10 Example of the matrix to obtain the SPB bases and the CoDa-dendogram.

ID Class Mn Fe Zn Ga Th Rb Sr Y Zr Nb
CHO1 group2 651 5844 30 17 9 137 133 17 101 9
CHO02 group2 712 6075 32 17 10 140 139 20 105 9
CHO3 group2 687 5943 33 17 10 138 138 20 106 10
CHO04 group2 662 6009 34 17 9 136 135 19 105 9
CHO5 group2 680 6029 37 18 10 136 139 21 107 9
CHO06 group2 656 6084 34 17 12 140 140 19 106 9
CHO07 group2 679 6115 33 17 10 137 138 18 106 10
CHO8 group2 667 5994 30 17 9 135 137 19 108 10
CHO09 group2 656 6042 33 17 10 138 134 19 105 9
CHI10 group?2 617 6155 34 17 10 139 140 20 103 10
LM13 group?2 680 6399 31 17 8 132 132 18 105 9
LJO1 group5 703 7829 36 18 11 159 165 22 120 12
LJ02 group5 668 7920 35 18 12 152 161 20 116 10
LJ03 group5 651 8352 43 18 12 157 172 23 115 9
AC13 group5 516 6675 29 17 10 129 125 18 103 7
KMO1 groups 597 6999 37 18 11 141 149 19 107 9
KMO02 group5 712 7243 31 17 10 141 153 21 111 9
KMO03 groups 669 8248 32 17 10 147 154 20 109 10
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CoDaDendrogram (X=acomp (xsplit [[1]]) ,border=color[i],
type="box” ,box.pos=1-2.5,box.space=1.5,add=TRUE)
CoDaDendrogram (X=acomp (xsplit [[1i]]),col=color[i],
type="1line” ,add=TRUE)

}

The CoDa-dendogram of the El Chayal dataset, following the SBP, is
represented in Figure 20. In the electronic version of this Element, the
colors assigned to the subsources can be appreciated, which were the
following: El Chayal 1 = red, El Chayal 2* = green, El Chayal 2 = purple,
El Chayal 3 = blue and El Chayal 4 = orange. The length of the vertical bars
represents the variability of each i/r coordinate. In this case, we have nine
balances with D = 10 parts (components). As seen, the third balance has the
largest variance and involves the Fe (iron) part; this implies that this
balance explains a great portion of the total variance. The location of the
mean of an ilr-coordinate is determined by the intersection of the vertical
segment with the horizontal segment (variance); when this intersection is
not centered, it indicates a major or minor influence of one of the groups of
the parts.

For this example, we can see in the first balance (b/) that the median of
the five groups does not coincide. In the first balance, the box plot shows a
certain asymmetry and a greater dispersion than the second balance. This is
due to the low variability given by Fe, Mn, Zr, Rb, and Sr concentrations in
the second group of parts. In balance 1 (b/), El Chayal 4 (orange) deviates
slightly from the other groups and shows a greater contribution in the
Fe-Mn—Zr—Rb-Sr parts. Conversely, EI Chayal 2* (green) shows smaller
amounts in the Th-Nb—Zn—Ga-Y parts. The other groups contain slight
variations between the two major groups of the parts. In balance 2 (52), El
Chayal 1 (red) has a lower variance, and as it is loaded to the left, it would
have smaller quantities of Th and Nb parts and a greater contribution of
Zn—Ga-Y parts.

In balance 3 (b3), El Chayal 2 (purple) shows a lower content of Fe and
minimal variations in Mn-Zr-Rb—Sr with respect to the other groups. Balance 7
(b7) also displays a similar aspect, but El Chayal 1 shows a slight increase in the
Zr, Rb, and Sr parts, followed by El Chayal 2* and El Chayal 4. The effect is
null in the rest of the balances because there is good symmetry in the parts. El
Chayal 4 registers a greater variance in balances b4 and b3, as does El Chayal 3,
so these two subsources would present a greater dispersion in this group of parts
(Th—Nb—Zn—Ga-Y). The parts that play a greater role in the classification are
those to the right of the CoDa-dendogram (Fe-Mn—Zr—Rb-Sr).
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Figure 20 CoDa-dendrogram for the El Chayal dataset using SBP. The vertical
bars correspond to the decomposition of the variance by balances. Color version
available at www.cambridge.org/argote_machine-learning
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In summary, it can be said that the range of chemical variability of each of the
subsources is different and that the discrimination between them is because
the material does not correspond to the same lava flow, which would explain the
variation in the chemical elements that compose the samples. In general, one
can speak of the existence of five different systems that could correspond to
different eruptions or volcanic events.

4 Processing a Combination of Spectral and Compositional Data
4.1 Application and Case Studies

Let us remember that chemometry is directly related to all those methods that
transform relatively complex analytical signals and data to provide the maximum
amount of relevant chemical information; it is strongly connected to multivariate
quantitative analysis and pattern recognition. From the point of view of chemo-
metry, spectral data can be represented in a matrix form (Figure 21) for further
classification with multivariate methods. This matrix (i.e., spectral data) com-
bined with a compositional data vector can be used for the classification of
archaeological samples combining spectral preprocessing techniques (such as
that described in Section 2 of this Element), variable selection methods, and
projection-based clustering analysis. In this section, the proposed methods will be
applied to data measured from obsidian samples and to a hypothetical “human-in-
the-loop” cluster analysis

4.2 Exercise 1: Mesoamerican Obsidian Deposits

In this example, geological samples from eight different obsidian sources (enlisted
in Table 11) were analyzed with a pXRF spectrometer, employing a TRACER III-
SD XRF portable analyzer manufactured by Bruker Corporation, with an Rh tube at
an angle of 52°, a drift silicon detector, a 7.5 um Be detector window and a factory
filter composed of 6 pm Cu, 1 pm T1, and 12 pm Al. The instrument was set with a

variables
Ay 82 3 ... 8

Q1 8y 8pz ... 8y

A=la, ay as; .. a,, | observations

dm1 mz Am3 ... Amn

Figure 21 Matrix representation of the spectra. Color version available at
www.cambridge.org/argote _machine-learning
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Table 11 Number of samples collected from eight Mesoamerican
obsidian sources.

Source name Geographic region n

Ahuisculco Jalisco 9

El Chayal Guatemala 34
San Martin Jilotepeque Guatemala 17
Ixtepeque Guatemala 17
La Esperanza Honduras 16
Otumba (Soltepec) Edo. de México 10
Otumba (Ixtepec-Malpais) Edo. de México 23
Sierra de Pachuca Hidalgo 10

Total = 136

voltage of 40 kV, a current of 30 pA, and a measurement time of 200 live seconds.
The measured spectra were used to construct a matrix that consisted of n = 136
[samples] and p = 2,048 [channels], available in the supplementary material as file
“Obsidian_chp4.csv”. The spectral and compositional data from these sources are
similar to the data used in the first exercise of Sections 2 and 3 of this Element. The
procedure is described step by step in the supplementary video “Video 5.”

\
PROCESSING A
COMBINATION OF
X i
SPECTRALAND
Re L
COMPOSITIONAL
o
DATA |

Video 5 Step-by-step video on how to process a combination of spectral and
compositional data used in Video 5. Video files available at
www.cambridge.org/argote machine-learning

In this case, the spectra showed a high number of noisy signals that are more
visible at higher keV values (Figure 22). Moreover, at the beginning and the end
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Figure 22 (Top) Full spectra of the obsidian samples. (Bottom) Selection of
useful channels from the pXRF spectra. Color version available at

www.cambridge.org/argote_machine-learning

of the spectra are areas that contain no relevant information, either because they
contain values close to zero or correspond to undesirable effects such as the
Compton peak or Raleigh scattering. Therefore, columns 1 to 38 and 903 to
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2,048 were manually deleted from the original matrix, reducing the dimension
of the new matrix to n = 136 obsidian samples by p = 865 channel counts (matrix
available in the supplementary material as file ‘Ixtq 2 38 865.csv’).

The second step was to filter the spectra to maximize the quality of the
information. The raw spectra were processed using the EMSC and SG filters
separately; the two resulting matrices were saved in different files. Afterward,
the EMSC-filtered data were processed using the Savitzky—Golay filter, and the
SG-filtered matrix was treated with the EMSC algorithm to obtain two other
files, one with a combination of EMSC + SG and one with SG + EMSC filters. It
is important to note that these procedures eliminate five columns from both
extremes of the matrix, leaving only 855 variables in our final matrix. The
filtering system with the best performance is chosen by evaluating the parameter
values that are calculated later in the procedure. The script below allows
filtering with the EMSC algorithm and then filtering with the SG algorithm.
Note that to perform the inverse action, first use the script for the SG filter and
afterward the code for the EMSC. For individual filtering systems, that is, only
EMSC or only SG, the scripts are used separately. Just remember to update the
file names to call and run the proper one.

## Script tofilter with the EMSC algorithm

rm(list =1s())

library (EMSC) #Package EMSC. Performs model-based background
correction and

# normalization of the spectra (Liland and Indahl, 2020)

dat <- read.csv (”C: \\Ixtg 2 38 865.csv’”, header=T) # To call
the spectral datafile

str (dat) # to see the data structure

datl <-dat[,2:866] # Toeliminate thefirst column related to the
sample identifier

str(datl)

EMSC.basic <- EMSC (dat1l)

EMSC.poly6 <- EMSC(datl, degree = 6) #Filters the spectrawitha
6th order

# polynomial

str (EMSC.polyé6)

write.csv (EMSC.polyé6Scorrected, file="FEmsc.csv”) # to save
the datafile

#filtered with the EMSC. The user can choose other file names

## Script tofilter with the SG algorithm
library (prospectr) ## Miscellaneous Functions for Processing
and Sample Selection of
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## Spectroscopic Data (Stevens et al., 2022)

data <- read.csv (”FEmsc.csv”, header=T) # Calls thefile with
EMSC filtered data

# data <- read.csv(“C: \\Ixtg 2 38 865.csv’”, header=T) #Use
this instead for only SG

str (data)

# datal <-dat[,2:866] #Add this when applying only SG

#str (datal) #Add this when applying only SG

sg <- savitzkyGolay(data, p=3, w=11, m=0)

# sg<- savitzkyGolay(datal, p=3, w=11, m=0) #Use this instead
for only SG

write.csv(sg, file=” FEmsc SG.csv”) # or ‘SG.csv’ . The user can

choose other file names

In the third step, the data were processed using the iPLS algorithm to select the
interval(s) within the data that would provide the most significant variables. In
the model, the photon counts in each of the spectrum channels measured with
the pXRF instrument were used as the explanatory variables (X). To obtain the
response variable (), the luminescent data were converted to concentration
values according to the Empirical Coefficients method (Rowe et al., 2012) using
a variant of the Lukas-Tooth and Price (1961) equation. Once the chemical
concentrations were obtained, the resulting matrix contained the following
components: Mn, Fe, Zn, Ga, Th, Rb, Sr, Y, Zr, and Nb; this matrix is provided
in the supplementary material of the electronic version of this volume as file
“analitos.csv”. The data were then moved to their native geometric space
according to Aitchison’s theory (Aitchison, 1986) employing the centered
log-ratio (clr) transformation using the following script:

rm(list=1s())

data <- read.csv (“C:\\analitos.csv”, header=T) #You can use
your own file

str(data) # displays the internal structure of thefile, which
includes the format of each#column

dat2 <- data[2:11] # delete data identification column

str (dat2)

# transformation of the data to the clr log-ratio

library (compositions) ## van den Boogaart, Tolosana-Delgado
and Bren (2023)

xxatl <- acomp (dat2) #the function “acomp” representing one
closed composition.

#With this command, the dataset is now closed.

xxat2 <- clr (xxatl) # Centered logratio transformation

str(xxat2)
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write.csv (xxat2, file="Clr-transformation.csv”) ##Fromthis
resulting output file

#(”"Clr-transformation.csv”), extract Sr (strontium) vector
and save it as a separate.cvs

#file

From the resulting output file, the values obtained for the variable Sr (strontium)
are copied to a separate .cvs file for its posterior use in the iPLS calibration
model as the response variable (y = Sr). It is important to note that the selection
of the response variable will depend on the material you are working with. For
example, pottery, Fe or Ca could be relevant; for some Roman glasses, Na, Ca,
Sb, and Pb can differentiate the real origin of the pieces (Lopez-Garcia and
Argote, 2023); for obsidian, Sr is a discriminatory element, so it was chosen for
the analysis. For this exercise, the file “Stroncio.csv” is provided in the supple-
mentary material. Table 12 shows an example of the difference between the raw
values of Sr composition of some samples and its c¢/r transformed values.

For iPLS regression analysis, the full spectrum (1-855) was divided into 10
equidistant subintervals, each containing approximately 85 variables. Then, a
PLS calibration model was developed for each subinterval. The iPLS algorithm
was applied to the four filtering systems (EMSC, SG, ESMC+SG, and SG
+EMSC), and the one with the best performance was chosen according to the

Table 12 Example of the raw compositional data and the data after
the clr transformation.

ID Raw data Clr transformation
Sr Sr

1 129.36 0.465173738
2 132.46 0.507479359
3 131.64 0.504697572
4 132.17 0.474821295
5 127.27 0.439785067
6 133.33 0.488857386
7 137.82 0.502847437
134 4.61 —3.303411956
135 5.60 —3.137748288
136 7.23 —2.938981779
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values observed in the RMSECV, RMSE, and R? parameters. The EMSC + SG
combination turns out to be the best for filtering the data. To run the iPLS
algorithm using the next script, the output was the following:

## Interval variable selection

rm(list=1s()) ## To remove all objects from memory

library (mdatools) # Kucheryavskiy (2020)

X <- read.csv (”C:\\FEmsc_SG.csv”, header=T) #Call thefiltered
spectra datafile

str (X)

# mean centering, in case you want to autoscale the spectrum
#X1 = prep.autoscale (X, center =T, scale=F)

# Call the concentrationdatafile of Sr (“*Stroncio.csv”) or they
variable you selected

y <- read.csv (”C:\\Stroncio.csv”, header=T)

str(y)

# ipls model

# for amodel without mean centering, use X instead of X1
m=1ipls (X, y, glob.ncomp =4, int.num=10)

# Model parameters

# glob.ncomp = maximum number of components for a global PLS
model

# int .num = number of intervals

summary (m)

plot (m)

plotRMSE (m)

show (m$int.selected)

show (m$var.selected)

par (mfrow=c (1, 2))

The output details information about the selected intervals, the number of
variables at both ends, and the value of R%:

Model with all intervals: RMSECV =0.107, nLV =4

Iterationl/ 10 ... selected interval 9 (RMSECV =0.125, nLV = 4)

Iteration2/ 10 ... selected interval 8 (RMSECV =0.105, nLV = 4)

Iteration3/ 10...selected interval 2 (RMSECV = 0.105, nLV = 4)

Iteration4/ 10...selected interval 5 (RMSECV = 0.105, nLV = 4)

Iteration5/ 10...selected interval 3 (RMSECV =0.105, nLV = 4)
(RMSECV =0.105, nLV=4)

Iteration 7/ 10 ...no improvements, stop.

Iteration 6/ 10...selected interval 1

In this case, the global model has an RMSECV = 0.107 with four components.
Interval 9, with RMSECV = 0.125, gave the best performance for building
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local models with individual intervals. On the other hand, the second iteration
selected interval 8 as the best local model with an RMSECV = 0.105, and
according to the cross-validation, four components were optimal. In the
subsequent iterations, more intervals were included; nevertheless, the
RMSECYV value did not vary at all, so it was no longer convenient to add
more intervals. Intervals 8 and 9 present an R” similar to the global PLS model
using the entire spectrum, suggesting a meaningless variation of the RMSE or
R? values if any other intervals were included. In this way, it was possible to
determine that intervals 8 and 9 contained the most informative variables of
the spectrum; these intervals included the range of variables from columns
601 to 685 and from 686 to 770, respectively.
The iPLS variable selection results were as follows:

Validation: venetianblinds with 10 segments
Number of intervals: 10

Number of selected intervals: 6

RMSECV for global model: 0.107508 (4 LVs)
RMSECV for optimized model: 0.105035 (4 LVs)
Summary for selection procedure:

n start end selected nComp RMSE R2
101855FALSE4 0.107 0.988 Global Model
29686 770 TRUE 4 0.125 0.984

38601685 TRUE4 0.1050.988

4287172 TRUE4 0.1050.988

show (m$int.selected)

[11 982531

Method: forward

Figure 23 shows the performance of individual models and the selected
interval or intervals, interpreted as follows. The average spectrum can be
appreciated along the bars. Green or dark gray bars are the local intervals
selected by the iPLS model; the height of each bar corresponds to the
RMSECYV value for the local model using variables from this interval as
predictors (X). The number within each bar is the number of PLS components
used in the local model. A dashed horizontal line indicates the RMSECV
obtained by using all variables, and the number 4 at the end of that line is the
number of latent variables (LV).

Finally, it is convenient to check the existence of outliers using the ROBPCA
algorithm of the ‘rrcov’ package:

rm(list=1s())
library (rrcov) ## Scalable Robust Estimators with High
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iPLS results
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Figure 23 iPLS model for 10 intervals. Color version available at
www.cambridge.org/argote _machine-learning

Breakdown Point (Todorov, 2020)

dat <- read.csv(”C:\\FEmsc_SG.csv”, header=T)
str(dat)

rpca <- PcaGrid(~., data=dat)

rpca

plot (PcaHubert (dat, k=0), sub="data set: dat, k=4")
str (rpca)

rpcasflag

In this case, to establish the optimal number of components to retain, we set k=0
such that [/ I; >=10. E=3and Y7 [j/>7_ i >= 0.8. Refer to Hubert et al.
(2005) and the ‘rrcov’ package (Todorov, 2020) in R for more information.
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Figure 24 Robust diagnostic plot for the obsidian data with k = 4. Color version
available at www.cambridge.org/argote _machine-learning

In the diagnosis of the data (Figure 24), eleven observations exceeded the
cutoff value: ten forming a small group of bad leverage points at the top of the
quadrant and the isolated case 119 at the far right of the graph. The bad
leverage points correspond to the Pachuca samples; their separation from
the rest of the sources is because these samples register significantly higher
concentrations of Fe, Zr, and Zn and lower amounts of Sr compared to the
other deposits. Therefore, they cannot be considered outliers. Conversely, the
isolated sample (no. 119) belongs to Otumba (Ixtepec-Malpais); it is possible
that it has some measurement error or contamination because it completely
departs from the group of normal observations; thus, it is convenient to
eliminate it from the analysis.

Now that the preprocessing has concluded, the next stage of the analysis is
to perform the projection-based clustering. For this, we used a reduced matrix
of n =135 by p = 170 that included only the range from 601 to 770 channel
counts (intervals 8 and 9 selected by the iPLS) and eliminated sample 119.
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Although, in fact, the provenance of the sources is known, we considered this
exercise as a nonsupervised classification, that is, where the data are
unlabeled. The first thing we want to know is whether the data exhibit a
clustering structure according to the information recorded in the variables.
Ifthis is true, then we will need to determine the optimal number of groups and
the correct assignment of the observations using the projection-based cluster-
ing method (Thrun, 2018).

The first module of the script (see “Introduction into the Usage of
Projection-based clustering” in Statistical Processing of Quantitative
Data of Archaeological Materials www.cambridge.org/Argote) allows us
to visually appreciate the existence of groups and determine the optimal
number of these through a topographic map (Thrun et al., 2016). The colors
presented by the topographic elements depend on their elevation and are
based on the U-matrix principle (Ultsch, 2003; Ultsch and Siemon, 1990).
The greater the spacing of the partitions in the high dimensional space, the
higher the mountains on the topographic map. If two high-dimensional data
points are in the same partition, both points end up in a blue lake or on a
green meadow. Blue lakes indicate partitions with particularly high dens-
ities. Green grasslands represent homogeneous partitions. Conversely, if the
two data points belong to different partitions, the landscape folds and a
mountain range is created between the two points; depending on the real
distance, the ranges can go from brown to white. Outliers land on volcanoes
or mountaintops.

Here, we assume that the data was preprocessed appropriately and that the
Euclidean distance is the best choice of similarity. Then the following code can
be used:

rm(list =1s())

library (DatabionicSwarm)

datos <- read.csv (”C:\\Two_intervals.csv”, header=T)
str (datos)

datos=as.matrix (datos)

library (DatabionicSwarm)
InputDistances = as.matrix (dist (datos))
projection = Pswarm(InputDistances)

library (DatabionicSwarm)

library (GeneralizedUmatrix)
genUmatrixList=GeneratePswarmVisualization (
Data=datos,

projection$ProjectedPoints,

projectionS$SLC)
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Figure 25 Topographic map of the DBS projection of the obsidian dataset with
the Generalized U-matrix. Color version available at
www.cambridge.org/argote_machine-learning

GeneralizedUmatrix: :plotTopographicMap (
genUmatrixList$Umatrix,
genUmatrixList$Bestmatches,

NoLevels =10)

Figure 25 displays the topographic map computed for the obsidian samples,
where we can identify the existence of eight groups well separated by topo-
graphical barriers. The observations are clustered according to the position of
the projected points. In this way, the points in each of the sections of the map
correspond to observations that are similar between them and different from the
rest of the groups according to their characteristics. In contrast to other multi-
variate methods, there is no overlap of the groups.

Once the existence of groups in the data is determined, the number of groups
is specified in the script (with £ = 8), and it is run again:

#Use previously loaded data

library (DatabionicSwarm) ## (Thrun, 2021a)

library (GeneralizedUmatrix) ## (Thrunetal., 2021a)
Cls =DBSclustering(

k=28,

InputDistances,

genUmatrixList$Bestmatches,

Downloaded from https://www.cambridge.org/core. IP address: 18.118.141.122, on 24 Dec 2024 at 12:13:07, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009506625


http://www.cambridge.org/argote%5Fmachine-learning
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009506625
https://www.cambridge.org/core

68 Current Archaeological Tools and Techniques

genUmatrixListS$SLC,
PlotIt = FALSE

)
GeneralizedUmatrix: :plotTopographicMap (

genUmatrixList$Umatrix,

genUmatrixList$Bestmatches,

Cls,

NoLevels = 10)

library (DatabionicSwarm)

library (ProjectionBasedClustering)

library (GeneralizedUmatrix)

Imx = ProjectionBasedClustering: :interactiveGeneralized
UmatrixIsland (

genUmatrixList$Umatrix,

genUmatrixList$Bestmatches,

Cls)

GeneralizedUmatrix: :plotTopographicMap (
genUmatrixList$Umatrix,
genUmatrixList$Bestmatches,

Cls =Cls,
Imx = Imx)

Cls # provides the labels of the instances

In this first part of the analysis, it is important to remember that the data continue
to be processed as a nonsupervised classification, where there is no a priori
information of the data. By setting k£ = 8, the algorithm labels the observations
according to the distance and the density of each data point, assigning a different
color to each group. In this way, a group can be distinguished from the others by
their high-dimensional distances from the original dataset on a map by hypso-
metric tints defined by the generalized U matrix (see Figure 26). What is
important in this map is that the groups are clearly visible with a more compact
structure defined by the valleys. Similarly, it is possible to perceive the absence
of outliers in the data.

In the last code, the “C1ls” command allows you to see to which group was
assigned each sample, as in Table 13.

In this example, all the samples were correctly assigned to their respective
sources. As seen in Table 13, the first n = 34 samples were assigned to group 1
related to the El Chayal source, observations 35 to 50 (n = 16) were assigned to
group 2 related to the La Esperanza source (Honduras), and so on. Therefore, it
can be concluded that both the filtering system and the selection of the most
informative intervals were appropriate procedures for partitioning the data into
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Figure 26 Topographic map of the DBS projection of the obsidian dataset with
Generalized U-matrix using k = 8, interactively cropped. Color version
available at www.cambridge.org/argote_machine-learning

natural or significant groups. The final step is validating the model. As men-
tioned before in this Element, it is important to confirm the obtained results in a
quantitative and objective manner to establish if the model fits the data well or if
only represents a spurious solution. One way is to calculate the percentage of the
accuracy, a supervised index defined by the ratio of the number of true positives
to the number of cases (see Section 4 in Statistical Processing of Quantitative
Data of Archaeological Materials www.cambridge.org/Argote). Another
approach is to validate a clustering with the help of domain experts (e.g., Lopez-
Garcia et al., 2020; Thrun et al., 2021b; Thrun et al., 2022). A third option is to
evaluate if clustering is useful for a specific application (Thrun, 2022).

For simplicity, we compute the cluster accuracy in the dataset. For this, it is
necessary to add a column in the data matrix with the header “C1ls”, which
refers to the class or group assigned by the algorithm to each of the observations
(use the assignations of Table 13). Once this column has been added to the data
matrix, the algorithm is rerun with the following script:

## with labeled data

rm(list=1s())

library (DatabionicSwarm) ## Thrun (2021a)

DataRaw <- read.csv (”C:\\Two_intervals cls.csv”, header=T)
##Call the csviilewith the #two intervals and add the Cls column.

The user can choose a personalizedfile name
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Table 13 Assignation of samples to groups.
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str (DataRaw)

Cls prior=DataRaw$Cls

Cls prior

# 1f you want the full unsupervised way

ind=which (colnames (DataRaw) ! =&quot ; Cls&quot ;)
Data=as.matrix (DataRaw([, ind])

library (DatabionicSwarm)
projection = Pswarm(Data,

Cls = Cls_prior,

PlotIt =T,

Silent =T)

library (DatabionicSwarm)

library (GeneralizedUmatrix)

visualization = GeneratePswarmVisualization (Data = Data,
projection$ProjectedPoints,

projectionsSLC)

GeneralizedUmatrix: :plotTopographicMap (visualization
SUmatrix,

visualization$Bestmatches)

library (DatabionicSwarm)

library (GeneralizedUmatrix)

Cls =DBSclustering(k = 8,

Data,

visualization$SBestmatches,

visualizationSLC,

PlotIt = FALSE)

FCPS: :ClusterCount (Cls)

GeneralizedUmatrix: :plotTopographicMap (visualization
SUmatrix,

visualization$Bestmatches,

Cls)

FCPS: :ClusterAccuracy (PriorCls = Cls_prior, Cls)

library (DataVisualizations) # (Thrun, 2021a)
Heatmap (as.matrix (dist (Data)),Cls =Cls)
Silhouetteplot (Data,Cls =Cls)

In this case, the accuracy was 100 percent, so the assignments were made
without error. Other exemplary validation indexes, known as nonsupervised
indexes, used for evaluating the quality of the clustering are the silhouette
index (Kaufman and Rousseeuw, 2005), the Dunn index (Dunn, 1974), and the
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Davies Bouldin index (Davies and Bouldin, 1979). Furthermore, visualization
techniques like the heatmap (Wilkinson and Friendly, 2009) or the Silhouette
plot can be used. Some of these are called in the last part of the previous script.
For example, in the silhouette plot, the ideal number of clusters is displayed as
separated silhouettes within a range of values that go from —1 to +1, where +1
indicates that the samples are correctly assigned to a cluster, 0 shows that the
observations are very close to the decision limit between two neighboring
clusters, and negative values indicate that the samples might have been
assigned to the wrong cluster. The result of the silhouette plot (Figure 27,
left image) clearly marks the presence of eight clusters as the optimal number,
with no negative observations and no zero values. Therefore, we can sustain
with confidence the existence of eight groups.

Another graphical representation for visualizing high-dimensional data is
the heatmap. A heatmap visualizes the distances ordered by the clustering
through variations in color; this display simultaneously reveals row and
column hierarchical cluster structure in a data matrix (Wilkinson and
Friendly, 2009). In this example, the heatmap (Figure 27, right image) con-
firmed the DBS clustering of eight separated clusters; it also showed that this
dataset was defined by discontinuities with small intracluster distances and
large intercluster distances. Hence, the obsidian set is a high-dimensional
dataset with natural clusters that are specified by the values represented in
the two intervals of the spectra.

Dstaregm: o By Chuierveg pepee vied by Ly
et mae i ' e e s ot
Silhouetteplot 4

Sihouetta Value

Figure 27 (Left) Silhouette plot of the obsidian dataset indicates a cluster
structure. (Right) Heatmap of the obsidian dataset showing the existence of
eight groups, where the intracluster distances are distinctively smaller than the
intercluster distances. Color version available at
www.cambridge.org/argote _machine-learning
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The clustering is also evaluated by means of a contingency table, whose rows
are the source groups and whose columns are the results of the clustering. This
contingency table is computed by the last part of the script of the projection-
based clustering algorithm, copied below:

## With the following script, the contingency table is calcu-
lated

Cls_prior=DataRaw$Cls

Cls prior

ind=which (colnames (DataRaw) !="Cls”)

Data=as.matrix (DataRaw[,ind])
ContingencyTableSummary=function (RowCls, ColCls)

{

# contingency table of two Cls

# INPUT

# RowCls,bCls vector of class identifiers (i.e., integers or
NaN’s) of the same length

# OUTPUT list with these elements:

# cTabcTab (i, j) contains the count of all instances where the i-
thclass in RowCls

#equals the j-th class inColCls

# rowID the different classes in RowCls, corresponding to the
rows of cTab

# colID the different classes inColCls, corresponding to the
columns of cTab

# RowClassCount, RowClassPercentages instance count and per-
centages of classes in

#RowCls sorted according rowID

# ColClassCount, ColClassPercentages instance count and per-
centages of classes #inColCls sorted according colID

RowID = length (unique (RowCls) )

ColID = length (unique (ColCls))

Ctable = table (RowCls, ColCls)

AllinTab = sum(Ctable)

ColumnSum = colSums (Ctable)

ColPercentage = round (ColumnSum/AllinTab * 100, 2)

RowSum = rowSums (Ctable)

RowPercentage = round (RowSum/AllinTab * 100, 2)

Rows <- rbind (round (Ctable), ColumnSum, ColPercentage)
Xtable <- cbind (Rows, ¢ (RowSum, Al1linTab, 0), c (RowPercentage,
0, 100))

colnames (Xtable) =c(1:ColID, “RowSum”, “RowPercentage”)
return (Xtable)
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}

Table=ContingencyTableSummary (Cls prior,Cls)
Table

Table 14 shows that all the elements of the main diagonal are well classified and
that there are no misclassified observations. According to the overall results, it
was shown that the analyzed obsidian samples had a clear cluster structure
linked to their geological origin.

In sum, DBS is a nonlinear projection that displays the structure of the high-
dimensional data into a low-dimensional space, preserving the cluster structure
of the data. This model exploits the concepts of self-organization and emer-
gence, game theory and swarm intelligence (Thrun, 2018; Thrun and Ultsch,
2021). Pswarm does not require any input parameters other than the dataset of
interest and is able to adapt itself to structures of high-dimensional data such as
natural clusters characterized by distance and/or density-based structures in the
data space. The result of the clustering consists of a 3D landscape with hypso-
metric tints, where observations with similar characteristics are represented as
valleys while differences are represented as mountain ranges. In addition, the
procedure can detect outliers that are represented as volcanoes on the 3D display
and can be interactively marked on the display after the automated grouping
process.

Another advantage of the method is that it is not necessary to have a
priori knowledge of the classes to which the observations belong; the
number of clusters and the cluster structure can be estimated by counting
the valleys in the 3D topographic map and from the silhouette plot. Unlike
other clustering algorithms, Pswarm does not impose any type of geometric
structure in the formation of clusters, and the user does not need to specify
any parameters. The results are evaluated using supervised and unsuper-
vised validation indexes and visualization techniques, as well as a contin-
gency table, confirming the goodness of the model to detect natural groups
in the dataset. The example confirmed that the method proposed here is
suitable for handling unbiased quantitative spectral analysis of archaeo-
logical materials.

4.3 Exercise 2: Human-in-the-Loop Cluster Analysis

The practical case study below serves as motivation to outline an alternative to
investigate the detection and recognition of cluster structures using a human-in-
the-loop. In this context, higher-level structures are detected in the data by
enabling recognition of structures by the human-in-the-loop (HIL) at critical
decision points. The authors thus follow the reasoning of Holzinger (2018) in
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Table 14 Contingency table computed from the data of the obsidian sources.

1 2 3 4 5 6 7 8 Rowsum RowPercentage
1 34.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34 25.19
2 0.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 16 11.85
3 0.00 0.00 17.00 0.00 0.00 0.00 0.00 0.00 17 12.59
4 0.00 0.00 0.00 17.00 0.00 0.00 0.00 0.00 17 12.59
5 0.00 0.00 0.00 0.00 9.00 0.00 0.00 0.00 9 6.67
6 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0.00 10 7.41
7 0.00 0.00 0.00 0.00 0.00 0.00 22.00 0.00 22 16.3
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 10 7.41
Columsum 34.00 16.00 17.00 17.00 9.00 8.00 24.00 10.00 135 0.00
ColPercentage 25.2 11.9 12.6 12.6 6.7 593 17.8 7.41 0 100
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that “the integration of an HIL’s knowledge, intuition, and experience can
sometimes be indispensable, and the interaction of an HIL with the data can
significantly improve the overall ML pipeline. Such interactive ML uses the
HIL to make possible what neither a human nor a computer could do alone
(Holzinger, 2018). The HIL is an agent that interacts with algorithms, allowing
the algorithms to optimize their learning behavior (Holzinger et al., 2019). This
perspective fundamentally integrates humans into an algorithmic loop with the
goal of opportunistically and repeatedly using human knowledge and skills to
improve the quality of ML systems (Holzinger et al., 2019; see also Mac Aodha
et al., 2014; Zanzotto, 2019).

An HIL is usually necessary because automatic detection pipelines (see
example in Wiwie et al., 2015) have pitfalls and challenges that are systemat-
ically highlighted by Thrun (2021b). The work shows that parameter opti-
mization on datasets without distance-based structures, algorithm selection
using unsupervised quality measures on biomedical data, and benchmarking
of detection algorithms with first-order statistics or box plots or a small
number of repetitions of identical algorithm calls are biased and often not
recommended (Thrun, 2021b). Hence, an alternative is proposed in Thrun et
al. (2020; 2021a). Unlike typical approaches, the HIL is not overwhelmed
with extensive parameter settings or evaluation of many complex quality
measures (see examples in Choo et al., 2013; Miiller et al., 2008; Yang et
al., 2019; Zhang et al., 2002).

The coexistence of nonlinear projection methods and automatic detection of
structures in projection-based clustering allows — apart from estimating whether
there is a tendency for separable high-dimensional structures — estimating the
number of partitions in the data as well as the correct choice of only one Boolean
parameter for projection-based clustering. The HIL extension of the projection-
based clustering incorporates user decisions in the detection process to visually
discriminate structures. HIL-projection-based clustering is an open-source
method that integrates the HIL at critical decision points through an interactive
topographic map to detect separable structures.

Comparable interactive approaches fall into the category of visual analytics,
which use visualizations to assist in manually searching for partitions in various
types of datasets or to check the results of detection algorithms (e.g., Cavallo
and Demiralp, 2018; Jeong et al., 2009; Kwon et al., 2017; Miiller et al., 2008;
Rasmussen and Karypis, 2004). However, the Johnson-Lindenstrauss lemma
states that two-dimensional similarities in a scatter plot do not necessarily
represent high-dimensional structures (Dasgupta and Gupta, 2003; Johnson
and Lindenstrauss, 1984). In praxis, projections of several datasets with dis-
tance- and density-based structures show a misleading interpretation of the
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underlying structures and unsupervised quality measures for dimensionality
reduction are biased toward assumed underlying structures (Thrun et al., 2023).

The HIL-projection-based clustering is proposed in a toroidal 2.5D represen-
tation, where a zoom out is preferred instead of other possible alternatives such
as the four-tile of the toroidal projection. Toroid means that the boundaries of
the topographic map are cyclically connected (Ultsch, 1999), which avoids
problems of projections at the edges and therefore edge effects. In the four-
tile representation, each projection point and structure would be represented
four times. The HIL detects the number of partitions as the number of valleys.
After the automatic detection phase, the HIL interactively rectifies the result on
the topographic map via its own detection of high-dimensional structures. Using
the 2.5D representation of the topographic map avoids the drawbacks of 3D
representations and eliminates the challenge of the Johnson-Lindenstrauss
lemma. The performance of HIL-projection-based clustering outperforms
other accessible methods both qualitatively and quantitatively (Thrun et al.,
2020, 2021b).

The GUI for the HIL-projection-based clustering is called with the following
script:

rm(list=1s())

library (FCPS)

library (ProjectionBasedClustering) ## (Thrunet al., 2020)
data (”Chainlink”, package = “FCPS")
str (Chainlink)

Data <- ChainlinkS$Data

str (Data)

V= IPBC (Data)

#with prior classification
Cls=Chainlink$Cls

V=IPBC (Data,Cls)

The interfaces of the HIL-projection-based clustering algorithm (Thrun et al.,
2021a) are presented in Figures 28 (‘Projection’ menu) and 29 (‘Clustering’
menu), in which every parameter setting is listed and numbered. In the
‘Projection’ menu, after loading the Chainlink dataset in listing (1), selecting
the NeRV projection in (2), and clicking on the button in (4), the topographic
map shown in (10) is obtained. The user can select another projection method
in (2) and click in (4) to visualize a new topographic map. The user can
automatically cluster the data with (15) by setting the number of clusters in
(13) as the number of valleys. If the automatic clustering does not overlap with
the valleys, the critical parameter for the clustering in (14) can be changed and
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Figure 28 Screenshot of the interface of the “Projection” menu of the IPBC
method. Color version available at
www.cambridge.org/argote _machine-learning
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Figure 29 Screenshot of the interface of the “clustering” menu of the IPBC
method. Color version available at
www.cambridge.org/argote _machine-learning

a second trial of clustering can be performed. The user can frame points with
the mouse either in the borderless view or the toroidal view (8); with “Add
Cluster” in (12), a new cluster is assigned. Be aware that the assumption is that
the data had been preprocessed properly and that the parameter of the selected
projection method had been chosen wisely. If parameter setting of a projection
method seems to be a challenge, the parameter-free projection method
Pswarm can be selected.
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5 Final Comments

One of the problems faced by archaeologists is that of data classification, which
is defined by a series of attributes. Both clustering and classification have in
common creating a model capable of recognizing instances according to their
attributes by assigning them to different classes or groups. Both are complex
tasks in archaecological data, since they involve the choice between many
methods, the transformation and diagnosis of data, the selection of parameters
and different metrics. Traditional unsupervised and supervised methods per-
form poorly at uncovering the underlying group structure in the data because
they lack a formal statistical model. This Element compares the performance of
different supervised and unsupervised classification methods that improve the
outcome in clustering and classification of archaeological data.

If the data is high-dimensional, as in the case of pXRF spectral quantification,
pre-processing is an essential part of comprehensive analysis to improve data
quality. For example, spectra can show noise, displacements, or overlap
between elements. To correct these problems in the related examples, a simple
method for peak alignment was proposed using the hierarchical Cluster-based
Peak Alignment (CIuPA) algorithm. CluPa takes care of bringing all the peaks
to the same origin, showing that the peaks from different origins are not
misaligned. To eliminate unwanted interference in the spectra, model-based
pre-processing techniques allow to quantify and separate different types of
physical and chemical variations in the spectra. The recommended filtering
was the use of a combination of the Savitzky—Golay and Extended
Multiplicative Scatter Correction (EMSC) algorithms, which are filters that
allow the preservation of the main characteristics of the function such as
width and height of the spectral peaks.

The diagnosis of the data was another point to consider since extreme
values can seriously distort the behavior of statistical estimators. To detect
outliers, a robust estimator was proposed by replacing the covariance matrix
obtained with the classical method with the covariance matrix obtained with
the Minimum Covariance Determinant (MCD) robust method. On the other
hand, a feature selection procedure is essential to separate variability related to
relevant information from non-relevant information. In the high-dimensional
(spectral) data scenarios, two variable selection methods were proposed. One
approach based on Bayesian models and the other based on Partial Least
Squares Interval (iPLS). The Bayesian approach allows for the selection of
relevant variables and clustering simultaneously; at the same time is able to
automatically determine the memberships of instances to their respective
groups and to determine the optimal number of groups in the data. On the
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other hand, the iPLS method allows the selection of specific spectral regions
for further analysis.

Continuing with the spectral analysis, Databionic swarm (DBS) algorithm
propose an approach in which dimensionality reduction methods coexist with
clustering algorithms, using a swarm-based Al system. The resulting groups
define different generating processes related to the chemical composition of
each group, which can be visualized with a topographic map of high-dimen-
sional structures. The central problem in clustering is the correct estimation of
the number of clusters; this is also addressed by the topographic map, which
evaluates the optimal number of clusters. This is important because most
clustering algorithms can detect clusters even if the distribution of the data is
random. Unlike traditional methods, DBS is not going to force a cluster if there
really are not natural clusters in the data.

When dealing with compositional data, first, it is important to consider that
geometric space is different from real Euclidean space. In general, standard
statistical methods are designed to work with classical Euclidean geometry
(R”) or unconstrained p-dimensional spaces, so it is advisable to use a suitable
transformation for compositional data whose geometric space is the simplex (S”).
This is a bounded space with a constant-sum constraint, in which Aitchison’s
geometry is applied; so only by working with the ratios between the parts do the
problems of the constant-sum constraint disappear. There are many clustering
methods in the literature without any specific method being uniformly better. To
select the most suitable one, it is important to understand the intrinsic nature of the
data and the strengths and weaknesses of the different algorithms.

To classify compositional data, an alternative is to model the data using
components of the Gaussian mixture distributions, which assumes that the
sample to be classified is divided into G groups or components. The estimation
of parameters for each group is estimated by the maximum likelihood method,
allowing us to estimate the probability that each of the instances has of belong-
ing to one of the classes. To find the right number of groups, information criteria
are considered, which are statistical criteria for evaluating models in terms of
their posteriori probabilities. These statistics allow you to select from among
the competing models and determine the optimal from a finite family of models.

Because of the excellent performance in partitioning the experimental data-
sets, the suggested algorithms and methodologies applied in this Element have
proved to work well in the difficult task of clustering when the number of groups
is unknown. The advantage of the proposed methods is that they allow the
creation of a model for the determination of groups of well-defined characteris-
tics that allows the optimization of the classification of the data. It is worth
mentioning that the software for the implementation of the proposed methods is
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freely accessible, which allows the implementation to be established in an easy
and simple way. We believe that these methods can be of great use to the
archaeological community, as well as being applicable to a large number of
cases beyond those described here. We encourage readers to practice with the
proposed techniques and try new ways to solve their research problems.
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Abbreviations

alr Additive Log-ratio

BIC Bayesian Information Criterion

CA Cluster Analysis

CAIS Center for Applied Isotope Studies
CEM Classification Expectation Maximization
clr Centered Log-ratio

CluPA Cluster-based Peak Alignment

CRM Certified Reference Material

DA Discriminant Analysis

DBS Databionic Swarm

DR Dimensionality Reduction

EM Expectation-Maximization

EMSC Extended Multiplicative Signal Correction
FAST-MCD Fast Minimum Covariance Determinant
FCPS Fundamental Clustering Problems Suite
FT-IR Fourier Transform Infrared Spectroscopy
HIL Human-in-the-Loop

ICP-MS Inductively Coupled Plasma—Mass Spectrometry
ICL Integrated Complete Likelihood

ilr Isometric Log-ratio

iPLS Interval Partial Least Squares

LDA Linear Discriminant Analysis

LV Latent Variables

MAP Maximum a Posteriori Probability

MCD Minimum Covariance Determinant

MD Mabhalanobis Distance

MD-plot Mirrored Density plot

ML Maximization of Log-likelihood

n Number of observations or samples
NAA Neutron Activation Analysis

NEC Normalized Entropy Criterion

NPE Neighborhood Proportion Error

ODi Orthogonal Distance

p Number of variables or components
PBC Projection-based clustering

PCA Principal Component Analysis
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PC Principal Component

PDE Pareto Density Estimation

PDF Probability Density Function

PLS Partial Least Squares

PP Projection Pursuit

pXRF Portable X Ray Fluorescence

QDA Quadratic Discriminant Analysis
RMSECV Root Mean Squared Error of Cross-Validation
RMSEP Root Mean Square Error of Prediction
ROBPCA Robust Principal Component Analysis
SBP Sequential Binary Partition

SDi Score Distance

SEM Stochastic Expectation-Maximization
SG Savitzky—Golay filter

SNE Stochastic Neighbor Embedding

SVD Singular Values Decomposition

XRF X Ray Fluorescence
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