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Abstract

Nonparametric item response theory (IRT) models consist of assumptions that 
restrict the joint item-score distribution. These assumptions imply stochastic 
ordering properties that allow ordering of respondents and items using the 
simple sum score and item mean score, respectively, and imply observable data 
properties that are useful for investigating model fit. In this paper, we investigate 
these properties for two-level nonparametric IRT. We introduce four two-level 
nonparametric IRT models. Two models pertain to respondents nested in groups: 
The MHM-1, useful for ordering respondents and groups, and the DMM-1, useful 
for ordering respondents, groups, and items. Two models pertain to groups rated 
by multiple respondents: The MHM-2, useful for ordering groups, and the 
DMM-2, useful for ordering groups and items. We define the model assumptions, 
derive implied stochastic ordering properties, and derive observable data 
properties that are useful for model fit investigation. Relations between models 
and properties are also presented.

Key words: conditional association, latent variable models, manifest invariant 
item ordering, manifest monotonicity, nonparametric item response theory, 
stochastic ordering.

1 Introduction

Most item response theory (IRT) models implicitly assume that the respondents are 
a random sample from the population envisaged. These IRT models assume one or 
possibly more latent variables only at the level of the respondent, and we refer to 
these IRT models as single-level IRT models. However, in many practical situations 
the respondents are nested in groups. For example, students nested in school classes
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rating their teacher’s instructional quality (Scherer et al., 2016), employees of the

same department assessing humor in the workplace climate (Cann et al., 2014), or

nurses within the same intensive care unit evaluating collaboration (Dougherty &

Larson, 2010). In such situations, it is inappropriate to assume that the respondents

are a random sample due to the group effect. It is therefore reasonable to use IRT

models with a latent variable both on the respondent level and the group level (e.g.,

De Jong & Steenkamp, 2010; Fox, 2007; Fox & Glas, 2001). We refer to these IRT

models as two-level IRT models. This paper investigates the measurement properties

of a general nonparametric two-level IRT model, which was proposed by Snijders

and Bosker (2012), and which can be considered a two-level generalization of the

single-level non-parametric IRT models proposed by Mokken (1969) and Holland

and Rosenbaum (1986).

Assume that a test consists of I items, indexed by i (i = 1, 2, . . . , I), and each

item has m+1 ordered item scores 0, 1, . . . ,m. Assume that this test is administered

to R randomly selected non-nested respondents, indexed by r (r = 1, . . . , R). Note

that index r refers to the rth respondent in the sample. Before sampling, it is

not known which respondent from the population will be the rth respondent in

the sample. Therefore, Xri — defined as the score of the randomly selected rth

respondent in the sample on item i — is a random variable. In this paper, variables

will be denoted by uppercase letters, and their realizations by lower case letters.

Hence, the realization ofXri is denoted by xri. For each respondent, the I item scores

can be collected in a vector Xr = (Xr1, Xr2, . . . , XrI). Because the respondents are

randomly and independently sampled, we consider theR vectorsXr independent and

identically distributed (i.i.d.) for all r. As the respondents are non-nested, a single-

level IRT model may be appropriate as a measurement model. Let Θr be a random

latent variable of the rth randomly sampled respondent. Analogous to Xri, Θr is

a random variable, because before sampling it is not known which respondent from

the population will be the rth respondent in the sample. Because the respondents

are randomly and independently sampled, the R variables Θr are i.i.d. for all r. Let

θr be a value of respondent r on the random latent variable Θr. For respondent r,

the expected value on item i is E(Xri|Θr =θr) =
∑m

x=1 P (Xri ≥ x|Θr =θr). The

expectation of Xri as a function of Θr, E(Xri|Θr), is referred to as the item response

function (IRF; Chang & Mazzeo, 1994). Most single-level IRT models are defined

by at least these three assumptions:

1. Unidimensionality (UN): Latent variable Θr is unidimensional

2. Local independence (LI): Item scores Xri are independent given θr
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3. Monotonicity (MO): P (Xri ≥ x|Θr = θr) is nondecreasing in θr, for all i and

for x = 1, . . . ,m

These assumptions are necessary to restrict the distribution of Xr (Junker &

Ellis, 1997). The combination of UN, LI, and MO is also referred to as the

monotone homogeneity model (MHM, Mokken, 1971; Sijtsma & Molenaar, 2002;

a.k.a. monotone unidimensional representation, Junker, 1993; Junker & Ellis, 1997;

unidimensional monotone latent variable model, Holland & Rosenbaum, 1986; and

nonparametric graded response model, Hemker et al., 1996, 1997). The MHM does

not use parameters to model the distribution of Θ and the relation between the item

scores and Θr. The MHM is therefore called a nonparametric IRT model.

A fourth assumption in nonparametric IRT is invariant item ordering. Suppose

that the I items are ordered by mean item score and numbered accordingly; that is,

if i < j, then E(Xri) ≤ E(Xrj) for all i ̸= j. Then,

4. Invariant item ordering (IIO): E(Xri|Θr =θr) ≤ E(Xrj|Θr =θr) for all θr

(Ligtvoet et al., 2011; Sijtsma & Hemker, 1998; Sijtsma & Junker, 1996). IIO

means that the order in difficulty is identical across all values of the latent variable.

IIO allows the stochastic ordering of the items using the mean item scores. For

applications of IIO we refer to Sijtsma et al. (2011). Following Sijtsma and Van der

Ark (2017, 2020, pp. 156–158; also see the Discussion), we call the model that

assumes UN, LI, MO, and IIO the double monotonicity model (DMM).

The MHM has several ordering properties. The MHM implies stochastic ordering

of the manifest variable by the latent variable (Hemker et al., 1996, 1997), which

implies that latent variable can be used stochastically to order the respondents on the

unweighted sum score. More importantly, for dichotomous items, the MHM implies

monotone likelihood ratio (MLR; Grayson, 1988; Huynh, 1994; Ünlü, 2008), which

implies the property of stochastic ordering of the latent variable by the sum score

across the items (SOL; Hemker et al., 1997). Measurement properties MLR and

SOL imply that the sum score can be used to (stochastically) order respondents on

the latent variable. For polytomous items, the MHM does not imply MLR and SOL

(Hemker et al., 1996, 1997); however, the MHM implies the measurement property of

weak SOL (Van der Ark & Bergsma, 2010), which can be used for pairwise ordering

of respondents or groups on the latent variable.

These theoretical results justify ordinal person measurement by means of sum

score Xr+ if the MHM holds. Suppose that two respondents have sum scores a and b,

respectively (a < b), then for dichotomous items, due to the SOL property, the MHM

implies E(Θr|Xr+ = a) ≤ E(Θr|Xr+ = b); for polytomous items, due to the weak
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SOL property, the MHM implies E(Θr|Xr+ < a) ≤ E(Θr|Xr+ ≥ a). Hence, the

sum score stochastically orders the respondents on Θr. Alternatively, suppose that

two respondents have latent variable values t and u, respectively (t < u), then due

to the monotonicity assumption the MHM implies E(Xr+|Θr = t) ≤ (Xr+|Θr = u).

Hence the latent variable values stochastically orders the respondents on the sum

score, a property sometimes referred to a stochastic ordering of the manifest variable

by Θr (SOM; Hemker et al., 1997). These mutual ordering properties of Xr+ and

Θr, make Xr+ an attractive estimator of Θr. Under the MHM, Xr+ is a consistent

asymptotic normal estimator of Θr (Junker, 1991; Stout, 1990).

The simple sum score is more intuitive for non-psychometricians than, for

example, an estimated latent variable, because the sum score is defined on the scale

of the test. Therefore, a higher sum score has a fairly straightforward interpretation,

such as responded to more items correctly or responded more extreme to the items

(Sijtsma & Hemker, 2000). In addition, using the sum score in scientific research

avoids sample-specific transformations, which benefits comparability across studies

and contributes to the replicability of results across studies (Edelsbrunner, 2022;

Widaman & Revelle, 2022). Hence, providing justification for using the sum score

is relevant for psychometric research and testing practice, even when the estimated

latent variable is used for test construction and measurement evaluation (Hemker

et al., 2001).

The DMM implies an ordinal scale for both person and item measurement.

Hence, besides using the respondent sum score to order respondents on a latent

variable, the mean item score can be used to order the items on a latent difficulty

scale. Using the mean item score has similar advantages as the sum score for

psychometric and testing practice: They have an intuitive interpretation, such as

the proportion correct or average extremeness in the sample. In addition, estimating

a latent difficulty is not straightforward and can have various interpretations that do

not necessarily relate to the difficulty in practice (Sijtsma & Hemker, 2000; Sijtsma

& Meijer, 2001).

All popular unidimensional IRT models, such as the Rasch Model (Rasch, 1960),

the two- and three-parameter logistic models (Birnbaum, 1968), the graded response

model (Samejima, 1969), the rating scale model (Andrich, 1978), the partial credit

model (Masters, 1982), and the sequential model (Tutz, 1990) are special cases of the

MHM (Van der Ark, 2001). Hence, if the goal of the test is to order respondents, the

MHM is preferred over popular parametric IRT models because, by definition, the

MHM fits better to the data than these parametric IRT models. If the goal of the test

is estimating the respondents’ scores on Θr, alternative methods are required, such
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as a smoothing procedure or estimating a parametric IRT model (e.g., Ramsay,

1991; Sijtsma & Van der Ark, 2020, Chapter 4, respectively). However, as these

parametric IRT models are a special case of the MHM, investigating the fit of the

MHM is still useful because if the MHM does not fit, neither do the parametric IRT

models.

The MHM poses testable restrictions on the data, referred to as observable

properties. For example, the MHM implies non-negative inter-item covariances (e.g.,

Sijtsma & Molenaar, 2002, pp. 155–156). Observable properties can be investigated

in data to find evidence against the MHM assumptions. Holland and Rosenbaum

(1986) showed that the MHM implies conditional association (CA). Let Yr and Zr

be two mutually exclusive and exhaustive subsets of Xr. CA holds if for every

partitioning Xr = (Yr,Zr) and for all functions h, and for all non-decreasing

functions g1 and g2

Cov[g1(Yr), g2(Yr)|h(Zr)] ≥ 0. (1)

The observable property CA is too comprohensive for a single testing procedure

(see Ellis & Sijtsma, 2023) but special cases of CA, including testing for non-

negative covariances, have been proposed to test the MHM. We focus on manifest

monotonicity (MM Sijtsma & Hemker, 2000) and a testing procedure to identify

locally dependent item sets using three cases of CA (Straat et al., 2016). For

dichotomous items, CA implies MM (Ligtvoet, 2022). Let Xr(i) =
∑I

j ̸=i Xri be

the rest score of item i, then MM means that

E(Xri|Xr(i)) is nondecreasing in Xr(i). (2)

Hence, MM is the MO assumption with latent variable Θr replaced by an

observable proxy Xr(i). Note that for polytomous items, the MHM does not imply

MM. Straat et al. proposed testing Cov(Xri, Xrj) ≥ 0, Cov(Xri, Xrj|Xrk) ≥ 0,

and Cov(Xri, Xrj|Xr(ij)) ≥ 0, where Xr(ij) =
∑

k ̸=i,j Xrk. We refer to these

three inequalities as non-negative inter-item covariances (NNIIC). As these three

inequalities of NNIIC are special cases of CA with g1(Yr) = Xri, with g2(Yr) = Xrj,

and with h(Zr) = ∅, h(Zr) = Xrk, and h(Zr) = Xr(ij), respectively, the MHM implies

the three inequalities. Other CA-based observable properties have been proposed by,

for example, Ellis (2014) and Ligtvoet (2022). Ellis and Sijtsma (2023) noted that

these CA-based observable properties cannot distinguish between unidimensional

and multidimensional models, and these authors suggested using (also CA-based)

conditioning on added regression predictions (CARP) inequalities to investigate UN.
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The DMM poses additional observable properties (see Ligtvoet et al., 2011).

We focus on manifest invariant item ordering (MIIO), which holds if for

E(Xri) < E(Xrj),

E(Xri|Xr(ij) = y) ≤ E(Xrj|Xr(ij) = y) for all y and all i < j. (3)

Note that MIIO is the IIO assumption with latent variable Θr replaced by Xr(ij) =∑
k ̸=i,j Xrk. Other observable properties of IIO have been proposed; for example, by

Tijmstra et al. (2011).

The assumptions (UD, LI, MO, IIO) discussed in this paragraph have not been

formally defined for two-level IRT models, and as a result it is also unknown how

these assumptions should be investigated in test data. Also, the measurement

properties MLR, SOL, and SOM nor the observable properties MM, CA and MIIO

have been defined for two-level IRT models, and as a result it is unknown whether

two-level IRT models imply these measurement properties in the same way as single-

level IRT models do. In the remainder of this paper, we generalize the MHM and

DMM to two-level data on both the respondent level and the group level. We build

on the work of Snijders (2001), who proposed a two-level nonparametric IRT model

for scaling subjects (e.g., persons or groups) scored by multiple respondents (i.e.,

multi-rater measurement) using dichotomous items. For the proposed models, we

establish which stochastic ordering properties and observable data properties are

implied, and how they are related. Note that the proofs have been diverted to the

Appendix. Implications and recommendations for practice and further research are

discussed.

2 Two-Level Nonparametric IRT

Suppose a measurement instrument consists of I items, indexed by i or j (i, j =

1, 2, . . . , I; j ̸= i). Suppose there are S groups, indexed by s (s = 1, 2, . . . , S), each

consisting of Rs respondents, indexed by r (r = 1, 2, . . . , Rs). Note that index s

refers to the sth group and index r refers to the rth respondent in group s. Before

sampling, it is not known which group from the population of groups will be the sth

group in the sample, nor which respondent from the population of respondents will

be the rth respondent in group s. The groups are assumed to be a random sample

from a population of groups, and the respondents within a group are assumed to

be a random sample from a population of respondents. Without loss of generality,

we assume the number of respondents per group is the same; that is, R1 = R2 =

· · · = RS = R. Let Xsri denote the score on item i of respondent r in group s,
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with realization xsri (xsri ∈ 0, . . . ,m). For dichotomous items, m = 1 and xsri takes

on value 1 if item i is endorsed or answered correctly by respondent r in group s,

and 0 otherwise. Let Xsr+ =
∑I

i=1Xsri denote the respondent-level sum score. Let

Xsi = R−1
∑R

r=1Xsri denote the group-level score on item i (i.e., the mean score

over respondents’ scores on item i within group s), with realization xsi. Xsi can take

on Rm+1 values with a minimum of 0 and a maximum of m. Let Xs+ =
∑I

i=1 Xsi

denote the group-level sum score. The vector of item scores for respondent r in

group s is denoted Xsr = (Xsr1, . . . , XsrI), with realization xsr = (xsr1, . . . , xsrI).

Because the respondents within a group are randomly and independently sampled,

the R vectors Xsr are considered i.i.d. within each s for all r. The vector of all

item scores for group s is denoted Xs = (Xs1, . . . ,XsR) = (Xsr1, . . . , XsRI), with

realization xs = (xs1, . . . ,xsR) = (xsr1, . . . , xsRI). Because the groups are randomly

and independently sampled, the S vectors Xs are considered i.i.d. for all s.

Let Θsr, Γs ∆sr be random latent variables of the rth randomly sampled

respondent in the sth randomly sampled group. Analogous to Θr in the single level

situation, these are random variables because before the groups and respondents

have been sampled, it is unknown which group from the population groups will be

the sth group, and which respondent from the population of respondents belonging

to the sth group will be the rth respondent. Variable Γs is considered a common

group component, ∆sr is a combination of an individual (random) respondent effect

and a group by respondent interaction effect, and Θsr is the sum of these effects;

that is,

Θsr = Γs +∆sr, (4)

(Snijders, 2001). Let εsri be a random latent variable that may be interpreted as

an error term. Assumption B is a basic assumption about the relation between the

latent variables and the observed score Xsri using function fi.

Assumption 1. Basic assumption of item scores and latent variables.

(B) Xsri = fi(Γs + ∆sr, εsri). For all s, r, and i, Γs, ∆sr, and εsri

are independent. Furthermore, all Γs (s = 1, . . . , S) are identically

distributed, and all ∆sr (s = 1, . . . , S; r = 1, . . . , R) are identically

distributed, with E(∆sr) = 0.

It follows from B that Θsr are identically distributed for all s, r, and that for a

fixed item i, all εsri are identically distributed for all s, r. Assumption B is assumed

throughout this paper. The variances of Θsr, Γs, and ∆sr are denoted var(Θsr),

var(Γs), and var(∆sr), respectively. Because Γs and ∆sr are assumed independent,

7

https://doi.org/10.1017/psy.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.9


var(Θsr) = var(Γs) + var(∆sr), for all s and all r. Let θsr be a group-respondent

combination value on Θsr of respondent r in group s, γs a value on Γs for group s,

and δsr a value on ∆sr for respondent r in group s. Hence, for respondent r in group

s, we assume there exist value θsr = γs + δsr.

Let P (Xsr = x|Γs,∆sr) denote the probability of obtaining item-score pattern

x given Γs and ∆sr. Throughout the rest of the paper we assume homogeneity of

Γs,∆sr and Θsr:

Assumption 2. Homogeneity assumption of Γs,∆sr and Θsr

(H) Homogeneity of the response probablities holds for Γs,∆sr and Θsr,

hence, P (Xsr = x|Θsr) = P (Xsr = x|Γs,∆sr)

Let

P (Xsri ≥ x|Θsr) =
m∑

y=x

P (Xsri = y|Θsr) (5)

denote the probability of obtaining at least score x on item i given Θsr, which we

refer to as the respondent-level item-step response function. For respondent r in

group s, the expected item score is E(Xsri|Θr = θr) =
∑m

x=1 P (Xsri ≥ x|Θsr = θsr).

In two-level test data we distinguish between a respondent-level IRF (IRF-1, denoted

Ei(·)) and a group-level IRF (IRF-2, denoted Ei(·)). IRF-1 is defined as

Ei(Θsr) = E(Xsri|Θsr)

=
∑m

x=1 P (Xsri ≥ x|Θsr),
(6)

where E(Xsri|Θsr) equals the expected item score Θsr.

Let P (Xsri ≥ x|Γs) denote the probability of obtaining at least score x on item

i given Γs, which we refer to as the group-level item-step response function. By H

and the law of total expectation (e.g., Rice, 2006, p 149), the item-step response

function can be formulated as

P (Xsri ≥ x|Γs) = E[P (Xsri ≥ x|Θsr,Γs)|Γs]

= E[P (Xsri ≥ x|Γs +∆s,Γs)|Γs]

= E[P (Xsri ≥ x|∆s,Γs)|Γs]

= E[P (Xsri ≥ x|Θsr)|Γs].

(7)

For a randomly selected respondent in group s, the expected item score is
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E(Xsri|Γs = γs) =
∑m

x=1 P (Xsri ≥ x|Γs = γs). IRF-2 is defined as

Ei(Γs) = E(Xsri|Γs)

=
∑m

x=1 P (Xsri ≥ x|Γs)

= E[
∑m

x=1 P (Xsri ≥ x|Θsr)|Γs] (Eq. 7)

= E[Ei(Θsr)|Γs] (Eq. 6),

(8)

where E(Xsri|Γs) equals the expected item score as a function of Γs. Note that

because ∆sr variables are assumed i.i.d., E(Xsi|Γs) = R−1
∑R

r=1 Ei(Γs) = Ei(Γs).

Hence, the expected group-level item score for group s is the value of the IRF-2

for Γs = γs. Figure 1 shows an hypothetical IRF-1 and IRF-2. Because IRF-2 is

the expectation of IRF-1 with respect to ∆sr (Equation 8), IRF-2 is flatter than

function IRF-1.
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Figure 1: An IRF-1 (Ei(Θsr); solid curve) and an IRF-2 (Ei(Γs); dashed curve),

depicted on the same Θsr scale. The horizontal axis shows one hypothetical group

value γs, plus the θsr values of 10 randomly drawn respondents (r = 1, . . . , 10) from

group s. Note that δsr is represented by the length of the line segment between γs

and the θsr values on the horizontal axis.

2.1 Definitions of Possible Model Assumptions

Besides the basic and homogeneity assumption (B and H, respectively), multiple

assumptions of nonparametric IRT for two-level data can be defined at level 1 (the

respondent level) and at level 2 (the group level).
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Definition 1. Unidimensionality (UN).

(UN-1) Unidimensionality at level 1 holds if Θsr is a unidimensional variable.

(UN-2) Unidimensionality at level 2 holds if Γs is a unidimensional variable.

UN-1 and UN-2 mean that the item scores on the test or questionnaire are modeled

using one latent variable.

Definition 2. Local independence (LI).

(LI-1) Local independence at level 1 holds if

P (Xsr = xsr|Θsr =θsr) =
∏I

i=1 P (Xsri = xsri|Θsr =θsr) (9)

(LI-2) Local independence at level 2 holds if

P (Xs = xs|Γs =γs) =
∏R

r=1 P (Xsr = xsr|Γs =γs) (10)

LI-1 means that respondent-level item scores (Xsri) are independent given θsr. LI-

2 means that the response vectors of respondents are independent given γs. LI-2

implies that between respondents, the respondent-level item scores Xsri and Xspj

(i ̸= j; r ̸= p) are independent given γs. However, within respondents, respondent-

level item scores Xsri and Xsrj (i ̸= j) are not independent given γs.

Definition 3. Monotonicity (MO).

(MO-1) Monotonicity at level 1 holds if P (Xsri ≥ x|Θsr = θsr) is nondecreasing

in θsr, for all i and x = 1, . . . ,m.

(MO-2) Monotonicity at level 2 holds if P (Xsri ≥ x|Γs = γs) is nondecreasing

in γs, for all i and x = 1, . . . ,m.

MO-1 implies that, for each item, IRF-1 (Equation 6) is nondecreasing in Θsr, and

MO-2 implies that, for each item, IRF-2 (Equation 8) is nondecreasing in Γs. Note

that in Figure 1, IRF-1 satisfies MO-1 and IRF-2 satisfies MO-2.

Definition 4. Invariant item ordering (IIO). For a set of I items with m + 1

ordered item-score categories, for which the items are ordered and numbered such

that E(Xsri) ≤ E(Xsrj) for all i < j, then

(IIO-1) Invariant item ordering at level 1 holds if E(Xsri|Θsr = θsr) ≤
E(Xsrj|Θsr = θsr) for all θsr.

(IIO-2) Invariant item ordering at level 2 holds if E(Xsri|Γs = γs) ≤
E(Xsrj|Γs = γs) for all γs.
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IIO-1 means that the IRF-1s of different items do not intersect. IIO-2 means that

the IRF-2s of different items do not intersect. Note that the definition of IIO-1 and

IIO-2 allows for ties, such that for some values of the latent variable items may be

equally difficult.

2.2 Relation Between Level 1 and Level 2 Assumptions

Theorem 1 gives the relations between the basic assumption and local independence

at both levels.

Theorem 1. B implies LI-1 and LI-2.

The assumptions UN, LI, MO, and IIO were defined at both Level 1 and Level 2

(Definitions 1 to 4). However, Theorem 1 shows that B implies both LI-1 and LI-2,

and as a result, LI is no longer a necessary assumption, as in all remaining proofs

LI-1 and LI-2 may be replaced by B and H.

Theorem 2 gives the relations between the assumptions at level 1 and the

assumptions at level 2.

Theorem 2. Under B and H, UN-1, MO-1, and IIO-1 imply UN-2, MO-2, and

IIO-2, respectively.

Theorem 2 shows that the level-1 assumptions imply their level-2 assumptions,

but not the other way around. Hence, the level-2 assumptions do not imply the level-

1 assumptions. For example, if respondent-level item scores depend both on Γs and

on ∆sr and var(∆sr)> 0, in general Θsr ̸= Γs, P (Xsri ≥ x|Θsr) ̸= P (Xsri ≥ x|Γs),

and Ei(Θsr) ̸= Ei(Γs). As a result, UN-1, MO-1, and IIO-1 are not equal to UN-2,

MO-2, and IIO-2, respectively. It may be noted that because of the homogeneity

assumption H, the level-1 assumptions (UN-1, LI-1, MO-1, and IIO-1) are equivalent

to the single-level nonparametric-IRT assumptions (UN, LI, MO and IIO), whenXsri

is replaced by Xri and θsr by θr.

2.3 Models

Two-level nonparametric IRT assumptions can be used to define several

nonparametric IRT models. Analogous to the single-level nonparametric IRT

models, we distinguish between the MHM and the DMM, but in addition we also

distinguish between the level on which they can be defined. Snijders (2001) defined

a two-level nonparametric IRT model for scaling groups with dichotomous item

scores using assumptions UN-1, LI-1, MO-1, and IIO-1. We present four models

11

https://doi.org/10.1017/psy.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.9


that allow for both dichotomous and polytomous items. As mentioned before, for

all models B and H are assumed.

The first respondent-level model is the MHM-1, defined by assuming UN-1, LI-1,

and MO-1 (Table 1, first row). The MHM-1 consists of level-1 assumptions, which

imply UN-2, LI-2, and MO-2 (Theorem 2). The second respondent-level model is

the DMM-1, defined by assuming UN-1, LI-1, MO-1, and IIO-1, implying UN-2,

LI-2, MO-2, and IIO-2 (Table 1, second row). The first group-level model is the

MHM-2, defined by assuming UN-2, LI-2, and MO-2 (Table 1, third row). The

second group-level model is the DMM-2, defined by assuming UN-2, LI-2, MO-2,

and IIO-2 (Table 1, fourth row). Note that, for all models, LI-1 and LI-2 are implied

by B, but we explicitly incorporate them into the models, such that the models align

more obviously to the single-level models.

Table 1:

Assumptions of the Two-Level Nonparametric IRT Models.

Model Respondent-level assumptions Group-level assumptions

UN-1 LI-1 MO-1 IIO-1 UN-2 LI-2 MO-2 IIO-2

MHM-1 A A A I I I

DMM-1 A A A A I I I I

MHM-2 A A A

DMM-2 A A A A

Note. A = assumed, I = implied.

Figure 2 shows the hierarchical structure of the four models, where an arrow

indicates an implication. The MHM-2 is the most general model, of which the other

three are special cases. The DMM-1 is the most restrictive model, implying the

other three models. In the next sections we derive some ordering and observable

properties implied by these models.

3 Ordering Properties of Two-Level Nonparametric

IRT Models

We investigated four possible ordering properties for sum score Xsr+ at level 1, and

sum score Xs+ at level 2: MLR, SOM, SOL, and weak SOL.
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DMM-1

MHM-1

DMM-2

MHM-2

Figure 2: Hierarchical Structure of the Two-Level Nonparametric IRT Models.

Definition 5. Monotone likelihood ratio (MLR; Ferguson, 1967, p. 208).

(MLR-1) Monotone likelihood ratio at level 1 holds if, for a < b, the probability

ratio
P (Xsr+ = b|Θsr)

P (Xsr+ = a|Θsr)
is nondecreasing in Θsr. (11)

(MLR-2) Monotone likelihood ratio at level 2 holds if, for a < b, the probability

ratio
P (Xs+ = b|Γs)

P (Xs+ = a|Γs)
is nondecreasing in Γs. (12)

Definition 6. Stochastic ordering of the manifest score by the latent variable (SOM;

Hemker et al., 1997).

(SOM-1) Stochastic ordering of the manifest score by the latent variable at level

1 holds if, for any value x and t < u

P (Xsr+ ≥ x|Θsr = t) ≤ P (Xsr+ ≥ x|Θsr = u). (13)

(SOM-2) Stochastic ordering of the manifest score by the latent variable at level

2 holds if, for any value x and t < u

P (Xs+ ≥ x|Γs = t) ≤ P (Xs+ ≥ x|Γs = u). (14)

Definition 7. Stochastic ordering of the latent variable by the manifest score (SOL;

Hemker et al., 1997).

(SOL-1) Stochastic ordering of the latent variable by the manifest score at level

1 holds if, for any value t and a < b,

P (Θsr > t|Xsr+ = a) ≤ P (Θsr > t|Xsr+ = b). (15)
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(SOL-2) Stochastic ordering of the latent variable by the manifest score at level

2 holds if, for any value t and a < b,

P (Γs > t|Xs+ = a) ≤ P (Γs > t|Xs+ = b). (16)

Definition 8. Weak SOL (WSOL; Van der Ark & Bergsma, 2010).

(WSOL-1) Weak SOL at level 1 holds if, for any t and a

P (Θsr > t|Xsr+ < a) ≤ P (Θsr > t|Xsr+ ≥ a). (17)

(WSOL-2) Weak SOL at level 2 holds if, for any t and a

P (Γs > t|Xs+ < a) ≤ P (Γs > t|Xs+ ≥ a). (18)

In general, ordering property MLR implies SOM, SOL, and WSOL, and SOL

implies WSOL (Hemker et al., 1997; Lehmann, 1986, p. 85; Van der Ark & Bergsma,

2010). Hence, ordering property MLR-1 implies SOM-1, SOL-1, and WSOL-1,

whereas ordering property MLR-2 implies SOM-2, SOL-2, and WSOL-2. The

MLR, SOM, SOL, and WSOL results are valid for any monotone nondecreasing

item summary within respondents (e.g., all-correct score, rest-scores, subscores;

Rosenbaum, 1984).

For two-level test data, it is unknown whether MLR, SOM, SOL, or WSOL are

implied by the two-level nonparametric IRT models. Theorem 3 gives the result for

the strongest ordering property (MLR) for the least restrictive models (MHM-1 and

MHM-2) and generalizes to weaker ordering properties and more restrictive models.

Theorem 3. .

(a) For dichotomous item scores, the MHM-1 implies MLR-1.

(b) For dichotomous item scores, for R ≥ I, the MHM-2 implies MLR-2.

MLR is symmetric in its argument, so the statement Xsr+ has MLR in Θsr

means that Θsr also has MLR in Xsr+. Theorem 3 implies that for dichotomous

items, under the MHM-1 Xsr+ is stochastically ordered by Θsr (SOM-1) and Θsr

is stochastically ordered by Xsr+ (SOL-1). It may be noted that Theorem 3(a)

is very similar to the result obtained by Grayson (1988) who proved for single-

level dichotomous item scores that the MHM implies MLR. Under the MHM-2, for

R ≥ I, group-level item score Xs+ is stochastically ordered by Γs (SOM-2) and Γs

is stochastically ordered by Xs+ (SOL-2). Note that for R < I, MLR-2 is implied

for the sum score of any random subset of items of size I∗, for which I∗ ≤ R.

Because the DMM-1 is a special case of the MHM-1 (see Figure 2), Theorem 3(a)
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also applies to the DMM-1. Similarly, the MHM-1, the DMM-1, and the DMM-2

are special cases of the MHM-2 (see Figure 2), Theorem 3(b) applies to these models

as well.

For polytomous items, the single-level MHM and DMM generally do not imply

MLR and SOL (see Hemker et al., 2001, for counter examples) but these models do

imply SOM (Hemker et al., 1996, 1997) and weak SOL (Van der Ark & Bergsma,

2010). Theorem 4 and 5 show that these results generalize to two-level models.

Theorem 4. .

(a) The MHM-1 implies SOM-1.

(b) The MHM-2 implies SOM-2.

Theorem 4 implies that under the MHM-1 Xsr+ is stochastically ordered by

Θsr (SOM-1) and under the MHM-2, Xs+ is stochastically ordered by Γs (SOM-2).

Because the DMM-1 is a special case of the MHM-1, it also implies SOM-1. Also,

because the MHM-1, the DMM-1, and the DMM-2 are special cases of MHM-2,

these models imply SOM-2.

Theorem 5. .

(a) The MHM-1 implies WSOL-1.

(b) The MHM-2 implies WSOL-2.

Let 1(Xsr+ ≥ k) denote the dichotomized respondent-level sum score that takes

on value 1 if Xsr+ ≥ k, and 0 otherwise, and let 1(Xs+ ≥ k) denote the dichotomized

group-level sum score that takes on value 1 if Xs+ ≥ k, and 0 otherwise. Then,

Theorem 5 implies that under the MHM-1, Θsr is stochastically ordered by 1(Xsr+ ≥
k) (WSOL-1), and that under the MHM-2, Γs is stochastically ordered by 1(Xs+ ≥
k) (WSOL-2). Because DMM-1 is a special case of MHM-1, this model also implies

WSOL-1. Also, because the MHM-1, the DMM-1, and the DMM-2 are special cases

of the MHM-2, these models imply WSOL-2.

4 Observable Properties of Two-Level Nonparametric

IRT Models

We define observable properties CA, MM, and MIIO for two-level IRT models. For

single-level IRT models, rest score Xr(i) was used in MM, and rest score Xr(ij) was

used in NNIIC and in MIIO. These rest scores are proxies for the latent variable
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that must be independent of the variables under investigation. Because of the

independence requirement, for two-level IRT models, these rest scores become more

involved. Table 2 provides an overview of these rest scores for classified by observable

property and level. The rest scores at Level 1 can be considered within-respondent

rest scores, the rest scores at Level 2 can be considered between-level rest scores.

Table 2:

Overview of rest scores used in observable properties in single-level and two-level

IRT models.

Observable Single-Level IRT Two-Level IRT

Property Level 1 Level 2

MM Xr(i) =
∑I

j ̸=iXrj Xsr(i) =
∑I

j ̸=iXsrj Xr(r,i) =
∑R

p̸=r

∑I
j ̸=i Xspj

R−1

NNIICa Xr(ij) =
∑I

k ̸=i,j Xrk Xsr(ij) =
∑I

k ̸=i,j Xsrk Xr(rp,ij) =
∑R

q ̸=r,p

∑I
k ̸=i,j Xsqk

R−2

MIIO Xr(ij) =
∑I

k ̸=i,j Xrk Xsr(ij) =
∑I

k ̸=i,j Xsrk Xr(r,ij) =
∑R

p ̸=r

∑I
k ̸=i,j Xspk

R−1

a: Pertains to the NNIIC given the rest score. The other two NNIIC inequalities

do not use a rest score.

Definition 9 defines CA for two-level IRT models. First, partition Xsr into two

mutually exclusive and exhaustive sets Ysr and Zsr. For example, Ysr may contain

Xsr1 and Xsr2 and Zsr the remaining item scores. Second, partition the response

vectors of the R respondents in group s—Xs1, . . . ,XsR —which are collected inXs,

into three mutually exclusive and exhaustive sets: Ys1, Ys2, and Zs. For example,

Ys1 could contain just Xsr, Ys1 could contain just Xs2, and Zs could contain the

remaining response vectors from Xs. Note that all scores of the same respondent

are in the same set.

Definition 9. Conditional association (CA; Holland & Rosenbaum, 1986;

Rosenbaum, 1988).

(CA-1) Conditional association at level 1 holds if

Cov[g1(Ysr), g2(Ysr)|h(Zsr)] ≥ 0. (19)

(CA-2) Conditional association at level 2 holds if, for r ̸= p,

Cov[g1(Ysr), g2(Ysp)|h(Zs(rp))] ≥ 0. (20)

CA-1 is conditional association of the scores within respondents, whereas CA-

2 is conditional association of the scores between respondents in the same group

(see, also, Rosenbaum, 1988). As for CA, CA-1 and CA-2 are too comprehensive
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for a single test procedure. The testing procedure to identify locally dependent

item sets using NNIIC (Straat et al., 2016) can be readily generalized to two-level

models: For Level 1, the three inequalities in NNIIC generalize to Cov(Xsri, Xsrj) ≥
0, Cov(Xsri, Xsrj|Xsrk) ≥ 0, and Cov(Xsri, Xsrj|Xsr(ij)) ≥ 0. For Level 2, let q,

q, and r index three different respondents. The three inequalities generalize to

Cov(Xsri, Xspj) ≥ 0, Cov(Xsri, Xspj|Xsqk) ≥ 0, and Cov(Xsri, Xspj|Xs(rp,ij)) ≥ 0.

Rest scores Xsr(ij) and Xs(rp,ij) have been defined in Table 2.

Definition 10 defines MM for two-level IRT models. The rest scores used in

Definition 10 have been defined in Table 2

Definition 10. Manifest monotonicity (MM; Junker, 1993; Sijtsma & Hemker,

2000).

(MM-1) Manifest monotonicity at level 1 holds if the within-respondent item-rest

regression E(Xsri|Xsr(i)) is nondecreasing in Xsr(i).

(MM-2) Manifest monotonicity at level 2 holds if the between-respondent item-

rest regression E(Xsri|Xs(r,i)) is nondecreasing in Xs(r,i).

Definition 11 defines MM for two-level IRT models. The rest scores used in

Definition 11 have been defined in Table 2

Definition 11. Manifest invariant item ordering (MIIO; Ligtvoet et al., 2010).

(MIIO-1) Manifest invariant item ordering at level 1 holds if, for E(Xsri) <

E(Xsrj), E(Xsri|Xsr(ij) = y) ≤ E(Xsrj|Xsr(ij) = y) for all y and all

i < j.

(MIIO-2) Manifest invariant item ordering at level 2 holds if, for E(Xsri) <

E(Xsrj), E(Xsri|Xs(r,ij) = y) ≤ E(Xsrj|Xs(r,ij) = y) for all y and all

i < j.

In Theorem 7, 6, and 8 we state which two-level models imply the observable

properties CA, MM, and MIIO, respectively.

Theorem 6. .

(a) The MHM-1 implies CA-1.

(b) The MHM-2 implies CA-2.

Because the DMM-1 is a special case of the MHM-1, it also implies CA-1. Also,

because the MHM-1, the DMM-1, and the DMM-2 are special cases of MHM-2,

these models imply CA-2.
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Theorem 7. .

(a) For dichotomous items, the MHM-1 implies MM-1.

(b) For dichotomous items, the MHM-2 implies MM-2.

Because the DMM-1 is a special case of the MHM-1, it also implies MM-1. Also,

because the MHM-1, the DMM-1, and the DMM-2 are special cases of MHM-2,

these models imply MM-2. As for single-level IRT models, MM does not necessarily

hold for polytomous items. However, MM-1 and MM-2 may still provide heuristic

evidence for or against the MHM-1 and/or the MHM-2 (cf., Sijtsma & Van der Ark,

2020, p. 151). Alternatively, if polytomous items are dichotomized, Theorem 7 holds

(Junker & Sijtsma, 2000).

Theorem 8. .

(a) The DMM-1 implies MIIO-1.

(b) The DMM-2 implies MIIO-2.

Because the DMM-1 is a special case of the DMM-2, it also implies CA-2.

5 Relations Between Models and Properties

In the previous sections we defined four models, eight ordering properties, and six

observable properties. In addition, we provided proofs for which model implied

which property, for the least restrictive model and strongest property possible.

Because more restrictive models are special cases of models with fewer restrictions,

they are defined with at least the same assumptions that imply the property (see

Figure 2). Hence, more restrictive models imply the same properties as the more

general models.

Table 3 provides an overview of the most important implications for each model.

The MHM-1 (Table 3, first column) implies (W)SOL-1 and (W)SOL-2. Hence, the

MHM-1 implies an ordinal respondent-level scale, on which respondents may be

stochastically ordered on Θsr using Xsr+, and an ordinal group-level scale, on which

groups may be stochastically ordered on Γs using Xs+. Methods for investigating

the model fit of the MHM-1 are MM-1, CA-1, MM-2, and CA-2. In addition to

the implications by the MHM-1, the DMM-1 (Table 3, second column) also implies

an ordinal item scale on which items may be stochastically ordered on their latent

difficulty using the mean scores on the items. Methods MIIO-1 and MIIO-2 can be
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Table 3:

Implied Properties of the Two-Level Nonparametric IRT Models.

Ordering Property Model

MHM-1 DMM-1 MHM-2 DMM-2

MLR-1 D D

SOL-1 D D

SOM-1 A A

WSOL-1 A A

MLR-2 D D D D

SOL-2 D D D D

SOM-2 A A A A

WSOL-2 A A A A

Observable Property Model

MHM-1 DMM-1 MHM-2 DMM-2

MM-1 D D

CA-1 A A

MIIO-1 A

MM-2 D D D D

CA-2 A A A A

MIIO-2 A A

Note. A = property is implied for dichotomous and polytomous items, D =

property is implied for dichotomous or dichotomized items only.

used for investigating model fit of the DMM-1 in addition to the methods of the

MHM-1.

The MHM-2 (Table 3, third column) implies (W)SOL-2. Hence, the MHM-2

implies an ordinal group-level scale on which groups may be stochastically ordered on

Γs using Xs+. Methods for investigating the model fit of the MHM-2 are MM-2 and

CA-2. In addition to the implications by the MHM-2, the DMM-2 (Table 3, fourth

column) also implies an ordinal item scale on which items may be stochastically

ordered on their latent difficulty using the mean scores on the items. Methods MIIO-

1 and MIIO-2 can be used for investigating model fit of the DMM-2 in addition to

the methods of the MHM-2.

The two-level nonparametric IRT models are defined on either or both the

respondent level and the group level. Depending on the interest of the researcher,

one or both levels are relevant for scaling. If the goal is to scale the respondents, it is
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sufficient to mainly focus on checking the respondent-level assumptions of the MHM-

1 or DMM-1. If the goal is to only scale the groups, as is the case in multi-rater data,

the group-level assumptions are of key interest. For example, if a group-level IRF is

flat, an item does not discriminate between low and high values of Γs. Such an item

does not contribute to accurate measurement on the group level. In addition, the

respondent-level assumptions are informative for investigating, for example, whether

the respondents may also be ordered using their sum score, or how the results relate

to each other across levels. Therefore, even though investigating the MHM-2 or

DMM-2 is sufficient to determine model fit at the group level, investigating the

MHM-1 or the DMM-1 by checking assumptions on both level 1 and level 2 is

suggested. If model violations occur at level 1, it is still possible that there are no

violations at level 2, and the MHM-2 or the DMM-2 fit the data.

6 Discussion

The main contribution of this paper is the establishment of ordering properties

and observable properties for two-level nonparametric IRT models. Ordering

properties MLR-1, MLR-2, SOL-1.SOL-2, weak SOL-1, weak-SOL-2 SOM-1, and

SOM-2 justify ordinal measurement using two-level nonparametric IRT models,

in a way that is similar to ordinal measurement in the more popular single-level

nonparametric IRT models. In addition, the observable properties MM-1, MM-

2, CA-1, CA-2, MIIO-1, and MIIO-2 allow researchers to investigate the fit of

the two-level nonparametric IRT models”. Combined, these newly established

ordering properties and observable properties enables the practical use of the two-

level measurement models

Building on previous work by Snijders (2001), we introduced four models for

two-level test data. For level 1, we introduced the MHM-1, which allows ordering

nested respondents on latent variable Θsr using manifest variable Xsr+, and the

DMM-1, which allows ordering nested respondents and items on Θsr using Xsr+

and E(Xsri), respectively. For level 2, we introduced the MHM-2, which allows

ordering groups on latent variable Γs using manifest variable Xs+, and the DMM-2,

which allows ordering groups and items on Γs using Xs+ and E(Xsi), respectively.

The hierarchical relations among the four models shows that the DMM-1 implies all

other models and that the MHM-2 is the most general model (see Figure 2).

In addition, we derived observable data properties implied by the models,

which can be used to investigate the model fit for a given data set. Specifically,

we generalized the properties manifest monotonicity, conditional association, and
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manifest invariant item ordering for the respondent level and the group level.

Theorem 7(b) showed the perhaps surprising result that, for a test consisting

of dichotomous items, even though group-level item scores are not dichotomous

(because they combine the item scores across respondents), still the strong results

for dichotomous nonparametric IRT models hold. In deriving level-2 properties

from level-1 properties, assuming the individual respondent-variables ∆sr are i.i.d.

proved to be a key ingredient. Assuming i.i.d. in test data is usually based on

the sampling design or data collection conditions in relation to the latent variable.

However, finding support for the i.i.d. assumption based on observable properties

on the group level may be a valuable topic for future research.

The properties derived in this paper apply at the population level. Koopman

et al. (2023) suggested statistical tests for MO-1, MO-2, IIO-1, and IIO-2 using

observable properties MM-1, MM-2, MIIO-1, and MIIO-2, respectively. Using

simulated data, these authors found that the tests for MO-1, IIO-1 and IIO-2

had satisfactory Type-1 error rates and power, whereas the tests for MO-2 had

satisfactory Type-1 error-rates but insufficient power (see also, Koopman, 2023).

Note that both procedures deviated slightly from the results in this paper, because

they used level-2 item scores rather than the between-respondent item scores that

were used in the MM-2 and MIIO-2 definitions in this paper. Perhaps these latter

item scores increases the power of the significance test of MO-2.

Note that Molenaar (1997) originally defined the DMM non-intersecting item-

step response functions P (Xi ≥ x|Θ) rather than an IRT model having non-

intersecting item-response functions. As investigating properties of items can

be considered more relevant than investigating properties of item-steps, the new

definition of the DMM in terms of non-intersecting IRFs can be considered more

useful. In addition, the property of IIO is defined in terms of conditional expected

item scores, and fits better to the new definition of the DMM than to the original

definition. If there is reason to require an invariant item-step order, an alternative

DMM-like model may be proposed including this assumption. However, one should

realize that an invariant item-step order not necessarily implies an invariant item

order (Sijtsma & Hemker, 1998).

In this paper we chose to expand on work by Snijders (2001), because of its strong

link to the one-level MHM and DMM. However, other generalizations of the MHM

and DMM are possible. Within the framework of this paper, one may also consider a

within-group model, in which the IRFs are assumed to be increasing only in δsr. Such

a model may be useful if the focus is on within-group comparison only rather than

comparison of all respondents, or if items contain a relative component in relation to
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a group aspect. Properties and applications of this model are yet unknown. Outside

the framework proposed in this paper, Koopman, Zijlstra, De Rooij, and Van der

Ark (2020) proposed the nonparametric hierarchical rater model, a nonparametric

version of the (parametric) hierarchical rater model (Patz et al., 2002). Possibly

other two-level parametric IRT models may be redefined as a nonparametric model,

such as the multiple raters model (Verhelst & Verstralen, 2001) or the rater bundle

model (Wilson & Hoskens, 2001). Alternatively, the nonparametric partial credit

model or nonparametric sequential model (Hemker et al., 1997, 2001, respectively)

may be generalized to a two-level framework.

The presented models in this paper are unidimensional models. Hence, for

MHM-1 and DMM-1, it is assumed that respondents across groups may be located

on the same latent variable. This is quite a strict assumption and whether this

is sensible should be investigated, for example by analysis on differential item

functioning (Holland & Wainer, 1993). Known methods within nonparametric IRT

are comparing scales and scale properties across groups (Sijtsma & Van der Ark,

2017; Van der Ark et al., 2008) and performing an IIO analysis (Sijtsma & Junker,

1996). Two-level IRT modeling may benefit from multidimensional generalizations

for developing scales that explicitly separate a respondent and group dimension.

How these alternative models hierarchically relate to the models presented in this

paper, and what properties they imply, is a topic for further investigation.

The developments presented in this paper are part of a larger project to make

all elements of Mokken scale analysis available for two-level test data (Koopman,

Zijlstra, & Van der Ark, 2020; Koopman et al., 2022). Next steps in development

should be aimed at developing group-level item selection procedures and at allowing

more complex research designs, such as a cross nested design in which respondents

score multiple groups.
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Appendix

Lemma A1. UN-1 implies UN-2.

Proof. Equation 4 defines Θsr = Γs +∆sr, which implies Γs = Θsr −∆sr. However,

as Γs does not depend on r, Γs = E(Θsr −∆sr) = E(Θsr)− E(∆sr), where E(Θsr)

denotes the expectation of Θsr over the respondents in randomly selected s. Because

E(∆sr) = 0, it follows that Γs = E(Θsr) within group s. If Θsr is unidimensional,

its expectation E(Θsr) is also unidimensional. Variable Θsr is unidimensional by

UN-1; hence, variable Γs is also unidimensional.

Lemma A2. MO-1 implies MO-2.

Proof. Let P (∆sr) denote the probability density function of the distribution of ∆sr.

By H, the group-level item-step response function is,

P (Xsri ≥ x|Γs) = E[P (Xsri ≥ x|Θsr)|Γs] (Equation 7)

=
∫
P (Xsri ≥ x|Θsr)P (∆sr|Γs)d∆sr

(A1)

As ∆sr and Γs are independent by B, P (∆sr|Γs) = P (∆sr), and the last term of

Equation A1 reduces to ∫
P (Xsri ≥ x|Θsr)P (∆sr)d∆sr (A2)
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By MO-1, P (Xsri ≥ x|Θsr = θsr) is nondecreasing in θsr. Hence, Equation A1 is

nondecreasing in γs, which equals the definition of MO-2.

Lemma A3. IIO-1 implies IIO-2.

Proof. By IIO-1

E(Xsri|Θsr = θsr) ≤ E(Xsrj|Θsr = θsr) for all θsr

⇔ Ei(Θsr) ≤ Ej(Θsr)

⇔
∫
Ei(Θsr)P (∆sr|Γs)d∆sr ≤

∫
Ej(Θsr)P (∆sr|Γs)d∆sr

⇔ E[Ei(Θsr)|Γs] ≤ E[Ej(Θsr)|Γs]

⇔ Ei(Γs) ≤ Ej(Γs) (by H, Eq. 8)

⇔ E(Xsri|Γs = γs) ≤ E(Xsrj|Γs = γs) for all γs

(A3)

The final result in Equation A3 equals the definition of IIO-2.

Lemma A4. MHM-1 implies that E(g(Xsr)|Θsr = θsr) is nondecreasing in θsr for

any bounded, nondecreasing function g(·).

Proof. By LI-1, scores Xsri within Xsr are independent given Θsr. By MO-1, Xsri

is stochastically ordered in Θsr; that is, for t < u, P (Xsri ≥ x|Θsr = t) ≤ P (Xsri ≥
x|Θsr = u) for all i and all x. For a set of independent variables the stochastic

ordering is preserved under convolutions, for any bounded, nondecreasing function

g(·) (Shaked and Shanthikumar e.g., 2007, Theorem 1.A.3(b); see also Ahmed et al.

1981, Lemma 3.3; Holland and Rosenbaum 1986, Lemma 2). Hence

E[g(Xsr)|Θsr = t] ≤ E[g(Xsr)|Θsr = u]. (A4)

Lemma A5. MHM-2 implies E(g(Xs)|Γs = γs) is nondecreasing in γs for any

bounded, nondecreasing function g(·).

Proof. Assumptions UN-2, LI-2, and MO-2 are equivalent to Rosenbaum’s (1988)

assumptions (1), (6), and (7), respectively, which collectively define the item-bundel

model. In his Lemma 1, Rosenbaum showed that for any bounded, nondecreasing

function g(·) for which UN-2, LI-2, and MO-2 holds, E(g(Xs)|Γs = γs) is

nondecreasing in γs (see, also, Kamae et al., 1977, Proposition 1).

Proof of Theorem 1. (B implies LI-1 and LI-2)

Proof. The independence of the Γs, ∆sr, and εsr by B implies that the εsr are

independent given Γs+∆sr = Θsr, and that the (∆sr, εsr) are independent given Γs.
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This, combined with Xsri = fi(Γs +∆sr, εsr), implies LI-1 and LI-2 in the following

way. For each (s, r), given θsr, the Xsri are a function of εsri. Because for each (s, r),

the εsri are independent given θsr, the Xsri are independent given θsr, and LI-1 is

implied. Furthermore, the ∆sr, εsri are independent given Γs. Because Xsri are a

function of (Γs + ∆sr, εsri), given Γs the Xsri are a function of (∆sr, εsri). Hence,

Xsr are independent given Γs, and LI-2 is implied.

Proof of Theorem 2. (Under B and H, UN-1, MO-1, and IIO-1 imply UN-2,

MO-2, and IIO-2, respectively.)

Proof. First, we consider the extreme case of no respondent variance: If var(∆sr) =

0, then ∆sr = 0 and Θsr = Γs for all r and all s. As a result, P (Xsri = x|Θsr) =

P (Xsri = x|Γs), P (Xsri ≥ x|Θsr) = P (Xsri ≥ x|Γs), and E(Xsri|Θsr = θsr) =

E(Xsri|Γs = γs). Hence, UN-1 = UN-2 (Definiton 1), MO-1 = MO-2 (Definition 3),

and IIO-1 = IIO-2 (Definition 4). Second, for var(∆sr) > 0, Lemma A1 proves that

UN-1 implies UN-2, Lemma A2 proves that MO-1 implies MO-2, and Lemma A3

proves that IIO-1 implies IIO-2.

Proof of Theorem 3. (For dichotomous item scores (a) the MHM-1 implies MLR-

1 and (b) for Rs ≥ I, the MHM-2 implies MLR-2.)

Proof. .

(a) The assumptions in MHM-1 are identical to the assumptions used by Grayson

(1988, Theorem 2) and Huynh (1994) to establish MLR of the sum score in Θsr,

hence their proof can be applied.

(b) For clarity, we give the proof for R = I, but it can straightforwardly be

generalized for R > I. Let D = R! be the number of ways that respondents

1, . . . , R can be ordered, and let d (d = 1, . . . , D) be an index of possible

respondent orderings. Furthermore, let dr (r = 1, . . . , R) denote the the position

of respondent r in respondent-ordering d. For R > I, the same method can be

applied, but each permutation contains only I respondents, hence the number

of permutations D = R!
(R−I)!

.

Let Xd
s+ = Xsd11 +Xsd22 + ... +Xsdrr + ... +XsdRR denote the group-level

sum score in which each item score is taken from a different respondent, with

realization xd
s+. Let Xd

s = (Xd
s1, X

d
s2, . . . , X

d
sI) denote the vector of item scores

from the respondent order from the dth permutation, with realization xd
s.
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(b) For a given permutation *, let
∑

{x∗
s |x∗

s
′1=x∗

s+} denote the sum over all possible

patterns of I item scores that sum to x∗
s+. Let Pi(γs) = P (Xsri = 1|Γs = γs)

and let Qi(γs) = 1 − Pi(γs). By LI-2, for r ̸= p, item scores Xsri and Xspj are

independent conditional on γs. Hence, for dichotomous items, the probability

of obtaining group-level sum score x∗
s+ is

P (X∗
s+ = x∗

s+|Γs = γs) =
∑

{x∗
s |x∗

s
′1=x∗

s+}
∏I

i=1 Pi(γs)
x∗
siQi(γs)

(1−x∗
si)

=
∑

{x∗
s |x∗

s
′1=x∗

s+}
∏I

i=1Qi(γs)[
Pi(γs)
Qi(γs)

]x
∗
si .

(A5)

(b) Because
∏I

i=1 Qi(γs) is constant across each item-score pattern x, Equation A5

is identical to

P (X∗
s+ = x∗

s+|Γs = γs) =
∏I

i=1Qi(γs)
∑

{x∗
s |x∗

s
′1=x∗

s+}
∏I

i=1

[ Pi(γs)
Qi(γs)

]x∗
si . (A6)

(b) The form of the right-hand side in Equation A6 is equal to the form used by

Grayson (1988, Theorem 2) and Huynh (1994). Hence, their methods can be

applied to establish MLR of the sum score X∗
s+ in γs. Because E(X∗

si|Γs = γs) =

E(Xsri|Γs = γs),

E(X∗
s+|Γs = γs) =

∑I
i=1 E(X∗

si|Γs = γs)

=
∑I

i=1 E(Xsri|Γs = γs)

= E(Xs+|Γs = γs),

(A7)

it follows that MLR also holds for Xs+ in Γs.

(b)

.

Proof of Theorem 4. ((a) The MHM-1 implies SOM-1 and (b) the MHM-2 implies

SOM-2.)

Proof. .

(a) SOM-1 follows from the general result presented in Lemma A4. First, note that

the respondent-level sum score Xsr+ is a nondecreasing function of Xsr (e.g.,

Rosenbaum, 1984). Hence, by Lemma A4, Xsr+ is nondecreasing in θsr, which

is the definition of SOM-1.

(b) SOM-2 follows from the general result presented in Lemma A5. First, note that

the group-level sum score Xs+ is a nondecreasing function of Xs. Hence, by

Lemma A5, Xs+ is nondecreasing in γs, which is the definition of SOM-2.

.
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Proof of Theorem 5. ((a) The MHM-1 implies WSOL-1 and (b) the MHM-2

implies WSOL-2.)

Proof. .

(a) MHM-1 implies SOM-1 of Xsr+ by Θsr (Theorem 4(a)). Van der Ark and

Bergsma (2010, Theorem) showed that SOM implies WSOL, hence WSOL of

Θsr by Xsr+ is implied.

(b) Similar to the proof in (a), the MHM-2 implies SOM-2 of Xs+ by Γs, hence,

WSOL of Γs by Xs+ is implied.
.

Proof of Theorem 6. (For dichotomous items (a) the MHM-1 implies MM-1 and

(b) the MHM-2 implies MM-2.)

Proof. .

(a) The proof is analogous to the proof in Proposition 4.1a Junker (1993). By the

law of total expectation (e.g., Rice, 2006, p 149) and LI-1

E(Xsri|Xsr(i)) = E[E(Xsri|Xsr(i),Θsr)|Xsr(i)]

= E[Ei(Θsr)|Xsr(i)].
(A8)

For dichotomous items, under the MHM-1, by Theorem 3(a), Θsr is

nondecreasing in Xsr(i) (SOL). Because Θsr is stochastically ordered in Xsr(i),

so is any nondecreasing function of Θsr, such as Ei(Θsr) (Equation 6; Shaked &

Shanthikumar, 2007, Theorem 1.A.3.(a)), which completes the proof.

(b) This proof is parallel to the proof in (a), which holds when substituting Θsr by

Γs, Xsr(i) by Xs(r,i), Ei(·) by E(·), LI-1 by LI-2, and MHM-1 by MHM-2.

.

Proof of Theorem 7. ((a) The MHM-1 implies CA-1 and (b) the MHM-2 implies

CA-2.)

Proof. .

(a) The proof is similar to the proof of Theorem 1 by (Rosenbaum, 1984; see also

Holland & Rosenbaum, 1986, Theorem 6). If CA-1 holds, the conditional

covariance Cov[g1(Ysr), g2(Ysr)|h(Zsr)] ≥ 0 (Definition 9). Using standard

algebra, it can be shown that this statement is equivalent to

E[g1(Ysr)g2(Ysr)|h(Zsr)] ≥ E[g1(Ysr)|h(Zsr)]E[g2(Ysr)|h(Zsr)] (A9)

(e.g., Rice, 2006, p. 138). Hence, we prove that under the MHM-1 Equation A9

holds. By the law of total expectation,
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(b)
E[g1(Ysr)g2(Ysr)|h(Zsr)] = E{E[g1(Ysr)g2(Ysr)|h(Z), θ]|h(Zsr)} (A10)

(Rice, 2006, p. 138). By LI-1, Ysr and Zsr are independent given θsr. Hence,

E[g1(Ysr)g2(Ysr)|h(Zsr)] = E{E[g1(Ysr)g2(Ysr)|θsr]|h(Zsr)}. (A11)

(b) Because, by LI-1, the values inYsr are independent given θsr, they are associated

(Esary et al., 1967, Theorem 2.1). Therefore,

E[g1(Ysr)g2(Ysr)|h(Zsr)] ≥ E{E[g1(Ysr)|θsr]E[g2(Ysr)|θsr]|h(Zsr)}. (A12)

By Lemma A4, E(g1(Ysr|θsr) and E(g2(Ysr|θsr) are nondecreasing in θsr, hence,

they are associated (Esary et al., 1967, P4). In addition, by UN-1, θsr is a scalar

and therefore associated (Esary et al., 1967, P3). Hence, it follows that

E[g1(Ysr)g2(Ysr)|h(Zsr)] ≥ E{E[g1(Ysr)|θsr]|h(Zsr)}E{E[g2(Ysr)|θsr]|h(Zsr)}.
(A13)

By the law of total expectation, the statement in Equation A13 is equivalent to

E[g1(Ysr)g2(Ysr)|h(Zsr)] ≥ E[g1(Ysr)|h(Zsr)]E[g2(Ysr)|h(Zsr)], (A14)

which completes the proof.

(b) The proof is similar to the proof in (a). Throughout the proof, g1(Ysr) is kept

the same, but g2(Ysr) is replaced by g2(Ysp), with r ̸= p. Hence, g1 and g2 apply

to different respondents within the same group. Furthermore, Zsr is replaced

by Zs(rp), hence to the vector that contains all item scores in group s, except the

scores of respondents r and p. Finally, θsr is replaced by γs, LI-1 by LI-2, and

Lemma A4 by Lemma A5, which gives the proof for (b) (see, also, Rosenbaum,

1988).

(b) .

Proof of Theorem 8. ((a) The DMM-1 implies MIIO-1 and (b) the DMM-2

implies MIIO-2.)

Proof. .

(a) This proof is similar to the proof of the Corollary by Ligtvoet et al. (2011). By

IIO-1, E(Xsri|Θsr = θsr) ≤ E(Xsrj|Θsr = θsr). By Equation 5, E(Xsri|Θsr =

θsr) ≤ E(Xsrj|Θsr = θsr) equals
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(b) ∑m
x=1 P (Xsri ≥ x|Θsr = θsr) ≤

∑m
x=1 P (Xsrj ≥ x|Θsr = θsr)

⇔
∑m

x=1 P (Xsri ≥ x|Θsr = θsr)P (Xsr(ij) = y|Θsr = θsr) ≤∑m
x=1 P (Xsrj ≥ x|Θsr = θsr)P (Xsr(ij) = y|Θsr = θsr).

(A15)

By LI-1, Xsri and Xsr(ij) are independent given θsr, and their joint probability

equals the product of their marginal conditional probabilities (e.g., Rice, 2006,

p. 84). Hence, Equation A15 equals

∑m
x=1 P (Xsri ≥ x,Xsr(ij) = y|Θsr = θsr) ≤

∑m
x=1 P (Xsrj ≥ x,Xsr(ij) = y|Θsr = θsr).

(A16)

(b) Let F (Θsr) denote the cumulative distribution function of Θsr. Integrating both

sides of Equation A16 over Θsr yields∫ ∑m
x=0 P (Xsri ≥ x,Xsr(ij) = y|Θsr = θsr)dF (Θsr) ≤∫ ∑m

x=0 P (Xsri ≥ x,Xsr(ij) = y|Θsr = θsr)dF (Θsr)

⇔
∑m

x=1 P (Xsri ≥ x,Xsr(ij) = y) ≤
∑m

x=1 P (Xsrj ≥ x,Xsr(ij) = y)

⇔
∑m

x=1 P (Xsri ≥ x|Xsr(ij) = y) ≤
∑m

x=1 P (Xsrj ≥ x|Xsr(ij) = y)

⇔ E(Xsri|Xsr(ij)) ≤ E(Xsrj|Xsr(ij)),

(A17)

for all y and all i < j, completing the proof.

(b) The proof is parallel to the proof in (a). Replacing Θsr by Γs, θsr by γs, IIO-1 by

IIO-2, LI-1 by LI-2, Xsr(ij) by Xs(r,ij), proofs that the MHM-2 implies MIIO-2.

.

34

https://doi.org/10.1017/psy.2024.9 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.9



