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Direct numerical simulations and linear stability analysis are carried out to study mixed
convection in a horizontal duct with constant-rate heating applied at the bottom and
an imposed transverse horizontal magnetic field. A two-dimensional approximation
corresponding to the asymptotic limit of a very strong magnetic field effect is validated
and applied, together with full three-dimensional analysis, to investigate the flow’s
behaviour in the previously unexplored range of control parameters corresponding to
typical conditions of a liquid metal blanket of a nuclear fusion reactor (Hartmann
numbers up to 104 and Grashof numbers up to 1010). It is found that the instability to
quasi-two-dimensional rolls parallel to the magnetic field discovered at smaller Hartmann
and Grashof numbers in earlier studies also occurs in this parameter range. Transport
of the rolls by the mean flow leads to magnetoconvective temperature fluctuations
of exceptionally high amplitudes. It is also demonstrated that quasi-two-dimensional
structure of flows at very high Hartmann numbers does not guarantee accuracy of the
classical two-dimensional approximation. The accuracy deteriorates at the highest Grashof
numbers considered in the study.

Key words: magneto convection, high-Hartmann-number flows

1. Introduction

Combined convection and magnetohydrodynamic (MHD) effects dramatically change
the nature of flows of electrically conducting fluids. The combination appears in many
technological applications such as metallurgy, liquid metal batteries and growth of
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semiconductor crystals (Ozoe 2005; Davidson 2016). Another prominent example is the
liquid metal blankets of nuclear fusion reactors where an electrically conducting fluid (e.g.
a PbLi alloy) serves as a coolant, radiation shield and tritium breeder (Abdou et al. 2015).
A distinctive feature of this system is that the convection and magnetic filed effects are
both exceptionally strong.

Many aspects of the transformation of flows of electrically conducting fluid under
the influence of a strong magnetic field, such as suppression of turbulent fluctuations,
anisotropic or quasi-two-dimensional (quasi-2-D) states with zero or weak velocity
gradients along the field lines, formation of MHD boundary layers and delay of
laminar-turbulent transition, are relatively well understood (see, e.g. Branover 1978;
Sommeria & Moreau 1982; Zikanov et al. 2014; Davidson 2016). This paper addresses
a recently discovered and still poorly understood phenomenon – the high amplitude
fluctuations in flows in ducts and pipes (see, e.g. Genin et al. 2011; Vetcha et al. 2013;
Zikanov, Listratov & Sviridov 2013; Belyaev et al. 2021). The term magneto-convective
fluctuations (MCFs) proposed for the phenomenon by Belyaev et al. (2021) will be used
in this paper. As discussed in detail in the review of Zikanov et al. (2021) and references
therein, the fluctuations have been detected in experimental and computational studies of
a large variety of systems: pipes and ducts of various orientations with respect to gravity,
various heating arrangements, and various configurations of the magnetic field.

The fluctuations were called anomalous in some earlier works, e.g. by Zikanov et al.
(2013) and Zhang & Zikanov (2014). This term now appears imprecise and somewhat
misleading since it has been understood that the fluctuations are rather common. They
occur in a wide variety of magnetoconvection flows. It must also be mentioned that, in a
broader context, the magnetoconvective fluctuations are a part of the general phenomenon
of large-amplitude fluctuations commonly found in flows, where turbulence is suppressed
by a strong magnetic field and flow fields are strongly anisotropic or quasi-two dimensional
(see, e.g. Smolentsev 2021; Zikanov et al. 2021, for discussion and references).

The nature of the magnetoconvective fluctuations can be briefly described as follows.
They appear in the conditions of a very strong magnetic field effect, i.e.in the range
of Hartmann numbers, where turbulence is fully suppressed by magnetic damping. In
experiments, the MCFs are manifested by oscillations of temperature with very high
amplitude (up to 50 K in some cases) and typical frequencies much lower than the
frequencies of turbulence-induced fluctuations. Specific properties of the MCFs vary
with the flow’s configuration and values of the control parameters (Zikanov et al. 2021).
The effect has potentially serious consequences for design and operation of liquid metal
blankets of future fusion reactors. Should the fluctuations appear in an actual blanket,
they may lead to strong and unsteady thermal stresses in the walls (see, e.g. Belyaev
et al. 2018) possibly under the condition of significantly reduced strength of the wall
material (Kolmakov et al. 2016). Due to their possibly very large amplitude, the stresses
will threaten the structural integrity of a fusion reactor system. Significant effects on heat
transfer, transport of tritium and wall corrosion are also anticipated. As we discuss later
in this section, it is yet impossible to say how realistic these expectations are, since no
experiments or computations at very high Ha and Gr typical for reactor conditions have
been conducted so far.

Flows in a rectangular duct with heating applied at the bottom and an imposed transverse
horizontal magnetic field (see figure 1) are considered in this paper. The configuration
is not found in currently developed specific designs of liquid metal blankets of fusion
reactors, although it may occur in future designs of an upper divertor and top blanket
modules (Kirillov & Muraviev 1997). It is also important as an archetypal system, in which
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Magnetoconvection in a horizontal duct flow
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Figure 1. Flow geometry and coordinate system. The arrows marked by letters g, B and q denote,
respectively, the orientations of the gravity acceleration, magnetic field and wall heating.

the MCFs were first identified (in Genin et al. 2011 and Zikanov et al. 2013, where they
were named anomalous fluctuations) and explained.

Similar systems for either ducts or round pipes have been studied experimentally (Genin
et al. 2011; Belyaev et al. 2015; Sahu et al. 2020) and numerically (Zikanov et al.
2013; Zhang & Zikanov 2014; Vo, Pothérat & Sheard 2017; Listratov et al. 2018). The
flow is controlled by four dimensionless parameters: the Reynolds, Prandtl, Grashof and
Hartmann numbers,

Re = Ud
ν

, Pr = ν

χ
, Gr = gβqd4

ν2κ
, Ha = Bd

√
σ

ρν
, (1.1a–d)

with the duct half-width d, the mean streamwise velocity U, the kinematic viscosity ν,
the temperature diffusivity χ , the acceleration due to gravity g, the coefficient of thermal
expansion β, the heat flux of constant rate q, the thermal conductivity κ , the electrical
conductivity σ and the mass density ρ. Rectangular duct geometry adds the aspect ratio
Γ = 2d/h as a parameter, where h is the height of the duct.

In the linear stability analysis of the Poiseulle–Rayleigh–Bénard duct flow, interesting
results were obtained with a transverse magnetic field performed by Vo et al. (2017).
Two-dimensional (2-D) approximation valid in the limit of strong magnetic field presented
later in this paper was used. One important result of Vo et al. (2017) is relevant to our
work even though different boundary conditions were used. It was demonstrated that the
convection instability occurs at moderate and high Grashof number (approximately above
106) at the Hartmann numbers (∼104) typical for reactor blanket conditions.

The presence of MCFs in a horizontal round pipe with a lower half of the wall heated
was detected in experiments (Genin et al. 2011; Belyaev et al. 2015) and explained in the
linear stability analysis and direct numerical simulations (DNS) by Zikanov et al. (2013).
Flows of mercury with Pr ≈ 0.022, Re up to 105, Gr up to 108 and Ha up to 500 were
investigated. It was shown that at a strong magnetic field the suppression of flow structures
having large gradients along the field lines resulted in the most unstable modes in the form
of convection rolls with axes aligned with the field. The instability led to development of
convection structures in the form of quasi-2-D rolls. Transport of the rolls by the mean
flow generated the MCFs.

The analysis was extended in the numerical simulations of Zhang & Zikanov (2014).
Flows in a horizontal duct of aspect ratio Γ = 1 with bottom heating and a transverse
magnetic field at Pr = 0.0321, Re = 5000, 50 ≤ Ha ≤ 800 and 105 ≤ Gr ≤ 109 were
investigated. The instability leading to the formation of quasi-2-D rolls similar to those
found in the pipe flow was detected at sufficiently high Gr and Ha.
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Investigations of Zhang & Zikanov (2014) conducted in the broader range of parameters
than for the pipe flow demonstrated existence of two distinct secondary flow regimes.
The realization of the regimes depended on the relative strength of the convection and
MHD effects. The low Gr type characterized by quasi-2-D distributions of velocity and
temperature dominated by spanwise rolls appeared at Gr below a certain Gr∗(Ha). At
higher Gr, stronger convection resulted in three-dimensional (3-D) flow states combining
the spanwise rolls with streamwise ones (the geometrically preferred convection structure
in pipes and ducts with bottom heating).

Flows of liquid metals in fusion reactor blankets and divertors are subject to very
strong effects of convection (Gr ∼ 1010−1012) and magnetic fields (Ha ∼ 104) (see, e.g.
Smolentsev, Moreau & Abdou 2008; Smolentsev et al. 2010). Such extreme parameters
present serious obstacles to analysis, because neither laboratory experiments nor 3-D
simulations of unsteady flow regimes in realistic blanket or divertor geometries can, at
this moment, achieve such values.

In an attempt to reach the typical blanket flow conditions, the data on two types of the
secondary flow regime in a horizontal duct were extrapolated to high Gr and Ha by Zhang
& Zikanov (2014). The extrapolation predicted the existence of MCFs at the typical blanket
parameters. It also predicted that the flow would likely be of the low Gr type at Gr ≤ 1010

and of the high Gr type at higher Gr. The experiments in the pipe flow (see the review of
recent results in Zikanov et al. 2021), on the contrary, indicate that MCFs may disappear
at high Ha, so the extrapolation can be wrong. The nature of the convection flow at the
parameters corresponding to ducts in blankets and divertors of an operating fusion reactor
remains unknown, setting up the motivation for the present study.

The focus of our investigation is on the magnetoconvection in the range of very high Gr
and Ha including the values typical for a reactor blanket and divertor. To the best of our
knowledge, this study is the first to analyse the MCF effect in this range. Linear stability
analysis and DNS of flows in a horizontal duct with Pr = 0.025, Re = 5000, 108 ≤ Gr ≤
1010 and 103 ≤ Ha ≤ 104 are performed. The study follows the work of Zhang & Zikanov
(2014) but differs by much larger values of Gr and Ha and the aspect ratio Γ = 3.5 selected
to match the new experimental facility (see, e.g. Belyaev et al. 2017), on which the same
configuration is to be explored at Ha � 103 and Gr � 108 in the near future. Another
essential difference between our work and the work by Zhang & Zikanov (2014) is that
we carry out an in-depth analysis of the accuracy of the 2-D approximation applied to
quasi-2-D flows at such high Ha.

2. Presentation of the problem

The flow of an incompressible, Newtonian, viscous, electrically conducting fluid (a
liquid metal) with constant physical properties is considered. The fluid moves through
a horizontal duct of aspect ratio Γ = 3.5 (see figure 1). A spatially uniform and
time-independent magnetic field B = Bey is imposed in the horizontal transverse direction.
All walls are perfectly electrically insulated. The top and side walls are perfectly thermally
insulated. The bottom wall is subject to uniform heating with the heat flux of constant rate
q. The no-slip boundary conditions for velocity are applied at the walls.

2.1. Physical model
The Boussinesq and quasi-static approximations are applied. The quasi-static
approximation is valid at small Reynolds and Prandtl numbers and usually utilized in
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Magnetoconvection in a horizontal duct flow

numerical and theoretical studies of MHD flows of liquid metals (Davidson 2016). The
approximation implies that the imposed magnetic field B is much stronger than the
perturbations of the magnetic field b induced by the electric currents caused by the fluid
motion. The induced magnetic field can be neglected in the expressions of the Lorentz
force and Ohm’s law. Furthermore, the induced field is assumed to adjust instantaneously
to changes of velocity field.

The governing equations are rendered non-dimensional using the duct half-width in
the magnetic field direction d as the length scale, mean streamwise velocity U as the
velocity scale, wall heating-based group qd/κ as the temperature scale, B as the scale of
the magnetic field strength and dUB as the scale of electric potential. The equations can
be written as

∂u
∂t

+ (u · ∇)u = −∇p − ∇p̂ − ∇p̃ + 1
Re

∇2u + F b + F L, (2.1)

∇ · u = 0, (2.2)

∂θ

∂t
+ u · ∇θ = 1

RePr
∇2θ − ux

dTm

d x
, (2.3)

where u is the velocity field. The decompositions of the temperature and pressure fields
commonly used in studies of mixed convection in ducts and pipes (see, e.g. Alboussière,
Garandet & Msoreau 1993; Lyubimova et al. 2009; Zikanov et al. 2013; Zhang & Zikanov
2014; Zikanov et al. 2021) are applied. The decompositions are convenient, since they
allow one to recast the problem in terms of the fluctuation fields, which are statistically
uniform in the streamwise direction and, thus, study the flow in a relatively short segment
of the channel with periodic inlet-exit conditions. The temperature field is written as a sum

T(x, t) = Tm(x) + θ(x, t) (2.4)

of fluctuations θ and the mean-mixed temperature

Tm(x) =

∫
A

uxT dA
∫

A
ux dA

= A−1
∫

A
uxT dA, (2.5)

where A = 2h/d is the cross-section area of the duct. One can also use the decomposition
into fluctuations and simple mean temperature T̄(x) = A−1 ∫

A T dA. Applying the energy
balance between the wall heating and the streamwise convection heat transfer, we find that
Tm(x) and T̄(x) are linear functions with the same derivative, i.e.

dTm

d x
= dT̄

d x
= Π

ARePr
= Γ

2RePr
, (2.6)

where Π = 2 is the perimeter of the heated portion of the wall.
The total pressure P is presented in (2.1) as

P = p̂(x) + p̃(x, z) + p(x, t), (2.7)

where p(x, t) is the field of pressure fluctuations statistically homogeneous in the
streamwise direction, and p̂ is a linear function of x corresponding to the spatially uniform
streamwise gradient dp̂/dx applied as a flow-driving mechanism. In the simulations
discussed in this paper, the gradient is adjusted at every time step to maintain constant
mean velocity.
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The second term of the decomposition becomes necessary in numerical models of mixed
convection in non-vertical channels with periodic inlet-exit conditions. The component

p̃(x, z) = dTm

d x
Gr
Re2 xz = Π

ARePr
Gr
Re2 xz (2.8)

arises due to the buoyancy force caused by the mean-mixed temperature Tm,

F b,m = GrRe−2ezTm, (2.9)

where ez is the unit vector opposite to the direction of gravity (see figure 1). The force
has a non-zero curl and, therefore, modifies the velocity field. Its action on the flow can
be described by introducing the pressure field p̃, such that its vertical gradient balances
F b,m. The pressure field is a 2-D function increasing with the streamwise coordinate
x and vertical coordinate z. Its z-dependent x-gradient, which appears in the respective
momentum equation, generates a flow in the positive x-direction in the lower part of
the channel and in the negative x-direction in the upper part. The result is a top–bottom
asymmetry of the streamwise velocity profile and of the associated convection heat flux,
which can dramatically change the structure of the flow at high Gr and Ha (see Zikanov
et al. 2013; Zhang & Zikanov 2014, 2017; Zikanov et al. 2021).

The buoyancy force in (2.1) is

F b = GrRe−2ezT. (2.10)

The Lorentz force is computed as

F L = Ha2Re−1j × ey, (2.11)

where ey is the unit vector along the imposed magnetic field (see figure 1). The electric
current j is determined by the Ohm’s law

j = −∇φ + (u × ey), (2.12)

where the electric potential φ is a solution of the Poisson equation expressing the
instantaneous electric neutrality of the fluid,

∇2φ = ∇ · (u × ey). (2.13)

The inlet-exit conditions are those of periodicity of the velocity u, temperature
fluctuations θ , pressure fluctuations p and potential φ.

2.2. Two-dimensional approximation
Flows with a very strong imposed magnetic field are considered, so the Hartmann number
and the Stuart number satisfy Ha � 1 and N ≡ Ha2/Re � 1, respectively. The flows are
anticipated to have quasi-2-D form with nearly zero gradients along the magnetic field
lines except in the thin Hartmann layers at the walls perpendicular to the field. The 2-D
approximation proposed by Sommeria & Moreau (1982) can be applied in this asymptotic
limit. The problem can be expressed in terms of the variables integrated wall-to-wall along
the direction of the magnetic field, leading to 2-D dynamics for y-averaged quantities.
The approximation has been verified and examined by Pothérat, Sommeria & Moreau
(2000, 2005), and utilized in numerical studies of liquid metal flows in rectangular ducts
(see, e.g. Pothérat 2007; Smolentsev, Vetcha & Moreau 2012; Vetcha et al. 2013; Vo et al.
2017; Zhang & Zikanov 2018).

931 A29-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.987


Magnetoconvection in a horizontal duct flow

The often applied abbreviation SM82 will be used for the model in the following. The
y-independent solutions obtained in the framework of the model will be referred to as 2-D
solutions, while the full solutions obtained numerically without resorting to the model will
be designated as 3-D solutions.

The SM82 model is derived for flows with Ha � 1 and N � 1, in domains with
electrically insulating walls and constant wall-to-wall distance in the field direction. It
utilizes the fact that the Lorentz force becomes nearly zero in the bulk region of quasi-2-D
flows in such geometries, and that the effect of the magnetic field on the flow is largely
reduced to thin Hartmann layers and can be accurately modelled by the linear friction term
in the momentum equation.

It must be noted that the original SM82 model was developed for isothermal flows.
Its extension to flows with heat transfer and temperature variations was, to our best
knowledge, first proposed by Smolentsev et al. (2008). As demonstrated in this and in
the following studies (see, e.g. Gelfgat & Molokov 2011; Vetcha et al. 2013; Zhang &
Zikanov 2018), the model can be extended to a 2-D approximation of temperature if the
imposed heat flux is perpendicular to the magnetic field.

The SM82 version of (2.1)–(2.3) is

∂u
∂t

+ (u · ∇)u = −∇p − ∇p̂ − ∇p̃ + 1
Re

∇2u − Ha
Re

u + Gr
Re2 T êz, (2.14)

∇ · u = 0, (2.15)

∂θ

∂t
+ u · ∇θ = 1

RePr
∇2θ − ux

dTm

d x
, (2.16)

where all the flow variables are now 2-D fields obtained by wall-to-wall averaging. The
term (Ha/Re)u represents the effect of friction in the Hartmann layers. The same notation
as in (2.1)–(2.3) is used. The boundary conditions on velocity and temperature on the
remaining two wall are the same as in the 3-D model.

2.3. Numerical method
The governing equations (2.1)–(2.3) and (2.14)–(2.16) are solved numerically using the
finite difference scheme introduced by Krasnov, Zikanov & Boeck (2011), and later
developed, tested and applied to high Ha flows and flows with thermal convection in
numerous works including those by Krasnov, Zikanov & Boeck (2012), Zhao & Zikanov
(2012), Zikanov et al. (2013), Zhang & Zikanov (2014) and Gelfgat & Zikanov (2018).
The spatial discretization is of the second order and nearly fully conservative with
regards to the mass, momentum, electric charge, kinetic energy and thermal energy
conservation principles (Ni et al. 2007; Krasnov et al. 2011). The computational grid is
clustered towards the walls according to the coordinate transformation in the horizontal
direction y = tanh(Ayη)/ tanh(Ay) and in the vertical direction z = tanh(Azξ)/ tanh(Az).
Here η and ξ are the transformed coordinates, in which the grid is uniform, and
Ay and Az are the coefficients determining the degrees of clustering. The time
discretization is implicit for the conduction and viscosity terms and based on the
Adams–Bashforth/backward-differentiation method of the second order and the standard
projection algorithm (see, e.g. Zikanov 2019). The nonlinear convection and body force
terms are treated explicitly. The elliptic equations for potential, pressure, temperature
and velocity components are solved using the Fourier decomposition in the streamwise
coordinate and the direct cyclic reduction solution of the 2-D equations for Fourier
components conducted on the transformed grid (see Krasnov et al. 2011).
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The algorithm is parallelized using the hybrid MPI-OpenMP approach. The MPI
memory distribution is along the y-coordinate in the physical space and along the
streamwise wavenumber in the Fourier space.

2.4. Approach to linear stability analysis
The base flow needs to be selected before conducting the linear stability analysis. We
note that an archetypal structure of a laminar flow with convection in a horizontal channel
heated from below is a superposition of the streamwise flow ux( y, z) and one or several
streamwise-uniform convection rolls (uy( y, z), uz( y, z)). At high Ha, the structure can be
modified by the magnetic field and replaced by a 3-D structure with the rolls aligned with
the magnetic field and, thus, x-dependent velocity and temperature at high Ha. Following
Zikanov et al. (2013) and Zhang & Zikanov (2014), we treat the problem as that of the
instability of the laminar steady-state streamwise-uniform base flow U( y, z), Θ( y, z),
P( y, z) to x-dependent perturbations.

The base flow is calculated by artificially imposing uniformity in the streamwise
direction, i.e.by applying x-averaging after every time step. In order to assure that a fully
developed state of the base flow is reached, each solution is computed for a sufficiently
long time. Long evolution, in some regimes up to 1000 time units, is typically required
in order to arrive at this state. No unsteady base flow solutions have been detected in the
studied range of parameters. The steady-state solutions are discussed in § 3.1.

The linear stability analysis is conducted using a modified version of the numerical
model described in § 2.3. We follow evolution of perturbations – solutions of the equations
linearized around the base flow U( y, z), Θ( y, z), P( y, z). Individual Fourier modes
determined by their streamwise wavelength λ are computed. This is practically achieved by
setting the length of the computational domain to λ and filtering out all the Fourier modes
except the zero mode corresponding to the base flow and the first mode corresponding to
the perturbations of wavelength λ. All simulations start with random noise distributions
of velocity and temperature.

The linear instability is identified by the exponential growth of the perturbations with
the growth rate determined as

γ = 1
2E′

dE′

dt
, (2.17)

where E′ = 〈f 2〉, 〈· · · 〉 stands for volume averaging, and f stands for perturbations of a
velocity component or temperature. The growth rate coefficient is recorded after its values
computed for all three velocity components and temperature coincide with each other and
remain constant within the third digit after the decimal point for at least 100 time units.
The results of the linear stability analysis are presented in §§ 3.3 and 3.4.

2.5. Grid sensitivity study
The grid sensitivity study has been conducted for the base flow. A detailed description of
the various flow regimes is provided in § 3.1. For the present discussion, it is sufficient to
say that accurate resolution of the internal flow structure, along with two boundary layers,
the Hartmann layers of thickness δHa ∼ Ha−1 at the vertical walls and the Shercliff layers
of thickness δSh ∼ Ha−1/2 at the top and bottom walls, is critically important for accurate
representation of the flow behaviour.

As an example, the results obtained at Ha = 1200, Gr = 108 are presented in table 1. In
a fully developed steady-state flow, the integrated Lorentz and buoyancy forces are zero.
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Magnetoconvection in a horizontal duct flow

Ny Nz Ay Az −τHa −τSh ε NHa NSh

128 32 4.0 2.0 0.23425 0.02914 0.00074 6 10
128 64 4.0 2.0 0.23460 0.26417 0.00070 6 21
128 64 4.3 2.0 0.23477 0.26387 0.00025 8 21
128 96 4.0 2.0 0.23468 0.26407 0.00069 6 32
128 96 4.3 2.0 0.23484 0.26377 0.00024 8 32
192 96 4.0 2.0 0.23459 0.26356 0.00030 9 32
192 128 4.0 2.0 0.23462 0.26347 0.00029 9 43

Table 1. Grid sensitivity study conducted for Ha = 1200 and Gr = 108; τHa and τSh are the wall friction
forces, ε is the absolute error of the balance (2.18). The number of grid points inside the Hartmann and Shercliff
boundary layers are NHa and NSh, respectively.

The wall friction must be balanced by the driving pressure gradient according to

dp̂
dx

= A−1(τHa + τSh), (2.18)

where τHa and τSh are the computed values of the integrated friction forces at the Hartmann
and Shercliff walls of the duct, respectively, expressed as

τHa = τy = 1
Re

∑
y=±1

∫ 1/Γ

−1/Γ

∂Ux

∂y
dz, τSh = τz = 1

Re

∑
z=±1/Γ

∫ 1

−1

∂Ux

∂z
dy. (2.19a,b)

Values of τHa, τSh and the error ε, with which the computed solution satisfies (2.18), found
on various grids are compared in table 1. On the basis of these data, we conclude that the
grid with Ny × Nz = 192 × 96, Ay = 4.0 and Az = 2.0 is sufficient. The maximum and
minimum grid steps of such a grid are �ymin ≈ 0.0001, �ymax ≈ 0.042, �zmin ≈ 0.0009,
�zmax ≈ 0.012. The Hartmann and Shercliff layers are resolved by, respectively, 9 and 32
grid points.

The parameters of the grids in the entire studied parameter range of Ha and Gr have
been determined in the same way. It has been found that the value of Gr does not affect the
selection at fixed Ha. This effect can be explained by the presence of very strong magnetic
fields which fully suppress transverse circulation (see § 3.1 for a discussion). The summary
of the grids used in the simulations is presented in table 2.

A grid sensitivity study has also been conducted to determine the minimum number of
grid points Nx required in the linear stability analysis. It has been found that the growth of
linear unstable modes is accurately reproduced at Nx = 32 for modes with λ � 2, which
needs to be increased to Nx = 64 for greater λ.

Computational domains of length Lx = 4π or Lx = 2π are used in DNS. As we will
see below, these lengths are substantially larger than the streamwise wavelength of the
fastest growing instability modes. The flow structures have been accurately resolved with,
respectively, 384 or 192 grid points in the x-direction.

The time steps adjusted to secure numerical instability and, thus, varying with Ha and
Gr, but never exceeding 2.5 × 10−3, are used in linear stability and DNS simulations.
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Ha Ny Nz Ay Az NHa NSh

1000 192 96 4.0 2.0 9 32
2000 256 96 4.0 2.0 8 28
3000 384 96 4.0 2.0 9 24
4000 384 96 4.0 2.0 7 22
5000 512 96 4.0 2.0 8 20
6000 512 96 4.0 2.0 7 19
7000 512 96 4.3 2.0 9 18
8000 512 96 4.3 2.0 8 17
9000 512 96 4.3 2.0 7 16
10 000 512 96 4.3 2.0 6 15

Table 2. Parameters of the computational grids used in the simulations for Gr = 108−1010. The number of
grid points inside the Hartmann and Shercliff boundary layers are NHa and NSh, respectively.

3. Results

3.1. Base flow
The structure of the base flow, as it is defined in § 2.4, for several typical cases is illustrated
in figures 2 and 3. The results for all the completed simulations are summarized in table 3.
The table shows the type of flow for a particular regime (quasi-2-D or 3-D flows to be
discussed shortly), the maximum and minimum values of Ux, integral quantities, such
as the wall friction force dp̂/dx, the volume-averaged kinetic energies of streamwise and
transverse velocities

Ex = A−1
∫ 1/Γ

−1/Γ

∫ 1

−1
U2

x dy dz, Et = A−1
∫ 1/Γ

−1/Γ

∫ 1

−1
(U2

y + U2
z ) dy dz, (3.1a,b)

and the mean square of temperature perturbations

Eθ = A−1
∫ 1/Γ

−1/Γ

∫ 1

−1
Θ2 dy dz. (3.2)

Similar data for flows with lower values of Gr and Ha in a duct with Γ = 1 can be found
in Zhang & Zikanov (2014).

The flow structure is predominantly determined by the effect of magnetoconvection.
Similarly to the findings of Zhang & Zikanov (2014), we observe two regimes of
the base flow depending on whether Gr is smaller or larger than a certain threshold
Gr∗(Ha). The quasi-2-D regime observed at Gr < Gr∗ is characterized by the transverse
convection-induced circulation entirely suppressed by the strong magnetic field. The
distributions of the temperature and streamwise velocity are nearly one dimensional
outside of the Hartmann boundary layers (Θ ≈ Θ(z) and Ux ≈ Ux(z)). In the absence
of transverse circulation, the distributions of temperature are determined by the balance
between the heat conduction and the heat convection by Ux. Examples of this regime are
shown in figures 2(a) and 3.

The 3-D regime observed at Gr > Gr∗(Ha), when the strength of the magnetic field is
insufficient to suppress convection circulation, is characterized by significant transverse
flow and fully 2-D variations of temperature. (see figure 2b–e).

To avoid confusion, it is pertinent to repeat the terminology here. The terms ‘3-D’ and
‘quasi-2-D’ are used in this paper to describe the general flow transformation caused by the
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Figure 2. Base flow at Ha = 1000, Gr = 108 (a), Ha = 1000, Gr = 109 (b), Ha = 1000, Gr = 1010 (c), Ha =
2000, Gr = 1010 (d) and Ha = 3000, Gr = 1010 (e). Vector fields and streamlines of transverse circulation (uy,
uz) are shown in the left column (not in (a), since the velocity’s amplitude is virtually zero in this case). The
middle and right columns show distributions of temperature Θ and streamwise velocity Ux, respectively. Solid
and dashed isolines in the middle column indicate positive and negative values, respectively. The wall heating
is at z = −0.2857, and the magnetic field is in the y-direction.

magnetic field, i.e.suppression of velocity and temperature gradients along the magnetic
field lines in the core of the duct and formation of thin Hartmann boundary layers. The
base flow, in which streamwise uniformity is also imposed, becomes, respectively, ‘2-D’
and ‘quasi-one-dimensional’.
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Figure 3. Quasi-2-D base flow at Ha = 5000, Gr = 109 (a), Ha = 5000, Gr = 1010 (b), Ha = 10 000, Gr =
109 (c) and Ha = 10 000, Gr = 1010 (d). Distribution of streamwise velocity ux is shown. The wall heating is
at z = −0.2857, and the magnetic field is in the y-direction.

Ha Gr Gr/Ha2 −dp̂/dx Ex Et Eθ ux,min ux,max Regime

1000 108 1.00 × 102 0.222 1.050 1.62 × 10−8 3.59 × 10−3 0.0 1.139 quasi-2-D
1000 109 1.00 × 103 0.224 1.056 6.32 × 10−3 9.31 × 10−3 0.0 1.249 3-D
1000 1010 1.00 × 104 0.254 1.892 3.11 × 10−2 7.11 × 10−4 −0.402 2.601 3-D
2000 108 2.50 × 101 0.430 1.035 5.42 × 10−9 3.61 × 10−3 0.0 1.079 quasi-2-D
2000 109 2.50 × 102 0.431 1.037 4.96 × 10−7 3.34 × 10−3 0.0 1.153 quasi-2-D
2000 1010 2.50 × 103 0.447 1.313 8.30 × 10−3 2.19 × 10−3 0.0 1.968 3-D
3000 108 1.11 × 101 0.636 1.029 1.76 × 10−9 3.62 × 10−3 0.0 1.063 quasi-2-D
3000 109 1.11 × 102 0.637 1.030 1.66 × 10−7 3.45 × 10−3 0.0 1.114 quasi-2-D
3000 1010 1.11 × 103 0.643 1.172 1.58 × 10−2 4.48 × 10−3 0.0 1.683 3-D
4000 108 6.25 × 100 0.842 1.025 3.85 × 10−10 3.63 × 10−3 0.0 1.054 quasi-2-D
4000 109 6.25 × 101 0.842 1.026 3.70 × 10−8 3.53 × 10−3 0.0 1.093 quasi-2-D
4000 1010 6.25 × 102 0.847 1.109 2.75 × 10−6 2.96 × 10−3 0.0 1.522 quasi-2-D
5000 108 4.00 × 100 1.046 1.022 1.13 × 10−10 3.63 × 10−3 0.0 1.048 quasi-2-D
5000 109 4.00 × 101 1.046 1.023 1.10 × 10−8 3.57 × 10−3 0.0 1.080 quasi-2-D
5000 1010 4.00 × 102 1.049 1.078 8.55 × 10−7 3.16 × 10−3 0.0 1.425 quasi-2-D
6000 108 2.78 × 100 1.251 1.020 1.00 × 10−10 3.63 × 10−3 0.0 1.043 quasi-2-D
6000 109 2.78 × 101 1.251 1.021 9.79 × 10−9 3.57 × 10−3 0.0 1.071 quasi-2-D
6000 1010 2.78 × 102 1.254 1.060 7.75 × 10−7 3.18 × 10−3 0.0 1.362 quasi-2-D
7000 108 2.04 × 100 1.454 1.019 9.00 × 10−11 3.63 × 10−3 0.0 1.040 quasi-2-D
7000 109 2.04 × 101 1.454 1.019 8.80 × 10−9 3.58 × 10−3 0.0 1.064 quasi-2-D
7000 1010 2.04 × 102 1.457 1.048 7.12 × 10−7 3.20 × 10−3 0.0 1.315 quasi-2-D
8000 108 1.56 × 100 1.658 1.018 8.12 × 10−11 3.63 × 10−3 0.0 1.037 quasi-2-D
8000 109 1.56 × 101 1.658 1.018 7.96 × 10−9 3.58 × 10−3 0.0 1.058 quasi-2-D
8000 1010 1.56 × 102 1.661 1.040 6.56 × 10−7 3.22 × 10−3 0.0 1.280 quasi-2-D
9000 108 1.23 × 100 1.862 1.017 2.50 × 10−11 3.63 × 10−3 0.0 1.035 quasi-2-D
9000 109 1.23 × 101 1.862 1.017 2.46 × 10−9 3.60 × 10−3 0.0 1.054 quasi-2-D
9000 1010 1.23 × 102 1.864 1.035 2.11 × 10−7 3.34 × 10−3 0.0 1.252 quasi-2-D
10 000 108 1.00 × 100 2.067 1.016 2.31 × 10−11 3.63 × 10−3 0.0 1.033 quasi-2-D
10 000 109 1.00 × 101 2.067 1.016 2.28 × 10−9 3.60 × 10−3 0.0 1.050 quasi-2-D
10 000 1010 1.00 × 102 2.068 1.031 1.97 × 10−7 3.36 × 10−3 0.0 1.229 quasi-2-D

Table 3. Integral characteristics and type of computed base flow states.

931 A29-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.987


Magnetoconvection in a horizontal duct flow

10–1

10–3

10–5

10–7

10–9

10–11

100 101 102 103 104

Zhang & Zikanov (2014)

3-D

Quasi-2-D
Et

Gr /Ha2

Figure 4. The average kinetic energy of transverse circulation in the base flow Et as a function of Gr/Ha2.
Circles indicate the numerical results of Zhang & Zikanov (2014) at Γ = 1.0. Stars and crosses indicate,
respectively, quasi-2-D and 3-D regimes found in this work for the flow at Γ = 3.5. Values of Et and Gr/Ha2

for each computed flow can be found in table 3.

We find the quasi-2-D regime in the larger part of the explored range of Ha and Gr
including the most interesting cases of large Ha (see the rightmost column in table 3). The
total friction force increases at stronger magnetic fields. The visible effect of convection
is the asymmetry of the velocity profile, with Ux larger in the bottom than in the top half
(see, e.g. figure 3b,d). The cause of the asymmetry has been explained in § 2.1.

The 3-D regimes are only found in a limited range of moderate values of Ha at Gr = 109

and 1010 (see table 3). The transverse circulation consist of a single roll (see figure 2b,e)
or two symmetric rolls (see figure 2c,d). The single roll has no preferred circulation
direction and may appear in the solution either as shown in the figure 2(b) or as a
symmetric reflection with respect to the vertical midplane (see figure 2e for an example).
The circulation causes visible 2-D distributions of Θ and Ux, and, at the same values of
Gr, a decrease of Eθ as a result of mixing (see table 3). We observe stronger top–bottom
asymmetries or even formation of reverse flow in the top portion of the duct as the strength
of convection increases at fixed Ha (see figure 2a–c for an example). As an illustration of
the asymmetry, the minimum and maximum values of ux are shown in table 3.

The classification of the flow regimes into quasi-2-D and 3-D regimes can also be
described in terms of the values of the average kinetic energy of transverse circulation Et.
Our data shown in table 3 and figure 4 are in a good qualitative agreement with the results
of Zhang & Zikanov (2014). The observed differences can be attributed to the substantially
different studied ranges of Ha and Gr and different aspect ratio.

We see in figure 4 that, at a fixed Reynolds number considered in this work, the intensity
of the transverse circulation is well approximated by a function of the single control
parameter – the combination Gr/Ha2. Analysing the flow structures at various values of Et
we find a clear demarcation between 3-D and quasi-2-D regimes. Here Et is greater than,
approximately, 10−4 in 3-D regimes. Quasi-2-D flows all have values of Et less than 10−6.

Our interest in this study is primarily in the quasi-2-D regimes. The 3-D regimes are not
considered in the rest of the paper.

3.2. Applicability of the SM82 model
In this section we investigate the applicability of the SM82 model to analysis of
magnetoconvection instability.
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3.2.1. Base flow
For a streamwise-uniform, unidirectional, steady-state base flow, the SM82 model
equations (2.14)–(2.16) are reduced to a system of linear ordinary differential equations.
The solution satisfying the boundary conditions is

Ux(z) = Re
Ha

(
Cc1 + A

Γ
s1 − Az − C

)
, (3.3)

Θ(z) = Re
2Ha2 (CΓ c1 + As1) − Re

Ha
Γ

4

(
A
3

z3 + Cz2
)

+ a1z, (3.4)

where

a1 = − Re
Ha3/2

Γ

2
(Ct1 + At−1

1 ) + Re
2Ha

(
A

2Γ
+ C

)
, (3.5)

c1 = cosh(
√

Haz)

cosh(
√

Ha/Γ )
, s1 = sinh(

√
Haz)

sinh(
√

Ha/Γ )
, t1 = tanh(

√
Ha/Γ ), (3.6a–c)

A = Γ

2RePr
Gr
Re2 , C = Ha

ReΓ
1

t1/
√

Ha − 1/Γ
. (3.7a,b)

The profiles (3.3) and (3.4) are shown for Gr = 108, 109, 1010 and several values of
Ha in figure 5. For comparison, solutions of the 3-D equations Ux and Θ obtained for
the computed base flow solutions described in § 3.1 are shown for the midplane y = 0.
The terms 2-D and 3-D correspond to, respectively, approximate SM82 and computed
solutions.

Good agreement between the computed solutions and the solutions of the SM82 model
is evident at Gr = 108 and 109. There are some deviations between the computed and
model profiles of Ux, but they are small and decrease with increasing Ha. The agreement is
significantly worse in the case of the flows at Gr = 1010. Here we observe large deviations
between the computed and model curves at Ha = 5000 and smaller, yet still significant
deviations at Ha = 10 000.

The main reason for the discrepancy between the results of the 2-D model and 3-D
calculations at such a high Ha is the geometry of the flow. The duct has a large aspect ratio
Γ and the magnetic field oriented along the long side. Deviations from two dimensionality
become more pronounced in such geometries. To verify this explanation, we performed
additional simulations, which revealed that velocity and temperature profiles in 2-D and
3-D solutions are almost indistinguishable from each other at Γ ≤ 1.

3.2.2. Linear stability analysis
In order to verify applicability of the SM82 model to linear stability analysis of quasi-2-D
flows, instability of several high Ha flows was evaluated twice: once using the full 3-D
model of the base flow and perturbations and once entirely in the framework of the 2-D
SM82 model. The results are presented in figure 6 and table 4. We see good agreement
between predictions of 2-D and 3-D models at Gr = 108 and 109. The accuracy improves
with growing Ha. As an example, the average relative difference between the values of
the growth rate γ for the two models is 33 % at Ha = 2000, Gr = 109, 11 % at Ha =
3000, Gr = 109 and 3 % at Ha = 10 000, Gr = 109 . The situation is less clear for flows
at Gr = 1010 (see figure 6c and the last six lines of table 4). Here we only see a qualitative
agreement. The shape of the γ (λ) curves, the wavelength of the most unstable mode, and
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Figure 5. Base flow profiles at Gr = 108 (a,d), Gr = 109 (b,e) and Gr = 1010 (c,f ). The SM82 model solutions
(3.3), (3.4) and the distributions along the midplane y = 0 obtained in the full numerical solutions of § 3.1 are
denoted, respectively, as 2-D and 3-D. The curves for Ha = 103 are only shown at Gr = 108 (a,d), since at
higher Gr the base flow is not quasi-two dimensional (see § 3.1). The top and bottom rows show the profiles of
streamwise velocity and temperature, respectively. The insets in (d) and (e) show zoomed-in illustrations of the
temperature profiles near the top wall.

the effect of Ha on stability are similar in the 3-D and 2-D solution. The quantitative
agreement is, however, poor, with the difference between the values of γ found for the two
models being about 50 %.

The quantitative disagreement between the base flow profiles and, as an evident
consequence, stability properties found in the 3-D and 2-D models is difficult to interpret.
The velocity and temperature distributions computed in the framework of the 3-D model
clearly show that the base flow is quasi-two dimensional and nearly perfectly unidirectional
at Ha higher than approximately 4000 (see figure 3b,d and values of Et in table 3). As
illustrated in § 3.3, fields of growing perturbations also remain quasi-two dimensional
at such high Ha. Additional calculations performed with larger grids and longer times
of flow evolution did not lead to significant changes. The deviations from quasi-two
dimensionality and inaccuracy of the numerical model are, therefore, excluded as possible
reasons.

A further useful, albeit not fully explaining illustration is provided in figure 7. Computed
base flow distributions of Ux and the streamwise component of the Lorentz force FLx
are shown for Ha = 10 000 and Gr = 108, 109 and 1010 within and near the Hartmann
boundary layer. We see that the strong vertical variation of Ux existing at Gr = 1010

extends toward the Hartmann wall and causes a respective variation of the Lorentz force.
It must be noted that this picture does not contradict to the identification of the flow as
quasi-two dimensional. The profiles Ux( y, z = const), if taken outside the sidewall layers
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Figure 6. Rates of exponential growth γ shown as functions of the axial wavelength λ at Ha =
1000, 2000, 10 000, Gr = 108 (a), Ha = 2000, 3000, 10 000, Gr = 109 (b) and Ha = 4000, 5000, 10 000,
Gr = 1010 (c). The results of 3-D and 2-D (SM82) models are denoted as filled and empty circles, respectively.

at the horizontal walls and scaled by the respective maximum values of Ux, collapse into
one curve with a flat core and Hartmann boundary layers.

3.2.3. Nonlinear flows
The results presented so far in this section indicate that the SM82 2-D model may also
inaccurately describe the nonlinear flow regimes developing as a result of the instability
at Gr = 1010. As a test of this possibility, comparison between the results of 2-D and
3-D models at Gr = 1010, Ha = 10 000 is illustrated in figures 8 and 9 and discussed
below. The procedure of computing nonlinear flows is described in § 3.4. Here we only
mention that the same numerical resolution is used in 2-D and 3-D models. The shorter
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Magnetoconvection in a horizontal duct flow

Ha Gr λ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0

1000 108 — 0.164 0.360 0.474 0.532 0.553 0.552 0.538 0.518 0.396 0.301
1000 108 — 0.049 0.269 0.398 0.461 0.486 0.487 0.475 0.455 0.338 0.247
2000 108 — — 0.251 0.387 0.461 0.495 0.504 0.499 0.485 0.381 0.295
2000 108 — — 0.200 0.345 0.486 0.422 0.456 0.459 0.445 0.344 0.261
2000 109 1.563 2.602 3.010 3.136 3.134 3.069 2.972 2.859 2.741 2.175 —
2000 109 1.028 2.029 2.459 2.626 2.671 2.651 2.593 2.513 2.421 1.941 —
3000 109 1.540 2.587 2.993 3.117 3.114 3.048 2.950 2.836 2.715 2.141 —
3000 109 1.085 2.162 2.619 2.791 2.827 2.792 2.717 2.622 2.516 1.990 —
4000 1010 10.234 11.553 11.674 11.435 11.067 10.645 10.202 9.754 9.312 — —
4000 1010 6.881 7.404 7.415 7.156 6.833 6.494 6.158 5.834 5.525 — —
5000 1010 10.605 11.918 12.023 11.764 11.371 10.925 10.458 9.988 9.527 — —
5000 1010 7.454 8.269 8.273 8.018 7.673 7.303 6.934 6.577 6.237 — —
10 000 1010 10.807 12.064 12.106 11.791 11.351 10.865 10.366 9.871 9.389 — —
10 000 1010 8.729 9.890 9.942 9.668 9.291 8.882 8.468 8.059 7.661 — —

Table 4. Results of the linear stability analysis of 3-D and 2-D flow solutions. Rates of exponential growth γ

are shown as functions of the axial wavelength λ. The results of the SM82 model are underlined. The growth
rates are determined as in (2.17).
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Figure 7. Base flow at Gr = 108 (a, b), Gr = 109 (c,d) and Gr = 1010 (e,f ) for Ha = 10 000. The left and
right columns show, respectively, distributions of streamwise velocity Ux and the streamwise component of the
Lorentz force FLx near the Hartmann wall. The red dashed line shows the boundary of the Hartmann layer of
thickness δHa = Ha−1.
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wavelength domain length Lx = 2π is used in the 3-D model. This rather small length has
no significant effect on the flow evolution as it has been confirmed in the additional 2-D
simulations conducted with Lx = 4π (shown in figure 8) and Lx = 2π.

The simulations show that the 3-D flow remains quasi-two dimensional at these values
of Ha and Gr. At the same time, its reproduction by the 2-D SM82 model is inaccurate
in some aspects. The instantaneous distributions of velocity components and temperature
shown in figure 8 clearly illustrate the difference. Two-dimensional approximations (see
figure 8a–c) are similar to 3-D flows (see figure 8d–f ) in terms of the largest typical
streamwise wavelength (about 1.5) but demonstrate a noticeably less regular pattern and
higher energy in shorter wavelengths. The difference is reflected by the point signals of
velocity and temperature shown in figure 9. It is also observed in the power spectrum
density graphs of velocity and temperature (not shown). Comparing figures 9(b) and
9(d), we also see that the 2-D approximation substantially underestimates the typical
amplitude of velocity fluctuations. As an example, the standard deviation for the signal
of ux in the middle of the duct (z = 0) is 0.33 for the 2-D model and 0.71 for the
3-D model. Computed values of volume-average kinetic energy of the fluctuations (not
shown) confirm this conclusion. The values of energy found in the 2-D approximation are
about an order of magnitude lower than in the actual flow computed in the framework
of the 3-D model. Interestingly, the misrepresentation of the structure of velocity and
temperature fluctuations by the 2-D model does not lead to a similarly strong inaccuracy
in the prediction of the effect of mixing by fluctuations. Profiles of average streamwise
velocity and temperature in figure 8(g,h) show a strong change in comparison with the
base flow, but only moderate differences between the 2-D and 3-D results.

3.2.4. Applicability of the SM82 model: summary
We conclude that the SM82 approximation accurately represents quasi-2-D flows at
moderately large Gr (108 and 109 in our system). The accuracy deteriorates at higher
Gr even though the flow remains quasi-two dimensional. An example of this is observed
at Ha � 4000 and Gr = 1010. The base flow profiles are clearly different between the
2-D and 3-D models (see figure 5c,f ). The 2-D linear stability analysis is qualitatively
correct in the sense that it correctly predicts the principal type of the unstable perturbations
and the streamwise wavelength of the most unstable mode (see figure 6c). The values
of the growth rate γ are, however, substantially underestimated by the 2-D model (see
figure 6c and table 4). The nonlinear flow states resulting from the instability are predicted
incorrectly by the 2-D model, which adds artificial irregularity and short-wave fluctuations
and underestimates the amplitude of velocity fluctuations (see figures 8 and 9). It should
be noted that the discrepancy is not due to irregularities of the model or our computational
procedure. Calculations carried out at lower Gr and high Ha reveal a perfectly good
agreement in the bulk region between the 2-D and 3-D models.

We do not have a satisfactory explanation for this effect and leave its further exploration
for future studies. It should be mentioned that the quality of the 2-D approximation
improves with increasing Ha. As an example, the values of the linear instability growth
rate γ shown in table 4 are underpredicted by the 2-D model by about 35 % at Ha = 4000
and by about only 18 % at Ha = 10 000.

It must be mentioned that this is not the only example of the model’s breakdown. The
model is known to break down when any 3-D structures are present in the flow for which
the diffusion length is shorter than the size of the domain (Pothérat & Klein 2014, 2017).
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Figure 8. Flow structure in nonlinear regime at Gr = 1010, Ha = 10 000. The instantaneous distributions of
uz (a,d), ux (b,e) and θ (c,f ) obtained in 2-D and 3-D (plotted in the midplane y = 0) models are shown in
(a–c) and (d–f ), respectively. The profiles of ux and θ obtained by averaging over x and time (with the base
flow profiles from figure 5c,f ) are shown, respectively, in (g) and (h).

In the remaining part of this paper, the discussion of the instability and nonlinear states
is based on the SM82 2-D approximation for flows at Gr = 108 and 109 and on the full
3-D solutions for flows at 1010.
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Figure 9. Time signals of temperature (a,c) and streamwise velocity (b,d) at y = 0 (in the 3-D flow) in the
nonlinear regime at Ha = 104, Gr = 1010 are shown for 2-D (a,b) and 3-D (c,d) models.

The numerical solution for the 2-D approximation is obtained using a modified version
of the code which solves (2.14)–(2.16). The code has been verified through comparison of
its results with the analytical solution of (3.3)–(3.7a,b) for the base flow.

3.3. Results of linear stability analysis
The results of the linear stability analysis are summarized in figures 10–12 and table 5.
We need to mention that the wavelength λ is varied with step 0.1 in the simulations.
The computed values of the exponential growth rate γ as a function of the wavelength
λ for various combinations of Ha and Gr are shown in figure 10. Two trends of the linear
stability behaviour were proposed by Zhang & Zikanov (2014): (1) a higher growth rate
and shorter wavelength appear at higher Gr; (2) an increase of Ha leads to a higher growth
rate. The second, apparently counterintuitive effect was attributed by Zhang & Zikanov
(2014) to modification of the base flow, namely to suppression of the transverse circulation
resulting in weaker mixing and stronger unstable temperature stratification.

In order to investigate these trends for our system and parameter range, we present
the exponential growth rate γmax of the fastest growing modes and the corresponding
wavelengths λmax in figure 11 and table 5. Our results are clearly consistent with the first
trend, γmax increases and λmax decreases with growing Gr. However, we find a different
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Figure 10. Rates of exponential growth γ shown as functions of axial wavelength λ at Gr = 108 (a), Gr = 109

(b) and Gr = 1010 (c) for various values of Ha. Results of 2-D SM82 approximation are shown for Gr = 108

and 109. Results of 3-D computational analysis are shown for Gr = 1010. Additional plots in (b) and (c) show
zoomed-in areas around (λmax, γmax).
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Gr Ha λmax γmax Gr Ha λmax γmax Gr Ha λmax γmax

108 1000 0.8 0.487 109 1000 — — 1010 1000 — —
108 2000 0.8 0.465 109 2000 0.6 2.671 1010 2000 — —
108 3000 0.9 0.400 109 3000 0.6 2.827 1010 3000 — —
108 4000 0.9 0.336 109 4000 0.6 2.856 1010 4000 0.4 11.674
108 5000 1.0 0.277 109 5000 0.6 2.833 1010 5000 0.4 12.023
108 6000 1.1 0.226 109 6000 0.6 2.786 1010 6000 0.4 12.094
108 7000 1.1 0.184 109 7000 0.6 2.726 1010 7000 0.4 12.112
108 8000 1.2 0.149 109 8000 0.6 2.659 1010 8000 0.4 12.106
108 9000 1.3 0.120 109 9000 0.6 2.589 1010 9000 0.4 12.161
108 10 000 1.4 0.096 109 10 000 0.6 2.517 1010 10 000 0.4 12.106

Table 5. Results of linear stability analysis. Wavelengths λmax and exponential growth rates γmax of the fastest
growing modes are shown as functions of Ha and Gr. Only the data for flow regimes identified as quasi-two
dimensional in the analysis of the base flow are shown.

γmax

λmax

Ha

Gr = 108

Gr = 109

Gr = 1010

Gr = 106

G = 107

Gr = 108

G = 109

102 103 104

102

102

101

100

100

10–1

10–1

101

10–2

103 104

(b)

(a)

Figure 11. The wavelength λmax (a) and the exponential growth rate γmax (b) of the fastest growing
perturbations as a function of Ha. The data are taken from table 5. The results of the current work and
that of Zhang & Zikanov (2014) are denoted as filled and unfilled elements, respectively. Results of 2-D
SM82 approximation are shown for Gr = 108 and 109. Results of 3-D computational analysis are shown for
Gr = 1010.

behaviour in regard of the second trend. The increase of Ha leads to a noticeable or
slight decrease of the exponential growth rates at Gr = 108 or Gr = 109, respectively (see
figure 10c). For Gr = 1010, γ is nearly insensitive to the values of Ha.

We conclude that the counterintuitive behaviour of stronger instability at higher Ha
is not observed in quasi-2-D flows at high Ha considered in our study. It is, nevertheless,
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noteworthy that γmax does not decrease with Ha at Gr = 1010. It increases slightly at Ha �
6000 and remains practically constant at higher Ha. The enhanced friction in the Hartmann
boundary layers is compensated by another effect, the only plausible candidate for which
is the strong modification of the streamwise velocity profile visible in figure 5(c). Here
Ux strongly grows with Ha in the bottom half of the duct, i.e.its part with the strongest
unstable temperature gradient.

The most unstable mode is oscillatory. This was also observed in the earlier works of
Zikanov et al. (2013); Zhang & Zikanov (2014). Point signals of temperature and velocity
oscillate in time with constant frequency, This is caused by the transport of the rolls by
mean flow. We have computed the phase velocity as the ratio of the axial wavelength to
the period of oscillations of a signal at a given point to illustrate this effect. We found that,
similarly to findings of Zikanov et al. (2013) and Zhang & Zikanov (2014), it varies little
with Ha and Gr for the most unstable modes, and has the value close to the mean velocity
value 1.

The findings have critical implications for design and operation of the fusion reactor
systems, since they indicate that strength of the convection instability is not diminished by
strong magnetic fields at Gr ≥ 1010, typical for reactor blankets.

The spatial structure of the unstable modes is illustrated in figure 12 for Gr =
108, 109, 1010 and Ha = 104. The structures are qualitatively similar to those found
for quasi-2-D instabilities by Zhang & Zikanov (2014). Consistent with the first trend
mentioned above and with the base flow modification illustrated in figure 5 is the fact
that the energy of growing perturbations becomes contained to the lower part of the duct
at higher values of Gr.

3.4. Results of DNS of nonlinear flows
The results concerning the nonlinear flow regimes are illustrated in figures 8(d,e,f ), 13, 14
and 15. A DNS approach based on direct solution of the nonlinear governing equations is
utilized. The 2-D SM82 model (2.14)–(2.16) and the computational domain of length Lx =
4π are used for flows at Gr = 108 and 109. Full 3-D equations (2.1)–(2.3) are solved and
the domain is reduced to Lx = 2π at Gr = 1010. Other parameters of the computational
model are described in § 2.5. Each simulation starts with the streamwise-independent base
flow (see § 3.2) computed at the same Gr and Ha, to which random small-amplitude
(∼10−3) random perturbations of velocity and temperature are added.

The typical flow evolution is illustrated by the curves of average kinetic energy shown
in figure 13. The flow reaches a fully developed state after the instability and initial
development. The evolution of the fully developed flow is computed for at least 500 time
units for the 2-D model at Gr = 108, 109 and at least 100 time units for the 3-D model
at Gr = 1010. At this stage, the integral parameters fluctuate around steady means (at
Gr = 109 and 1010) or remain steady (at Gr = 108). The amplitudes of the fluctuations
are small at Gr = 109 and large, but still moderate at Gr = 1010.

The structure of fully developed flows is illustrated in figures 8 and 14. The velocity
field shows finite-amplitude roll-like structures (hereafter referred to as rolls) resulting
from the instability, which are superimposed on a streamwise-independent mean flow (see
figures 8d and 14a,d). The rolls cause variations of temperature (see figures 8f , 14c and
14f ). Transport of the rolls by the mean flow is a known reason of MCFs in horizontal
channels (Zikanov et al. 2013, 2021; Zhang & Zikanov 2014).

Comparison of the flow structures in figures 8(d–f ) and 14 reveal the effect of the
value of Gr on convection rolls. As anticipated, an increase of Gr leads to a higher
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Figure 12. Spatial structure of the fastest growing instability modes during the stage of exponential growth
at Gr = 108 (a), Gr = 109 (b) and Gr = 1010 (c,d) for Ha = 10 000. Results of 2-D SM82 approximation are
shown for Gr = 108 and 109. Results of 3-D computational analysis are shown for Gr = 1010. Perturbations of
temperature and vector fields of velocity perturbations (u′, w′) in the vertical midplane (y = 0) are shown in
(a–c). Perturbations of vertical velocity in the horizontal midplane section z = 0 are shown in (d). Solid and
dashed isolines indicate positive and negative values, respectively.

Ex

t

Ha = 5 × 103

Ha = 104

t t

1.05

1.00
0 1000 2000 3000 0 200

1.00

1.05

1.10

1.15 4.5

4.0

3.5

3.0
400 600 800 1000 0 50 100 150 200

(b)(a) (c)

Figure 13. Time signals of the kinetic energy of the streamwise velocity obtained in the DNS of flows at Gr =
108 (a), Gr = 109 (b) and Gr = 1010 (c) for Ha = 5000 and Ha = 10 000. Results of 2-D SM82 approximation
are shown for Gr = 108 and 109. Results of 3-D computational analysis are shown for Gr = 1010.
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Figure 15. Time signals of temperature measured at top and bottom walls and in the middle of the duct in fully
developed flows at Gr = 108, 109, 1010 are shown for Ha = 5 × 103 in (a,c,e) and for Ha = 104 in (b,d,f ).
Results of 2-D SM82 approximation are shown for Gr = 108 and 109 (a–d). Results of 3-D computational
analysis are shown for Gr = 1010 (e–f ).

non-dimensional amplitude of the velocity fluctuations. This results in stronger vertical
mixing as illustrated by the streamwise- and time-averaged profiles in figure 14(g,h). In
particular, a nearly uniform vertical distribution of average temperature with a thin (but
still much thicker than the Shercliff layer) boundary layer at the bottom is observed at
Gr = 1010.

As we discussed earlier, MCFs caused by the instability have potentially critical
implications for design and operation of liquid metal components of nuclear
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fusion reactors. The DNS results allow us, for the first time, to evaluate the properties of
the MCFs at the high values of Gr and Ha corresponding to the actual reactor conditions.

In addition to the instantaneous temperature distributions in figures 8(f ), 14(c) and 14(f ),
the discussion will be based on the point signals of temperature measured at the top and
bottom walls and in the middle of the duct (see figure 15). As discussed, e.g. by Zikanov
et al. (2021), measuring such signals is the most reliable and commonly used tool for
studying MCFs in experiments.

The evident conclusion from the DNS data is that MCFs are fully present in flows with
Gr = 108, 109, 1010 and the highest values Ha = 5 × 103 and 104 considered in this study.
The fluctuations are observed in the entire duct. The temperature signals are regular and
dominated by one or several low frequencies (the typical period is 2–3 non-dimensional
time units at Gr = 108 and 109). The signal is less regular and characterized by higher
typical frequencies at Gr = 1010.

Interestingly, the non-dimensional amplitude of the temperature fluctuations decreases
noticeably with growing Gr. Comparison of the signals in the two columns of figure 15
demonstrates that the value of Ha has practically no effect on the MCFs. This can be
attributed to the effect of nonlinearity, which distributes energy of the fluctuations to a
range of streamwise modes.

Considering the practical implications, it is interesting to evaluate the parameters of the
MCFs in dimensional units. We will do that for the temperature signals at the bottom of
the duct (z = −0.2857) assuming that the duct half-width d = 5 cm and using the physical
properties of PbLi at 573 K (Zikanov et al. 2021). The wall heat rate is q = 10.56 kW m−2

at Gr = 108, q = 105.6 kW m−2 at Gr = 109 and q = 1056 kW m−2 at Gr = 1010. We
find, by applying the temperature scale qd/κ , that the largest amplitude of fluctuations of
wall temperature is in the range 5–6 K at Gr = 108, 44–62 K at Gr = 109, and somewhat
unrealistic 180–300 K at Gr = 1010. The typical time period of the fluctuations is 5.64 s
at Gr = 108, 6.45 s at Gr = 109 and 4.51 s at Gr = 1010 for Ha = 104.

Similar evaluations have been done for the future experiments on the recently built
experimental facility (see, e.g. Belyaev et al. 2017), in which liquid mercury flows in
the duct with the half-width of d = 2.8 cm. The physical properties of Hg are taken at
303 K (Zikanov et al. 2021). The wall heat rate is q = 9.59 kW m−2 at Gr = 108 and
q = 95.9 kW m−2 at Gr = 109. The results of nonlinear simulations allow us to predict the
largest amplitude of fluctuations of temperature in the middle of the duct. The amplitudes
are in the range of 2–3 K at Gr = 108 and 12–18 K at Gr = 109. The typical time period
of the fluctuations is 1.1 s at Gr = 108 and 1.58 s at Gr = 109 for Ha = 1000.

4. Concluding remarks

We have analysed mixed convection in a liquid metal flow in a duct with bottom heating
and a transverse magnetic field. The analysis is extended to much higher values of Ha and
Gr than the previous analysis of similar effects by Zhang & Zikanov (2014).

The main conclusion of our work is that magnetoconvective fluctuations appear at the
parameters anticipated for operational regimes of blankets and divertors of future fusion
rectors. The fluctuations are not suppressed or even significantly reduced in amplitude by
the very strong magnetic field. The amplitude remains high, reaching tens or hundreds
degrees K (depending on the value of Gr) in a typical duct geometry. This has significant
far-reaching implications for mixing, heat and mass transfer, and structural integrity of
reactor components. The most dangerous modes of the instability have the form of rolls
localized in the lower half of the duct and having the streamwise wavelength measured in
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horizontal half-widths of the duct, approximately between 0.8 and 1.4 at Gr = 108, 0.6 at
Gr = 109, and 0.4 at Gr = 1010.

Another conclusion concerns applicability of the 2-D approximation by Sommeria &
Moreau (1982) to flows with thermal convection. We have found that the approximation
may become inaccurate at high values of Gr even though the flow remains quasi-two
dimensional. Full reasons of this phenomenon remain to be understood. One of the reasons
is, clearly, the geometry of the flow. The 2-D model tends to be less accurate if applied to
flows in ducts with larger aspect ratios and the magnetic field parallel to the long side. In
general, the conclusion is important as a warning against application of the model without
a proper verification.

It is pertinent to stress that the conclusions must be considered as preliminary because
they are obtained for a single configuration of a horizontal duct flow with bottom heating
and a transverse magnetic field. At the same time, there are multiple indications that
similar behaviours can be observed in other configurations related to the existing designs
of liquid metal blankets of fusion reactors. This will need to be explored in future studies.

Further study of MCFs at high Hartmann and Grashof numbers is warranted by their
practical importance and theoretical significance. Many interesting possible directions of
future work can be suggested. We mention two of them. One is the exploration of the
phenomenon for other geometries, where strong MCFs are known to exist, for example, for
downward flow in a vertical duct. Another particularly interesting direction is the analysis
of the effects of finite thermal and electrical conductivities of the walls.
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