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THE GAUSS-BONNET INTEGRAND FOR A CLASS OF 
RIEMANNIAN MANIFOLDS ADMITTING TWO 

ORTHOGONAL COMPLEMENTARY FOLIATIONS 

BY 

O. G I L - M E D R A N O A N D A. M. N A V E I R A 

ABSTRACT. With the general assumption that the manifold ad
mits two orthogonal complementary foliations, one of which is 
totally geodesic, we study the components of the curvature tensor 
field of the characteristic connection. 

In the case where the manifold is compact, orientable of dimen
sion 6 or 8 and the dimension of the totally geodesic foliation is 4, 
we relate the sign of the Euler characteristic of the manifold and 
that of the sectional curvature of the leaves of both foliations. 

§0. Introduction. It is well known that if a Riemannian manifold is locally a 
Riemannian product of two manifolds the Euler polynomial x(R) in t n e 

components of the curvature of the Levi-Civita connection can be written as a 
product of two polynomials. We are interested in the Gauss-Bonnet integrand 
of a Riemannian manifold admitting two orthogonal complementary foliations, 
one of which is totally geodesic. In order to find a good expression of this 
integrand, we define in §1 a connection on such a manifold, which we call 
characteristic connection; it is metric and makes P parallel. 

We have studied the components of the curvature tensor field of this 
connection and the relations with the curvature of the Levi-Civita connection, 
finding some results that we use in §2 to obtain an expression of the Gauss-
Bonnet integrand. This allows us to prove Corollary 4, where the sign of the 
Euler characteristic of the manifold and that of the sectional curvatures of the 
leaves of both foliations are related in the cases where the dimension of the 
manifold is 6 or 8 and the dimension of the totally geodesic foliation is 4. 

§1. The curvature tensor field of the characteristic connection. Let Y be a 
distribution on a Riemannian manifold (M, g) and let W be the orthogonal 
distribution to Y. At every point m e l we have then TmM = Ym©3ifm. One 
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can thus uniquely define a (1,1) tensor field P such that P2 = I, P\Y = I and 

Then (M, g, P) is a Riemannian almost-product manifold where the vertical 
and horizontal distributions are exactly Y and $f. 

As we have noted in §0 we are interested in manifolds where Y and ffl are 
integrable and one of them is totally geodesic; in the sequel we will suppose 
that Y is the distribution with this property. 

These kinds of almost-product manifolds are exactly those manifolds belong
ing to one of the thirty-six classes of Riemannian almost-product manifolds 
defined in [6] with regard to the algebraic properties of VP, where V is the 
Levi-Civita connection. For a geometric description of these classes see also [3] 
and [5]; nontrivial examples of manifolds in each class can be found in [4]. 

Let (M, g, P) be a Riemannian almost-product manifold; we can consider the 
connection whose covariant derivative is defined by 

VMN = VMN + | (V M P)N. 

We call it the characteristic connection. If we denote v- and A the projections 
on the vertical and horizontal distributions, respectively, then V can be written 
in a more useful form: 

(1) VMA = *>VMA; VMX = ^ V M X 

when Me%(M), AeY, X e l 
Now, V makes g and P parallel and then when restricted to both subbundles, 

vertical and horizontal, it induces connections which paralelize the restricted 
metric. We shall denote the curvature tensor of V by R, that is 

(2) i W o = g^N^ML, Q) - g(VM VNL, Q) + g(V[M,N]L, Q). 

It is obvious that 

( 3 ) ^ M N A X = ^ M N X A = U, 

for all A e V, Xe %, M, Ne%(M). 
Our purpose is to compute the other components of R. 

PROPOSITION 1. Let (M, g), Y and ffl be as above, then: 
a) RXYAB = 0. 

b) RAXBC = 0 . 
C) ^ABXY = ^ABXY an& ^AXYZ = ^AXYZ-

d) R and R coincide on vertical vectors. 
e) On horizontal vectors, R coincides with the Riemannian curvature induced on 

the horizontal leaves. 
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Proof. Since V and W are foliations we can assume that the Lie brackets of 
the arguments are zero, thus 

RXYAB = g(VY» VXA, B) - g(Vx*> VYA, B). 

Since V is totally geodesic A VAB = 0 for all A,BeV. Thus 

g(VAX,£) = -g(X,V A B) = 0. 

Therefore v VAX = i>VxA = 0 because [A, X] = 0. This proves a). 
b) Using (1) and (2) we obtain 

RAXBC = g(Vx*> VAB, C)-g(VAv VXB, C). 

But v- VXB = 0 as before, and i> VAB = VAB and so 

RAXBC = g(Vx VAB, C). 

Now, 
g(Vx VAB, C) - Xg(VAB, C) - g(VAB, VXC) = Xg(\AB, C). 

Since we are assuming that VAB — VgA we have 

(4) RAXBC = RBXAC-

But V is a metric connection, whence its curvature tensor field is skewsym-
metric in the last two arguments 

(5) RAXBC = ~RAXCB-

From (4) and (5) an easy computation shows that RAXBC
 = 0-

c) The expressions of RABXY and RAXYZ
 a r e 

RABXY = g(VB VAX, Y) - g(VA VBX, Y), 

RAXYZ = g(Vx VA Y, Z) - g(VA VxY, Z). 

In a) we have seen that if V is totally geodesic then V A Xe df€ for all A e T, 
XeW, and so 

VAX = Â VAX = VAX 

To finish the proof, we only need to transform the term g(VA VXY, Z). 
By (1) we have 

g(VA VXY, Z) = g(VA^ VXY, Z) = g(VA VXY, Z) - g(VA*> VXY, Z), 

the last term vanishing because V is totally geodesic. 
d) and e) follow directly from the fact that the characteristic connection when 

restricted to vertical (resp. horizontal) arguments is exactly the Levi-Civita 
connection of the vertical (resp. horiziontal) leaves. 

§2. The Gauss-Bonnet integrand for a Riemannian manifold with two 
orthogonal complementary foliations one of which is totally geodesic. Let 
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X(R) be the Euler polynomial expression in the components of the curvature 
of the characteristic connection 

^ * W = 93n n . I e(a)e(P)R a i a 2 3 l 3 2 • • • R a , . ^ . ^ 
2 7T n ! a > P e S 2 n 

where Rij7d are the components of R in any orthonormal basis. 

PROPOSITION 2. Let (M, g) be a Riemannian manifold as above. Then 

- 1 
X W = 2 3 n 7 r n j , Œ e ( a ' ) e O ' ) « a i a i P i 3 r ' ' ^ « a p - ^ 3 ^ 3 ^ ) ' 

where the first sum runs over all permutations a\ 0' of {1, . . . , 2p} and the 
second one runs over all permutations a'\ 0" of {2p + l , . . . , 2n} being 2n = 
dim M, 2p = dim IT, 2q = dim 3if. 

Proof. We choose a basis adapted to the Riemannian almost-product struc
ture, that is 

Xi,..., X2p G IK X 2 p + i , . . . , X2n G 3L. 

Using (3) and Proposition 1 a), b), the only terms in (6) which are different 
from zero are those of the form 

^ O t i a ^ i P ^ a 2 p - l « 2 p 3 2 p - l 3 2 p a 2 p + l a 2 p + 2 3 2 P + 102p+2 « 2 n - i a 2 n 3 2 n - l 3 2 n 

where a\ /3' are permutations of { 1 , . . . , 2p} and a", 0" are permutations of 
{2p + l , . . . , 2 n } . 

REMARK. We are only considering the case where both foliations are 
even dimensional because the Euler characteristic of the tangent bundle of M 
will vanish otherwise. 

There is an important conjecture, still unsolved in the general case, which is 
as follows: 

(*) Let M be a compact, orientable, 2n-dimensional Riemannian manifold. 
If all sectional curvatures of M are non-negative then the Euler characteristic 
of M verifies ^ ( ^ ) > 0 . If all sectional curvatures are non-positive then (— l) n 

The result that (*) is true for n = 2 is due to J. W. Milnor and the proof can 
be found in [2] or in [1]. It is also there shown that if the manifold is of either 
positive or negative curvature, then ^(J^)>0. 

The method used in [1], [2] consists in finding a basis for which the Euler 
polynomial expression in the components of the curvature of the Levi-Civita 
connection, x(R)> is everywhere non-negative. 

In the next theorem we prove that the sign of the sectional curvature of the 
leaves of both foliations determines the sign of x(R)-
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THEOREM 3. Let (M, g) be a compact, oriented, Riemannian manifold, with 
two orthogonal complementary foliations V and ffl such that V is totally geodesic 
and dim V = 4. 

a) Assume dim M =6. If each leaf of Y has non-negative or non-positive 
curvature and the leaves of 'M are of non-negative (resp. non-positive) curvature, 
then xCR)>0 (resp. x ( £ ) < 0 ) . 

If curvatures are positive (resp. negative) then x ( i ? )>0 (resp. x(.R)<0). 
b) Assume dim M = 8. If each leaf, either vertical or horizontal, has sectional 

curvature of constant sign then x(R) — 0-
Furthermore, if the curvature of each leaf never vanishes then x(.R) > 0. 

Proof. By Proposition 2 we have 

1 _ v 

(7) X(^) = ^r~3^5656 L e ( a > ( | 3 0 i ^ ; ^ 3 ^ # « ^ ; 3 ^ , 

in the 6-dimensional case, and 

(8) ' 3 4 

x ( X £(a")s(P")R 0»;3; 'R«>»;K 
V", 3"eS^ 

in the 8-dimensional case, where S4 denotes the group of permutations of 
{5,6,7,8}. 

Now, using Proposition Id), (7) and (8) can be written respectively 

- 1 v 

Z TT a ' ,3 'eS4 

(8') 2 * W e S < 

x( X e(«'0e(|3'0K^^^ 

where R' is the curvature tensor of the Levi-Civita connection of the horizon
tal leaves. If the sectional curvatures are non-negative or non-positive, it is 
known [1] that 

( Z e(a)e(P)Ra,a23,32
Ra3«43334 

is non-negative and thus x(R) is non-negative in the 8-dimensional case and 
has the same sign as R'5656 in the 6-dimensional case, concluding the proof of 
the theorem. 
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Using now the Gauss-Bonnet-Chern formula 

X(M)= f X(R)dV 

we obtain directly from Theorem 3, the following 

COROLLARY 4. Let (M, g), Y and ffl be as in Theorem above, then: 
a') If the hypotheses of part a) in Theorem 3 hold, then x(^) — 0 (resp. 

b') If the hypotheses of part b) in Theorem 3 hold, then xi^tt) — ®-

Although the conclusions in (*) and in Corollary 4 are the same, the 
hypotheses are different; we are going now to give two cases where the 
hypothesis of (*) implies that of Corollary 4. 

PROPOSITION 5. Let (M, g) be a compact, oriented, Riemannian manifold of 
dimension 6 or 8, of non-negative curvature with two orthogonal complementary 
foliations Y and 3d, such that Y is 4-dimensional and totally geodesic and ffl is 
totally umbilical, then xi^) — ®-

Proof. By Corollary 4, it is only necessary to show that horizontal leaves are 
manifolds of non-negative curvature. 

For each me M choose an orthonormal basis of the normal space to the leaf 
of %t through m, {ê}f=1; as dfC is totally umbilical for each £ there exists 
Ai e M such that A€. = ktL 

Let X, Y be vectors tangent to that leaf, and a the second fundamental 
form, then 

g(a(X,X),a(Y, Y))-g(a(X, Y),a(X, Y)) = ( £ A?)(||X||2 | |Y||2- g(X, Y) 2 )^0 , 

which implies that the sectional curvature of the leaf is non-negative. 

PROPOSITION 6. Let (M, g) be a 6-dimensional, compact, oriented Riemannian 
manifold of non-positive curvature with two orthogonal complementary foliations 
Y and W such that Y is 4-dimensional and totally geodesic and 3if is minimal, 
then x ( i ) < 0 . 

Proof. As before, it is only necessary to check that the curvature of the 
horizontal leaves has the adequate sign. 

Let {X, Y} be an orthonormal basis of the tangent space to the leaf of W 
through m, meM. As the leaf is a minimal submanifold, a(X, X) = — a(Y, Y) 
and then 

g(a(X,X),a(Y, Y))~g(a(X, Y),a(X, Y)) = -( | |a(X, X)||2 + ||a(X, Y)||2)<0, 

which implies that the curvature of the leaves is non-positive. 
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