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We show that rotating Rayleigh–Bénard convection, where a rotating fluid is heated from
below, exhibits a non-Hermitian topological invariant. Recently, Favier & Knobloch (J.
Fluid Mech., vol. 895, 2020, R1) hypothesized that the robust sidewall modes in rapidly
rotating convection are topologically protected. By considering a Berry curvature defined
in the complex wavenumber space, we reveal that the bulk states can be characterized
by a non-zero integer Chern number, implying a potential topological origin of the edge
modes based on the Atiyah–Patodi–Singer index theorem (Fukaya et al., Phys. Rev. D, vol.
96 2017, 125004; Yu et al., Nucl. Phys. B, vol. 916, 2017, pp. 550–566). The linearized
eigenvalue problem is intrinsically non-Hermitian, therefore, the definition of Berry
curvature generalizes that of the stably stratified problem. Moreover, the three-dimensional
set-up naturally regularizes the eigenvector, avoiding the compactification problem in
shallow water waves (Tauber et al., J. Fluid Mech., vol. 868, 2019, R2). Under the
hydrostatic approximation, it recovers a two-dimensional analogue of the one which
explains the topological origin of the equatorial Kelvin and Yanai waves (Delplace et al.,
Science, vol. 358, issue 6366, 2017, pp. 1075–1077). The non-zero Chern number relies
only on rotation when the fluid is stratified, no matter whether it is stable or unstable.
However, the neutrally stratified system does not support a topological invariant. In
addition, we define a winding number to visualize the topological nature of the fluid.
Our results represent a step forward for the topologically protected states in convection,
but the bulk-boundary correspondence requires a further direct analysis for proof, and the
robustness of the edge states under varying boundary conditions remains a question to be
answered.
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1. Introduction

Rotating Rayleigh–Bénard convection, where a rotating fluid between two horizontal
plates is driven by bottom heating, is an important prototype for geophysics and
astrophysics (Bodenschatz, Pesch & Ahlers 2000; Ahlers, Grossmann & Lohse 2009;
King, Stellmach & Aurnou 2012; Guervilly, Hughes & Jones 2014). It occurs in various
natural systems, such as the Earth’s atmosphere and oceans, as well as in the interiors of
stars and exoplanets.

In this convection system, the rotation leads to the emergence of edge states at
the sidewall (Zhong, Ecke & Steinberg 1991, 1993; Ecke, Zhong & Knobloch 1992;
Goldstein et al. 1993; Ning & Ecke 1993), which are characterized by their unidirectional
propagation and their ability to persist even in the presence of different types of barriers
and turbulence (Favier & Knobloch 2020; Ecke 2023; Ecke & Shishkina 2023). These
states were first discovered through experiments indirectly by Rossby (1969), where a
surprising convection occurs with a Rayleigh number (Ra) below the critical value for
the laterally unbounded system (Chandrasekhar 1961). Zhang & Liao (2009) give the
asymptotic expression of the critical Ra for the onset of these sidewall modes, regaining
the leading terms previously calculated by Herrmann & Busse (1993). With increasing Ra,
more sidewall modes emerge, and they may undergo modulational instabilities and interact
with bulk modes, resulting in a complex nonlinear dynamics (Zhong et al. 1993; Liu &
Ecke 1999; Horn & Schmid 2017). In the turbulent flows with high Ra, the sidewall modes
may be transformed to boundary zonal flows, which can also coexist with bulk convection
(de Wit et al. 2020; Zhang et al. 2020; Ecke, Zhang & Shishkina 2022). Beyond these
detailed studies, a new insight is proposed that these edge states may be related to the
topological nature of the system (Favier & Knobloch 2020). Thus, a new set of questions
arises, such as, can we obtain the topological invariant of the system? How robust in
quantitative terms is the topology in the presence of turbulence? The answers to these
follow-up questions will deepen our understanding of the overall flow structure and the
spatial distribution of heat flux in geophysical and astrophysical contexts (Zhong et al.
2009; Terrien, Favier & Knobloch 2023).

Edge states under topological protection have been a topic of great interest in recent
years. These edge states are robust against disorder and perturbations, and their topological
protection originates from the non-trivial topology of the underlying bulk system. This
topological nature can be indicated by a corresponding topological invariant, such as
the Chern number (Xiao, Chang & Niu 2010; Delplace, Marston & Venaille 2017)
or the winding number (Zhu, Li & Marston 2023). When the topological invariant is
non-zero, the bulk-boundary correspondence guarantees the existence of robust edge
states (Essin & Gurarie 2011; Venaille et al. 2023; Onuki, Venaille & Delplace 2024).
The topological physics first appeared in condensed matter (Kosterlitz & Thouless 1973;
Thouless et al. 1982; Haldane 1988), such as topological insulators (Hasan & Kane 2010),
topological photonics (Ozawa et al. 2019) and topological phononics (Liu, Chen & Xu
2020). Recently, similar topological properties have been found in macroscopic systems,
especially in hydrodynamics, such as the topological origin of trapped waves near the
equator or coastlines (Delplace et al. 2017; Venaille & Delplace 2021), the topological
waves in fluids with odd viscosity (Souslov et al. 2019) and the presence of topological
invariants in active matter systems (Shankar et al. 2022). This universality of topological
states can be attributed to the similar symmetries embodied in systems of different scales
(Senthil 2015).

In this paper, we point out that linearized rotating convection is a non-Hermitian
system and that these edge states are manifestations of the non-trivial topological
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Berry phase in the bulk. Non-Hermitian systems are open systems that do not
obey the Hermitian symmetry property (Ashida, Gong & Ueda 2020). Thus, their
eigenvalues are not necessarily real, and the corresponding eigenvectors can be
unorthogonal. Rayleigh–Bénard convection is non-Hermitian because it exchanges energy
with an external heat source. Non-Hermitian systems exhibit unconventional physical
properties, including non-reciprocal transmission, exceptional points and topological
phase transitions (Bergholtz, Budich & Kunst 2021; Ding, Fang & Ma 2022). These
phenomena have attracted significant attention in recent years due to their potential
applications in various fields of physics, such as optics, condensed matter physics and
quantum information science.

With the non-Hermitian and topological nature, we foresee that rotating convection
will become a more abundant system and act as a platform for probing topological
states in turbulent flows. This paper is structured as follows. Section 2.1 introduces the
non-Hermitian Hamiltonian matrix of the linearized governing equations. Section 2.2
explains the calculation of Chern number in non-Hermitian systems. Section 3 focuses
on calculating the topological invariants in the unstably stratified case. Section 4 explores
the topological properties of the system in stable and critical cases. Section 5 discusses the
calculation of the Chern number under the hydrostatic approximation. Section 6 visualizes
the topological nature through winding numbers. Finally, discussions and summaries
are presented in § 7. Appendix A discusses the solutions satisfying realistic boundary
conditions.

2. The non-Hermitian eigenvalue problem of linearized rotating convection

2.1. Non-Hermitian Hamiltonian matrix
The governing equations for rotating Rayleigh–Bénard convection include the
Navier–Stokes, continuity and temperature equations. The dimensionless form can be
written as (cf. Favier & Knobloch 2020)

∂u
∂t

+ (u · ∇)u = −∇p − λez × u + αθez + E∇2u, (2.1a)

∇ · u = 0, (2.1b)

∂θ

∂t
+ (u · ∇) θ = w + E

Pr
∇2θ, (2.1c)

where u = (u, v,w) is the velocity vector, λ = ±1 indicates the direction of rotation, p
is the pressure, θ is the temperature fluctuation relative to the linear conduction profile,
α = RaE2/Pr is the square of the convective Rossby number. The Rayleigh number is
Ra = βg�Th3/νκ , where β is the thermal expansion coefficient, g is the acceleration due
to gravity, �T is the temperature difference between the top and bottom plates, h is the
height of the fluid layer and ν and κ are the viscosity and thermal diffusivity, respectively.
It is a measure of the strength of the buoyancy-driven flow relative to the viscous forces.
The Ekman number, E = ν/(2Ωh2), describes the balance of viscous forces to Coriolis
forces, where Ω is the angular velocity of rotation. The Prandtl number is Pr = ν/κ and
is a measure of the relative importance of viscous and thermal diffusion. It is worth noting
that α is independent of both ν and κ , so that we can take the inviscid limit E → 0 when
necessary at a fixed non-zero α.
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Considering a normal-mode ansatz (u, v,w, p, θ) = Re{(û, v̂, ŵ, p̂, θ̂ ) exp(i(k · r −ωt))}
with the wavenumber k = (kx, ky, kz), the linearized equations become

−iωû = −ip̂k − λez × û + αθ̂ez − Ek2û, (2.2)

k · û = 0, (2.3)

−iωθ̂ = ŵ − E
Pr

k2θ̂ , (2.4)

where k =
√

k2
x + k2

y + k2
z . Taking the divergence of both sides of (2.1a) and combining

with (2.1b), we get

0 = p̂k2 + iλ(kxv̂ − kyû)+ iαkzθ̂ . (2.5)

Then

p̂ = i
λ(−kxv̂ + kyû)− αkzθ̂

k2 . (2.6)

With the wave vector ψ ≡ (û, v̂, ŵ, θ̂ ), we get the eigenequation from (2.2) and (2.4) as

Hψ = ωψ, (2.7)

with

H = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E0 + λkxky

k2 λ

(
1 − k2

x

k2

)
0 −α kxkz

k2

λ

(
−1 + k2

y

k2

)
E0 − λkxky

k2 0 −α kykz

k2

λ
kykz

k2 −λkxkz

k2 E0 α − α
k2

z

k2

0 0 1 E1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.8)

where E0 = −Ek2, E1 = E0/Pr. This is a non-Hermitian Hamiltonian because H /= H†,
where † denotes the conjugate transpose. Because we define the growth rate as iω for
convenience, the eigenvalue ω can be a complex number, unlike in the Hermitian case
where ω is real. The eigenvalue problem of H† is

H†ψ ′ = ω∗ψ ′, (2.9)

where ω∗ is the complex conjugate of ω, and ψ ′ is generally different from ψ .
In (2.1), we do not include the boundary conditions, and the main text of this

paper focuses on demonstrating the idea that, to calculate a Chern number for rotating
convection, a complex vertical wavenumber is required. A discussion on realistic boundary
conditions can be found in Appendix A.

2.2. Chern number in a non-Hermitian system
The Chern number is a topological invariant that was originally defined for systems with
a periodic structure, such as crystals, by integrating the Berry curvature over the Brillouin
zone (Zak 1989; Xiao et al. 2010). It is a quantity with integer values and is numerically
equal to the Berry phase divided by 2π. The Berry curvature characterizes the local
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geometry of wave polarization and is recognized to manifest in the equations of motion of
wave packets with multiple components (Berry 1984; Perez, Delplace & Venaille 2021).

As a topological invariant, the Chern number is insensitive to small perturbations of the
Hamiltonian that do not change the topology of the system. A non-zero Chern number
implies the existence of a non-trivial bulk topology and the presence of robust edge states
(Hasan & Kane 2010). The bulk-boundary correspondence principle links the topological
properties of the bulk and edge states (Essin & Gurarie 2011; Venaille et al. 2023; Onuki
et al. 2024).

In the wavenumber space, the Berry connection (Berry 1984) is defined as
An(k) = i〈ψn(k)|∇k|ψn(k)〉, (2.10)

where ψn is the eigenvector, and ∇k is the gradient with respect to the wave vector k. As
with the mathematical symbols of quantum mechanics, the right vector |ψn〉 represents
the general eigenvector, the left vector 〈ψn| represents the conjugate transpose of |ψn〉 and
〈· · · | · · · 〉 represents the inner product. The Berry connection is a vector-valued function
whose integral along a closed path gives the Berry phase. Then, the Berry curvature is
calculated by the curl of the Berry connection

Ωn(k) = ∇k × An(k). (2.11)
The Chern number is then defined as the integral of the Berry curvature over the Brillouin
zone

Cn = 1
2π

∫
BZ
Ωn(k) · dS, (2.12)

where dS is the surface element of the Brillouin zone. The Berry curvature Ωn is a
pseudovector in three dimensions. Due to the direction of rotation in this system, we only
consider its component in the z direction, Ωz

n, and dS takes the horizontal plane.
In non-Hermitian systems, the classic Brillouin zone is no longer sufficient to describe

the band topology due to the significant difference in frequency spectra between open
(non-Bloch) and periodic (Bloch and classic) boundaries. Therefore, a generalized
Brillouin zone (GBZ) defined on the complex wavenumber space is needed (Yokomizo
& Murakami 2019; Yang et al. 2020; Wu et al. 2022). As a result, a non-Bloch Chern
number is defined as the integral of the Berry curvature over the GBZ

Cn = 1
2π

∫
GBZ

Ωn(k̃) · dS̃, (2.13)

where k̃ is complex and dS̃ is the surface element of the GBZ. The Berry curvature can
take a complex number, as long as the Chern number obtained by integration remains an
integer (Yao, Song & Wang 2018).

Due to the non-Hermitian nature of the system (2.7), obtaining the Berry curvature
requires the consideration of a biorthogonal basis set, {|ψn〉} and {|ψ ′

n〉}, which satisfies

H|ψn〉 = ωn|ψn〉, (2.14a)

H†|ψ ′
m〉 = ω∗

m|ψ ′
m〉, (2.14b)

〈ψ ′
m|ψn〉 = δm,n, (2.14c)

where ωm and ωn are eigenvalues with band indices m and n. Then we can define the
non-Hermitian Berry curvature of band ωn as (Yao et al. 2018)

Ωz
n = i

[〈
∂ψ ′

n

∂kx

∣∣∣∣∂ψn

∂ky

〉
−
〈
∂ψ ′

n

∂ky

∣∣∣∣∂ψn

∂kx

〉]
. (2.15)
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Figure 1. Illustration of the eigenvalue with complex kz. Here, k2
z = 1 + 0.1i, α = 1 and E = 0.

3. Topology of rotating convection

3.1. Complex wavenumber kz

When the eigenvalues of the linearized equations (2.2)–(2.4) are not real, which often
happens in non-Hermitian systems, the convection is linearly unstable with oscillatory
modes that can grow or decay over time, and exploring the topological properties
gets complicated. For example, in the inviscid case where E = 0, the eigenvalues and
eigenvectors are degenerated at k2

x + k2
y = k2

z /α (cf. (3.4)), and a larger kx or ky would
make the eigenvalues purely imaginary. Shen, Zhen & Fu (2018) proposed that the
non-Hermitian system loses its well-defined Chern numbers unless kz becomes complex:
with a non-zero imaginary part in kz, the frequency bands will always remain gapped
in the complex space, and the integration of the Berry curvature will give an integer
Chern number. After such a procedure, we have obtained a GBZ, using which we can treat
non-Hermitian problems under open boundary conditions as if they were under periodic
boundary conditions (Yokomizo & Murakami 2019; Yang et al. 2020; Wu et al. 2022).

For the rotating convection system, figure 1 illustrates the eigenfrequency gap opened by
introducing a complex vertical wavenumber kz with k2

z = 1 + 0.1i and α = 1. We can see
that both the real and imaginary parts of ω approach 0, but its absolute value is bounded
from below. When k2

z = 1 + εi with ε 	 1, one can asymptotically find that

|ω|gap =
√

εα

1 + α
+ h.o.t., (3.1)

where h.o.t. denotes high-order terms.
Complex kz is also physically reasonable. The top and bottom no-slip boundaries

introduce an exponential decay form to the asymptotic solutions along the z-direction
(Zhang & Liao 2009), which agrees with our numerical results in Appendix A. The choice
of a complex kz is due to the boundary conditions we have adopted: the top and bottom
surfaces are no slip and the sidewalls are smooth (where both kx and ky are real). If we
consider another scenario where the sidewalls are no slip but the upper and lower surfaces
are smooth, kx and ky need a specific imaginary part. Mathematically speaking, kz can
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Non-Hermitian Chern number in rotating convection

take real values in this case, and we can still obtain a well-defined Chern number. On the
other hand, under open boundary conditions, i.e. with external energy injection, the bulk
eigenstates of non-Hermitian systems exhibit a localized behaviour towards the boundary,
the so-called non-Hermitian skin effect (Okuma et al. 2020; Zhang, Yang & Fang 2022;
Zhang et al. 2022), which differs from the extended Bloch waves in Hermitian systems. In
our system, energy exchanges with the outsiders in the z-direction due to the temperature
difference, so we take a complex kz.

3.2. Inviscid topological invariant (E = 0)
With the GBZ where kz is complex, we can calculate the Chern number for open
boundaries through a normal process, just as we do under periodic boundary conditions.
The solutions satisfying realistic boundary conditions can be found in Appendix A. To
obtain a single-valued function when dealing with the square root, we redefine the square
root operation on the complex domain, making its value domain lie in the right half-plane
that does not include the negative imaginary axis, i.e.

√−1 = i.
We start to discuss the topological properties of the system with the simplest case E = 0.

Since kz is complex, the singularity in the eigenvalues and eigenvectors will not exist. The
Hamiltonian matrix becomes

H0 = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
kxky

k2 λ

(
1 − k2

x

k2

)
0 −α kxkz

k2

λ

(
−1 + k2

y

k2

)
−λkxky

k2 0 −α kykz

k2

λ
kykz

k2 −λkxkz

k2 0 α − α
k2

z

k2

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2)

For the eigenequation

H0ψ = ωψ, (3.3)

the non-zero eigenvalues and corresponding right eigenvectors are

ω± = ±ω0, ω0 =
√

k2
z − α(k2

x + k2
y)

k
, (3.4)

|ψ± 〉 = 1√√√√2

(
k2

z

k2
x + k2

y
− α

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

kz
(−iλky ∓ kxω0

)
k2

x + k2
y

kz
(
iλkx ∓ kyω0

)
k2

x + k2
y

±ω0

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.5)

999 A65-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.972


F. Zhang and J.-H. Xie

where k =
√

k2
x + k2

y + k2
z and k2

x + k2
y /= 0. When ρ =

√
k2

x + k2
y −→ 0, the eigenvectors

become

|ψ± 〉 = 1√
2

⎡
⎢⎣

±λi
1
0
0

⎤
⎥⎦ . (3.6)

When ρ −→ +∞, the eigenvectors are still single valued so that

|ψ± 〉 = 1√
2

⎡
⎢⎢⎢⎣

0
0

±1
i√−α

⎤
⎥⎥⎥⎦ . (3.7)

Thus, different from the shallow water model, the eigenvectors here are regular on a
compact manifold, which guarantees a well-defined Chern number without introducing
unphysical items (Tauber, Delplace & Venaille 2019).

For the eigenequation

H†
0ψ

′ = ω∗ψ ′, (3.8)

the non-zero eigenvalues and corresponding left eigenvectors are

ω∗
± = ±ω∗

0, (3.9)

〈
ψ ′

±
∣∣ = 1√√√√2

(
k2

z

k2
x + k2

y
− α

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kz

(
iλky ∓ kx

ω0

)
k2

x + k2
y

kz

(
−iλkx ∓ ky

ω0

)
k2

x + k2
y

∓ α

ω0

iα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (3.10)

when k2
x + k2

y /= 0. When ρ −→ 0, the eigenvectors become

〈
ψ ′

±
∣∣ = 1√

2

⎡
⎢⎣

∓λi
1
0
0

⎤
⎥⎦

T

. (3.11)

When ρ −→ +∞, the eigenvectors are single valued so that

〈
ψ ′

±
∣∣ = 1√

2

⎡
⎢⎣

0
0

±1
−i

√−α

⎤
⎥⎦

T

. (3.12)
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Substituting the expressions of eigenvectors in (2.15), the Berry curvature of the positive
band (associated with ω+ and ω∗+) becomes

Ωz = −λk2
z
[
ρ2k2

z + 2α
(
ρ4 + 4ρ2k2

z + 2k4
z
)− α2ρ2 (2ρ2 + k2

z
)]

2k3
(
k2

z − αρ2
)5/2 , (3.13)

where ρ =
√

k2
x + k2

y . Then the Chern number is

C = 1
2π

∫ +∞

−∞

∫ +∞

−∞
Ωz dkx dky (3.14a)

=
∫ +∞

0
ρΩz dρ (3.14b)

= λ −2k4
z + k2

z (α − 1)ρ2

2
√
ρ2 + k2

z
(
k2

z − αρ2
)3/2

∣∣∣∣∣∣
+∞

0

(3.14c)

= λ, (3.14d)

which implies the existence of topologically protected edge states only related to the
direction of fluid rotation. This is a three-dimensional version of the topologically
protected equatorial waves (Delplace et al. 2017). Under the hydrostatic approximation,
we obtain an exact two-dimensional counterpart, shown in § 5.

3.3. Topological invariant when E /= 0
This section considers E /= 0, which does not change the Chern number we obtained in
the previous subsection. Firstly, When Pr = 1, the Hamiltonian matrix H becomes

H = H0 + iE01̂, (3.15)

where H0 is the simple Hamiltonian where E = 0 and 1̂ is the unit matrix of the same
order as H0. The eigenvalues are

ω± = ±ω0 + iE0. (3.16)

It is just a shift of ±ω0, the eigenvalues of H0 and then the eigenvectors are independent of
E. Therefore, both the Berry curvature and Chern number are unchanged compared with
the case where E = 0.

When Pr /= 1, there are no simple expressions for the eigenvalues and eigenvectors, and
we need to calculate the Chern number with the help of numerical calculations, seen in
figure 2. To avoid the derivation of the eigenvectors, we rewrite (2.15) as

Ωz
n = i

∑
m /= n

〈
ψ ′

n

∣∣∣∣ ∂H
∂kx

∣∣∣∣ψm

〉 〈
ψ ′

m

∣∣∣∣ ∂H
∂ky

∣∣∣∣ψn

〉
− {x ↔ y}

(ωn − ωm)2
. (3.17)

It is similar to the Hermitian case (Xiao et al. 2010) except that the left vector takes the
biorthogonal partner. This form is very useful for numerical calculations because it can be
evaluated under an unsmooth phase choice of the eigenstates, which often occurs in the
standard diagonalization algorithms.
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Figure 2. Numerical results of the non-Hermitian Chern number. (a) Chern number with different Prandtl
numbers Pr and rotation directions λ = ±1. The upper limit of integral for ρ is kcut = 6, the k-point accuracy
per unit length is 200 (radial) * 200 (axial) using the Gauss–Legendre integration scheme. (b) Demonstrating
the numerical convergence degree with different k-point accuracies as kcut increases. Other parameters are
α = 1, E = 0.01, kz = 1 + 0.1i.

4. The stably stratified and critical cases

Even though this paper focuses on the unstably stratified convection situation, this section
shows that, when the stratification is stable, following the above-mentioned procedure, we
can obtain the same Chern number as in classic stably stratified situations (e.g. Delplace
et al. 2017). For the simple case that E = 0, when α < 0, the eigenvalues of the linearized
equations (2.2)–(2.4) are real, and the system is stable without oscillatory modes that can
grow or decay over time. At this time the discussion in the previous section where α > 0
still holds, and the system still has a non-zero Chern number C = λ. Thus, the existence
of the tenacious sidewall modes in the stratified fluid relies only on rotation, regardless of
the driving mechanism.

When α = 0, the system is in a critical neutral state, and the eigenvalues of the
Hamiltonian are

ω1 ≡ ω+ = kz

k
− iEk2, (4.1a)

ω2 ≡ ω− = −kz

k
− iEk2, (4.1b)

ω3 = −i
E
Pr

k2, (4.1c)

ω4 = −iEk2. (4.1d)

Considering the symmetry between ω+ and ω−, we have assumed that Re{kz} > 0. The
Berry curvature of band ω3 (or ω4) is 0. The Berry curvature of band ω± reads

Ωz
± = ∓λk2

x + k2
y

2kzk3 , (4.2)
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Non-Hermitian Chern number in rotating convection

which is independent of E and Pr. The integral does not converge when we evaluate the
Chern number

C± = 1
2π

∫ +∞

−∞

∫ +∞

−∞
Ωz

± dkx dky =
∫ +∞

0

∓λρ3

2kz(ρ2 + k2
z )

3/2 dρ. (4.3)

Mathematically, this is due to the degeneration of ω+ and ω− at ρ −→ +∞, which leads
to the closure of the band gap of the system. The critical case is important to show that
stratification is crucial, whether stable or unstable.

5. Hydrostatic approximation

Under the hydrostatic approximation, the z-direction momentum equation of (2.2) reduces
to

θ̂ = ip̂kz

α
. (5.1)

From (2.3) we get

ŵ = −kxû + kyv̂

kz
. (5.2)

With the wave vector ψ ≡ (û, v̂, p̂), we get the eigenequations from (2.2) and (2.4) as

H =

⎡
⎢⎢⎣

iE0 iλ kx
−iλ iE0 ky

−α kx

k2
z

−α ky

k2
z

iE1

⎤
⎥⎥⎦ , (5.3)

where E0 = −Ek2, E1 = E0/Pr. This is a non-Hermitian Hamiltonian because H /= H†,
but for the stable case where α < 0, it can be changed into a Hermitian one by replacing
the variables. If we further assume that Pr = 1, the Hamiltonian is an analogue of the
one in topological shallow water waves in Delplace et al. (2017), except for a frequency
shift. However, for the unstable case with α > 0, the non-Hermitian nature of the system
is intrinsic and cannot be turned into a Hermitian one by variable substitutions.

For the eigenequation
Hψ = ωψ, (5.4)

the eigenvalues and eigenvectors contributing to non-zero Chen numbers are (Pr = 1)

ω± = ±ω0 − iEk2, ω0 =
√

1 − α

k2
z
(k2

x + k2
y), (5.5)

|ψ± 〉 = 1√√√√2

(
k2

z

k2
x + k2

y
− α

)

⎡
⎢⎢⎢⎢⎢⎣

k2
z
(
iλky ± kxω0

)
k2

x + k2
y

k2
z
(−iλkx ± kyω0

)
k2

x + k2
y

−α

⎤
⎥⎥⎥⎥⎥⎦ . (5.6)

When ρ −→ 0, the eigenvectors become

|ψ± 〉 = 1√
2

⎡
⎣±λi

1
0

⎤
⎦ . (5.7)
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When ρ −→ +∞, the eigenvectors become

|ψ± 〉 = 1√
2

⎡
⎢⎢⎢⎢⎢⎣

±
√

k2
z

kx

ρ

±
√

k2
z

ky

ρ√−α

⎤
⎥⎥⎥⎥⎥⎦ , (5.8)

which are not single valued in different directions. In order to get a compact manifold
where the Chern number is well defined, we may need to introduce an odd viscosity term
as in the shallow water model (Tauber et al. 2019).

For the eigenequation

H†ψ ′ = ω′ψ ′, (5.9)

we have

ω′
± = ω∗

±, (5.10)

〈
ψ ′

±
∣∣ = 1√√√√2

(
k2

z

k2
x + k2

y
− α

)

⎡
⎢⎢⎢⎢⎢⎣

−iλky ± kxω0

k2
x + k2

y

iλkx ± kyω0

k2
x + k2

y

1

⎤
⎥⎥⎥⎥⎥⎦

T

. (5.11)

When ρ −→ 0, the eigenvectors become

〈
ψ ′

±
∣∣ = 1√

2

⎡
⎣∓λi

1
0

⎤
⎦

T

. (5.12)

When ρ −→ +∞, the eigenvectors become

〈
ψ ′

±
∣∣ = 1√

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

± kx

ρ

√
k2

z

± ky

ρ

√
k2

z

1√−α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.13)

The Berry curvature of the positive band (associated with ω+ and ω′+) is

Ωz = −
λα
√

k2
z(

k2
z − αρ2

)3/2 , (5.14)
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Non-Hermitian Chern number in rotating convection

where ρ =
√

k2
x + k2

y . Then the Chern number is

C = 1
2π

∫ +∞

−∞

∫ +∞

−∞
Ωz dkx dky (5.15a)

=
∫ +∞

0
ρΩz dρ (5.15b)

= −
λ
√

k2
z√

k2
z − αρ2

∣∣∣∣∣∣
+∞

0

(5.15c)

= λ. (5.15d)

In the stably stratified case, α < 0, the above calculation holds when Re{kz} /= 0; while,
in the unstably stratified case, α > 0, we need Im{kz} /= 0. If the system is neutral, α = 0,
we arrive at two gapped flat bands ω± = ±1 − iEk2, which differ from the degenerate
scenario in (4.1), and obtain C = 0 since Ωz = 0.

6. Winding number

To put the topological nature of the system into perspective, we define a complex function
in the wavenumber space (kx, ky) (cf. Zhu et al. 2023)

Ξ(k) = v̂(k)ŵ∗(k), (6.1)

where v̂ and ŵ are the second and third components of ψ(k). Using other component
combinations to define Ξ(k) should also be fine. As long as one factor is taken as its
complex conjugate, we can remove the gauge redundancy of the eigenfunctions, leaving
only the internal phase difference between the two components.

Figure 3 depicts the argument of Ξ(k), tan−1(Re{Ξ}/Im{Ξ}), whose x and y
components represent the real and imaginary parts of Ξ with a rescaled equal length.
When λ = 1, there is a vortex formed by the vector arrows going in the anticlockwise
direction, and the arrows along a closed circle smoothly wind by a phase of 2π, suggesting
a winding number of 1. Conversely, when λ = −1, there is a strain flow with the winding
number of −1.

7. Summary and discussion

In summary, we show that the linearized rotating Rayleigh–Bénard convection may
support non-Hermitian topological states characterized by a non-zero integer Chern
number. This finding is consistent with the numerical prediction by Favier & Knobloch
(2020) that the robust sidewall modes in rapidly rotating convection are topologically
protected. Due to the unstable stratification, the linear eigenvalue problem is intrinsically
non-Hermitian, so the Berry curvature is defined on biorthogonal eigenstates, and the
corresponding eigenvalues may be complex, which is very different from the Hermitian
system. Beyond the shallow water model, the eigenvectors here are regular on a compact
manifold, which guarantees a well-defined Chern number without introducing unphysical
items (Tauber et al. 2019). The emergence of these topological edge states is fundamentally
due to rotation breaking the system’s time-reversal symmetry, but stratification also plays
a crucial role: without the stratification, i.e. for the critical case, the bulk Chern number is
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Figure 3. Arrows representing argument of Ξ(k) = v̂(k) ∗ ŵ∗(k) with λ = 1 (a) and λ = −1 (b). The x and
y components of the arrow represent the real and imaginary parts of Ξ(k). The length of the arrows is rescaled
to be equal. Colours represent normalized magnitude |Ξ(k)| in arbitrary units. Other parameters are Pr = 1,
α = 0.5, kz = 1 + 0.5i.

either not well defined or equals zero. Under the hydrostatic approximation, the problem
transforms into a two-dimensional counterpart of the one that explains the topological
origin of equatorial waves (Delplace et al. 2017). Finally, an eigenvector-dependent
winding number is introduced to visualize the topological nature of the fluid. Our
conclusions hold within the specific constraints of our model, which include no-slip
boundary conditions at the top/bottom surface, and smooth walls on the sides. However,
it should be noted that we do not provide a direct proof of the explicit connection
between the non-zero Chern number and robust edge modes, although we can invoke the
Atiyah–Patodi–Singer index theorem (Fukaya, Onogi & Yamaguchi 2017; Yu, Wu & Xie
2017) to support our claims, as is common in typical condensed matter physics articles. We
acknowledge deeper exploration is needed to clarify this bulk-boundary correspondence,
which will extend our conclusions to more general boundary conditions.

Topological invariants are mathematical quantities that remain unchanged under
continuous deformations of a system. They can both qualitatively describe the topological
properties of a system (determining whether the robust sidewall states exist or not), and
quantitatively describe the system’s proximity to topological phase transitions, in other
words, the robustness level of the sidewall states. As the system parameters are tuned,
the topological invariants may change abruptly at certain critical points, signalling the
occurrence of a topological phase transition. The size of the energy gap, which is closely
related to the topological invariants, can provide a concrete metric for this proximity
(Xia et al. 2009). A larger energy gap indicates that the system is further away from the
critical point, while a smaller gap suggests the system is closer to the transition and more
susceptible to the emergence of interesting topological phenomena.

With the conclusions drawn from topology, we can avoid the secondary dynamical
details and better understand the fundamental influencing factors of the problem. In our
example, we suggested that the key factors for the existence of robust sidewall modes
are the presence of rotation and stratification, rather than the heat distribution, whether
the stratification is stable, or whether the boundaries are flat, etc. This is what previous
numerical calculations and analytical derivations could not achieve.
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Non-Hermitian Chern number in rotating convection

On the precession direction of the edge states, they are usually (not all) retrograde in
rotating convection (Zhong et al. 1991; Goldstein et al. 1993; Herrmann & Busse 1993;
Kuo & Cross 1993), but prograde both at the Earth’s equator and in the two-dimensional
fluids with odd viscosity (Delplace et al. 2017; Souslov et al. 2019). This is a result of the
combined contribution of the boundary conditions and the system parameters, especially
the effect of the Prandtl number Pr (Goldstein et al. 1994; Horn & Schmid 2017). It is
quite different from the conventional Hermitian system with periodic boundary conditions,
where the positive or negative sign of the Chen number determines the direction of the
edge states (Hasan & Kane 2010; Essin & Gurarie 2011).

The bulk-interface correspondence for equatorial waves was established by Tauber
et al. (2019) and Venaille & Delplace (2021). There, the topological edge waves are
regarded as the interface between two adjacent bulks. It is generally applicable for the
rotating convection case, when we consider the sidewall (edge) modes as interfaces
between the internal fluid (one bulk) and the sidewalls (another bulk). This reflects the
standard procedure when dealing with topologically protected edge states. According to
the principles of topology, when two bulk materials with different topological invariants
come into contact, there will always be an interface between them, which is gapless and
lacks a well-defined topological invariant. However, one point that needs to be noted is that
we are currently dealing with the bulk-edge correspondence of a non-Hermitian system,
rather than simply systems with periodic boundaries. This is an important generalization
of bulk-edge correspondence (Imura & Takane 2019; Xiao et al. 2019; Yokomizo &
Murakami 2020; Zirnstein, Refael & Rosenow 2021; Rapoport & Goldstein 2023).

For simplicity, we assume both kx and ky to be real numbers. Thus, according to the
regular formalities (Souslov et al. 2019), the non-zero Chern number we obtain describes
the topological properties of the system without boundary in the x − y plane. When there
is an impenetrable and slippery sidewall, the bulk-boundary correspondence ensures the
existence of topologically protected edge states (Essin & Gurarie 2011). When the sidewall
is no slip, we can still get a well-defined non-zero Chern number, but in this case, kx and ky
need to be taken as complex numbers (Yao et al. 2018). Despite the significant influence
of boundary conditions on the topological properties of non-Hermitian systems, we can
continue to handle the issue using the procedures under periodic boundary conditions,
thanks to the generalized Brillouin zone with complex wavenumbers (Yokomizo &
Murakami 2019; Yang et al. 2020; Wu et al. 2022).

Our definition of the non-Hermitian Berry curvature is quite traditional, but is not
necessarily the only way. There may be different ways of defining it, considering only
left eigenvalues or only right eigenvalues or switching their roles, but that does not affect
the values of their integrals, i.e. the Chern numbers (Shen et al. 2018).

Rayleigh–Bénard convection is essentially a nonlinear system, so as a complement to the
conclusions of this paper, it is necessary to continue to investigate the nonlinear effects on
the topological properties of the bulk states. We expect that weak nonlinear effects do not
destroy the topological invariance of the system, partly because the topological properties
are robust to perturbations and partly because previous numerical simulations imply this
(Favier & Knobloch 2020). For a more detailed quantitative analysis, we need to evaluate
the generalized geometric phase in the case of non-eigenstates (Liu, Wu & Niu 2003; Wu,
Liu & Niu 2005).
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Appendix A. Solutions satisfying realistic boundary conditions

Unlike in Hermitian systems, the eigenfrequencies and solutions of non-Hermitian systems
are very sensitive to the boundary conditions. For simplicity, we assume that the horizontal
direction is unbounded and the z-direction takes the no-slip boundary condition such that

u = v = w = θ = 0, on z = 0, 1. (A1)

To ensure that our analyses above match a realistic situation, we construct solutions in
the form that

φ = exp(i(kxx + kyy − ωt))
4∑

i=1

λieikziz |ψi 〉 , (A2)

where |ψi〉 is the eigenvector of Hamiltonian (3.15) corresponding to kzi. According to our
calculations above, when the system evolves along a closed path in its parameter space,
|ψ1−4〉 will all get the Berry phase of 2πλ. As a result, the solution φ also gets the same
Berry phase. For a particular frequency ω(kx, ky), kz1−4 come from the dispersion relation
that (Pr = 1)

ω =
√

k2
z − α(k2

x + k2
y)

k
− iEk2. (A3)

Generally, the solved kzi is complex, and kz3 = −kz1, kz4 = −kz2.
For the no-slip boundary condition, we have

M

⎡
⎢⎣
λ1
λ2
λ3
λ4

⎤
⎥⎦ = 0, (A4)

where

M =

⎡
⎢⎣

1 1 1 1
kz1 kz2 kz3 kz4
eikz1 eikz2 eikz3 eikz4

eikz1kz1 eikz2kz2 eikz3kz3 eikz4kz4

⎤
⎥⎦ . (A5)

To get a non-trivial solution of λi(kx, ky), we have

det(M) = 0, (A6)

and obtain that

2kz1kz2(−1 + cos kz1 cos kz2)+ (k2
z1 + k2

z2) sin kz1 sin kz2 = 0. (A7)

Obviously, kz1 = kz2 satisfies the above equation, but this will give a trivial solution
that λi(kx, ky) = 0 and we do not choose it. Combining with (A3), one can identify
the non-trivial values of kzi, ω(kx, ky) and λi(kx, ky). As an example, for parameters
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kx = ky = 0.5, α = 1 and E = 0.01, numerical calculation gives that ω ≈ 0.9903 −
0.8108i, kz1 ≈ 8.9763 − 0.0195i, kz2 ≈ 0.3998 − 0.6643i and⎡

⎢⎣
λ1
λ2
λ3
λ4

⎤
⎥⎦ = C

⎡
⎢⎣

1
0.9877 − 1.5056i
0.9188 − 0.4422i

−2.9066 + 1.9478i

⎤
⎥⎦ , (A8)

where C is an arbitrary constant.
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