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SUMMARY

Injecting drug users (IDUs) account for most new HCV infections. The objectives of this study

were: to estimate the force of infection for hepatitis C virus in IDUs within the interval-censoring

framework and to determine the impact of risk factors such as frequency of injection, drug

injected, sharing of syringes and time of first injection on the time to HCV infection. We used

data from the Amsterdam Cohort Study collected in The Netherlands and focused on those

individuals who were HCV negative upon entry into the study. Based on the results, the force of

infection was found to vary with time of first injection. The risk of infection was higher in the first

3 years of an IDU’s career, implying estimates based on single cross-sectional studies could be

biased. Frequency of injection and type of drug injected were found to be highly significant

predictors, whereas sharing syringes was not.
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INTRODUCTION

Hepatitis C is a viral infection of the liver. The virus

(HCV) was first identified in 1989. The virus, which is

spread by direct contact with infected blood, is one of

the major causes of chronic liver diseases such as cir-

rhosis and liver cancer. According to estimates of the

World Health Organization, 170 million people are

infected around the world with between 3 and 4 mil-

lion new infections each year [1]. In developed coun-

tries, 90% of persons with chronic HCV infection are

current or ever injecting drug users (IDUs), or have a

history of transfusion with unscreened blood. In ad-

dition, IDUs are also at greater risk of acquiring HIV

and other infectious diseases due to common trans-

mission routes such as sharing syringes or other in-

jecting paraphernalia.

There is a vast amount of literature dealing with the

estimation of the infection hazard, often referred to as
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the force of infection (FOI), from cross-sectional

seroprevalence surveys (see Hens et al. [2] for an

overview). In such a survey, taken at a specific calen-

dar time, each participant is tested for the presence

of infection-specific antibodies, a marker for past

infection and thus constituting current status data

on past infection. In general, the participant’s age is

considered the time at risk. However, among IDUs,

the cross-sectional sample has information on the

serostatus of each individual and the self-reported

duration of injection is usually considered as a more

precise measurement of the time at risk. A quin-

tessential assumption in the estimation of the FOI

from cross-sectionally collected seroprevalence data

is the assumption of time homogeneity, i.e. assuming

that the FOI is invariant with respect to calendar

time. This assumption can be relaxed when either a

cohort study or repeated cross-sectional studies are

available.

The Amsterdam Cohort Studies (ACS) is a pro-

spective cohort study that tested participants’ blood

for infections at each follow-up visit. Therefore, the

exact time to event is unknown but the time interval

in which the infection occurs is known. In survival

analysis, data of this type are known as type II

interval-censored data, whereas current status data

constitute type I interval-censored data [3]. In the

literature, several authors ignored the interval and

imputed the time to event T using the left, right or

midpoint value of the interval after which they applied

standard time-to-event techniques to analyse the

data. It has been shown that this approach can lead

to biased and misleading results [4] ; e.g. the right

endpoint imputation yields inflated estimates of the

risk [5]. Therefore appropriate techniques have to be

used [3].

The estimation of the FOI for HCV in the IDU

population was based previously on cross-sectional

data [6–11]. The major contribution of this paper is

the estimation of the FOI for HCV in IDUs using a

large cohort study, with more than 25 years of follow-

up, while assessing the impact of self-reported beha-

vioural risk factors (injection frequency, type of drug

injected, sharing of syringes) using an adequate stat-

istical model. Moreover, the inclusion of date of first

injection as a factor relaxes the assumption of time

homogeneity which is made when cross-sectional data

is analysed.

The paper is organized as follows. In the next

section we describe non-parametric survival

models to estimate the time to HCV infection using

interval-censored data and parametric survival mod-

els to identify potential risk factors. Next, the models

are applied to the ACS data while focusing on the

estimation of the FOI for HCV and the identification

of risk behaviour factors associated with infection.

We end with a discussion.

DATA AND METHODS

Study population and Data

The ACS of drug users is an open, prospective cohort

study initiated in 1985 to investigate the prevalence,

incidence, and risk factors of HIV infections and

other bloodborne and/or sexually transmitted dis-

eases, as well as the effects of intervention. Partici-

pation in the ACS is voluntary, and informed consent

is obtained for every individual at entry. ACS partici-

pants visit the Amsterdam Health Service every

4–6 months, they complete a standardized question-

naire about their health, risk behaviour, and socio-

demographic situation. Questions at ACS entry refer

to the 6 months preceding the visit ; questions at

follow-up refer to the interim since the preceding visit.

Blood is drawn each visit for laboratory testing and

storage. Until 2006, 1663 drug users have been in-

cluded in the ACS. The recruitment of drug users was

via methadone programmes, a sexually transmitted

diseases clinic for drug-using sex workers and by word

of mouth. A drug user was defined as an IDU if he or

she reported ever having injected drugs. [12].

Methods

Several attempts have been made to estimate the FOI

of HCV in the IDU context based on cross-sectional

data [6–11]. All authors assumed a parametric func-

tion for the prevalence and the FOI, either assessing

the impact of covariates or taking into account the

association with other viruses. The proposed methods

were applied to the binary data representing the cur-

rent status of the disease of each IDU. Diverse and

more appropriate techniques can be applied to cohort

data and therefore, given the data at hand, a survival

analysis taking into account censoring and truncation

should be considered.

Within survival analysis the main interest is in the

estimation of the time-to-event distribution and fac-

tors that affect it. One of those factors is the censor-

ing, where only partial information about the event is

known. Denote T, the time until an event occurs also
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called survival time, and d, the censoring indicator,

which takes the value 1 if the event occurs and 0 if at

the end of the study period the event has not been

observed. In that case, the subject is said to be right-

censored and the time to event T is taken to be equal

to the follow-up period. If the event of interest, in our

case infection with HCV, has occurred before the

subject enters the study, the data is left-censored.

The ACS is a follow-up study in which the exact

time to infection with the HCV virus (T) is unknown

but the time interval in which the infection occurs is

known. Allowing T to denote the time to infection

and L and R the left and right limit of the interval in

which the subject was infected gives LfTfR. For

current status data R=O for a right-censored subject

(seronegative) or L=0 for a left-censored subject

(seropositive).

The basic quantities within the survival analysis

framework are: the survival function S(t), denoting

the probability that the event does not occur before

time t, the hazard function h(t), representing the in-

stantaneous probability that the event occurs at time

t given that it has not occurred before. Related func-

tions are the cumulative distribution function F(t)=
1 – S(t) which is the probability that the event occurs

before time t, and the corresponding probability

density function f(t). The hazard function h(t) also

known as the FOI, or the intensity function, is given

by [13] :

h(t)=
f(t)

S(t)
=

f(t)

1xF(t)
: (1)

Considering the characteristics of the study popu-

lation, the time at risk is given by the self-reported

number of years injecting. That is, the time since an

IDU starts to inject drugs until he/she becomes

infected with HCV. In what follows we first discuss

non-parametric approaches to estimate the survival

function in the case of interval-censored data. We

then introduce accelerated-failure time models for

interval-censored data and estimate the FOI in the

case of interval-censored data while accounting for

behavioural risk factors and time heterogeneity.

Non-parametric estimation of the survival function

We consider a non-parametric estimate for the sur-

vival curve, using the algorithm proposed in 1976

[14] which is called a self-consistency algorithm to

obtain a non-parametric maximum likelihood esti-

mator (NPMLE) of the survival function. The interval-

censored data is treated as incomplete data and

the expectation-maximization (EM) algorithm

[15] is applied to take these incomplete data into

account.

Sun [3] describes and compares the self-consistency

algorithm with two other algorithms, the iterative

convex minorant and the EM iterative convex min-

orant algorithms. According to his results, the three

algorithms produce very similar results. In terms of

computing time, the differences were moderate.

Accelerated-failure time models

Assessing the influence of risk factors in a survival

analysis can be done within the accelerated-failure

time framework, where the time to HCV infection is

assumed to follow a specific distribution. Following

[13], we allow Y to denote the time to infection, and

consider the following linear model representation for

the logarithm of time T=lnY :

T= lnY=m+c0Z+sW, (2)

where ck=(c1, c2, …, cp) is a vector of regression

coefficients, Z is a vector of covariates and W is an

error term, assumed to follow a certain distribution.

The regression coefficients have an interpretation

similar to those in standard regression.

Under the accelerated-failure time model (2), the

hazard function for an individual with covariate Z is

related to a baseline hazard rate l0 as follows:

h (t,Z)= exp (xc0Z) l0[t exp (xc0Z)]: (3)

The factor exp(xckZ) is called the acceleration factor,

which reflects the expansion or the contraction of

survival time as a function of the covariates.

Table 1 shows the different distributions and the

corresponding hazard functions as considered in the

present study.

For the participants in the ACS, the exact time of

HCV infection is unknown. Hence we define the limits

for the interval in which an IDU became infected as

follows: for the seroconverters the lower limit of the

interval is the number of years of injection at the last

negative result for HCV whereas the upper limit is

the number of years of injection at the first positive

result ; for the individuals who were negative at the

end of follow-up the lower limit is the number of years

of injection until the last visit, and the upper limit is

infinite, i.e. :

Seroconverter: last negative test result fTf first

positive test result.

Seronegatives : last negative test result fTfO.
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Left truncation

Left truncation arises when individuals come under

observation only some known time after the natural

time origin of the phenomenon under study [13]. For

this study, the data are left-truncated as a condition

for inclusion in the study, i.e. individuals are unin-

fected at cohort entry.

To account for left truncation Pencina et al. [16]

proposed five different methods all yielding similar

results. The method employed here accounts for left

truncation by including the duration of injection at

the first visit as a covariate in the model and the re-

sults thus warrant a conditional interpretation.

RESULTS

The ACS database up to 2005 contained information

on 1206 IDUs of whom 254 lacked information about

their HCV serostatus since only those with at least

two study visits were tested for HCV [17, 18]. There

were 3, 12 and 2 individuals having zero or negative

time to infection for HIV only, HCV only, and both

HIV and HCV, respectively. Zero time to infection

implies that the year of first injection coincides with

the year of the first positive result, whereas negative

time to injection refers to individuals who had posi-

tive results before becoming IDUs. Table 2 shows the

HIV and HCV serostatus for the remaining 935 in-

dividuals. In the analysis presented in this paper we

only included individuals who were HCV negative at

study entry, totalling 165 individuals : 58 who became

seroconverters during the follow-up period and 107

who remained negative.

From this group of IDUs 66.1% were males. The

average age of first injection was 25.4 years (S.D.=7.8

years), whereas the mean age at first visit was 30 years

(S.D.=7.4 years), the mean of the follow-up time was

7.9 years (S.D.=5.4 years). Regarding the sharing of

needles, 33.5% stated sharing syringes at least once

during the follow-up period; concerning the fre-

quency of injection, 41.4% reported not recently in-

jecting at first visit, 15.4% reported using drugs >1

per day and 16.7% used drugs between 2 and 6 days

per week. The most common drug was a combination

Table 1. Force of infection and survival functions for different parametric

distributions

Distribution

Force of infection

h(t)

Survival function

S(t)

Weibull a, l>0, to0 alta–1 exp(xlta)
Log-normal
xO<a<O, b>0, to0 w ln txað Þ=b½ �

t W x ln txað Þ=b½ �
W[x(lntxa)/b]

Log-logistic a, l>0, to0 al tax1

1+lta
1

1+lta

Generalized gamma
a, b, l>0, to0

f (t)

S (t)

1xI*[lta b]

* I is the incomplete gamma function.

Table 2. Number of patients according to their serostatus for HIV and HCV

HIV status

HCV status

Negative at
the end of

follow-up

Positive
before

entry

Seroconverter
during

the study Total

Negative at end of follow-up 104 456 45 605
Positive before entry 0 240 1 241
Seroconverter during the study 3 74 12 89

Total 107 770 58 935
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of cocaine and heroin: 21.8%; followed by heroin

and cocaine use alone at 19.4% and 8.5%, respect-

ively. Individuals started injecting drugs between 1962

and 1980 (12.7%), 1981 and 1990 (43.6%), and 1991

and 2002 (43.6%).

Clearly frequency of injection and type of drug are

subject to change during the injecting career ; Table 3

shows values at entry and at the last follow-up visit.

In order to simplify the model, we considered the re-

sponses provided in the first follow-up visit.

Figure 1 shows the NPMLE for the survival curve

[3]. Clearly, the longer the duration of injecting at first

visit the longer the time to HCV infection during

follow-up. The figure illustrates that it is important to

not ignore the issue of left truncation as the NPMLE

changes according to the level of duration of injecting

at first visit.

Table 4 shows the different parametric models with

their Akaike’s Information Criterion (AIC) values,

favouring the generalized gamma model. Therefore,

we retained this model as the best model among the

set of candidate models.

Considering the parametric distributions as intro-

duced above, we performed simple (single covariate)

Table 3. Descriptive statistics for injecting drug users

Individuals (n=165) n (%) n (%)

HCV
No 107 64.85

Yes 58 35.15

Sharing syringes
Yes 109 66.46
No 55 33.54

Year first injection

1962–1980 21 12.73
1981–1990 72 43.64
1991–2002 72 43.64

Gender

Male 109 66.06
Female 56 33.94

First follow-up visit Last follow-up visit

Frequency of injection
No recent injections 67 41.36 114 71.70

>1 per day 25 15.43 10 6.29
Once daily 1 0.62 2 1.26
2–6 days per week 27 16.67 9 5.66

Once per week 3 1.85 3 1.89
2–3 days per month 10 6.17 8 5.03
1 day per month 5 3.09 1 0.63

<1 day per month 24 14.81 12 7.55

Drug of injection
No recent injections 67 40.61 114 69.09
Heroin 32 19.39 14 8.48

Cocaine 14 8.48 5 3.03
Cocaine and heroin 36 21.82 21 12.73
Amphetamine 6 3.64 4 2.42
Methadone 5 3.03 1 0.61

Unknown drug
of injection

5 3.03 6 3.64

Mean Standard deviation

Duration of injection
at first visit

4.59 5.14

Duration of injection

at last visit

12.44 7.43
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analyses with each of the behavioural risk factors

(sharing syringes, frequency of injection, main drug

injected) and year of first injection. For each of the

models we compared the different distributions in

terms of AIC and the likelihood ratio test (results not

shown) and found the generalized gamma to be the

best distribution for most of the models.

The effect of sharing syringes

To assess the impact of sharing syringes we took

into account all responses of the individual during

the follow-up period, which include information on

receptive sharing. Modelling the effect of sharing

syringes using the accelerated-failure time model was

done by extending model (2), including whether the

IDU shared syringes (Z=1) or not (Z=0), where c is

the regression coefficient quantifying the effect of

sharing syringes on HCV infection time and W is the

error term. Hence, the FOI is given by:

h(t,Z)=l(t,Z)

=

exp xcð Þl0 t exp xcð Þð Þ

for those who share syringes

l0 tð Þ for those who share syringes:

8><
>: (4)

Under the accelerated-failure model, the relationship

between the survival functions is as follows:

S(t j sharing)=S(t exp (xc) j (no sharing),

rfor all t, (5)

implying that the median infection time of those

IDUs who share syringes (Z=1) is exp(c) times the

median infection time of those IDUs who do not

share. Or equivalently, the median survival time of

those IDUs not sharing syringes (Z=0) is exp(xc)

times the median survival time of those who do share.

The acceleration factor, for those who share

syringes compared to those who do not, equals ex-

p(xc)=exp(0.22)=1.25 and thus the median time to

HCV infection for an IDU who does not share is es-

timated to be 1.2 times longer than that of an IDU

0 5

Duration <1 year
Duration 1–5 years
Duration 6–10 years
Duration >10 years

0·0

0·2

0·4

0·6

0·8

1·0

10 15

Years of injecting drugs

S
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vi
va

l f
un

ct
io

n

20 25 30

Fig. 1. Non-parametric maximum likelihood estimator of the survival function for different levels of duration of injection

at first visit.

Table 4. Parametric models for time to HCV infection,

including only duration of injection at first visit

Model Log likelihood AIC

Weibull x235.904 477.807
Log-logistic x229.367 464.733

Log-normal x226.057 458.113
Generalized gamma x212.282 432.564

AIC, Akaike’s Information Criterion.
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sharing syringes. The acceleration factor is adjusted

by the duration of injection at the first visit in order to

account for left truncation.

Frequency of injection

The frequency of injection at first follow-up visit has

eight categories : no recent injections, <1 day per

month, 1 day per month, 2–3 days per month, once

weekly, 2–6 days per week, once daily, and >1 time

per day. We consider a categorization based on four

groups: no recent injections (0) ; <1 day per month, 1

day per month, and 2–3 days per month (1) ; once

weekly and 2–6 days per week (2) ; and once daily

and >1 time per day (3). The results are shown

in Table 5.

In this model, significant differences were found

between the baseline category (no recent injections)

and the remaining three categories. Moreover, we

observed a trend in the estimates: when the frequency

of injection increases, the acceleration factor in-

creases.

Table 5. Single covariate gamma parametric models for the different risk factors accounting for left truncation

Parameter n Estimate (S.E.) P value AF 95% CI for AF

Model with sharing syringes (AIC 432.682)

Intercept 0.310 (0.407) 0.4468

Sharing syringes: yes 55 x0.220 (0.174) 0.2065 1.246 0.886–1.752
Sharing syringes: no 109 0.000 1.000
Duration of injection at first visit 0.252 (0.019) <0.0001 0.777 0.749–0.806

Scale 0.707 (0.339)
Shape x4.016 (2.493)

Model with frequency of injection at first visit (AIC 416.824)
Intercept 1.573 (0.317) <0.0001
<1 day per month, 1 day per month,

2–3 days per month

39 x0.881 (0.271) 0.0011 2.412 1.419–4.101

Once weekly, 2–6 days per week 30 x0.957 (0.274) 0.0005 2.604 1.523–4.452
Once daily, >1 time per day 26 x1.163 (0.317) 0.0002 3.200 1.719–5.956

No recent injections 67 0.000 (0.000) 1.000
Duration at first visit 0.220 (0.026) <0.0001 0.803 0.763–0.845
Scale 0.970 (0.123)

Shape x1.902 (0.491)

Model with drug injected at first visit (AIC 426.143)

Intercept 1.550 (0.357) <0.0001
Heroin 32 x0.780 (0.270) 0.0039 2.181 1.284–3.705

Cocaine 14 x1.227 (0.373) 0.0010 3.412 1.643–7.088
Heroin and cocaine 36 x0.943 (0.291) 0.0012 2.569 1.451–4.546
Other 16 x1.067 (0.338) 0.0016 2.907 1.500–5.633
No recent injections 67 0.000 (0.000) 1.000

Duration of injection at first visit 0.219 (0.026) <0.0001 0.803 0.76–0.845
Scale 0.954 (0.127)
Shape x1.931 (0.653)

Model including year of first injection (AIC 495.676)

Intercept x0.075 (0.203) 0.7107
First injection 1962–1980 21 2.216 (0.142) <0.0001 0.109 0.083–0.144
First injection 1981–1990 72 x0.089 (0.144) 0.5378 1.093 0.824–1.449

First injection 1991–2002 72 0.000 (0.000) 1.000
Scale 0.477 (0.302)
Shape x11.280 (7.063)

Model including duration of injection at first visit (AIC 432.564)

Intercept 0.153 (0.320) 0.6326
Duration of injection at first visit 165 0.262 (0.016) <0.0001 0.770 0.746–0.795
Scale 0.689 (0.293)
Shape x4.212 (2.241)

S.E., Standard error; AF, acceleration factor; CI, confidence interval ; AIC, Akaike’s Information Criterion.
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For instance the acceleration factor for an IDU

injecting o1 per day is exp(1.16)=3.2, resulting in a

threefold increase in median time to HCV infection

for an IDU not injecting recently compared to one

who injects o1 per day. Similarly, the acceleration

factor for the first and the second group are

exp(0.88)=2.4 and exp(0.96)=2.6, respectively, lead-

ing to similar conclusions.

Drug of injection

There are seven categories for drug of injection: no

recent injections, heroin, cocaine, combination of

heroin and cocaine, amphetamine, methadone, and

recent IDU with unknown drug of injection. Due

to the small number of individuals in the last three

categories we recombined them. The results of the

model are shown in Table 5.

The baseline class is no recent injections. Clearly

the acceleration factor for injecting any drug com-

pared to not injecting is very high. For instance, the

acceleration factor for heroin (alone) is exp(0.78)=
2.2, i.e. the median time to HCV infection for IDUs

with no recent injections is twice the median time to

HCV infection of those who inject heroin. The re-

maining three acceleration factors are quite large too,

with 3.4 for those who inject cocaine, 2.6 for the com-

bination of heroin and cocaine and 2.9 for those who

inject amphetamine, methadone or are recent IDUs.

Time-dependent FOI

The models discussed above assume that the baseline

hazard depends on the length of the injecting career

of the IDU. In this section we include calendar time

of first injection as a covariate in order to investigate

if the risk of infection for IDUs changes with time.

We consider a categorical variable with three time

categories.

Zi=
1 if first injection between 1962�1980
2 if first injection between 1981�1990 and
3 if first injection between 1991�2002

8<
:

The hazard for this model is given by

l(t,Zi)= exp (xcj)l0(t exp (xcj)), (6)

where cj is the effect of time group j=1 and 2 on

the hazard rate. Since the model includes a time

effect it does not assume time homogeneity (i.e. the

assumption that the disease is in a steady state). This

is in contrast with models for current status data

for which one of the model assumptions is time

homogeneity.

The parameter estimates for the generalized gamma

model are shown in Table 5, the reference group is

1991–2002. The acceleration factor for IDUs with

first injection before 1980 compared to IDUs who

first injected in 1991–2002 equals exp(x2.2)=0.11.

Hence, the median HCV infection time for IDUs

starting to inject in 1991–2002 is about one-tenth of

the median HCV infection time of IDUs who started

injecting between 1962 and 1980 and were still HCV

negative at cohort entry after 1985. This variable is

negatively correlated with the duration of injection at

first visit and was therefore not considered in the

multiple risk factor model. Note that caution should

be taken when interpreting the results of this particu-

lar analysis because the omission of adjustment by

left truncation is not explicitly taken into account;

moreover, the calendar time is likely to be strongly

influenced by the recruitment procedure.

Table 6. Multiple covariates generalized gamma model for all risk factors (AIC: 416.938)

Risk factor Parameter Estimate P value AF 95% CI for AF

Intercept 1.815 (0.329) <0.0001
Drug of injection Heroin x0.776 (0.287) 0.0069 2.172 1.237–3.814

At first visit Cocaine x1.573 (0.412) 0.0001 4.820 2.151–10.801
Heroin and cocaine x1.160 (0.306) 0.0002 3.190 1.750–5.813
Other x1.138 (0.348) 0.0011 3.120 1.577–6.174

No recent injections 0.000 1.000

Frequency of injection Frequency of injection at first visit 0.010 (0.007) 0.1293 0.990 0.977–1.003
Duration of injection Duration of injection at first visit 0.204 (0.027) <0.0001 0.815 0.774–0.859
Sharing syringes Sharing syringes : yes x0.331 (0.203) 0.1024 1.393 0.936–2.073

Sharing syringes : no 0.000 1.000

Scale 0.957 (0.118)
Shape x1.701 (0.471)

AIC, Akaike’s Information Criterion; AF, acceleration factor; CI, confidence interval.
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Figure 2 shows the behaviour of the FOI

according to the duration of injection at first visit.

The acceleration factor is equal to 0.77, reflecting

the fact that those with lengthy exposure times prior

to entering the cohort as negative are lower-risk

IDUs.

Predictions in terms of survival probabilities based

on the models presented in Table 5 are available in the

online Supplementary Appendix.

Model including several risk factors

Finally we consider a multiple risk factor model, all

the risk factors from the single covariate models were

included when at least one of their categories was

significant (Table 6).

Comparing the results of the multiple risk

factor model with the results of the single risk factor

models, the covariates which turn out to be non-

significant are sharing syringes and frequency of

injection. The acceleration factor for heroin is 2.2,

for cocaine 4.8, for the combination of those two

3.2 and for other drugs 3.1. Clearly, current IDUs

have a higher risk than non-recent IDUs for HCV

infection.

DISCUSSION

In our study we found a higher risk of HCV infection

in the first 3 years of an IDU’s career, this is in accord

with other studies [9, 10, 17, 18]. Drug of injection was

associated with HCV seroconversion but sharing syr-

inges was not. Our findings provide important ad-

ditional evidence that it is crucial to target HCV

prevention to new injectors as soon as they start to

inject and that any efforts to reduce incidence needs

to take recent injectors into account. However, since it

might be difficult to find these recent injectors ad-

ditional efforts are needed to prevent the transition to

injecting drug use in non-IDUs.

Previous work focused on the estimation of the FOI

for HCV in the IDU context based on cross-sectional

data thereby relying on time homogeneity. Our study

focuses on estimating the FOI based on cohort data,

taking into account risk factors as well as the com-

plexities inherent to this type of data while relaxing

the time homogeneity assumption. This approach is

innovative in the field and it is reassuring to conclude

that previous findings can be confirmed.

The ACS is a valuable and unique source of infor-

mation because it includes a follow-up of IDUs of
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Fig. 2. Force of infection according to duration of injection at first visit.
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more than 20 years, in this sense it allows us to test

one crucial assumption that is frequently made and

untested when we analyse current status data, i.e. time

heterogeneity. In fact, some studies have confirmed a

decrease in risk behaviour and in the prevalence and

incidence of HCV [17–19]. Furthermore, a declining

trend of injection in groups of drug users, with low or

declining rates of injection have been described in

opioid users in several European countries although

differences between countries are large [20] ; specifi-

cally in Amsterdam [17–19, 21, 22], notably the de-

crease in HCV seroprevalence due to the unpopularity

of injecting in drug users and the success of preven-

tion campaigns.

For this study we use interval-censored data meth-

odology, which takes into account the uncertainty

about the exact time to event. The non-parametric

estimates show the highest risk of HCV infection is in

the first 3 years of injection; based on the parametric

models there is an effect of frequency of injection and

drug of injection.

The fact that frequency of injection and drug of

injection were significant risk factors is consistent

with previous studies [17, 18, 23–26]. It reflects the

cumulative exposure to infected needles and injection

paraphernalia. On the other hand, sharing syringes

was not identified as a risk factor; a similar result to

that observed in Van de Laar et al. [19].

Future analyses should include the combined

analysis of both HIV and HCV infections considering

the time at risk for each of them; this can be done

using frailty models considering the bivariate type of

data. The general idea is to specify latent variables

which act multiplicatively over the baseline hazard,

and reflect how frail an individual is for acquiring the

infections. The frailty could be shared when one latent

variable is considered per individual or correlated

when a joint latent distribution for both infections is

assumed. An illustration of the use of shared frailty

models on current status data for hepatitis B and C

has been reported [10] ; and also for hepatitis B and C

and HIV infection in [11] and for hepatitis A and B

with correlated frailties [27].

In terms of study population, further research could

include all IDU participants in the ACS. In terms of

modelling, we did not take into account all the values

of the time-dependent covariates during the follow-

up, therefore more complex models can be developed;

moreover, a more flexible approach could use splines

to incorporate the duration of injection at first visit.

Those issues are beyond the scope of this paper.

NOTE

Supplementary material accompanies this paper on

the Journal’s website (http://journals.cambridge.org/

hyg).
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