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Abstract

In this paper we consider the stationary Poisson Boolean model with spherical grains and
propose a family of nonparametric estimators for the radius distribution. These estimators
are based on observed distances and radii, weighted in an appropriate way. They are ratio
unbiased and asymptotically consistent for a growing observation window. We show
that the asymptotic variance exists and is given by a fairly explicit integral expression.
Asymptotic normality is established under a suitable integrability assumption on the
weight function. We also provide a short discussion of related estimators as well as a
simulation study.
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1. Introduction

We consider a stationary random closed set Z in R
d (d ≥ 2) which is given as a union of

random balls of the form

Z :=
⋃
n≥1

B(ξn, Rn), (1.1)

where B(x, r) is the closed Euclidean ball with radius r ≥ 0 centered at x ∈ R
d , � := {ξn : n ≥

1} is a stationary Poisson point process on R
d , and the sequence (Rn)n≥1 is independent of �

and formed by independent nonnegative random variables with common distribution G. Let
R be a generic random variable with distribution G. We will always assume that it has a finite
2dth moment, that is,

ER2d < ∞.
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Figure 1: A simulated realization of a planar stationary Boolean model Z with spherical grains observed
in a rectangular observation window. The symbol d denotes dB2 (x, Z) and r stands for rB2 (x, Z).

Definition (1.1) provides an important model in stochastic geometry with numerous applications
in, e.g. physics and materials science. The set Z is called a stationary Boolean model with
spherical grains. A simulated realization for d = 2 is shown in Figure 1.

It is a fundamental statistical problem to retrieve information on G based on an observation
of Z in a bounded window W . Our aim in this paper is to propose and study a family of
nonparametric estimators of G. The nonparametric estimation of the radius distribution G has
been studied before; see [4]–[6, Chapter 5.6], [19], [21], [25], or [26]. In [21] a kernel estimator
is obtained by the method of tangent points. The asymptotic properties of this estimator are
studied in [12]. For earlier work on statistics for the Boolean model, we refer the reader to [3,
Chapter 3.4], [20], and the references therein.

In the following we assume that all random elements are defined on an underlying probability
space (�, F , P). For a Borel set A ⊂ R

d , we write �(A) := card{n ≥ 1 : ξn ∈ A}, and assume
that � has a positive and finite intensity

γ := E�([0, 1]d).

Throughout the paper, let B be a compact convex set which contains the origin o and a
nondegenerate segment. We call B the structuring element or gauge body, but we point out that
B need not be centrally symmetric or full dimensional. The B-distance from a point x ∈ R

d to
a set A ⊂ R

d is

dB(x, A) := inf{r ≥ 0 : (x + rB) ∩ A �= ∅} ∈ [0, ∞].
Clearly, if o ∈ int B, and A is nonempty and closed, then the infimum is a minimum. The most
common structuring element is the Euclidean unit ball B(o, 1), for which we also write Bd

and which is based on the Euclidean norm denoted by ‖ · ‖. For given x /∈ Z, almost surely,
dB(x, Z) < ∞ whenever R satisfies P(R > 0) > 0. We always assume that this condition
is fulfilled. Then, almost surely, there is a unique n ∈ N (that is, a ball B(ξn, Rn)) such that
(x + dB(x, Z)B) ∩ B(ξn, Rn) �= ∅ (see [14, Lemma 3.1] or [24, Lemma 9.5.1]). In this case,
we define rB(x, Z) as Rn. In Figure 1 we illustrate the definitions of dB(x, Z) and rB(x, Z)

for x /∈ Z and B = B2.
For s, r ≥ 0, we write Bs,r := sB ⊕ rBd = {sx + ry : x ∈ B, y ∈ Bd} for the Minkowski

sum of sB and rBd . Let |A|d denote the d-dimensional Lebesgue measure of a set A ⊂ R
d , let
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κk := |Bk|k = πk/2/�(1 + k/2) denote the volume of the k-dimensional unit ball, and write
Vj (B) for the j th intrinsic volume of B (see [24, Chapter 14.3]). Then, for t ∈ R

+ := [0, ∞),
the empty space function FB of Z is given by

FB(t) := P(dB(o, Z) ≤ t)

= P(Z ∩ tB �= ∅)

= 1 − exp{−γ E|Bt,R|d}

= 1 − exp

{
−γ

d∑
j=0

κd−jVj (B)tjERd−j

}
. (1.2)

The empty space function is a useful summary statistic of random sets (see [3] and [8]). In
the case of a strictly convex gauge body B a detailed study of FB for (nonstationary) germ–
grain models can be found in [13]. We denote the complementary empty space function by
F̄B(t) := 1 − FB(t). As a consequence of [14, Theorem 3.2], for all measurable functions
g̃ : [0, ∞] × R

+ → R
+ such that g̃(0, r) = g̃(∞, r) = 0, r ∈ R

+, and all x ∈ R
d , we obtain

Eg̃(dB(x, Z), rB(x, Z)) = γ

∫ ∞

0

∫ ∞

0
g̃(t, r)hB(t, r)F̄B(t) dt G(dr) (1.3)

with

hB(t, r) :=
d−1∑
j=0

(j + 1)κd−1−jVj+1(B)rd−1−j tj

for t, r ∈ [0, ∞); see also [24, Theorem 9.5.2]. Note that on the left-hand side of (1.3) the
restriction to {0 < dB(x, Z) < ∞} is expressed by the condition g̃(0, r) = g̃(∞, r) = 0.

For Borel sets C ⊂ R
+ and A ⊂ R

d , and a measurable function f : [0, ∞] → R
+ with

f (0) = f (∞) = 0, we define a random measure ηA by

ηA(C) :=
∫

A

1{rB(x, Z) ∈ C}f (dB(x, Z))hB(dB(x, Z), rB(x, Z))−1 dx, (1.4)

where 1{·} denotes the indicator function. Here we set 0/0 := 0. Thus, in particular, the
integration effectively extends over the complement Zc := {x ∈ R

d : dB(x, Z) > 0} of Z.
Throughout the paper, we will assume that

0 < β :=
∫ ∞

0
f (t)F̄B(t) dt < ∞. (1.5)

In view of (1.2) this is a rather weak assumption on f . Moreover, we assume that the origin
is an interior point of B if P(R = 0) > 0. This assumption ensures that hB(t, r) > 0 for
t ∈ (0, ∞) and G-almost all r ∈ R

+. By Fubini’s theorem and (1.3), we obtain

EηA(C) = γ β |A|d G(C). (1.6)

Consider a compact convex observation window W ⊂ R
d with |W |d > 0. We propose a

nonparametric estimator Ĝ for G based on the information contained in the data

{(dB(x, Z), rB(x, Z)) : x ∈ W \ Z}.
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Note that this data may also require information from outside W . The estimator is given by

Ĝ(C) := ηW (C)

ηW (R+)
, (1.7)

where C ⊂ R
+ is a Borel set. If the denominator in (1.7) is 0 then the numerator is 0 as well,

and we use the convention 0/0 := 0. From (1.6) we see that EηW (C) = γ β |W |d G(C) and
EηW (R+) = γ β |W |d . This means that Ĝ is a ratio-unbiased estimator of G.

The paper is organized as follows. In Section 2 we study second-order properties of (1.4).
Our Theorem 2.1 shows that the asymptotic variance exists, is positive, and is given by a fairly
explicit integral expression. The proof is provided in Appendix A. Consequently, estimator
(1.7) is asymptotically weakly consistent as the compact convex observation window W is
expanding. Strong consistency follows from the spatial ergodic theorem. Section 3 contains
the proof of asymptotic normality (see Theorem 3.2) under an integrability assumption on the
function f . The proof of Theorem 3.2 is essentially based on the asymptotic normality of (1.4)
established in Appendix B. In Section 4 we consider the estimator Ĝ in the plane and for the
spherical case (B = B(o, 1)) as well as for the linear case (B a segment). We also discuss
some related estimators. A simulation study is performed to compare the behavior of different
(discrete) versions of these estimators of the radius distribution G.

2. Second-order properties

For a Borel set A ⊂ R
d , we define the restricted Boolean model as

Z(A) :=
⋃

{n : ξn∈A}
B(ξn, Rn).

Clearly, Z(A) is not stationary unless A = R
d . Furthermore, for t ∈ R

+, the complementary
empty space function of Z(A) with respect to x ∈ R

d is defined by

F̄ A
B (x; t) := P(dB(x, Z(A)) > t)

= P((x + tB) ∩ Z(A) = ∅)

= E

∏
n≥1

(1 − 1{(x + tB) ∩ B(ξn, Rn) �= ∅}1{ξn ∈ A})

= exp

{
−γ E

∫
Rd

1{(x + tB) ∩ B(y, R) �= ∅}1{y ∈ A} dy

}
= exp{−γ E|(x + Bt,R) ∩ A|d}.

In particular, we have F̄R
d

B (x; t) = F̄B(t).
For Borel sets A1, A2 ⊂ R

d and t1, t2 ∈ R
+, it will be convenient to introduce the

complementary second-order empty space function with respect to x1, x2 ∈ R
d as

F̄
A1,A2
B (x1, x2; t1, t2) := P(dB(x1, Z(A1)) > t1, dB(x2, Z(A2)) > t2)

= P((x1 + t1B) ∩ Z(A1) = ∅, (x2 + t2B) ∩ Z(A2) = ∅)

= E

∏
n≥1

(1 − 1{(x1 + t1B) ∩ B(ξn, Rn) �= ∅}1{ξn ∈ A1})

× (1 − 1{(x2 + t2B) ∩ B(ξn, Rn) �= ∅}1{ξn ∈ A2})
= exp{−γ E|((x1 + Bt1,R) ∩ A1) ∪ ((x2 + Bt2,R) ∩ A2)|d}.

(2.1)

This function is related to the second-order contact distribution function studied in [1].
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In order to obtain a more concise statement in Lemma 2.1 below (and again in the proof
of Theorem 3.1 below), for given Borel sets A1, A2 ⊂ R

d , we introduce two functions,
I1(A1, A2) and I2(A1, A2), depending on the arguments (x1, x2, y, r) ∈ (Rd)3 × R

+ and
(x1, x2, y1, y2, r1, r2) ∈ (Rd)4 × (R+)2, respectively, defined by

I1(A1, A2)(x1, x2, y, r) := 1{y ∈ A1 ∩ A2}F̄ A1,A2
B (x1, x2; dB(x1, B(y, r)), dB(x2, B(y, r)))

and

I2(A1, A2)(x1, x2, y1, y2, r1, r2)

:= 1{y1 ∈ A1}1{y2 ∈ A2}[(1 − 1{y2 ∈ A1}1{dB(x1, B(y2, r2)) ≤ dB(x1, B(y1, r1))})
× (1 − 1{y1 ∈ A2}1{dB(x2, B(y1, r1)) ≤ dB(x2, B(y2, r2))})
× F̄

A1,A2
B (x1, x2; dB(x1, B(y1, r1)), dB(x2, B(y2, r2)))

− F̄
A1
B (x1; dB(x1, B(y1, r1)))F̄

A2
B (x2; dB(x2, B(y2, r2)))].

If the arguments of these two functions are clear from the context, they are sometimes omitted.

Lemma 2.1. Let A1, A2 ⊂ R
d be Borel sets, and let x1, x2 ∈ R

d . If g̃ : [0, ∞] × R
+ → R

+
is a measurable function with g̃(0, r) = g̃(∞, r) = 0 for r ∈ R

+, then

cov(g̃(dB(x1, Z(A1)), rB(x1, Z(A1))), g̃(dB(x2, Z(A2)), rB(x2, Z(A2))))

= γ

∫ ∞

0

∫
Rd

g̃(dB(x1, B(y, r)), r)g̃(dB(x2, B(y, r)), r)I1(A1, A2)(x1, x2, y, r) dy G(dr)

+ γ 2
∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

g̃(dB(x1, B(y1, r1)), r1)g̃(dB(x2, B(y2, r2)), r2)

× I2(A1, A2)(x1, x2, y1, y2, r1, r2) dy1 dy2 G(dr1) G(dr2).

Proof. For n ∈ N, x ∈ R
d , and i ∈ {1, 2}, we define the event

D(i)
n (x) :=

{
dB

(
x,

⋃
{k �=n : ξk∈Ai }

B(ξk, Rk)

)
> dB(x, B(ξn, Rn))

}
.

Then

Eg̃(dB(x1, Z(A1)), rB(x1, Z(A1)))g̃(dB(x2, Z(A2)), rB(x2, Z(A2)))

= E

∑
{n : ξn∈A1}

∑
{m : ξm∈A2}

1
D

(1)
n (x1)∩D

(2)
m (x2)

g̃(dB(x1, B(ξn, Rn)), Rn)

× g̃(dB(x2, B(ξm, Rm)), Rm)

= E

∑
{n : ξn∈A1∩A2}

1
D

(1)
n (x1)∩D

(2)
n (x2)

g̃(dB(x1, B(ξn, Rn)), Rn)g̃(dB(x2, B(ξn, Rn)), Rn)

+ E

∑ ∑
{n�=m : ξn∈A1,ξm∈A2}

1
D

(1)
n (x1)∩D

(2)
m (x2)

g̃(dB(x1, B(ξn, Rn)), Rn)

× g̃(dB(x2, B(ξm, Rm)), Rm)

=: J1 + J2.
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Applying Mecke’s formula (see [24, Corollary 3.2.3]), we obtain

J1 = γ

∫ ∞

0

∫
A1∩A2

g̃(dB(x1, B(y, r)), r)g̃(dB(x2, B(y, r)), r)

× P(dB(x1, Z(A1)) > dB(x1, B(y, r)),

dB(x2, Z(A2)) > dB(x2, B(y, r))) dy G(dr)

and

J2 = γ 2
∫ ∞

0

∫ ∞

0

∫
A2

∫
A1

g̃(dB(x1, B(y1, r1)), r1)g̃(dB(x2, B(y2, r2)), r2)

× E[1{dB(x1, Zy2(A1)) > dB(x1, B(y1, r1))}
× 1{dB(x2, Zy1(A2)) > dB(x2, B(y2, r2))}]

× dy1 dy2 G(dr1) G(dr2),

where Zy2(A1) = Z(A1) ∪ B(y2, r2) if y2 ∈ A1 and Zy2(A1) = Z(A1) if y2 /∈ A1.
Analogously, Zy1(A2) = Z(A2) ∪ B(y1, r1) if y1 ∈ A2 and Zy1(A2) = Z(A2) if y1 /∈ A2.
Hence,

J2 = γ 2
∫ ∞

0

∫ ∞

0

∫
A2

∫
A1

g̃(dB(x1, B(y1, r1)), r1)g̃(dB(x2, B(y2, r2)), r2)

× (1 − 1{y2 ∈ A1}1{dB(x1, B(y2, r2)) ≤ dB(x1, B(y1, r1))})
× (1 − 1{y1 ∈ A2}1{dB(x2, B(y1, r1)) ≤ dB(x2, B(y2, r2))})
× P(dB(x1, Z(A1)) > dB(x1, B(y1, r1)),

dB(x2, Z(A2)) > dB(x2, B(y2, r2))) dy1 dy2 G(dr1) G(dr2).

Finally,

Eg̃(dB(x1, Z(A1)), rB(x1, Z(A1)))

= E

∑
{n : ξn∈A1}

1
D

(1)
n (x1)

g̃(dB(x1, B(ξn, Rn)), Rn)

= γ

∫ ∞

0

∫
A1

g̃(dB(x1, B(y1, r1)), r1)F̄
A1
B (x1; dB(x1, B(y1, r1))) dy1 G(dr1).

This completes the proof of Lemma 2.1.

Our aim is to analyze the second-order properties of the random measure ηA given by (1.4).
For this reason, we work with the complementary second-order empty space function (2.1).
For A1 = A2 = R

d , t1, t2 ∈ R
+, and u = x2 − x1, by the stationarity of Z, this function turns

into

F̄
(2)
B (u; t1, t2) := P(dB(o, Z) > t1, dB(u, Z) > t2)

= exp{−γ E|Bt1,R ∪ (u + Bt2,R)|d}
= F̄B(t1)F̄B(t2) exp{γ EκB(u; t1, t2, R)}, (2.2)

where
κB(u; t1, t2, r) := |Bt1,r ∩ (u + Bt2,r )|d .
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Observe that, for any u ∈ R
d and t1, t2 ∈ R

+, we have

F̄
(2)
B (u; t1, t2) ≥ F̄B(t1)F̄B(t2) (2.3)

and

F̄
(2)
B (u; t1, t2) ≤ exp

{
−γ

2
E(|Bt1,R|d + |Bt2,R|d)

}
=

√
F̄B(t1)F̄B(t2). (2.4)

These inequalities will be used subsequently. In addition, we will need the assumption that∫ ∞

0
f (t) e−ct dt < ∞, (2.5)

where c := 4−1γ κd−1V1(B)ERd−1 < ∞ and c > 0 since V1(B) > 0 (recall that B contains a
nondegenerate line segment) and P(R > 0) > 0.

Proposition 2.1. Assume that (2.5) is satisfied. If C ⊂ R
+ is a Borel set and W1, W2 ⊂ R

d

are compact convex sets, then

cov(ηW1(C), ηW2(C)) =
∫

Rd

|W1 ∩ (W2 − u)|d [γ τ1(C, u) + γ 2τ2(C, u)] du,

where

τ1(C, u) :=
∫

C

∫
Rd

f (dB(x, B(o, r)))

hB(dB(x, B(o, r)), r)

f (dB(u + x, B(o, r)))

hB(dB(u + x, B(o, r)), r)

× F̄
(2)
B (u; dB(x, B(o, r)), dB(u + x, B(o, r))) dx G(dr) (2.6)

and

τ2(C, u) :=
∫

C

∫
C

∫
Rd

∫
Rd

f (dB(x1, B(o, r1)))

hB(dB(x1, B(o, r1)), r1)

f (dB(x2, B(o, r2)))

hB(dB(x2, B(o, r2)), r2)

× q(u; x1, x2, r1, r2) dx1 dx2 G(dr1) G(dr2) (2.7)

for u ∈ R
d , and

q(u; x1, x2, r1, r2) := 1{dB(x2, B(u, r2)) > dB(x1, B(o, r1))}
× 1{dB(x1, B(−u, r1)) > dB(x2, B(o, r2))}
× F̄

(2)
B (u; dB(x1, B(o, r1)), dB(x2, B(o, r2)))

− F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2))) (2.8)

for x1, x2 ∈ R
d and r1, r2 ∈ R

+.

Proof. To abbreviate the notation, we define the function

g(t, r) := 1{r ∈ C}f (t)hB(t, r)−1 (2.9)

for t ∈ [0, ∞] and r ∈ R
+, with the previous conventions in the cases where t ∈ {0, ∞}.

Recall also that hB(t, r) > 0 for t ∈ (0, ∞) and G-almost all r ∈ R
+. Using Fubini’s theorem

and stationarity, we obtain

cov(ηW1(C), ηW2(C))

=
∫

W1

∫
W2

cov(g(dB(x1, Z), rB(x1, Z)), g(dB(x2, Z), rB(x2, Z))) dx2 dx1

=
∫

Rd

|W1 ∩ (W2 − u)|d cov(g(dB(o, Z), rB(o, Z)), g(dB(u, Z), rB(u, Z))) du.
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By Lemma 2.1 with A1 = A2 = R
d , x1 = o, and x2 = u, we obtain

cov(g(dB(o, Z), rB(o, Z)), g(dB(u, Z), rB(u, Z))) = J1(u) + J21(u) − J22,

where

J1(u) := γ

∫ ∞

0

∫
Rd

g(dB(o, B(x, r)), r)g(dB(u, B(x, r)), r)

× F̄
(2)
B (u; dB(o, B(x, r)), dB(u, B(x, r))) dx G(dr),

J21(u) := γ 2
∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

g(dB(o, B(x1, r1)), r1)g(dB(o, B(x2, r2)), r2)

× 1{dB(−u, B(x2, r2)) > dB(o, B(x1, r1))}
× 1{dB(u, B(x1, r1)) > dB(o, B(x2, r2))}
× F̄

(2)
B (u; dB(o, B(x1, r1)), dB(o, B(x2, r2)))

× dx1 dx2 G(dr1) G(dr2),

and

J22 := γ 2
∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

g(dB(o, B(x1, r1)), r1)g(dB(o, B(x2, r2)), r2)

× F̄B(dB(o, B(x1, r1)))F̄B(dB(o, B(x2, r2)))

× dx1 dx2 G(dr1) G(dr2).

Using the fact that dB(u, B(x, r)) = dB(u − x, B(o, r)) and the reflection invariance of the
Lebesgue measure, we deduce that

J1(u) = γ

∫ ∞

0

∫
Rd

g(dB(x, B(o, r)), r)g(dB(u + x, B(o, r)), r)

× F̄
(2)
B (u; dB(x, B(o, r)), dB(u + x, B(o, r))) dx G(dr),

J21(u) = γ 2
∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

g(dB(x1, B(o, r1)), r1)g(dB(x2, B(o, r2)), r2)

× 1{dB(x2, B(u, r2)) > dB(x1, B(o, r1))}
× 1{dB(x1, B(−u, r1)) > dB(x2, B(o, r2))}
× F̄

(2)
B (u; dB(x1, B(o, r1)), dB(x2, B(o, r2)))

× dx1 dx2 G(dr1) G(dr2),

and

J22 = γ 2
∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

g(dB(x1, B(o, r1)), r1)g(dB(x2, B(o, r2)), r2)

× F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2)))

× dx1 dx2 G(dr1) G(dr2).

The assertion now follows by recalling (2.9). The integrability of τ1(C, ·) and τ2(C, ·), which
is explicitly stated in (A.1), will be shown in the proof of Theorem 2.1 given in Appendix A
and is implied by assumption (2.5).
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Remark 2.1. Recall that ‖ · ‖ denotes the Euclidean norm on R
d . If B = Bd is the unit ball

then dBd (u, B(x, r)) = (‖x − u‖ − r)+,

hBd (t, r) =
d−1∑
j=0

dκd

(
d − 1

j

)
rd−1−j tj = dκd(t + r)d−1,

and

κBd (u; t1, t2, r) = |B(o, t1 + r) ∩ B(u, t2 + r)|d .

Hence, τ1(C, u) and τ2(C, u) from Proposition 2.1 may be slightly simplified. In particular,
we have

τ2(C, u)

=
∫

C

∫
C

∫
Rd

∫
Rd

f ((‖x1‖ − r1)
+)

hBd ((‖x1‖ − r1)+, r1)

f ((‖x2‖ − r2)
+)

hBd ((‖x2‖ − r2)+, r2)

× [1{(‖x2 − u‖ − r2)
+ > (‖x1‖ − r1)

+}
× 1{(‖x1 + u‖ − r1)

+ > (‖x2‖ − r2)
+}

× F̄
(2)

Bd (u; (‖x1‖ − r1)
+, (‖x2‖ − r2)

+)

− F̄Bd ((‖x1‖ − r1)
+)F̄Bd ((‖x2‖ − r2)

+)] dx1 dx2 G(dr1) G(dr2)

=
∫

C

∫
C

∫ ∞

0

∫
Sd−1

∫ ∞

0

∫
Sd−1

f (s1)

hBd (s1, r1)
(s1 + r1)

d−1 f (s2)

hBd (s2, r2)
(s2 + r2)

d−1

× [1{(‖(s2 + r2)v2 − u‖ − r2)
+ > s1}

× 1{(‖(s1 + r1)v1 + u‖ − r1)
+ > s2}

× F̄
(2)

Bd (u; s1, s2) − F̄Bd (s1)F̄Bd (s2)]
× Hd−1(dv1) ds1 Hd−1(dv2) ds2 G(dr1) G(dr2)

=
∫

C

∫
C

∫ ∞

0

∫ ∞

0
f (s1)f (s2)

[
Hd−1(∂B(o, s2 + r2) ∩ B(u, s1 + r2)

c)

Hd−1(∂B(o, s2 + r2))

× Hd−1(∂B(o, s1 + r1) ∩ B(−u, s2 + r1)
c)

Hd−1(∂B(o, s1 + r1))

× F̄
(2)

Bd (u; s1, s2) − F̄Bd (s1)F̄Bd (s2)

]
× ds1 ds2 G(dr1) G(dr2),

where S
d−1 is the unit sphere in R

d , Hd−1 is the (d − 1)-dimensional Hausdorff measure, and
∂B(x, r) is the boundary of B(x, r). We used the fact that f ((‖x‖ − r)+) is nonzero only if
‖x‖ > r . Then x = (s + r)v for s > 0 and v ∈ S

d−1.

Next we state a special case of [14, Theorem 2.1 and Remark 3.1] in the form needed in the
present context. Let g̃ : R

d → [0, ∞] be measurable, and let K, B ⊂ R
d be convex bodies

such that o ∈ B and K and B are in general relative position. Since in our application we will
only need the case K = rBd for r ∈ R

+, the assumption of general relative position will be
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satisfied for any choice of B. Then we have∫
Rd

1{0 < dB(z, rBd) < ∞}g̃(z) dz

=
d−1∑
j=0

(
d − 1

j

) ∫ ∞

0

∫
td−1−j g̃(z + tb) 
j ;d−j (rB

d; B∗; d(z, b)) dt,

where B∗ := −B and the mixed support measures 
j ;d−j (rB
d; B∗; ·), j ∈ {0, . . . , d − 1},

are finite Borel measures on R
2d . Using [24, Equation (14.18)] (cf. [23, Equations (4.9) and

(5.53)]) and [17, Middle of p. 327], for the total measures, we obtain 
j ;d−j (rB
d; B∗; R

2d) =
rj dκjVd−j (B)/

(
d
j

)
. In particular, for any measurable function f̃ : [0, ∞] → [0, ∞] with

f̃ (0) = f̃ (∞) = 0, this yields∫
Rd

f̃ (dB(z, rBd)) dz =
∫ ∞

0
hB(t, r)f̃ (t) dt. (2.10)

We now turn to the asymptotic properties of the ratio-unbiased estimator (1.7). Our setting
is similar to [20], where all limit theorems refer to a growing observation window in R

d .
More formally, we consider a sequence (Wn)n∈N of compact, convex sets Wn ⊂ R

d such that
Wn ⊂ Wn+1 for all n ∈ N and the inradius of Wn tends to ∞ as n → ∞.

Theorem 2.1. Assume that (2.5) is fulfilled. Then, for any Borel set C ⊂ R
+,

var ηWn(C)

|Wn|d → σ 2(C) as n → ∞. (2.11)

The asymptotic variance is finite and given by

σ 2(C) = γ

∫
Rd

τ1(C, u) du + γ 2
∫

Rd

τ2(C, u) du, (2.12)

where τ1(C, u) and τ2(C, u) are defined in (2.6) and (2.7), respectively. Moreover, if 0 <

G(C) < 1 then σ 2(C) > 0.

Proof. See Appendix A.

Remark 2.2. Assumption (2.5) is slightly stronger than (1.5).

Remark 2.3. Let Ĝn(C) be given by (1.7) with W = Wn. Theorem 2.1 implies that Ĝn(C) is
asymptotically weakly consistent. Indeed, (1.6) and

var ηWn(C)

|Wn|2d
→ 0 as n → ∞

ensure that ηWn(C)/|Wn|d converges to γ β G(C) in probability as n → ∞. Specifically,

ηWn(R
+)

|Wn|d → γβ in probability as n → ∞. (2.13)

Hence, by the continuous mapping theorem, ηWn(C)/ηW (R+) converges to G(C) in probability
as n → ∞. This is in accordance with the following proposition which even shows that Ĝn(C)

is asymptotically strongly consistent.
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Proposition 2.2. For any Borel set C ⊂ R
+, we have Ĝn(C) → G(C) P-almost surely

(abbreviated as P-a.s.) as n → ∞.

Proof. The mapping W �→ ηW (C) defined by (1.4) is a random measure on R
d depending

on the Boolean model Z in a translation-invariant way. As the Boolean model is ergodic
(see [24, Theorem 9.3.5]), we can apply the spatial ergodic theorem (see [16, Corollary 10.19])
to conclude that

lim
n→∞ |Wn|−1

d ηWn(C) = Eη[0,1]d (C) = γ β G(C) P-a.s.

Applying this to the numerator as well as to the denominator in (1.7), we obtain the desired
result.

The P-almost sure uniform convergence for distribution functions can be obtained by a
standard technique in analogy with the classical Glivenko–Cantelli theorem.

Proposition 2.3. Let C = {C ⊂ R
+ : C = (a, b], 0 ≤ a < b}. Then

sup
C∈C

|Ĝn(C) − G(C)| → 0 P-a.s. as n → ∞.

Proof. Denote by G(t) the distribution function corresponding to the radius distribution
G, i.e. G(t) = G([0, t]), t ≥ 0. Exploiting Proposition 2.2, and the right continuity and
monotonicity of G(t) and Ĝn(t) = Ĝn([0, t]), t ≥ 0, it can be shown that

sup
t≥0

|Ĝn(t) − G(t)| → 0 P-a.s. as n → ∞;

see, e.g. [9, Lemma 3] where a similar case is treated. The proof is completed by noting that
Ĝn((a, b]) = Ĝn(b) − Ĝn(a) and G((a, b]) = G(b) − G(a).

3. Asymptotic normality

In this section we study the asymptotic normality of the ratio-unbiased estimator (1.7) for the
radius distribution G of our stationary Boolean model Z with spherical grains. The proof will
be based on approximation by m-dependent random fields. This idea comes from [11], where
the same technique was used to prove the central limit theorem for random measures which are
associated with the Boolean model in an additive way. In contrast to [11], the contribution of
an individual grain to the random measure A �→ ηA(C) is not determined by the grain alone,
but does depend on a random number of other grains in a nontrivial manner. Therefore, the
results of [11] do not apply in our setting.

We consider, for n ∈ N and a Borel set C ⊂ R
+, the estimator

Ĝn(C) = ηWn(C)

ηWn(R
d)

,

where Wn := [−n, n)d and ηWn is given in (1.4). First we concentrate on the asymptotic
normality of the numerator ηWn(C). In addition to (1.5), we will need the integrability condition∫ ∞

0
(1 + td )f (t) dt < ∞, (3.1)

which is more restrictive than (2.5).
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Theorem 3.1. Assume that (1.5) and (3.1) are fulfilled. Then, for any Borel set C ⊂ R
+,√|Wn|d

(
ηWn(C)

|Wn|d − γ β G(C)

)
d−→ N(0, σ 2(C)) as n → ∞,

where σ 2(C) is given by (2.12).

Proof. See Appendix B.

Now we deal with the asymptotic normality of Ĝn(C).

Theorem 3.2. Assume that (3.1) is satisfied. Let Wn = [−n, n)d . If C ⊂ R
+ is a Borel set

then √|Wn|d(Ĝn(C) − G(C))
d−→ N(0, σ 2

G
(C)) as n → ∞,

where

σ 2
G
(C) := 1

γ 2β2 [(1 − G(C))σ 2(C) + G(C)σ 2(R+ \ C) − G(C)(1 − G(C))σ 2(R+)] (3.2)

and σ 2(·) is given by (2.12). If 0 < G(C) < 1 then σ 2
G
(C) > 0.

Proof. Using (2.13) and Slutsky’s theorem, the weak limit of√|Wn|d(Ĝn(C) − G(C))

coincides with the weak limit of

Yn := 1

γ β
√|Wn|d (ηWn(C) − ηWn(R

+)G(C)).

Observing that

γ β Yn = 1√|Wn|d
∫

Wn

(1{rB(x, Z) ∈ C}−G(C))f (dB(x, Z))hB(dB(x, Z), rB(x, Z))−1 dx,

we can proceed along the same lines as in the proof of Theorem 3.1 (see Appendix B) and
obtain

γ β Yn
d−→ N(0, γ 2β2σ 2

G
(C)) as n → ∞,

provided we can identify the asymptotic variance σ 2
G
(C) of Yn. Theorem 2.1 implies that

γ 2β2 lim
n→∞ var Yn = σ 2(C) + G(C)2σ 2(R+) − 2G(C) lim

n→∞
1

|Wn|d cov(ηWn(C), ηWn(R
+)).

(3.3)

Since ηWn(·) is additive, from Theorem 2.1 we obtain

2 lim
n→∞

1

|Wn|d cov(ηWn(C), ηWn(R
+))

= 2σ 2(C) + 2 lim
n→∞

1

|Wn|d cov(ηWn(C), ηWn(R
+ \ C))

= 2σ 2(C) + lim
n→∞

1

|Wn|d (var ηWn(R
+) − var ηWn(C) − var ηWn(R

+ \ C))

= 2σ 2(C) + σ 2(R+) − σ 2(C) − σ 2(R+ \ C)

= σ 2(C) + σ 2(R+) − σ 2(R+ \ C).

Substituting this result into (3.3) yields (3.2) upon some simplification.
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To prove the last assertion, we define g̃(t, s) := (1{s ∈ C} − G(C))f (t)hB(t, s)−1 and
assume that 0 < G(C) < 1. For a convex body W ⊂ R

d , we need to consider the variance of

HW :=
∫

W

g̃(dB(x, Z), rB(x, Z)) dx.

As in the proof of the positivity assertion in Theorem 2.1 (see Appendix A), we obtain

var HW ≥ γ

∫ ∞

0

∫
Rd

h̃(y, r)2 dy G(dr), (3.4)

where

h̃(y, r) := E

∫
W

1{dB(o, B(y − x, r)) < dB(o, Z)}g̃(dB(o, B(y − x, r)), r) dx

− E

∫
W

1{dB(o, B(y − x, r)) < dB(o, Z)}g̃(dB(o, Z), rB(o, Z)) dx.

By (1.3) and the definition of g̃, the second expectation on the right-hand side of the above
equation vanishes for all y ∈ W and r ≥ 0. Therefore,

h̃(y, r) =
∫

W

F̄B(dB(o, B(y − x, r)))g̃(dB(o, B(y − x, r)), r) dx.

Again, as in the proof of Theorem 2.1, we let C̄ := R
+ \ C and obtain, from Jensen’s inequality

and (3.4),
√

var HW√|W |d ≥ c

|W |d
∫

C̄

∫
W

∫
W

F̄B(dB(o, B(y − x, r)))f (dB(o, B(y − x, r)))

× hB(dB(o, B(y − x, r)), r)−1 dx dy G(dr)

= c

|W |d
∫

C̄

∫
Rd

|W ∩ (W − y)|d F̄B(dB(o, B(y, r)))f (dB(o, B(y, r)))

× hB(dB(o, B(y, r)), r)−1 dy G(dr),

where c > 0 is a constant not depending on W . Hence, it is sufficient to show that∫
C̄

∫
Rd

F̄B(dB(o, B(y, r)))f (dB(o, B(y, r)))hB(dB(o, B(y, r)), r)−1 dy G(dr) > 0.

By (2.10), the above integral equals G(C̄)
∫

Rd F̄B(t)f (t) dt , which is positive by (1.5).

Remark 3.1. After some manipulation we obtain

γ 2β2σ 2
G
(C) = γ

∫
Rd

τ̃1(C, u) du + γ 2
∫

Rd

τ̃2(C, u) du,

where

τ̃1(C, u) :=
∫ ∞

0

∫
Rd

f (dB(o, B(x, r)))

hB(dB(o, B(x, r)), r)

f (dB(u, B(x, r)))

hB(dB(u, B(x, r)), r)

× F̄
(2)
B (u; dB(o, B(x, r)), dB(u, B(x, r)))

× (1{r ∈ C} − G(C))2 dx G(dr)
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and

τ̃2(C, u) :=
∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

f (dB(x1, B(o, r1)))

hB(dB(x2, B(o, r1)), r1)

f (dB(x2, B(o, r2)))

hB(dB(x2, B(o, r2)), r2)

× 1{dB(x2, B(u, r2)) ≤ dB(x1, B(o, r1))}
× 1{dB(x1, B(−u, r1)) ≤ dB(x2, B(o, r2))}
× F̄

(2)
B (u; dB(x1, B(o, r1)), dB(x2, B(o, r2)))

× (1{r1 ∈ C} − G(C))(1{r2 ∈ C} − G(C))

× dx1 dx2 G(dr1) G(dr2).

This relation can also be obtained directly by an analogue of the proof of Theorem 2.1.

Remark 3.2. Theorem 3.1 can be generalized to a multivariate setting. First we note that, for
arbitrary Borel sets C, C′ ⊂ R

+,

cov(ηWn(C), ηWn(C
′))

|Wn|d → σ(C, C′) as n → ∞, (3.5)

where

σ(C, C′) := γ

∫
Rd

τ1(C ∩ C′, u) du + γ 2
∫

Rd

τ2(C, C′, u) du.

Here τ1(C, u) is given by (2.6), while τ2(C, C′, u) is obtained from (2.7) by replacing the
second C on the right-hand side by C′. In the case C ∩ C′ = ∅, relation (3.5) follows from
(2.11) and the identity

2 cov(ηWn(C), ηWn(C
′)) = var ηWn(C ∪ C′) − var ηWn(C) − var ηWn(C

′).

In the general case, we can use the disjoint decompositions C = (C \ (C ∩C′))∪ (C ∩C′) and
C′ = (C′ \ (C ∩C′))∪ (C ∩C′) to deduce, from the bilinearity of the covariance, the previous
case, and a straightforward calculation, that

σ(C, C′) = γ

∫
Rd

τ1(C ∩ C′, u) du + γ 2
∫

Rd

1

2
(τ2(C, C′, u) + τ2(C

′, C, u)) du.

Checking the definition of the function q (see (2.8)), we obtain q(u; x1, x2, r1, r2) = q(−u; x2,

x1, r2, r1), and, hence, τ2(C, C′, u) = τ2(C
′, C, −u). Relation (3.5) then follows from the

reflection invariance of the Lebesgue measure.
Let us now consider the random vectors Xn := (ηWn(C1), . . . , ηWn(Ck)), where C1, . . . ,

Ck ⊂ R
+ are fixed Borel sets. Using the Cramér–Wold device and proceeding exactly as in

the proof of Theorem 3.1 (see Appendix B), we can then show that

√|Wn|d
(

Xn

|Wn|d − γ β (G(C1), . . . , G(Ck))

)
d−→ N(0, �) as n → ∞,

where N(0, �) is a multivariate normal distribution with mean 0 and covariance matrix � :=
(σ (Ci, Cj )).

Theorem 3.2 can be extended in a similar way. We omit further details.
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4. The planar case

We mentioned at the beginning that the nonparametric estimator Ĝ which we discussed
so far is based on the data {(dB(x, Z), rB(x, Z)) : x ∈ W \ Z} and, therefore, may require
information from outside the window W . To overcome this problem, a common procedure in
spatial statistics is the so-called minus sampling, which can be used, e.g. if the radius distribution
G is concentrated on an interval [0, r0], 0 < r0 < ∞. We can avoid such a condition by
assuming that the function f is concentrated on an interval [0, ε] with ε > 0. If we then
assume that Z is observable in a window W(ε) which contains W ⊕ εB, then, for each x ∈ W ,
we have either f (dB(x, Z)) = 0 or dB(x, Z) ≤ ε, in which case the (a.s. unique) contact point
(x + dB(x, Z)B) ∩ Z lies in W(ε).

In this section we restrict attention to the planar case d = 2 and focus on spherical (that is,
B = B2) and on linear (that is, B = [0, u] with a given unit vector u ∈ R

2) structuring elements
B. For simplicity, in the following considerations we concentrate on the window W = [0, 1]2,
and assume, as explained above, that f is concentrated on [0, ε], ε > 0, and that Z is observed
in W(ε) = W ⊕ εB. Let C̃1, . . . , C̃k̃

be the (connected and relatively open) visible arcs in
∂Z ∩ W(ε). We do not need to know whether some of these arcs belong to the same particle.
In the following we consider the corresponding ‘effective’ arcs. These consist of the points of
C̃i which are contained in (x + dB(x, Z)B) ∩ Z for some x ∈ W \ Z with dB(x, Z) ≤ ε. The
latter sets may be empty or not connected. Let C1, . . . , Ck be an enumeration of the nonempty
and connected (relatively open) components of the effective arcs. For i ∈ {1, . . . , k}, let ri be
the radius and li the length of Ci , and let Ai be the set of points x ∈ W \ Z with dB(x, Z) ≤ ε

which project onto Ci in the sense that (x +dB(x, Z)B)∩Z consists of a unique point and this
point lies in Ci . Note that k, the arcs Ci , the sets Ai , and the subsequent notions depend on ε.
See Figure 2 for an illustration. Our estimator Ĝ is now of the form

Ĝ = 1∑k
i=1 wi

k∑
i=1

wiδri ,

Figure 2: An illustration of the arcs C̃i , the effective arcs Ci , and the sets Ai for spherical B (left) and
linear B (right).
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where the weight wi is given by

wi =
∫

Ai

f (dB(x, Z))hB(dB(x, Z), rB(x, Z))−1 dx.

For B = B2, we have hB2(t, r) = 2π(t + r); see Remark 2.1. Therefore, upon choosing
f (t) = ε−11{t ≤ ε}, we obtain

wi = 1

2πε

∫
Ai

1

dB2(x, Ci) + ri
dx.

If we let ε → 0 then the outer sampling window W(ε) shrinks to W and the effective arcs
C1, . . . , Ck become subsets of W , so that in the limit only information in W is needed. The
weights then converge to wi = li/(2πri) if ri > 0 and to wi = 1 if ri = li = 0 (i.e. if Ci

consists of one point only). Then the estimator becomes

Ĝo(C) :=
( k∑

i=1

li

ri

)−1 k∑
i=1

li

ri
δri

with li/ri interpreted as 2π if ri = li = 0. The estimator Ĝo(C) was discussed by Hall [6,
Chapter 5.6] (more generally, he considered estimators of EA(R) for a given function A; Ĝo(C)

corresponds to the case A = 1C).
For B = [0, u] (with u ∈ {±e1, ±e2}), assuming (in the linear case) that G({0}) = 0 and,

hence, ri > 0, and again choosing f (t) = ε−11{t ≤ ε}, we obtain hB(t, r) = 2r and

wi = 1

2εri

∫
Ai

dx = |Ai |2
2εri

,

which gives the estimator

Ĝ =
( k∑

i=1

|Ai |2
ri

)−1 k∑
i=1

|Ai |2
ri

δri .

For example, if u = e1, information in [0, 1 + ε] × [0, 1] would be required and the estimation
is based on the areas of the regions Ai ⊂ [0, 1]2, which depend on u and ε. The estimation can
be improved by combining the estimators for u = e1, −e1, e2, −e2 which are available if Z is
observed in [−ε, 1 + ε]2.

In the limit ε → 0, we obtain the estimator Ĝl,u, u ∈ {±u1, ±u2}, which is given by

Ĝl,u :=
( k∑

i=1

li (u)

ri

)−1 k∑
i=1

li (u)

ri
δri .

Here li (u) is the length of the projection of the visible part of Ci in direction u (projected onto
the line orthogonal to u). The combined estimator for u = e1, −e1, e2, −e2 is

Ĝl := 1
4 (Ĝl,e1 + Ĝl,−e1 + Ĝl,e2 + Ĝl,−e2).

If we do not have information from outside W then we may use a minus sampling approach
and replace W by the eroded window W�ε := {x ∈ W : x + εB ⊂ W }, i.e. we consider the
estimator

Ĝ�ε(C) := ηW�ε (C)

ηW�ε (R
+)

.
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Another possibility would be to use the naive approach which ignores edge effects. Then we
have the uncorrected estimator

Ĝu(C) := ηW,u(C)

ηW,u(R+)
,

where

ηW,u(C) :=
∫

W

1{rB(x, Z ∩ W) ∈ C} f (dB(x, Z ∩ W))

hB(dB(x, Z ∩ W), rB(x, Z ∩ W))
dx.

If B = [0, u] then it can happen that dB(x, Z ∩ W) = ∞. In that case we use our convention
concerning f h−1

B , i.e. the points x satisfying dB(x, Z ∩W) = ∞ do not contribute to ηW,u(C).
Besides minus sampling there exist more sophisticated methods of edge correction in the
statistics of spatial point processes. We adopt the idea of local minus sampling that was
originally applied in [7] to the estimation of the nearest-neighbor distance distribution function
for stationary point processes (see also [8]). We use only points that are closer to Z than to the
boundary of the window W . This gives the Hanisch-type estimator

ĜH(C) := ηW,H(C)

ηW,H(R+)
,

where

ηW,H(C) :=
∫

W

1{rB(x, Z) ∈ C}1{dB(x, Z) ≤ dB(x, ∂W)} f (dB(x, Z))

hB(dB(x, Z), rB(x, Z))
dx.

Note that, for B = [0, u], the estimators ĜH and Ĝu coincide.
In numerical implementations we can replace the integration with respect to the Lebesgue

measure in (1.4) by an integration with respect to a discrete measure. This still gives a ratio-
unbiased estimator of G.

We compare the performance of the different estimators discussed above through computer
simulations. We simulate a stationary planar Boolean model with spherical grains, given by
(1.1). The observation window W is the unit square [0, 1]2. The distribution G is assumed to
be uniform on (0.05, 0.1). We approximate the integrals over W by Riemannian sums over a
rectangular grid of points Lh ∩ W , where Lh := {((k − 1

2 )h, (l − 1
2 )h) : k, l ∈ N}. For our

purposes, we choose h = 1
300 .

We take f (t) = ε−11{t ≤ ε} for different choices of ε and compare the estimator Ĝ, given
by (1.7), with the estimators Ĝo (for spherical B) and Ĝl (for linear B) corresponding to the
limiting case ε → 0. The estimators Ĝ�ε, Ĝu, and ĜH are also evaluated. For linear B = [0, u],
we always combine the corresponding estimators for u = u1, −u1, u2, −u2, which leads to a
noticeable improvement.

The radius distribution G is uniquely determined by the distribution function G(t) =
G([0, t]), t ≥ 0. We measure the quality of the estimators by the Kolmogorov–Smirnov
distance

dKS(Ĝ, G) := sup
s≥0

|Ĝ(s) − G(s)|

and the Cramér–von Mises distance

dCvM(Ĝ, G) :=
∫ 0.1

0.05
(Ĝ(s) − G(s))2 ds

0.05
.
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We generated 1000 independent realizations of the Boolean model Z with chosen intensity γ .
For each realization, we determined several estimators under study. The sample means and their
standard errors (given in parentheses in the tables) of corresponding Kolmogorov–Smirnov
and Cramér–von Mises distances over 1000 simulations are presented in Table 1 for γ =
25 and Table 2 for γ = 100. By standard error we understand s/

√
1000, where s =

Table 1: Sample means and their standard errors (in parentheses) of distances between distribution
functions computed from 1000 realizations of a Boolean model with intensity γ = 25 and uniform radius
distribution on (0.05, 0.1). For better readability, we multiply both the means and standard errors by 1000

in the case of the Cramér–von Mises distance.

dKS 1000dCvM

Estimator Spherical B Linear B Spherical B Linear B

Ĝ, ε = 1 0.18 (0.002) 0.15 (0.001) 8.36 (0.24) 5.30 (0.15)
Ĝ, ε = 0.05 0.18 (0.002) 0.17 (0.002) 7.89 (0.23) 7.41 (0.22)
Ĝ, ε = 0.01 0.17 (0.002) 0.17 (0.002) 7.58 (0.22) 7.53 (0.22)

Ĝo or Ĝl 0.17 (0.002) 0.17 (0.002) 7.50 (0.22) 7.51 (0.22)
Ĝ�ε, ε = 0.05 0.20 (0.002) 0.18 (0.002) 9.69 (0.28) 8.04 (0.23)
Ĝ�ε, ε = 0.01 0.18 (0.002) 0.17 (0.002) 7.90 (0.23) 7.64 (0.22)

Ĝu, ε = 1 0.19 (0.002) 0.18 (0.002) 9.01 (0.26) 8.39 (0.24)
Ĝu, ε = 0.05 0.18 (0.002) 0.17 (0.002) 8.12 (0.24) 7.69 (0.22)
Ĝu, ε = 0.01 0.17 (0.002) 0.17 (0.002) 7.62 (0.22) 7.58 (0.22)
ĜH, ε = 1 0.19 (0.002) 0.18 (0.002) 9.52 (0.28) 8.39 (0.24)

ĜH, ε = 0.05 0.18 (0.002) 0.17 (0.002) 8.54 (0.25) 7.69 (0.22)
ĜH, ε = 0.01 0.18 (0.002) 0.17 (0.002) 7.73 (0.22) 7.58 (0.22)

Table 2: Sample means and their standard errors (in parentheses) of distances between distribution
functions computed from 1000 realizations of a Boolean model with intensity γ = 100 and uniform
radius distribution on (0.05, 0.1). For better readability, we multiply both the means and standard errors

by 1000 in the case of the Cramér–von Mises distance.

dKS 1000dCvM

Estimator Spherical B Linear B Spherical B Linear B

Ĝ, ε = 1 0.14 (0.001) 0.13 (0.001) 4.95 (0.14) 4.14 (0.12)
Ĝ, ε = 0.05 0.14 (0.001) 0.13 (0.001) 4.82 (0.13) 3.90 (0.11)
Ĝ, ε = 0.01 0.13 (0.001) 0.12 (0.001) 3.97 (0.11) 3.71 (0.10)

Ĝo or Ĝl 0.12 (0.001) 0.12 (0.001) 3.62 (0.10) 3.62 (0.10)
Ĝ�ε, ε = 0.05 0.15 (0.002) 0.13 (0.001) 5.81 (0.16) 4.17 (0.11)
Ĝ�ε, ε = 0.01 0.13 (0.001) 0.12 (0.001) 4.11 (0.11) 3.76 (0.10)

Ĝu, ε = 1 0.14 (0.001) 0.14 (0.001) 5.06 (0.14) 4.59 (0.13)
Ĝu, ε = 0.05 0.14 (0.001) 0.13 (0.001) 4.90 (0.14) 4.37 (0.13)
Ĝu, ε = 0.01 0.13 (0.001) 0.13 (0.001) 3.98 (0.11) 3.89 (0.11)
ĜH, ε = 1 0.14 (0.001) 0.14 (0.001) 5.14 (0.14) 4.59 (0.13)

ĜH, ε = 0.05 0.14 (0.001) 0.13 (0.001) 5.02 (0.14) 4.37 (0.13)
ĜH, ε = 0.01 0.13 (0.001) 0.13 (0.001) 4.03 (0.11) 3.89 (0.11)
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√∑1000
i=1 (di − d̄)2/999 is the sample standard deviation. The results show that smaller values

of ε are more preferable. The limiting estimators Ĝo and Ĝl produced the smallest error. They
are outperformed only in the case of smaller intensity and linear B where our estimator, given
by (1.7), with larger ε, gives better results. However, this estimator also uses information
from outside W . Simulation studies for exponentially distributed radii (not presented) show
very similar results. A change of resolution h has only a minor influence on the quality of
the estimators. For intensity γ � 100, the deviation from the radius distribution increases,
which is intuitively clear because many balls are covered so their radii are not available for the
estimators.

Appendix A. Proof of Theorem 2.1

Suppose that x ∈ Wn and u ∈ R
d . If x + u /∈ Wn then dBd (x, ∂Wn) ≤ ‖u‖. Hence, we

obtain

|Wn|d − |{x ∈ Wn : dBd (x, ∂Wn) ≤ ‖u‖}|d ≤ |Wn ∩ (Wn − u)|d ≤ |Wn|d .

Thus, [16, Lemma 10.15(ii)] implies that

|Wn ∩ (Wn − u)|d
|Wn|d → 1 as n → ∞ for any u ∈ R

d .

Therefore, Lebesgue’s dominated convergence theorem and Proposition 2.1 yield (2.11) pro-
vided that ∫

Rd

τ1(C, u) du < ∞ and
∫

Rd

|τ2(C, u)| du < ∞. (A.1)

Using (2.4), we have∫
Rd

τ1(C, u) du ≤
∫

C

∫
Rd

∫
Rd

f (dB(x, rBd))

hB(dB(x, rBd), r)

f (dB(y, rBd))

hB(dB(y, rBd), r)

×
√

F̄B(dB(x, rBd))F̄B(dB(y, rBd)) dx dy G(dr)

=
∫

C

(∫
Rd

f (dB(x, rBd))

hB(dB(x, rBd), r)

√
F̄B(dB(x, rBd)) dx

)2

G(dr).

An application of (2.10) shows that∫
Rd

f (dB(x, rBd))

hB(dB(x, rBd), r)

√
F̄B(dB(x, rBd)) dx =

∫ ∞

0
f (t)

√
F̄B(t) dt,

and, thus, we obtain∫
Rd

τ1(C, u) du ≤
∫

C

(∫ ∞

0
f (t)

√
F̄B(t) dt

)2

G(dr)

≤ G(C)

(∫ ∞

0
f (t) e−2ct dt

)2

< ∞,

where we have used the fact that F̄B(t) ≤ e−4ct and assumption (2.5).
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In order to show the second inequality in (A.1), we first rewrite q(u; x1, x2, r1, r2) as the
difference of two nonnegative terms, that is, q = q1 − q2 with

q1(u; x1, x2, r1, r2) := F̄
(2)
B (u; dB(x1, B(o, r1)), dB(x2, B(o, r2)))

− F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2))),

which is nonnegative by (2.3), and

q2(u; x1, x2, r1, r2) := F̄
(2)
B (u; dB(x1, B(o, r1)), dB(x2, B(o, r2)))

× (1 − 1{dB(x2, B(u, r2)) > dB(x1, B(o, r1))}
× 1{dB(x1, B(−u, r1)) > dB(x2, B(o, r2))}),

for u, x1, x2 ∈ R
d and r1, r2 ∈ R

+. Using (2.2), (2.4), and the inequality 1 − e−a ≤ a for
a ≥ 0, we obtain

q1(u; x1, x2, r1, r2) ≤ F̄
(2)
B (u; dB(x1, B(o, r1)), dB(x2, B(o, r2)))

× (1 − exp{−γ EκB(u; dB(x1, B(o, r1)), dB(x2, B(o, r2)), R)})
≤

√
F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2)))

× γ EκB(u; dB(x1, B(o, r1)), dB(x2, B(o, r2)), R).

Moreover, the inequality 1 − (1 − a)(1 − b) ≤ a + b for a, b ≥ 0 and again (2.4) imply that

q2(u; x1, x2, r1, r2) ≤
√

F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2)))

× (1{dB(x2, B(u, r2)) ≤ dB(x1, B(o, r1))}
+ 1{dB(x1, B(−u, r1)) ≤ dB(x2, B(o, r2))}).

Combining these bounds, we arrive at

∫
Rd

|τ2(C, u)| du ≤
∫

C

∫
C

∫
Rd

∫
Rd

∫
Rd

f (dB(x1, B(o, r1)))

hB(dB(x1, B(o, r1)), r1)

f (dB(x2, B(o, r2)))

hB(dB(x2, B(o, r2)), r2)

×
√

F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2)))

× [γ EκB(u; dB(x1, B(o, r1)), dB(x2, B(o, r2)), R)

+ 1{dB(x2, B(u, r2)) ≤ dB(x1, B(o, r1))}
+ 1{dB(x1, B(−u, r1)) ≤ dB(x2, B(o, r2))}]

× dx1 dx2 du G(dr1) G(dr2).

The above expression splits naturally into three summands which will be bounded from above
separately. For the first bound, we observe that, by Fubini’s theorem,

E

∫
Rd

κB(u; s1, s2, R) du = E|Bs1,R|d |Bs2,R|d .
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Then we apply (2.10) to obtain∫
C

∫
C

∫
Rd

∫
Rd

∫
Rd

f (dB(x1, B(o, r1)))

hB(dB(x1, B(o, r1)), r1)

f (dB(x2, B(o, r2)))

hB(dB(x2, B(o, r2)), r2)

×
√

F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2)))

× γ EκB(u; dB(x1, B(o, r1)), dB(x2, B(o, r2)), R)

× dx1 dx2 du G(dr1) G(dr2)

= γ G(C)2
∫ ∞

0

∫ ∞

0
f (t1)

√
F̄B(t1)f (t2)

√
F̄B(t2) E|Bt1,R|d |Bt2,R|d dt1 dt2.

Choose cB > 0 such that B ⊂ cBBd . Then |Bt,R|d ≤ κd(cBt + R)d and, hence, the Cauchy–
Schwarz inequality, the convexity of s �→ sp, p ≥ 1, and

√
a + b ≤ √

a + √
b, a, b ≥ 0,

yield

E|Bt1,R|d |Bt2,R|d ≤ c1

√
E(cBt1 + R)2d

√
E(cBt2 + R)2d

≤ c2(c
d
Btd1 +

√
ER2d)(cd

Btd2 +
√

ER2d)

≤ c3(1 + td1 )(1 + td2 ),

where c1, c2, and c3 denote finite constants independent of the expectation or t1 and t2. From
this and (2.5), it follows again that the first summand is finite.

Since dB(x2, B(u, r2)) ≤ t1 if and only if u ∈ x2 + Bt1,r2 , applying Fubini’s theorem and
(2.10) (twice) we obtain, for the second summand,∫

C

∫
C

∫
Rd

∫
Rd

∫
Rd

f (dB(x1, B(o, r1)))

hB(dB(x1, B(o, r1)), r1)

f (dB(x2, B(o, r2)))

hB(dB(x2, B(o, r2)), r2)

×
√

F̄B(dB(x1, B(o, r1)))F̄B(dB(x2, B(o, r2)))

× 1{dB(x2, B(u, r2)) ≤ dB(x1, B(o, r1))}
× dx1 dx2 du G(dr1) G(dr2)

=
∫

C

∫
C

∫ ∞

0

∫ ∞

0
f (t1)

√
F̄B(t1)f (t2)

√
F̄B(t2)|Bt1,r2 |d dt1 dt2 G(dr1) G(dr2),

which is finite by the same reasoning as above.
The third summand can be treated in exactly the same way.
To prove positivity of the asymptotic variance, we use the fact that the variance of any

square-integrable function H(�) of the Poisson process � := {(ξn, Rn) : n ≥ 1} satisfies the
inequality

var H(�) ≥ γ

∫ ∞

0

∫
Rd

(E[H(� ∪ {(y, r)}) − H(�)])2 dy G(dr);

see, e.g. [18, Theorem 4.2]. In our case this means that

var ηW (C) ≥ γ

∫ ∞

0

∫
Rd

h̃(y, r)2 dy G(dr), (A.2)
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where

h̃(y, r) := E

∫
W

[g(dB(x, Z ∪ B(y, r)), rB(x, Z ∪ B(y, r))) − g(dB(x, Z), rB(x, Z))] dx

= E

∫
W

1{dB(x, B(y, r)) < dB(x, Z)}
× [g(dB(x, B(y, r)), r) − g(dB(x, Z), rB(x, Z))] dx

= E

∫
W

1{dB(o, B(y − x, r)) < dB(o, Z)}
× [g(dB(o, B(y − x, r)), r) − g(dB(o, Z), rB(o, Z))] dx.

Here the last identity follows from the stationarity of Z and g is as defined in (2.9). By (1.3),

h̃(y, r) = γ

∫
W

∫ ∞

0

∫ ∞

0
1{dB(o, B(y − x, r)) < t}[g(dB(o, B(y − x, r)), r) − g(t, s)]
× hB(t, s)F̄B(t) dt G(ds) dx.

Assume now that 0 < G(C) < 1, and let C̄ := R
+ \ C. Recalling the definition of g given in

(2.9), from (A.2) we obtain

var ηW (C) ≥ γ

∫ ∞

0

∫
Rd

h∗(y, r)21{r ∈ C̄, y ∈ W } dy G(dr),

where

h∗(y, r) := γ

∫
W

∫ ∞

0

∫ ∞

0
1{dB(o, B(y − x, r)) < t}g(t, s)hB(t, s)F̄B(t) dt G(ds) dx

= γ G(C)

∫
W

∫ ∞

0
1{dB(o, B(y − x, r)) < t}f (t)F̄B(t) dt dx.

Applying Jensen’s inequality with the normalization of 1{r ∈ C̄, y ∈ W } dy G(dr), we obtain

var ηW (C) ≥ γ

G(C̄)|W |d

(∫
C̄

∫
W

h∗(y, r) dy G(dr)

)2

.

Letting a := γ 3
G(C)2/G(C̄) > 0 we obtain

var ηW (C)

|W |d
≥ a

|W |2d

(∫
C̄

∫
W

∫
W

∫ ∞

0
1{dB(o, B(y − x, r)) < t}f (t)F̄B(t) dt dx dy G(dr)

)2

= a

|W |2d

(∫
C̄

∫
Rd

∫ ∞

0
|W ∩ (W − y)|d1{dB(o, B(y, r)) < t}f (t)F̄B(t) dt dy G(dr)

)2

.

Hence, it is sufficient to show that∫
C̄

∫ ∞

0

(∫
Rd

1{dB(o, B(y, r)) < t} dy

)
f (t)F̄B(t) dt G(dr) > 0.

This is true since the inner integral is positive for all r, t > 0, and since both G(C̄) and∫ ∞
0 f (t)F̄B(t) dt are positive.
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Appendix B. Proof of Theorem 3.1

We fix a Borel set C ⊂ R
+ and skip the dependence on C in the notation. Let Ez :=

[0, 1)d + z for z ∈ In := {−n, . . . , n − 1}d . Then

ηWn =
∑
z∈In

ηEz =
∑
z∈In

∫
Ez

g(dB(x, Z), rB(x, Z)) dx,

where g is given by (2.9). For some fixed integer m, we put Fz := Ez ⊕ [−m, m)d . We
decompose ηEz into the two random variables

η(m)
z :=

∫
Ez

g(dB(x, Z(Fz)), rB(x, Z(Fz))) dx

and η̃
(m)
z := ηEz − η

(m)
z . Let η(m)

Wn
:= ∑

z∈In
η

(m)
z and η̃

(m)
Wn

:= ∑
z∈In

η̃
(m)
z so that ηWn = η

(m)
Wn

+
η̃

(m)
Wn

. It is easily seen that {η(m)
u : u ∈ U} and {η(m)

v : v ∈ V } are independent whenever

U, V ⊂ Z
d are such that ‖u−v‖∞ > 2m for each u ∈ U and v ∈ V . Thus, the random variables

η
(m)
z for z ∈ Z

d constitute a stationary 2m-dependent random field (cf. [10, Section 4.3.1]).
The variance of η

(m)
Wn

is
var η

(m)
Wn

= var
∑
z∈In

η(m)
z

=
∑
z1∈In

∑
z2∈In

cov(η(m)
z1

, η(m)
z2

)

=
∑

z∈In−In

Nn(z) cov(η(m)
o , η(m)

z ),

where Nn(z) is the cardinality of {(z1, z2) ∈ In × In : z2 − z1 = z}, which may be bounded by
|Wn|d = (2n)d and limn→∞ Nn(z)/|Wn|d = 1 for any z ∈ Z

d . We define

(σ (m)
n )2 := var η

(m)
Wn

|Wn|d .

Since cov(η
(m)
o , η

(m)
z ) = 0 for ‖z‖ > 2m, the limit of (σ

(m)
n )2 as n → ∞ exists and satisfies

(σ (m))2 := lim
n→∞(σ (m)

n )2 =
∑

z∈{−2m,...,2m}d
cov(η(m)

o , η(m)
z ). (B.1)

Next we show that E(η
(m)
o )2 < ∞. We put A := [−m, m + 1)d ; hence,

η(m)
o =

∫
Eo

g(dB(x, Z(A)), rB(x, Z(A))) dx.

Proceeding as in the proof of Proposition 2.1 and bounding F̄
A,A
B (·) as well as (1 − 1{·}1{·})

by 1, we obtain

E(η(m)
o )2 ≤ γ

∫
Eo

∫
Eo

∫ ∞

0

∫
A

g(dB(y, B(x1, r)), r)g(dB(y, B(x2, r)), r) dy G(dr) dx1 dx2

+ γ 2
∫

Eo

∫
Eo

∫ ∞

0

∫ ∞

0

∫
A

∫
A

g(dB(y1, B(x1, r1)), r1)g(dB(y2, B(x2, r2)), r2)

× dy1 dy2 G(dr1) G(dr2) dx1 dx2.
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The right-hand side increases if A is replaced by R
d . Arguing then as in the proof of Theorem

2.1, we obtain

E(η(m)
o )2 ≤ γ |Eo|d

(∫ ∞

0
f (t) dt

)2

G(C) +
(

γ |Eo|d
∫ ∞

0
f (t) dt G(C)

)2

< ∞.

Therefore, the central limit theorem for stationary m-dependent random fields (see, e.g. [22])
yields

1√|Wn|d
∑
z∈In

(η(m)
z − Eη(m)

z )
d−→ N(0, (σ (m))2) as n → ∞.

In view of [2, Theorem 3.2], it remains to verify that

lim
m→∞ σ (m) = σ(C) (B.2)

and

lim
m→∞ lim sup

n→∞
P

(
1√|Wn|d

∣∣∣∣ ∑
z∈In

(η̃(m)
z − Eη̃(m)

z )

∣∣∣∣ ≥ ε

)
= 0 for any ε > 0. (B.3)

Define
σ 2

n := var ηWn

|Wn|d .

Then
|σ(C) − σ (m)| ≤ |σ(C) − σn| + |σn − σ (m)

n | + |σ (m)
n − σ (m)|.

The first term goes to 0 as n → ∞ by Theorem 2.1, and the last term goes to 0 as n → ∞ as
well for any m ∈ N, by (B.1). By Minkowski’s inequality, the middle term can be bounded as

|σn − σ (m)
n | ≤ 1√|Wn|d

√
var η̃

(m)
Wn

.

Therefore, (B.2) follows if we can show that

sup
n∈N

1

|Wn|d var η̃
(m)
Wn

→ 0 as m → ∞. (B.4)

By Chebyshev’s inequality, (B.4) also implies (B.3). The variance in (B.4) satisfies

1

|Wn|d var
∑
z∈In

η̃(m)
z = 1

|Wn|d
∑

z∈In−In

Nn(z) cov(η̃(m)
o , η̃(m)

z ) ≤
∑
z∈Zd

|cov(η̃(m)
o , η̃(m)

z )|.

Therefore, the proof will be complete if we show that∑
z∈Zd

|cov(η̃(m)
o , η̃(m)

z )| → 0 as m → ∞. (B.5)

Consider a fixed z ∈ Z
d . Then the covariance can be written as

cov(η̃(m)
o , η̃(m)

z )

= cov(ηEo , ηEz) − cov(η(m)
o , ηEz) − cov(ηEo , η

(m)
z ) + cov(η(m)

o , η(m)
z )

=
∫

Eo

∫
Ez

[cRd ,Rd (x1, x2) − cFo,Rd (x1, x2) − cRd ,Fz
(x1, x2) + cFo,Fz (x1, x2)] dx2 dx1,
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where, for Borel sets A1, A2 ⊂ R
d and x1, x2 ∈ R

d ,

cA1,A2(x1, x2) := cov(g(dB(x1, Z(A1)), rB(x1, Z(A1))), g(dB(x2, Z(A2)), rB(x2, Z(A2))))

is expressed in Lemma 2.1 as

cA1,A2(x1, x2)

= γ

∫ ∞

0

∫
Rd

g(dB(x1, B(y, r)), r)g(dB(x2, B(y, r)), r)I1(A1, A2) dy G(dr)

+ γ 2
∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

g(dB(x1, B(y1, r1)), r1)g(dB(x2, B(y2, r2)), r2)

× I2(A1, A2) dy1 dy2 G(dr1) G(dr2).

Here we skip the arguments x1, x2, y, r and x1, x2, y1, y2, r1, r2 of the functions I1(A1, A2)

and I2(A1, A2), respectively, which were defined before Lemma 2.1. It is natural to treat both
parts of cA1,A2(x1, x2) separately. For this, we define

S1 :=
∑
z∈Zd

∫
Eo

∫
Ez

∫ ∞

0

∫
Rd

g(dB(x1, B(y, r)), r)g(dB(x2, B(y, r)), r)

× |I1(R
d , R

d) − I1(Fo, R
d) − I1(R

d , Fz) + I1(Fo, Fz)|
× dy G(dr) dx2 dx1

and

S2 :=
∑
z∈Zd

∫
Eo

∫
Ez

∫ ∞

0

∫ ∞

0

∫
Rd

∫
Rd

g(dB(x1, B(y1, r1)), r1)g(dB(x2, B(y2, r2)), r2)

× |I2(R
d , R

d) −I2(Fo, R
d) −I2(R

d , Fz) + I2(Fo, Fz)|
× dy1 dy2 G(dr1) G(dr2) dx2 dx1.

Observe that S1 and S2 depend on m via the dependence of Fo and Fz on m. It is possible to
prove that both S1 and S2 tend to 0 as m → ∞. For a detailed argument, which requires a
careful distinction of several cases, we refer the reader to [15]. This shows that (B.5) holds,
which completes the proof of Theorem 3.1.
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