A Berry-Esseen Type Theorem on Nilpotent Covering Graphs

Satoshi Ishiwata

Abstract. We prove an estimate for the speed of convergence of the transition probability for a symmetric random walk on a nilpotent covering graph. To obtain this estimate, we give a complete proof of the Gaussian bound for the gradient of the Markov kernel.

1 Introduction

Let X=(V,E) be a locally finite connected graph, V being the set of vertices and E being the set of oriented edges. For $e \in E$, the origin and the end of e are denoted by o(e) and t(e), respectively, and the inverse edge is denoted by \overline{e} . We suppose that X is a *nilpotent covering graph*, namely a covering of a finite graph X_0 whose covering transformation group Γ is a finitely generated nilpotent group. Furthermore, we assume that Γ is torsion free.

A *symmetric random walk* on X with a weight $m: V \to \mathbb{R}_{>0}$ is given by a positive valued function p on E satisfying $\sum_{e \in E_x} p(e) = 1$ and $p(e)m(o(e)) = p(\overline{e})m(t(e))$, where $E_x = \{e \in E \mid o(e) = x\}$. We assume that m and p are Γ -invariant. We consider p(e) the probability that a particle placed at o(e) moves to the terminus t(e) along the edge e in one unit time. The transition probability that a particle starting at x reaches y at time p is given by

$$p_n(x, y) = \sum_{c=(e_1, e_2, \dots, e_n)} p(e_1) p(e_2) \cdots p(e_n),$$

where the sum is taken over all path $c = (e_1, e_2, \dots, e_n)$ of length n whose origin o(c) = x and terminus t(c) = y. The transition operator L associated with the random walk is the operator acting on functions on V defined by

$$Lf(x) = \sum_{e \in E_x} f(t(e)) p(e).$$

It is easy to check that the function $k_n(x, y) = p_n(x, y)m(y)^{-1}$ is the kernel function of L^n , namely $L^n f(x) = \sum_{y \in V} k_n(x, y) f(y)m(y)$. The hypothesis of m and p implies $k_n(x, y) = k_n(y, x)$.

By a theorem of A. I. Mal'cev [11], there exists a connected and simply connected nilpotent Lie group G_{Γ} such that Γ is a cocompact lattice in G_{Γ} (see also M. S. Raghunathan [13]). The purpose of this article is to prove a Berry-Esseen type theorem, an

Received by the editors November 14, 2002; revised April 22, 2003. AMS subject classification: Primary 22E25, 60J15; Secondary 58G32. © Canadian Mathematical Society 2004.

963

estimate for the speed of convergence of the transition probability to the heat kernel corresponding to a sub-Laplacian on G_{Γ} as n goes to infinity. We remark that G. Alexopoulos proved a Berry-Esseen type theorem for convolution powers on a discrete group of polynomial growth Γ ([1]). To explain, let μ be a symmetric probability measure on Γ such that its support is finite and generates Γ with $\mu(e)>0$. Then the transition probability p_n is defined by $p_n(x,y)=\mu^{*n}(y^{-1}x)$ ($x,y\in\Gamma$). Let h_t be the heat kernel of the limit operator associated to μ on the nilpotent Lie group G_{Γ} (see [1]). Then,

Theorem ([1, Theorem 10]) Let Γ have polynomial volume growth of order D. Then, there exists a constant C > 0 such that

$$\sup_{x,y\in\Gamma} |p_n(x,y) - |G_{\Gamma}/\Gamma|h_n(x,y)| \le Cn^{-\frac{D+1}{2}}.$$

On the other hand, when X is a *crystal lattice*, that is, a covering graph whose covering transformation group Γ is abelian, a local central limit theorem is proved by M. Kotani and T. Sunada [10]. In that case, the notion of *harmonic realization* from X to the abelian group $\Gamma \otimes \mathbb{R}$ is closely related to the asymptotics (see [10, 9]). We also remark that, as a convergence of a transition operator, an operator-theoretic central limit theorem on a nilpotent covering graph is obtained in [6]. Furthermore, a central limit theorem for magnetic schrödinger operator on a crystal lattice is proved by M. Kotani [7].

Our strategy for the proof of a Berry-Esseen type theorem on a nilpotent covering graph is much inspired by G. Alexopoulos [1]. Before describing our results, we will introduce some notations. Let $\mathfrak{g}^{(1)}$ and $\mathfrak{g}^{(2)}$ be subspaces of the Lie algebra of G_{Γ} (see Section 2). We assume that $\Phi \colon X \to G_{\Gamma}$ is a Γ -equivariant map satisfying

$$\sum_{e \in E_x} p(e) \exp^{-1} \Phi \left(o(e) \right)^{-1} \Phi \left(t(e) \right) \big|_{\mathfrak{g}^{(1)}} = 0 \quad (x \in V).$$

This condition on Φ is equivalent to $\exp^{-1}\Phi|_{\mathfrak{g}^{(1)}}\colon X\to \mathfrak{g}^{(1)}$ is a harmonic realization (see [6]). Let p_n be the transition probability on X and h_t the heat kernel of the sub-Laplacian Ω for the Albanese metric (see [6, 9]) which is defined by

$$\Omega = -\frac{1}{2m(X_0)} \sum_{e \in E_0} m(e) X_e^2,$$

where m(e) = p(e)m(o(e)) and X_e is a left invariant vector field identified with $\exp^{-1} \Phi(o(e)) \Phi(t(e))|_{\mathfrak{g}^{(1)}}$. Then we have

Theorem 1 (Berry-Esseen type theorem) Let X be a nilpotent covering graph whose covering transformation group is Γ . The order of polynomial growth of Γ is denoted by D. Then, for any $0 < \epsilon < 1/2$, there exists a constant $C_{\epsilon} > 0$ such that

1. *if* X *is a non-bipartite graph, then*

$$\sup_{x,y\in V} \left| p_n(x,y)m(y)^{-1} - \frac{\left|G_{\Gamma}/\Gamma\right|}{m(X_0)} h_n\left(\Phi(x),\Phi(y)\right) \right| \leq C_{\epsilon} n^{-\frac{D+1/2-\epsilon}{2}}.$$

2. If X is a bipartite graph with a bipartition $V = A \coprod B$, and (a) if $x, y \in A$ or $x, y \in B$, then $p_n(x, y) = 0$ for odd n and

$$\sup_{x,y} \left| p_n(x,y) m(y)^{-1} - 2 \frac{|G_{\Gamma}/\Gamma|}{m(X_0)} h_n(\Phi(x), \Phi(y)) \right| \le C_{\epsilon} n^{-\frac{D+1/2-\epsilon}{2}}$$

for even n;

(b) if $x \in A$, $y \in B$ or $x \in B$, $y \in A$, then $p_n(x, y) = 0$ for even n and

$$\sup_{x,y} \left| p_n(x,y) m(y)^{-1} - 2 \frac{|G_{\Gamma}/\Gamma|}{m(X_0)} h_n(\Phi(x), \Phi(y)) \right| \le C_{\epsilon} n^{-\frac{D+1/2-\epsilon}{2}}$$

for odd n.

In our approach, we have not been able to improve the speed of this convergence more than $C_{\epsilon}n^{-\frac{D+1/2-\epsilon}{2}}$, in general. However, if

(1)
$$\sum_{e \in E_x} p(e) \exp^{-1} \Phi(o(e))^{-1} \Phi(t(e)) \Big|_{g^{(2)}} = 0 \quad (x \in V)$$

and

(2) the second order differential operator on $G_{\Gamma} \sum_{e \in E_x} p(e) X_e^2$ is independent of the choice of $x \in V$,

then the speed of convergence is estimated by $Cn^{-\frac{D+1}{2}}$ for each case. Indeed, a simple random walk on a Cayley graph of Γ satisfies (1) and (2). Triangular lattice and hexagonal lattice (see [10]) also satisfy these conditions. However, there exist graphs which do not satisfy them. For example, Kagome lattice (see [10]) does not satisfy (2).

In the proof of Theorem 1, we use Gaussian upper bounds for the kernel function k_n of L^n and its gradient on a nilpotent covering graph. The definition of a gradient of k_n is given as follows:

1. if *X* is a non-bipartite graph,

$$\nabla^{y} k_{n}(x, y) = \sup_{dx(y, z)=1} |k_{n}(x, z) - k_{n}(x, y)|.$$

2. If *X* is a bipartite graph,

$$\nabla^{y} k_{n}(x, y) = \sup_{d_{X}(y, z) = 2} |k_{n}(x, z) - k_{n}(x, y)|,$$

where $d_X(x, y)$ is the length of the shortest path from x to y. We note that W. Hebisch and L. Saloff-Coste gave Gaussian bounds for k_n and ∇k_n on a Cayley graph of Γ in [5]. Furthermore, if the growth rate of a graph is $V(n) \sim n^D$, then L. Saloff-Coste showed $k_{2n}(x,x) < Cn^{-D/2}$ in [14]. After that, C. Pittet and L. Saloff-Coste proved that the long run behavior of the probability of return to the beginning after 2n-steps is left invariant by *quasi-isometry* in [12]. Since a nilpotent covering graph

X has polynomial growth and *X* is quasi-isometric to its transformation group Γ , the Gaussian upper bound for k_n is deduced:

Theorem ([14, 12], cf. [5]) Let X be a non-bipartite graph. Then there exist two constants C and C' > 0 such that

(3)
$$k_n(x, y) \le C n^{-\frac{D}{2}} e^{-d_X(x, y)^2/C' n}$$

for all $x, y \in V$, and all $n = 1, 2, \ldots$

In this paper, for the sake of completeness, we give a proof of Gaussian bound for ∇k_n on X by following the argument by W. Hebisch and L. Saloff-Coste [5] in which the symmetry $\mu^{*n}(x) = \mu^{*n}(x^{-1})$ for a probability measure μ on Γ plays a crucial role. In our case, instead of this symmetry, we use an invariance for the action of Γ and a symmetry of k_n , namely $k_n(\gamma x, \gamma y) = k_n(x, y)$ and $k_n(x, y) = k_n(y, x)$, respectively. Then we have

Theorem 2 (Cf. [5]) There exist two constants C and C' > 0 such that

1. if X is a non-bipartite graph,

(4)
$$\nabla^{y} k_{n}(x, y) < C n^{-\frac{D+1}{2}} e^{-d_{X}(x, y)^{2}/C' n}$$

for all $x, y \in V$, and all n = 1, 2, ...

- 2. If X is a bipartite graph with a bipartition $V = A \coprod B$, and
 - (a) if $x, y \in A$ or $x, y \in B$, then $k_n(x, y) = 0$ for odd n and

$$\nabla^{y} k_{n}(x, y) \leq C n^{-\frac{D+1}{2}} e^{-d_{X}(x, y)^{2}/C' n}$$

for even n,

(b) if $x \in A$, $y \in B$ or $x \in B$, $y \in A$, then $k_n(x, y) = 0$ for even n and

$$\nabla^{y} k_{n}(x, y) \leq C n^{-\frac{D+1}{2}} e^{-d_{X}(x, y)^{2}/C' n}$$

for odd n.

We note that various applications of these estimates have been discussed (for instance, see [2, 3, 4, 16, 18]).

Throughout this article, different constants may be denoted by the same letter *C*. When their dependence or independence is significant, it will be clearly stated.

2 Berry-Esseen Type Theorem

As we already mentioned in the introduction, G. Alexopoulos proved a Berry-Esseen type theorem for convolution powers on a discrete group of polynomial growth [1]. In that proof, the following three results play a crucial role:

R1 An estimate established in [1, Corollary 7].

- **R2** Gaussian bounds for the heat kernel on a nilpotent Lie group (N. Th. Varopoulos [17, Theorem IV.4.2]).
- **R3** Gaussian bounds for the convolution powers on a discrete group of polynomial growth (W. Hebisch, L. Saloff-Coste [5, Theorem 5.1]).

Hence we will consider an analogue of these results on a nilpotent covering graph.

Let g be the Lie algebra of G_{Γ} and exp: $\mathfrak{g} \to G_{\Gamma}$ the exponential map. We set $n_1 = \mathfrak{g}$ and $n_{i+1} = [\mathfrak{g}, n_i]$ for $i \ge 1$. Since g is nilpotent, we have the filtration:

$$\mathfrak{g}=n_1\supset n_2\supset\cdots\supset n_r\neq\{0\}\supset n_{r+1}=\{0\}.$$

We consider subspaces $g^{(1)}, \dots, g^{(r)} \subset g$ such that

$$(5) n_k = \mathfrak{g}^{(k)} \oplus n_{k+1}.$$

Let $\{X_1^{(k)}, X_2^{(k)}, \dots, X_{d_k}^{(k)}\}$ be a basis of $\mathfrak{g}^{(k)}$. Then we have an identification of G_{Γ} with \mathbb{R}^n as differential manifold given by

$$(x_{d_r}^{(r)}, x_{d_{r-1}}^{(r)}, \dots, x_1^{(1)}) \mapsto \exp x_{d_r}^{(r)} X_{d_r}^{(r)} \cdot \exp x_{d_{r-1}}^{(r)} X_{d_{r-1}}^{(r)} \cdots \exp x_1^{(1)} X_1^{(1)},$$

which is called the *canonical coordinates of the second kind* (see [1, 13]). For $x \in G_{\Gamma}$, we denote $P_i^{(k)}(x) = x_i^{(k)}$. We define $(i_1, k_1) > (i_2, k_2)$ if $k_1 > k_2$ or $k_1 = k_2$, $i_1 > i_2$. By the Campbell-Hausdorff formula, we remark that

$$P_i^{(1)}(xy) = P_i^{(1)}(x) + P_i^{(1)}(y),$$

$$P_i^{(2)}(xy) = P_i^{(2)}(x) + P_i^{(2)}(y) + \sum_{i_1 < i_2} [X_{i_1}^{(1)}, X_{i_2}^{(1)}]|_{X_i^{(2)}} P_{i_1}^{(1)}(x) P_{i_1}^{(1)}(y)$$

and for $k \geq 3$,

$$P_i^{(k)}(xy) = P_i^{(k)}(x) + P_i^{(k)}(y) + \sum_{|K_1| + |K_2| \le k} C_{K_1K_2}[X^{K_1}, X^{K_2}]|_{X_i^{(k)}} P^{K_1}(x) P^{K_2}(y),$$

where K_1 and K_2 are multi-indices (see [6]).

Let h_t be the heat kernel of a sub-Laplacian on a nilpotent Lie group G_{Γ} . Then we can use the following same result as **R2**:

Theorem ([17, Theorem IV.4.2]) Let $|K| = k_1 + k_2 + \cdots + k_{\ell}$. Then

(6)
$$\left| \partial_t^s X_{i_1}^{(k_1)} X_{i_2}^{(k_2)} \cdots X_{i_\ell}^{(k_\ell)} h_t(g_1, g_2) \right| \leq C t^{\frac{D+2s+|K|}{2}} \exp(-d(g_1, g_2)^2/c't),$$

where $d(g_1, g_2)$ is a Carnot-Carathèodory distance on G_{Γ} (see [17]).

We will show R3 on a nilpotent covering graph in the next section. Now we try to create R1 in our case.

For $u \in C^{\infty}(\mathbb{R}_{\geq 0} \times G_{\Gamma})$, let $\partial_N u(t, \Phi(x)) = u(t + N, \Phi(x)) - u(t, \Phi(x))$ and $\Phi^* u(t, x) = u(t, \Phi(x))$. We denote

$$C_{x,n} = \{(e_1, e_2, \dots, e_n) \mid e_i \in E, o(e_1) = x, t(e_i) = o(e_{i+1})\}$$

and $t(c) = t(e_n)$ for $c = (e_1, e_2, \dots, e_n) \in C_{x,n}$. As an analogue of **R1**, we have

Lemma 2.1 (Cf. [1, Corollary 7], [6, Lemma 2.2], [7, Theorem 3]) For any $J \ge 4$, there exists a constant $C_J > 0$ such that

(7)
$$\left| \left(\partial_{N} + (I - L^{N}) \right) \Phi^{*} u(t, x) - N \left(\partial_{t} + \Omega \right) u(t, \Phi(x)) \right|$$

$$\leq C_{J} \sup_{\theta \in [0, 1], g \in U_{N}} \left(N^{2} \left| \frac{\partial^{2}}{\partial t^{2}} u(t + \theta N, \Phi(x)) \right| + X^{2} u(t, \Phi(x)) \right)$$

$$+ \sum_{i=3}^{J-1} N^{j-1} X^{j} u(t, \Phi(x)) + \sum_{k=J}^{Jr} N^{k} X^{k} u(t, \Phi(x)g) \right),$$

where

$$X^k uig(t,\Phi(x)ig) \ = \sum_{\ell=1}^k \sum_{k_1+k_2+\cdots+k_\ell=k} \left| X_{i_1}^{(k_1)} X_{i_2}^{(k_2)} \cdots X_{i_\ell}^{(k_\ell)} uig(t,\Phi(x)ig)
ight|$$

and U_N is a set of all $g \in G_{\Gamma}$ satisfying that there exists $c \in C_{x,N}$ such that

$$\left|P_i^{(k)}(g)\right| \le \left|P_i^{(k)}\left(\Phi(x)^{-1}\Phi(t(c))\right)\right|$$
 for all (i,k) .

Proof Let $u'(t,g) = u(t,\Phi(x)g)$. By Taylor's formula with respect to the canonical coordinates of the second kind, there exist $\theta \in [0,1]$ and $g_c \in U_N$ such that

$$\begin{split} \left(\partial_{N} + (I - L^{N})\right) \Phi^{*} u(t, x) &= N \frac{\partial u}{\partial t} \left(t, \Phi(x)\right) + \frac{N^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}} \left(t + \theta N, \Phi(x)\right) \\ &+ \sum_{c \in C_{x,N}} p(c) \left\{ -\frac{\partial u'}{\partial x_{i}^{(k)}} (t, e) P_{i}^{(k)} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \right. \\ &- \frac{1}{2} \frac{\partial^{2} u'}{\partial x_{i_{1}}^{(k_{1})} \partial x_{i_{2}}^{(k_{2})}} (t, e) P_{i_{1}}^{(k_{1})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) P_{i_{2}}^{(k_{2})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \\ &- \sum_{j=3}^{J-1} \frac{1}{j!} \frac{\partial^{j} u'}{\partial x_{i_{1}}^{(k_{1})} \partial x_{i_{2}}^{(k_{2})} \cdots \partial x_{i_{j}}^{(k_{j})}} (t, e) P_{i_{1}}^{(k_{1})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \\ &\times P_{i_{1}}^{(k_{2})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \cdots P_{i_{j}}^{(k_{j})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \end{split}$$

$$-\frac{1}{J!} \frac{\partial^{J} u'}{\partial x_{i_{1}}^{(k_{1})} \partial x_{i_{2}}^{(k_{2})} \cdots \partial x_{i_{J}}^{(k_{J})}} (t, g_{c}) P_{i_{1}}^{(k_{1})} \left(\Phi(x)^{-1} \Phi(t(c)) \right) \times P_{i_{2}}^{(k_{2})} \left(\Phi(x)^{-1} \Phi(t(c)) \right) \cdots P_{i_{J}}^{(k_{J})} \left(\Phi(x)^{-1} \Phi(t(c)) \right) \right\}.$$

We observe now that

$$\begin{split} \frac{\partial u'}{\partial x_i^{(k)}}(t,e) &= X_i^{(k)} u\big(t,\Phi(x)\big)\,,\\ \frac{\partial^2 u'}{\partial x_{i_1}^{(k_1)} \partial x_{i_2}^{(k_2)}}(t,e) &= X_{i_1}^{(k_1)} X_{i_2}^{(k_2)} u\big(t,\Phi(x)\big) \quad (i_1,k_1) \geq (i_2,k_2). \end{split}$$

Hence we have

$$\begin{split} \left(\partial_{N} + (I - L^{N})\right) \Phi^{*}u(t, x) &= N \frac{\partial u}{\partial t} \left(t, \Phi(x)\right) + \frac{N^{2}}{2} \frac{\partial^{2}u}{\partial t^{2}} \left(t + \theta N, \Phi(x)\right) \\ &- \sum_{(i,k)} X_{i}^{(k)} u\left(t, \Phi(x)\right) \sum_{c \in C_{x,N}} p(c) P_{i}^{(k)} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \\ &- \frac{1}{2} \left(\sum_{(i_{1},k_{1}) \geq (i_{2},k_{2})} X_{i_{1}}^{(k_{1})} X_{i_{2}}^{(k_{2})} + \sum_{(i_{2},k_{2}) > (i_{1},k_{1})} X_{i_{2}}^{(k_{2})} X_{i_{1}}^{(k_{1})} \right) u\left(t, \Phi(x)\right) \\ &\times \sum_{c \in C_{x,N}} p(c) P_{i_{1}}^{(k_{1})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) P_{i_{2}}^{(k_{2})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \\ &- \sum_{j=3}^{J-1} \frac{1}{j!} \frac{\partial^{j} u'}{\partial x_{i_{1}}^{(k_{1})} \partial x_{i_{2}}^{(k_{2})} \cdots \partial x_{i_{j}}^{(k_{j})}} (t, e) \sum_{c \in C_{x,N}} p(c) P_{i_{1}}^{(k_{1})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \\ &\times P_{i_{2}}^{(k_{2})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right) big \cdots P_{i_{j}}^{(k_{j})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \\ &- \frac{1}{J!} \sum_{c \in C_{x,N}} p(c) \frac{\partial^{J} u'}{\partial x_{i_{1}}^{(k_{1})} \partial x_{i_{2}}^{(k_{2})} \cdots \partial x_{i_{j}}^{(k_{j})}} (t, g_{c}) P_{i_{1}}^{(k_{1})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \\ &\times P_{i_{2}}^{(k_{2})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right) \cdots P_{i_{J}}^{(k_{J})} \left(\Phi(x)^{-1} \Phi\left(t(c)\right)\right). \end{split}$$

From the harmonicity of Φ ,

$$\sum_{c \in C_{eN}} p(c) P_i^{(1)} \left(\Phi(x)^{-1} \Phi(t(c)) \right) = 0.$$

By using the ergodicity (see [6, 7]) and the harmonicity of Φ , there exists C>0 independent of N such that

(8)
$$\left| X_i^{(2)} u(t, \Phi(x)) \sum_{k=0}^{N-1} \sum_{c \in C_{x,k}} p(c) \sum_{e \in E_{t(c)}} p(e) \exp^{-1} \Phi(o(e))^{-1} \Phi(t(e)) \right|_{X_i^{(2)}}$$

$$\leq C X^2 u(t, \Phi(x))$$

and

(9)
$$\left| -\frac{1}{2} \sum_{i_1, i_2 \le d_1} \left\{ X_{i_1}^{(1)} X_{i_2}^{(1)} u(t, \Phi(x)) \sum_{k=0}^{N-1} \sum_{c \in C_{x,k}} p(c) \sum_{e \in E_{t(c)}} p(e) \right. \\ \times \left. \exp^{-1} \Phi(o(e))^{-1} \Phi(t(e)) \right|_{X_{i_1}^{(1)}} \exp^{-1} \Phi(o(e))^{-1} \Phi(t(e)) \left|_{X_{i_2}^{(1)}} \right\} - N \Omega f(\Phi(x)) \right| \\ < C X^2 u(t, \Phi(x)).$$

By the harmonicity of Φ and the definition of $P_i^{(k)}$ (see also [6]), we have

$$\sum_{c \in C_{v,N}} p(c) P_{i_1}^{(k_1)} \left(\Phi(x)^{-1} \Phi(t(c)) \right) \cdots P_{i_j}^{(k_j)} \left(\Phi(x)^{-1} \Phi(t(c)) \right) \leq C N^{|K|-1},$$

where $|K| = k_1 + k_2 + \cdots + k_j$. Since $g_c \in U_N$, there exists a constant $C'_J > 0$ such that

$$\left|\frac{\partial^J u'}{\partial x_{i_1}^{(k_1)} \partial x_{i_2}^{(k_2)} \cdots \partial x_{i_J}^{(k_J)}}(t, g_c)\right| \leq C'_J \sum_{k \geq k_1 + k_2 + \cdots + k_J}^{Jr} N^{k-k_1-k_2 - \cdots - k_J} X^k u(t, \Phi(x)g_c).$$

Hence the lemma follows.

Remark 2.2 If (1) and (2) are satisfied, then (8) and (9) are zero, so that $X^2u(t, \Phi(x))$ vanishes in (7).

For the proof of Theorem 1, we introduce some notations. We define

$$S_t(x,y) = \frac{|G_{\Gamma}/\Gamma|}{m(X_0)} h_t(\Phi(x), \Phi(y)) \quad (x, y \in V),$$

$$S'_t(x,y) = \frac{1}{m(X_0)} \int_E h_t(\Phi(x)\eta, \Phi(y)) d\eta \quad (x, y \in V),$$

where *F* is a fundamental domain in G_{Γ} for the action of Γ . We shall denote

$$k \cdot S(x, y) = \sum_{z \in V} k(x, z) S(z, y) m(z).$$

Let us also denote, for $T \ge 0$,

$$\delta(n) = \sup_{x,y \in V} |k_n(x,y) - S_n(x,y)|,$$

$$\delta_T(n) = \sup_{x,y \in V} |(k_n - S_n) \cdot S_T'(x,y)|.$$

By using Gaussian bounds for k_n , ∇k_n (Theorem 2) and h_t ([17]), we have

Lemma 2.3 (Cf. [1, Lemma 11], [15, Lemma 1]) Assume that X is a non-bipartite graph. Then, there are constants $\alpha, \beta \geq 0$ independent of n and T such that

$$\delta(n) \le \alpha \delta_T(n) + \beta \sqrt{T} n^{-\frac{D+1}{2}}$$
.

As an analogue of [1, Proposition 12], we have

Lemma 2.4 Assume that X is a non-bipartite graph. Let q > 0 and $J \ge 4$. If there exists a constant A > 0 such that

$$\delta(i) \le Ai^{-\frac{D+q}{2}}$$

for all i = 1, 2, ..., n - 1, then there exists a constant $C_I > 0$ such that

$$\begin{split} \delta(n) &\leq C_{J} \left(n^{-\frac{D+1}{2}} + N^{-1} n^{-\frac{D}{2}} + \sum_{j=3}^{J-1} N^{j-2} n^{-\frac{D+j-2}{2}} + \sum_{k=J}^{Jr} N^{k-1} n^{-\frac{D+k-2}{2}} \right. \\ &+ \sum_{j=3}^{J-1} N^{j-1} n^{-\frac{D+j}{2}} + \sum_{k=J}^{Jr} N^{k} n^{-\frac{D+k}{2}} + T^{\frac{1}{2}} n^{-\frac{D+1}{2}} \\ &+ A n^{-\frac{D+q}{2}} \left[N^{-1} \log(n+T) + \sum_{j=3}^{J-1} N^{j-2} T^{-\frac{j-2}{2}} + \sum_{k=J}^{Jr} N^{k-1} T^{-\frac{k-2}{2}} \exp\left(\frac{N^{2}}{c'T}\right) \right. \\ &+ \sum_{j=3}^{J-1} N^{j-1} T^{-\frac{j}{2}} + \sum_{k=J}^{Jr} N^{k} T^{-\frac{k}{2}} \exp\left(\frac{N^{2}}{c'T}\right) \right] \Big) \end{split}$$

for sufficiently smaller $N \in \mathbb{N}$ than n and $T \in \mathbb{N}$.

Proof By the previous lemma, we will consider $\delta_T(n)$. First we prove

(11)
$$||S_{n+T} - S_n \cdot S_T'||_{\infty} \le C n^{-\frac{D+1}{2}}.$$

Let *R* be a fundamental domain in *X* for the action of Γ such that $\Phi(R) \subset F$. Since Φ is Γ -equivariant, we get

$$\begin{split} S_{n+T}(x,y) &- S_n \cdot S_T'(x,y) \\ &= \frac{|G_{\Gamma}/\Gamma|}{m(X_0)} \sum_{\gamma \in \Gamma, z_0 \in R} \left[\frac{1}{m(X_0)} \int_F \left(h_n \left(\Phi(x), \gamma \Phi(z_0) \eta \right) h_T \left(\gamma \Phi(z_0) \eta, \Phi(y) \right) \right) \\ &- h_n (\Phi(x), \gamma \Phi(z_0)) h_T \left(\gamma \Phi(z_0) \eta, \Phi(y) \right) \right) d\eta \right] m(z_0) \\ &\leq \frac{|G_{\Gamma}/\Gamma|}{m(X_0)^2} \sum_{\gamma \in \Gamma, z_0 \in R} \left[\sup_{\eta \in F} \left| h_n \left(\Phi(x), \gamma \Phi(z_0) \eta \right) - h_n \left(\Phi(x), \gamma \Phi(z_0) \right) \right| \\ &\times \int_F h_T \left(\gamma \Phi(z_0) \eta, \Phi(y) \right) d\eta \right] m(z_0) \\ &\leq C n^{-\frac{D+1}{2}}. \end{split}$$

Hence it is enough to estimate $||S_{n+T} - k_n S'||_{\infty}$. Let $I \in \mathbb{N}$ be a quotient of n by N. Then we have

$$\begin{split} S_{n+T}(x,y) &- k_n S_T'(x,y) \\ &= \sum_{0 \le i \le I-2} \left\{ k_{iN} S_{n-iN+T} - k_{(i+1)N} S_{n-(i+1)N+T} \right\} (x,y) \\ &+ k_{(I-1)N} S_{n-(I-1)N+T}(x,y) - k_n \cdot S_T'(x,y) \\ &= \sum_{0 \le i \le \frac{I-2}{2}} k_{iN} \left(S_{n-iN+T} - k_N S_{n-(i+1)N+T} \right) (x,y) \\ &+ \sum_{\frac{I-2}{2} < i \le I-2} \left(k_{iN} - S_{iN} \right) \left(S_{n-iN+T} - k_N S_{n-(i+1)N+T} \right) (x,y) \\ &+ \sum_{\frac{I-2}{2} < i \le I-2} S_{iN} \left(S_{n-iN+T} - k_N S_{n-(i+1)N+T} \right) (x,y) \\ &+ \left(k_{(I-1)N} - S_{(I-1)N} \right) \left(S_{n-(I-1)N+T} - k_{n-(I-1)N} S_T' \right) (x,y) \\ &+ S_{(I-1)N} \left(S_{n-(I-1)N+T} - k_{n-(I-1)N} S_T' \right) (x,y) \\ &= E_1 + E_2 + E_3 + E_4 + E_5. \end{split}$$

Using Hölder's inequality,

$$E_1 \leq \sum_{0 \leq i \leq \frac{I-2}{2}} \|k_{iN}(x, \cdot)\|_{L^1} \| \left(S_{n-iN+T} - k_N S_{n-(i+1)N+T} \right) (\cdot, y) \|_{\infty}.$$

By using (6) and (7), we have

$$\begin{split} E_1 &\leq \sum_{0 \leq i \leq \frac{I-2}{2}} C \left\{ N^2 (n-(i+1)N+T)^{-\frac{D+4}{2}} + (n-(i+1)N+T)^{-\frac{D+2}{2}} \right. \\ &+ \sum_{j=3}^{J-1} N^{j-1} (n-(i+1)N+T)^{-\frac{D+j}{2}} + \sum_{k=J}^{Jr} N^k (n-(i+1)N+T)^{-\frac{D+k}{2}} \right\}. \end{split}$$

Since $(\frac{I-2}{2}+1)N = \frac{IN}{2} < \frac{n}{2}$, we get

$$E_1 \leq C_J' \left(N n^{-\frac{D+2}{2}} + N^{-1} n^{-\frac{D}{2}} + \sum_{j=3}^{J-1} N^{j-2} n^{-\frac{D+j-2}{2}} + \sum_{k=J}^{Jr} N^{k-1} n^{-\frac{D+k-2}{2}} \right)$$

To estimate E_2 , using Hölder's inequality and (10),

$$E_{2} \leq \sum_{\frac{I-2}{2} < i \leq I-2} \|(k_{iN} - S_{iN})(x, \cdot)\|_{\infty} \| (S_{n-iN+T} - k_{N}S_{N-(i+1)N+T})(\cdot, y)\|_{L^{1}}$$

$$\leq \sum_{\frac{I-2}{2} < i \leq I-2} A(iN)^{-\frac{D+q}{2}} \| \{\partial_{N} + (I-L^{N})\} S_{n-(i+1)N+T}(\cdot, y)\|_{L^{1}}.$$

By using (6) and (7), we have

$$\begin{split} & \left\| \left\{ \partial_{N} + (I - L^{N}) \right\} S_{n - (i+1)N + T}(\cdot, y) \right\|_{L^{1}} \\ & \leq C_{J}' \left(\sup_{\theta \in [0,1]} N^{2} \Big| \frac{\partial^{2}}{\partial t^{2}} h_{n - (i+1)N + T + \theta N} \left(\Phi(z), \Phi(y) \right) \Big| \\ & + X^{2} h_{n - (i+1)N + T} (\Phi(z), \Phi(y)) + \sum_{j=3}^{J-1} N^{j-1} X^{j} h_{n - (i+1)N + T} \left(\Phi(z), \Phi(y) \right) \\ & + \sup_{g \in U_{N}} \sum_{k=J}^{Jr} N^{k} X^{k} h_{n - (i+1)N + T} \left(\Phi(z)g, \Phi(y) \right) \right) m(z) \\ & \leq C_{J}' \sum_{z \in V} \left[N^{2} (n - (i+1)N + T)^{-\frac{D+4}{2}} \exp\left(-\frac{d(\Phi(z), \Phi(y))^{2}}{c'(n - (i+1)N + T)} \right) \right. \\ & + (n - (i+1)N + T)^{-\frac{D+2}{2}} \exp\left(-\frac{d(\Phi(z), \Phi(y))^{2}}{c'(n - (i+1)N + T)} \right) \\ & + \sum_{j=3}^{J-1} N^{j-1} (n - (i+1)N + T)^{-\frac{D+j}{2}} \exp\left(-\frac{d(\Phi(z), \Phi(y))^{2}}{c'(n - (i+1)N + T)} \right) \\ & + \sup_{g \in U_{N}} \sum_{k=J}^{Ir} N^{k} (n - (i+1)N + T)^{-\frac{D+k}{2}} \exp\left(-\frac{d(\Phi(z)g, \Phi(y))^{2}}{c'(n - (i+1)N + T)} \right) \right] m(z). \end{split}$$

Since the order of polynomial growth of *X* is *D*, there exists a constant C > 0 independent of n, i, N, T and $\Phi(y)$ such that

$$\left(n - (i+1)N + T\right)^{-\frac{D}{2}} \sum_{z \in V} \exp\left(-\frac{d(\Phi(z), \Phi(y))^2}{c'(n - (i+1)N + T)}\right) \le C,$$

$$\sup_{g \in U_N} \left(n - (i+1)N + T\right)^{-\frac{D}{2}} \sum_{z \in V} \exp\left(-\frac{d(\Phi(z)g, \Phi(y))^2}{c'(n - (i+1)N + T)}\right) \le C \exp\left(\frac{N^2}{c'T}\right).$$

These imply

$$\begin{split} \left\| \left\{ \partial_{N} + (I - L^{N}) \right\} S_{n-(i+1)N+T}(\cdot, y) \right\|_{L^{1}} &\leq C_{J}' \left(N^{2} (n - (i+1)N + T)^{-\frac{4}{2}} + (n - (i+1)N + T)^{-\frac{2}{2}} + \sum_{j=3}^{J-1} N^{j-1} (n - (i+1)N + T)^{-\frac{j}{2}} + \sum_{k=J}^{Jr} N^{k} (n - (i+1)N + T)^{-\frac{k}{2}} \exp\left(\frac{N^{2}}{c'T}\right) \right). \end{split}$$

Hence we conclude

$$\begin{split} E_2 &\leq C_J' A (n-2N)^{-\frac{D+q}{2}} \int_{\frac{1}{2}-1}^{I-1} \left\{ N^2 (n-(x+1)N+T)^{-2} \right. \\ &+ (n-(x+1)N+T)^{-1} + \sum_{j=3}^{J-1} N^{j-1} (n-(x+1)N+T)^{-j/2} \\ &+ \sum_{k=J}^{Jr} N^k (n-(x+1)N+T)^{-\frac{k}{2}} \exp\left(\frac{N^2}{c'T}\right) \right\} dx \\ &\leq C_J' A (n-2N)^{-\frac{D+q}{2}} \left(NT^{-1} + N^{-1} \log(n+T) \right. \\ &+ \sum_{j=3}^{J-1} N^{j-2} T^{-\frac{j-2}{2}} + \sum_{k=J}^{Jr} N^{k-1} T^{-\frac{k-2}{2}} \exp\left(\frac{N^2}{c'T}\right) \right). \end{split}$$

 E_4 is estimated by

$$E_{4} \leq \left\| (k_{(I-1)N} - S_{(I-1)N})(x, \cdot) \right\|_{\infty} \left\| \left(S_{n-(I-1)N+T} - k_{n-(I-1)N} \cdot S_{T}' \right) (\cdot, y) \right\|_{L^{1}}$$

$$\leq A((I-1)N)^{-\frac{D+q}{2}} \left\| \left(S_{n-(I-1)N+T} - k_{n-(I-1)N} \cdot S_{T}' \right) (\cdot, y) \right\|_{L^{1}}.$$

By using Gaussian bounds for h_t [17, Theorem IV.4.2], we have

$$\begin{split} & \left\| \left(S_{n-(I-1)N+T} - k_{n-(I-1)N} \cdot S_T' \right) (\cdot, y) \right\|_{L^1} \\ & = \sum_{x \in V} \frac{1}{m(X_0)} \int_F \left(h_{n-(I-1)N+T} \left(\Phi(x), \Phi(y) \right) - h_{n-(I-1)N+T} \left(\Phi(x) \eta, \Phi(y) \right) \right) \\ & + \left\{ \partial_{n-(I-1)N} + (I - L^{n-(I-1)N}) \right\} h_T \left(\Phi(\cdot) \eta, \Phi(y) \right) |_x \right) d\eta \\ & \leq C_J' \sup_{\substack{\eta \in F' \\ g \in U_N}} \sum_{\gamma \in \Gamma, x_0 \in R} \left[(n - (I-1)N + T)^{-\frac{D+1}{2}} \exp \left(-\frac{d(\gamma \Phi(x_0) \eta, \Phi(y))^2}{c'(I-(I-1)N+T)} \right) \right. \\ & + (n - (I-1)N)^2 T^{-\frac{D+4}{2}} \exp \left(-\frac{d(\gamma \Phi(x_0) \eta, \Phi(y))^2}{c'T} \right) \\ & + T^{-\frac{D+2}{2}} \exp \left(-\frac{d(\gamma \Phi(x_0) \eta, \Phi(y))^2}{c'T} \right) \\ & + \sum_{j=3}^{J-1} (n - (I-1)N)^{j-1} T^{-\frac{D+j}{2}} \exp \left(-\frac{d(\gamma \Phi(x_0) \eta, \Phi(y))^2}{c'T} \right) \\ & + \sum_{k=I}^{Jr} (n - (I-1)N)^k T^{-\frac{D+k}{2}} \exp \left(-\frac{d(\gamma \Phi(x_0) \eta, \Phi(y))^2}{c'T} \right) \right] \end{split}$$

$$\leq C_J' \left(T^{-\frac{1}{2}} + N^2 T^{-2} + T^{-1} + \sum_{j=3}^{J-1} N^{j-1} T^{-\frac{j}{2}} + \sum_{k=J}^{Jr} N^k T^{-\frac{k}{2}} \exp\left(\frac{N^2}{c'T}\right) \right),$$

where F' is a compact subset in G_{Γ} .

Next, we consider $E_3 + E_5$. Let [a] be the greatest integer not greater than a. Then,

$$E_{3} + E_{5} = \left(S_{\left[\frac{1}{2}\right]N} \cdot S_{n-\left[\frac{1}{2}\right]N+T} - S_{(I-1)N} \cdot k_{n-(I-1)N} \cdot S_{T}'\right)(x, y)$$

$$+ \sum_{\frac{I-2}{2} < i \le I-2} (S_{(i+1)N} - S_{iN} \cdot k_{N}) \cdot S_{n-(i+1)N+T}(x, y)$$

$$= E_{3}' + E_{5}'.$$

By using Hölder's inequality,

$$\begin{split} E_5' &\leq \sum_{\frac{I-2}{2} < i \leq I-2} \| (S_{(i+1)N} - S_{iN} \cdot k_N)(x, \cdot) \|_{\infty} \| S_{n-(i+1)N+T}(\cdot, y) \|_{L^1} \\ &\leq C_J' \sum_{\frac{I-2}{2} < i \leq I-2} \left(N^2 (iN)^{-\frac{D+4}{2}} + (iN)^{-\frac{D+2}{2}} + \sum_{j=3}^{J-1} N^{j-1} (iN)^{-\frac{D+j}{2}} \right. \\ &+ \sum_{k=J}^{Jr} N^k (iN)^{-\frac{D+k}{2}} \right) \\ &\leq C_J' n \left(N(n-2N)^{-\frac{D+4}{2}} + N^{-1} (n-2N)^{-\frac{D+2}{2}} + \sum_{j=3}^{J-1} N^{j-2} (n-2N)^{-\frac{D+j}{2}} \right. \\ &+ \sum_{k=J}^{Jr} N^{k-1} (n-2N)^{-\frac{D+k}{2}} \right). \end{split}$$

 E_3' is estimated by

$$E_{3}' \leq \|S_{\left[\frac{I}{2}\right]N}S_{n-\left[\frac{I}{2}\right]N+T} - S_{n+T}\|_{\infty} + \|S_{n+T} - S_{n} \cdot S_{T}'\|_{\infty} + \|(S_{n} - S_{(I-1)N} \cdot k_{n-(I-1)N}) \cdot S_{T}'\|_{\infty}.$$

Then we have

$$\begin{split} (S_{[\frac{l}{2}]N}S_{n-[\frac{l}{2}]N+T} - S_{n+T})(x,y) \\ &= \frac{|G_{\Gamma}/\Gamma|}{m(X_0)^2} \sum_{\gamma \in \Gamma, z_0 \in \mathbb{R}} \int_F \left[h_{[\frac{l}{2}]N} \left(\Phi(x), \gamma \Phi(z_0) \right) h_{n-[\frac{l}{2}]N+T} \left(\gamma \Phi(z_0), \Phi(y) \right) \right. \\ &\qquad \qquad \left. - h_{[\frac{l}{2}]N} (\Phi(x), \gamma \eta) h_{n-[\frac{l}{2}]N+T} \left(\gamma \eta, \Phi(y) \right) \right] \, d\eta \, m(z_0) \end{split}$$

$$\leq \frac{|G_{\Gamma}/\Gamma|}{m(X_{0})^{2}} \sum_{\gamma \in \Gamma, z_{0} \in R} \left[\sup_{\eta \in F} |h_{n-\lfloor \frac{I}{2} \rfloor N+T}(\gamma \Phi(z_{0}), \Phi(y)) - h_{n-\lfloor \frac{I}{2} \rfloor N+T}(\gamma \eta, \Phi(y)) | \right. \\ \left. \times \int_{F} h_{\lfloor \frac{I}{2} \rfloor N}(\Phi(x), \gamma \Phi(z_{0})) \, d\eta + \sup_{\eta \in F} \left| h_{\lfloor \frac{I}{2} \rfloor N}(\Phi(x), \gamma \Phi(z_{0})) - h_{\lfloor \frac{I}{2} \rfloor N}(\Phi(x), \gamma \eta) \right| \\ \left. \times \int_{F} h_{n-\lfloor \frac{I}{2} \rfloor N+T}(\gamma \eta, \Phi(y)) \, d\eta \right] m(z_{0}) \\ \leq C'_{I} \left(\left(\frac{n}{2} \right)^{-\frac{D+1}{2}} + \left(\frac{n}{2} - \frac{3}{2} N \right)^{-\frac{D+1}{2}} \right).$$

By (11), $||S_{n+T} - S_n S_T'||_{\infty} \le C n^{-\frac{D+1}{2}}$. So $||(S_n - S_{(I-1)N} k_{n-(I-1)N}) S_T'||_{\infty}$ is estimated by

$$\left(S_n - S_{(I-1)N} k_{n-(I-1)N} \right) S_T'(x, y)$$

$$\leq \left\| \left(S_n - S_{(I-1)N} \cdot k_{n-(I-1)N} \right) (x, \cdot) \right\|_{\infty} \left\| S_T'(\cdot, y) \right\|_{L^1}$$

$$\leq C_J' \left[N^2 (n - 2N)^{-\frac{D+4}{2}} + (n - 2N)^{-\frac{D+2}{2}} + \sum_{j=3}^{J-1} N^{j-1} (n - 2N)^{-\frac{D+j}{2}} \right]$$

$$+ \sum_{k=J}^{Jr} N^k (n - 2N)^{-\frac{D+k}{2}} \right].$$

By the hypothesis of *N*, the lemma follows.

Proof of Theorem 1

First, we will consider the case that X is a non-bipartite graph. We note that if (1) and (2) are satisfied, then the terms $N^{-1}n^{-\frac{D}{2}}$ and $N^{-1}\log(n+T)$ in Lemma 2.4 vanish. Hence we can use the same arguments as Alexopoulos [1] by putting N=1 and q=1. However, if (1) and (2) are not satisfied, then we put $N=[n^{(J-2)/(4J-6)}]$, $T=T_0[n^{(J-1)/(2J-3)}]$ ($T_0\in\mathbb{N}$) and q=(J-2)/(2J-3). In this case, if $\delta(i)\leq Ai^{-\frac{D+(J-2)/(2J-3)}{2}}$ for $i=1,2,\ldots n-1$, then there exists a constant $\alpha_J>1$ and a sequence $\{\beta_{T_0}(n)\}_{n\in\mathbb{N}}$ which converges to zero as $n\uparrow\infty$ such that

$$\delta(n) \leq \alpha_J \left(1 + T_0^{1/2} + A \left(\beta_{T_0}(n) + T_0^{-(J-2)/2} \exp(1/c'T_0) \right) \right) n^{-\frac{D+(J-2)/(2J-3)}{2}}.$$

Hence we will use the induction for n. Fix $s_J \in \mathbb{R}$ such that $1 - 1/\alpha_J < s_J < 1$. Let K_J and T_J be positive integers such that

$$\left(\beta_{T_J}(n) + T_J^{-(J-2)/2} \exp(1/c'T_J)\right) < 1 - s_J$$

for all $n \ge K_J$. Since $\delta(n)$ is uniformly bounded, there exists a constant $A_J > 0$ such that

$$\delta(n) \leq A_I n^{-\frac{D+(J-2)/(2J-3)}{2}}$$

for all $n < K_I$. By the previous lemma and the assumption of K_I , we have

$$\delta(K_I) \leq \alpha_I \left(1 + T_I^{1/2} + A_I (1 - s_I)\right) K_I^{-\frac{D + (J - 2)/(2J - 3)}{2}}.$$

Put $C_I = \max\{A_I, (1 + T_I^{1/2})(1/\alpha_I + s_I - 1)^{-1}\}$. Then clearly we have

$$\delta(n) \leq C_I n^{-\frac{D+(J-2)/(2J-3)}{2}}$$

for all $n \leq K_I$.

When $n > K_s$, we assume that

$$\delta(i) \le C_I i^{-\frac{D+(J-2)/(2J-3)}{2}}$$

for i = 1, 2, ..., n - 1. By the previous lemma and the definition of C_I , we conclude

$$\delta(n) \leq \alpha_I \left(1 + T_I^{1/2} + C_I(1 - s_I)\right) n^{-\frac{D + (J-2)/(2J-3)}{2}} \leq C_I n^{-\frac{D + (J-2)/(2J-3)}{2}}.$$

Next, we will consider the case that X is a bipartite graph. Suppose that m and p are a weight and a transition probability on X which gives a symmetric random walk. The bipartition of V is denoted by $V = A \coprod B$. Let $X_A = (A, E_A)$ be an oriented graph, where $E_A = \{(e_1, e_2) \in C_{x,2} \mid x \in A\}$. For $e = (e_1, e_2) \in E_A$, let $o(e) = o(e_1)$, $t(e) = t(e_2)$ and $\overline{e} = (\overline{e_2}, \overline{e_1})$. Then a weight m_A and a transition probability p^A is denoted by

$$m_A(x) = m(x) \quad x \in A,$$

 $p^A(e) = p(e_1)p(e_2) \quad e = (e_1, e_2) \in E_A,$

respectively. It is easy to show that m_A and p^A give a symmetric random walk on X_A . The transition probability starting at x reaches y at time n on X_A is denoted by $p_n^A(x,y)$. Then the kernel function k_n^A of the transition operator on X_A is written by $k_n^A(x,y) = p_n^A(x,y)m_A(y)^{-1}$. By using the argument of [8], X_A is also a nilpotent covering graph of a finite graph X_{A1} whose covering transformation group Γ_1 is Γ or a subgroup of Γ of index two. We note that X_A have a loop for each vertex. Hence we conclude

$$\sup_{x,y \in A} \left| p_n^A(x,y) m(y)^{-1} - \frac{|G_{\Gamma}/\Gamma_1|}{m(X_{A1})} h_n^A(\Phi(x), \Phi(y)) \right| \le C_{\epsilon} n^{-\frac{D+1/2-\epsilon}{2}},$$

where h_n^A is the heat kernel with respect to m_A and p^A . Since $p_n^A = p_{2n}$, $h_n^A = h_{2n}$, and $\frac{|G_\Gamma/\Gamma_1|}{m(X_{A1})} = 2\frac{|G_\Gamma/\Gamma_1|}{m(X_{O1})}$, the theorem is proved when $x, y \in A$ for even n. If $x \in A$, $y \in B$

or $x \in B$, $y \in A$, then we have

$$\begin{split} p_{2n+1}(x,y)m(y)^{-1} &- 2\frac{|G_{\Gamma}/\Gamma|}{m(X_{0})}h_{2n+1}\big(\Phi(x),\Phi(y)\big) \\ &= \sum_{z \in A} k_{2n}(x,z)k(z,y)m(z) - 2\frac{|G_{\Gamma}/\Gamma|}{m(X_{0})}h_{2n+1}\big(\Phi(x),\Phi(y)\big) \\ &= \sum_{z \in A} \left(k_{2n}(x,z) - 2\frac{|G_{\Gamma}/\Gamma|}{m(X_{0})}h_{2n}(\Phi(x),\Phi(z))\right)k(z,y)m(z) \\ &+ \sum_{z \in A} 2\frac{|G_{\Gamma}/\Gamma|}{m(X_{0})}h_{2n}(\Phi(x),\Phi(y))k(z,y)m(z) - 2\frac{|G_{\Gamma}/\Gamma|}{m(X_{0})}h_{2n+1}(\Phi(x),\Phi(y)) \\ &\leq C_{\epsilon}n^{-\frac{D+1/2-\epsilon}{2}} + |(\partial_{1} + (I-L_{y}))S_{2n}(x,y)| \\ &\leq C_{\epsilon}n^{-\frac{D+1/2-\epsilon}{2}} + Cn^{-\frac{D+2}{2}} \leq C_{\epsilon}n^{-\frac{D+1/2-\epsilon}{2}}. \end{split}$$

Hence we complete the proof of Theorem 1.

3 Gaussian Upper Bound for ∇k_n

First, we assume that X is a non-bipartite graph. For our proof of the Gaussian upper bound for ∇k_n , we introduce next two lemmas.

Lemma 3.1 (Cf. [5, Lemma 3.2]) Let ℓ , $n \in \mathbb{N}$ and $f \in L^2(X)$. There exists a constant $C_{\ell} > 0$ such that

$$||(I-L^{2\ell})^{1/2}L^nf||_2 \le C_{\ell}n^{-1/2}||f||_2.$$

As an easy consequence of (3), we have

Lemma 3.2 (Cf. [5, Lemma 5.2]) Set $\omega_s(x, y) = \exp(sd_X(x, y))$ $(x, y \in V)$. Then

(12)
$$||k_n(x,\cdot)\omega_s(x,\cdot)||_q \le Cn^{-\frac{D}{2}(1-1/q)} \exp(C's^2n).$$

Proof of Theorem 2

By the same argument of [5], it is easy to show that

(13)
$$\nabla^{y} k_{n}(x, y) \leq C \sup_{d_{X}(y, z) \leq 1} \nabla^{y}_{2} k_{n}(x, z).$$

Hence we will consider $\nabla_2^y k_n(x, y)$. Fix s > 0, $\nu = n + m$, and note that $\omega_s(x, y) \le \omega_s(x, z)\omega_s(z, y)$. This implies

$$\omega_s(x,y)\nabla_2^{\gamma}k_{\nu}(x,y) \leq \|k_m(x,\cdot)\omega_s(x,\cdot)\|_2\|\nabla_2^{\gamma}k_n(\cdot,y)\omega_s(\cdot,y)\|_2.$$

Lemma 3.2 yields a good bound for $||k_m(x,\cdot)\omega_s(x,\cdot)||_2$. The second factor can be estimated by

$$\begin{split} \left\| \omega_{s}(\cdot, y) \nabla_{2}^{y} k_{n}(\cdot, y) \right\|_{2}^{2} &\leq C \sum_{z_{3} \in R_{y}} \left\| \omega_{s}(\cdot, z_{3}) \nabla_{2}^{z_{3}} k_{n}(\cdot, z_{3}) \right\|_{2}^{2} m(z_{3}) \\ &= C \sum_{z_{3} \in R_{y}} \sum_{z \in V} \omega_{2s}(z, z_{3}) \sum_{d(z_{3}, z') \leq 2} \left| k_{n}(z, z_{3}) - k_{n}(z, z') \right|^{2} m(z') m(z) m(z_{3}). \end{split}$$

Since *X* is a non-bipartite graph, there exists $n_0 \in \mathbb{N}$ such that

$$\inf\{k_{2n_0}(z',z_3)\mid d_X(z_3,z')\leq 2,\ z_3\in R\}>0.$$

Hence

$$\begin{split} \|\omega_{s}(\cdot,y)\nabla_{2}^{y}k_{n}(\cdot,y)\|_{2}^{2} \\ &\leq C'\sum_{z_{3}\in R_{y}}\sum_{z\in V}\omega_{2s}(z,z_{3})\sum_{d(z_{3},z')\leq 2}|k_{n}(z,z_{3})-k_{n}(z,z')|^{2} \\ &\times k_{2n_{0}}(z',z_{3})m(z')m(z)m(z_{3}) \\ &\leq C'\sum_{z_{3}\in R_{y}}\sum_{z,z'\in V}\omega_{2s}(z,z_{3})\left(k_{n}(z,z_{3})^{2}-2k_{n}(z,z_{3})k_{n}(z,z')+k_{n}(z,z')^{2}\right) \\ &\times k_{2n_{0}}(z',z_{3})m(z')m(z)m(z_{3}) \\ &=2C'\sum_{z_{3}\in R_{y}}\sum_{z,z'\in V}\omega_{2s}(z,z_{3})k_{n}(z,z_{3})\left(k_{n}(z,z_{3})-k_{n}(z,z')\right) \\ &\times k_{2n_{0}}(z',z_{3})m(z')m(z)m(z_{3}) \\ &+C'\left(\sum_{z_{3}\in R_{y}}\sum_{z,z'\in V}\omega_{2s}(z,z_{3})k_{n}(z,z')^{2}k_{2n_{0}}(z',z_{3})m(z')m(z)m(z_{3}) \\ &-\sum_{z_{3}\in R_{y}}\sum_{z,z'\in V}\omega_{2s}(z,z_{3})k_{n}(z,z_{3})^{2}k_{2n_{0}}(z',z_{3})m(z')m(z)m(z_{3})\right) \\ &=B_{1}+B_{2}. \end{split}$$

By using Lemma 3.1 and Lemma 3.2, B_1 is estimated by

$$B_{1} = 2C' \sum_{z_{3} \in R_{y}} \omega_{2s}(z, z_{3}) k_{n}(z, z_{3}) (I - L^{2n_{0}}) k_{n}(z, z_{3}) m(z) m(z_{3})$$

$$\leq 2C' \|\omega_{2s}(\cdot, z_{3}) k_{n}(\cdot, z_{3})\|_{2} \cdot \|(I - L^{2n_{0}}) k_{n}(\cdot, z_{3})\|_{2} m(z_{3})$$

$$\leq Cn^{-\frac{D}{4}} \exp(C's^{2}n) \cdot n^{-1} \cdot n^{-\frac{D}{4}} = Cn^{-1-\frac{D}{2}} \exp(C's^{2}n).$$

Because every $z \in V$ can be written as $z = \gamma z_0$ ($\gamma \in \Gamma, z_0 \in R_y$), and the weight m is Γ -invariant, we have

$$\begin{split} B_2 &= C' \bigg(\sum_{\substack{z_3 \in R_y \\ \gamma_1, \gamma_2 \in \Gamma}} \sum_{\substack{z_1, z_2 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} \omega_{2s}(\gamma_1 z_1, z_3) k_n (\gamma_1 z_1, \gamma_2 z_2)^2 k_{2n_0} (\gamma_2 z_2, z_3) m(z_2) m(z_1) m(z_3) \\ &- \sum_{\substack{z_3 \in R_y \\ \gamma_1, \gamma_2 \in \Gamma}} \sum_{\substack{z_1, z_2 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} \omega_{2s}(\gamma_1 z_1, z_2) k_n (\gamma_1 z_1, z_2)^2 k_{2n_0} (z_2, \gamma_2^{-1} z_3) m(z_3) m(z_1) m(z_2) \bigg) \,. \end{split}$$

By replacing γ_1 with $\gamma_2^{-1}\gamma_1$ in the second term,

$$\begin{split} B_2 &= C' \bigg(\sum_{\substack{z_1, z_2, z_3 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} \omega_{2s}(\gamma_1 z_1, z_3) k_n (\gamma_1 z_1, \gamma_2 z_2)^2 k_{2n_0} (\gamma_2 z_2, z_3) m(z_3) m(z_2) m(z_1) \\ &- \sum_{\substack{z_1, z_2, z_3 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} \omega_{2s}(\gamma_2^{-1} \gamma_1 z_1, z_2) k_n (\gamma_2^{-1} \gamma_1 z_1, z_2)^2 k_{2n_0} (\gamma_2 z_2, z_3) m(z_3) m(z_2) m(z_1) \bigg) \\ &= C' \sum_{\substack{z_1, z_2, z_3 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} \bigg(\omega_{2s}(\gamma_1 z_1, z_3) - \omega_{2s}(\gamma_1 z_1, \gamma_2 z_2) \bigg) k_n (\gamma_1 z_1, \gamma_2 z_2)^2 \\ &\times k_{2n_0} (\gamma_2 z_2, z_3) m(z_3) m(z_2) m(z_1). \end{split}$$

By inverting z_2 and z_3 , replacing $\gamma_2^{-1}\gamma_1$ with γ_1 and γ_2 with γ_2^{-1} , β_2 is

$$\begin{split} B_2 &= C' \sum_{\substack{z_1, z_2, z_3 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} \left(\omega_{2s}(\gamma_1 z_1, \gamma_2 z_2) - \omega_{2s}(\gamma_1 z_1, z_3) \right) k_n (\gamma_1 z_1, z_3)^2 \\ &\times k_{2n_0}(\gamma_2 z_2, z_3) m(z_3) m(z_2) m(z_1). \end{split}$$

Since $|\omega_s(x,y) - \omega_s(x,z)| \le r_0 |s| (\omega_s(x,y) + \omega(x,z))$ for $d_X(y,z) \le r_0$ (see [5, Lemma 2.3]), we have

$$\begin{split} B_2 &= \frac{C'}{2} \sum_{\substack{z_1, z_2, z_3 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} (\omega_{2s}(\gamma_1 z_1, z_3) - \omega_{2s}(\gamma_1 z_1, \gamma_2 z_2)) \\ & \times \left(k_n(\gamma_1 z_1, \gamma_2 z_2)^2 - k_n(\gamma_1 z_1, z_3)^2 \right) k_{2n_0}(\gamma_2 z_2, z_3) m(z_3) m(z_2) m(z_1) \\ & \leq C |s| \sum_{\substack{z_1, z_2, z_3 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} (\omega_{2s}(\gamma_1 z_1, z_3) + \omega_{2s}(\gamma_1 z_1, \gamma_2 z_2)) \\ & \times \left| k_n(\gamma_1 z_1, \gamma_2 z_2)^2 - k_n(\gamma_1 z_1, z_3)^2 \right| k_{2n_0}(\gamma_2 z_2, z_3) m(z_3) m(z_2) m(z_1). \end{split}$$

By using the Cauchy-Schwarz inequality and Lemma 3.2,

$$\begin{split} B_2 &\leq C|s| \bigg(\sum_{\substack{z_1, z_2, z_3 \in R_y, \\ \gamma_1, \gamma_2 \in \Gamma}} \bigg\{ k_n(\gamma_1 z_1, z_2) \Big(k_n(\gamma_1 z_1, z_2) - k_n(\gamma_2 \gamma_1 z_1, z_3) \Big) \, k_{2n_0}(\gamma_2 z_2, z_3) \\ &\qquad \qquad + k_n(\gamma_1 z_1, z_3) \Big(k_n(\gamma_1 z_1, z_3) - k_n(\gamma_1 z_1, \gamma_2 z_2) \Big) \, k_{2n_0}(\gamma_2 z_2, z_3) \bigg\} \\ &\qquad \qquad \times m(z_3) m(z_2) m(z_1) \bigg)^{1/2} \\ &\qquad \qquad \times \bigg[\bigg(\sum_{z_2 \in R_y z' \in V} \big\| \omega_{2s}(\cdot, z_2) k_n(\cdot, z_2) \big\|_2^2 \omega_{4s}(z_2, z') k_{2n_0}(z_2, z') m(z') m(z_2) \bigg)^{1/2} \\ &\qquad \qquad + n^{-\frac{D}{4}} \exp(C's^2 n) + n^{-\frac{D}{4}} \exp(C's^2 n) \\ &\qquad \qquad + \bigg(\sum_{z_1 \in R_y z' \in V} \big\| \omega_{2s}(\cdot, z_3) k_n(\cdot, z_3) \big\|_2^2 \omega_{4s}(z_3, z') k_{2n_0}(z_3, z') m(z') m(z_3) \bigg)^{1/2} \bigg] \, . \end{split}$$

Lemma 3.1 implies

$$B_2 \le C|s| \Big(\sum_{z_3 \in R_y} \| \left(I - L^{2n_0} \right)^{1/2} k_n(\cdot, z_3) \|_2^2 m(z_3) \Big)^{1/2} n^{-\frac{D}{4}} \exp(C' s^2 n)$$

$$\le C|s| n^{-\frac{1}{2} - \frac{D}{2}} \exp(C' s^2 n).$$

By choosing n = m or n = m + 1 depending on whether ν is even or odd, we obtain

$$\omega_s(x, y) \nabla_2^y k_{\nu}(x, y) \le C(1 + s\sqrt{\nu})^{1/2} \nu^{-D/2 - 1/2} \exp(C' s^2 \nu).$$

Choosing $s = d_X(x, y)/2C'\nu$ in this last inequality yields the estimate

$$\nabla_2^y k_{\nu}(x, y) \le C \nu^{-1/2 - D/2} \exp(-d_X(x, y)^2 / C' \nu).$$

Hence we conclude Theorem 2.

Finally, we consider a Gaussian bound for ∇k_n when X is a bipartite graph. By the same argument of the last of Section 2, we have

$$\nabla^{y} k_{2n}(x, y) = \sup_{d_{X}(y, z) = 2} |k_{2n}(x, y) - k_{2n}(x, z)|$$

$$= \sup_{d_{X_{A}}(y, z) = 1} |k_{n}^{A}(x, y) - k_{n}^{A}(x, z)|$$

$$\leq C n^{-\frac{D+1}{2}} \exp(-d_{X}(x, y)^{2}/C'n)$$

for $x, y \in A$. If $x \in A$, $y \in B$ or $x \in B$, $y \in A$, we conclude

$$\nabla^{y} k_{2n+1}(x, y) = \sup_{d_{X}(y, z)=2} \left| \sum_{\omega \in V} k(x, \omega) (k_{2n}(\omega, y) - k_{2n}(\omega, z)) m(z) \right|$$

$$\leq \sup_{d_{X}(x, \omega) \leq 1} C n^{-\frac{D+1}{2}} \exp(-d_{X}(\omega, y)^{2} / C' n)$$

$$\leq C n^{-\frac{D+1}{2}} \exp(-d_{X}(x, y)^{2} / C' n).$$

Hence we complete the proof of Theorem 2.

Acknowledgments The author would like to express his gratitude to Professor T. Sunada for his constant encouragement and valuable advices. He would like to thank Professor M. Kotani for her valuable advices and comments. He would also like to thank Professor G. Alexopoulos for his helpful suggestions.

References

- [1] G. Alexopoulos, Convolution powers on discrete groups of polynomial volume growth. CMS Conf. Proc. 21, Amer. Math. Soc., Providence, RI 1997, 31–57.
- [2] T. Coulhon and A. Grigor'yan, *Random walks on graphs with regular volume growth*. Geom. Funct. Anal. **8** (1998), 656–701.
- [3] T. Delmotte, Parabolic Harnak inequality and estimates of Markov chains on graphs Rev. Mat. Iberoamericana 15(1999), 181–232.
- [4] A. Grigor'yan and A. Telcs, Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109(2001), 451–510.
- [5] W. Hebisch and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21(1993), 673–709.
- [6] S. Ishiwata, A central limit theorem on a covering graph with a transformation group of polynomial growth. J. Math. Soc. Japan 55(2003), 837–853.
- [7] M. Kotani, A central limit theorem for magnetic transition operators on a crystal lattice. J. London Math. Soc. 65 (2002), 464–482.
- [8] M. Kotani, T. Shirai and T. Sunada, Asymptotic behavior of the transition probability of a random walk on an infinite graph. J. Funct. Anal. 159(1998), 664–689.
- [9] M. Kotani and T. Sunada, Standard realizations of crystal lattices via harmonic maps. Trans. Amer. Math. Soc. 353(2001), 1–20.
- [10] M. Kotani and T. Sunada, *Albanese maps and off diagonal long time asymptotics for the heat kernel*. Comm. Math. Phys. **209**(2000), 633–670.
- [11] A. I. Mal'cev, On a class of homogeneous spaces. Amer. Math. Soc. Transl. 39(1951).
- [12] C. Pittet and L. Saloff-Coste, On the stability of the behavior of random walks on groups. J. Geom. Anal. 10(2000), 713–737.
- [13] M. S. Raghunathan, Discrete Subgroups of Lie Groups. Springer-Verlag, New York, 1972.
- [14] L. Saloff-Coste, Isoperimetric inequalities and decay of iterated kernels for almost-transitive Markov chains, Combin. Probab. Comput. 4(1995), 419–442.
- [15] V. V. Sazonov, Normal Approximation—Some Recent Advances. Lecture Notes in Mathematics 879, Springer-Verlag, New York, 1981
- [16] N. Th. Varopoulos, Isoperimetric inequalities and Markov chains. J. Funct. Anal. 63(1985), 215–239.
- [17] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups. Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge, 1992.
- [18] W. Woess, *Random walks on infinite graphs and groups*. Cambridge Tracts in Mathematics 138, Cambridge University Press, Cambridge, 2000.

Insititute of Mathematics University of Tsukuba Tsukuba-shi Ibaraki, 305-8571 Japan

e-mail: ishiwata@math.tsukuba.ac.jp