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A Berry-Esseen Type Theorem on
Nilpotent Covering Graphs

Satoshi Ishiwata

Abstract. 'We prove an estimate for the speed of convergence of the transition probability for a sym-
metric random walk on a nilpotent covering graph. To obtain this estimate, we give a complete proof
of the Gaussian bound for the gradient of the Markov kernel.

1 Introduction

Let X = (V, E) be a locally finite connected graph, V being the set of vertices and E
being the set of oriented edges. For e € E, the origin and the end of e are denoted
by o(e) and t(e), respectively, and the inverse edge is denoted by e. We suppose that
X is a nilpotent covering graph, namely a covering of a finite graph X, whose covering
transformation group I' is a finitely generated nilpotent group. Furthermore, we
assume that I is torsion free.

A symmetric random walk on X with a weight m: V' — R is given by a positive
valued function p on E satisfying EeEEX p(e) = 1 and p(e)m(o(e)) = p(e)m(t(e)),
where E, = {e € E | o(e) = x}. We assume that m and p are I'-invariant. We
consider p(e) the probability that a particle placed at o(e) moves to the terminus #(e)
along the edge e in one unit time. The transition probability that a particle starting
at x reaches y at time 7 is given by

Pk y) = D ple)ple)--ple),

c=(e1,e2,-1€n)

where the sum is taken over all path ¢ = (e, e,,...,¢,) of length n whose origin
o(c) = x and terminus #(c) = y. The transition operator L associated with the
random walk is the operator acting on functions on V defined by

Lf(x) =Y f(t(e)) ple).

e€E,

It is easy to check that the function k,(x, y) = p,(x, y)m(y)~" is the kernel function
of L", namely L" f(x) = ZyEV ky(x, y) f(y)m(y). The hypothesis of m and p implies
ka(x, ) = knly, %).

By a theorem of A. I. Mal’cev [11], there exists a connected and simply connected
nilpotent Lie group Gr such that I is a cocompact lattice in Gr (see also M. S. Raghu-
nathan [13]). The purpose of this article is to prove a Berry-Esseen type theorem, an
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estimate for the speed of convergence of the transition probability to the heat ker-
nel corresponding to a sub-Laplacian on Gr as n goes to infinity. We remark that
G. Alexopoulos proved a Berry-Esseen type theorem for convolution powers on a
discrete group of polynomial growth I ([1]). To explain, let y be a symmetric prob-
ability measure on I' such that its support is finite and generates I" with u(e) > 0.
Then the transition probability p,, is defined by p,(x, y) = p**(y~'x) (x, y € T"). Let
h; be the heat kernel of the limit operator associated to  on the nilpotent Lie group
Gr (see [1]). Then,

Theorem ([1, Theorem 10]) Let I' have polynomial volume growth of order D. Then,
there exists a constant C > 0 such that

sup | pu(x,7) = |Gr/Tlhu(x, y)| < Cn™ %
x,yel

On the other hand, when X is a crystal lattice, that is, a covering graph whose cov-
ering transformation group I is abelian, a local central limit theorem is proved by
M. Kotani and T. Sunada [10]. In that case, the notion of harmonic realization from
X to the abelian group I' ® R is closely related to the asymptotics (see [10, 9]). We
also remark that, as a convergence of a transition operator, an operator-theoretic cen-
tral limit theorem on a nilpotent covering graph is obtained in [6]. Furthermore, a
central limit theorem for magnetic schrédinger operator on a crystal lattice is proved
by M. Kotani [7].

Our strategy for the proof of a Berry-Esseen type theorem on a nilpotent covering
graph is much inspired by G. Alexopoulos [1]. Before describing our results, we will
introduce some notations. Let ") and g be subspaces of the Lie algebra of Gr (see
Section 2). We assume that ®: X — Gr is a I'-equivariant map satisfying

S p@exp @(o0(e) " @(£) [ =0 (xeV).

eCE,

This condition on @ is equivalent to exp~! ®|,a): X — g'!) is a harmonic realization
(see [6]). Let p, be the transition probability on X and h; the heat kernel of the
sub-Laplacian €2 for the Albanese metric (see [6, 9]) which is defined by

1
Q=———= m(e)X2,
2m(X0) ;) €

where m(e) = p(e)m(o(e)) and X, is a left invariant vector field identified with
exp~! ®(0(e))P(t(e))|qn . Then we have

Theorem 1 (Berry-Esseen type theorem) Let X be a nilpotent covering graph whose
covering transformation group is I. The order of polynomial growth of I is denoted
by D. Then, for any 0 < € < 1/2, there exists a constant C. > 0 such that

1. if X is a non-bipartite graph, then

|G/ e
A - hy, (@ aq) <C. 2
up |G ym)™! = TS (8, 20) | < Con
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2. IfX is a bipartite graph with a bipartition V = A B, and
(a) ifx,y € Aorx,y € B, then p,(x,y) = 0 for odd n and

|Gr/T|
m(Xo)

_ D+1/2—¢
2

sup| pa(x, y)m(y) ™ —2 ha(@(), () | < Con
x,y

for even n;
(b)ifx € A,y € Borx € B, y € A, then p,(x,y) = 0 for even n and

D+1/2—¢

|Gf/ﬂhn(<1>(x),<1>(y))’ <C.n~ "2

m(Xo)

sup| pa(x, y)m(y)~' —2
x’y

for odd n.

In our approach, we have not been able to improve the speed of this convergence
Dtlj2—¢ .
more than C.n™ 2, in general. However, if

(1) Yees, ple) exp ! <I>(o(e)) 71<I>(t(e)) ‘gm =0 (x€V)

and

(2)  the second order differential operator on Gr >, p(e)X? is independent of
the choice of x € V,

then the speed of convergence is estimated by Cn~ " for each case. Indeed, a simple
random walk on a Cayley graph of I satisfies (1) and (2). Triangular lattice and
hexagonal lattice (see [10]) also satisty these conditions. However, there exist graphs
which do not satisfy them. For example, Kagome lattice (see [10]) does not satisfy (2).

In the proof of Theorem 1, we use Gaussian upper bounds for the kernel function
k, of L" and its gradient on a nilpotent covering graph. The definition of a gradient
of k, is given as follows:

1. if X is a non-bipartite graph,

Vka(x,y) = sup |ka(x,2) — kn(x, y)|.
dx(y,z)=1

2. If X is a bipartite graph,

Vka(x,y) = sup |ku(x,2) — ka(x, y)],
dy(y2)=2

where dx (x, ) is the length of the shortest path from x to y. We note that W. Hebisch
and L. Saloff-Coste gave Gaussian bounds for k, and Vk, on a Cayley graph of I'
in [5]. Furthermore, if the growth rate of a graph is V(n) ~ nP, then L. Saloff-
Coste showed k,,(x,x) < Cn~P/? in [14]. After that, C. Pittet and L. Saloff-Coste
proved that the long run behavior of the probability of return to the beginning after
2n-steps is left invariant by quasi-isometry in [12]. Since a nilpotent covering graph
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X has polynomial growth and X is quasi-isometric to its transformation group I, the
Gaussian upper bound for k, is deduced:

Theorem ([14, 12], cf. [5]) Let X be a non-bipartite graph. Then there exist two
constants C and C' > 0 such that

3) ka(x, y) < Cn™ 3 dxton?/Cln

forallx,y € V,andalln=1,2,....

In this paper, for the sake of completeness, we give a proof of Gaussian bound
for Vk, on X by following the argument by W. Hebisch and L. Saloff-Coste [5] in
which the symmetry p*"(x) = p*"(x~!) for a probability measure p on T" plays a
crucial role. In our case, instead of this symmetry, we use an invariance for the action
of I and a symmetry of k,, namely k,(yx,vy) = k,(x, y) and k,(x, y) = k,(y,x),
respectively. Then we have

Theorem 2 (Cf. [5]) There exist two constants C and C' > 0 such that

1. if X is a non-bipartite graph,
(4) Vka(x, y) < Cn— 5 e dx(y?/C'n

forallx,y € V,andalln=1,2,....
2. If X is a bipartite graph with a bipartition V. = A B, and

(a) ifx,y € Aorx,y € B, then k,(x, y) = 0 for odd n and

D+1

Vkn(x, y) < Cn 3 e dxley)’/Cln

for even n,

(b) ifx€ A y€Borx € B,y €A, thenk,(x,y) = 0 for even n and
Vk,(x,y) < Cn~ 3t g—dxlxy)??/C'n

for odd n.

We note that various applications of these estimates have been discussed (for in-
stance, see [2, 3, 4, 16, 18]).

Throughout this article, different constants may be denoted by the same letter C.
When their dependence or independence is significant, it will be clearly stated.

2 Berry-Esseen Type Theorem

As we already mentioned in the introduction, G. Alexopoulos proved a Berry-Esseen
type theorem for convolution powers on a discrete group of polynomial growth [1].
In that proof, the following three results play a crucial role:

R1 An estimate established in [1, Corollary 7].
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R2 Gaussian bounds for the heat kernel on a nilpotent Lie group (N. Th. Varopou-
los [17, Theorem IV.4.2]) .

R3 Gaussian bounds for the convolution powers on a discrete group of polynomial
growth (W. Hebisch, L. Saloff-Coste [5, Theorem 5.1]).

Hence we will consider an analogue of these results on a nilpotent covering graph.
Let g be the Lie algebra of Gr and exp: g — Gr the exponential map. We set
ny = g and n;; = [g, n;] for i > 1. Since g is nilpotent, we have the filtration:

g:ﬂl31123"':)1’1775{0}31’1,+1:{0}.

We consider subspaces gV, ..., g C g such that
(5) me =" @ ey
Let {x¥, x{V X(k } be a basis of g¥'. Then we have an identification of Gr with

IR" as differential rnamfold given by

X(’ - (D (D)

(xd ,xd )»—>expxr)X expxd expx; X;,

which is called the canonical coordinates of the second kind (see [1, 13]). For x € Gr,
we denote Pl(k)(x) = xgk). We define (i1, k1) > (ix, ky) ifky > ky or ky = ky, i1 > 5.
By the Campbell-Hausdorft formula, we remark that

P (xy) = PV (x) + PV (y),

sz)(xy) 2)(x) + P(2 (y)+ Z i ,X(1 \ngJPEII)(x)PEI)(y)

1
11 <i

and for k > 3,

PPGy) = PP + PP+ D Crr [XN, X400 PR () P (),
|K [+]|Ka | <k

where K; and K, are multi-indices (see [6]).
Let h; be the heat kernel of a sub-Laplacian on a nilpotent Lie group Gr. Then we
can use the following same result as R2:

Theorem ([17, Theorem IV.4.2]) Let |K| = k; + ky + - - - + ky. Then

D+2s+|K|

(6) | o XX X h (g1, )] <CtT exp(—d(gr, ) /c't),

where d(g1, g) is a Carnot-Caratheéodory distance on Gr (see [17]).

https://doi.org/10.4153/CJM-2004-044-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2004-044-4

968 Satoshi Ishiwata
We will show R3 on a nilpotent covering graph in the next section. Now we try to
create R1 in our case.
For u € C®(R>o x Gr), let Oyu(t, ®(x)) = u(t + N, ®(x)) — u(t, P(x)) and
D*u(t,x) = u(t, (x)). We denote
Cen={(e1,e2,...,€,) | & € E,0(er) = x,t(e;) = oleir1) }

and t(c) = t(e,) for c = (e1, €2, ... ,e,) € Cy . As an analogue of R1, we have

Lemma 2.1 (Cf. [1, Corollary 7], [6, Lemma 2.2], [7, Theorem 3]) For any | > 4,
there exists a constant Cj > 0 such that

(7) |(On + T = IN)) ®*u(t, x) — N (3, + Q) u(t, ®(x)) |

2
<C; sup (N2 %u(t-ﬁ-HN @(x))’ +X2u(t,<1>(x))
0€l0,1],gEUy
J—1
3N X (1, () +ZNkau(t D)),
j=3 k=J

where

u(t, o(x)) Z >

(=1 ky+ky+---+ki=k

X x (k) ---X}f”u(t,@(x))’

and Uy is a set of all g € Gr satisfying that there exists ¢ € Cy  such that
|PP(g)] < |PP (@) '0(t(c) |  forall (i,k).

Proof Letu'(t,g) = u(t, ®(x)g). By Taylor’s formula with respect to the canonical
coordinates of the second kind, there exist § € [0, 1] and g, € Uy such that

2 2
N%(t,q)(x)) > 22 (t+6N,®(x))

(31\7 +(I —LN)) D u(t,x) = o

+ 3 p(c){ (t PP (D(x) D (£(0)))

c€CynN

1 82 !
_ Eax(kl g © (t e)P(kl)((I)(x) 1(I)(t(c)))P(kz (<I>(x) l‘l)(t(c)))
J—1 .
! o'’ k _
— 2. ~(1,e)P) (D ()71 (1(c)
i J! 5x1(1kl)8 (ko) angf) 1 ( ()

PR ()10 (1(0)) ) ...Pffj)(q)(x)—lcb(t(C)))
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1 o’
J! angl>ax§fz> . oxh

1

(1, 2P (D)2 (1(0)) )

<PX (2000 (1(0)) - P (0010 (1(0) ) }

We observe now that

o (1) XPu(t, @(x)),
o*u’ (k) g (k) : :
8X<k1)a (ky) (ta e) = Xi1 Xi2 l/l(t, q)(x)) (113 kl) > (12, k2)

Hence we have

Ou N? &u
8—(1',@(%')) +7W(t+9N <I>(x))

ZX (,2() Y p@PP (@) "®(1(c)))

(i,k) c€CyN

0T A ) (o)

(i1,k1) > (i2,k2) (i2,k2)>(i1 k1)

x Y pOPF ()71 B (t(e)) ) PR (@(x) T 0(1(0)) )

ceCyn

(O + T —ILN)) ®*u(t,x) =N

/

—Z (t.e) > p(eP (@)~ 2(£(0)))

(k) 5,.(k2) (kj)
]3]8 VOx 2"'8)(?1-)_) c€CN

x P (B0) '@ (£(0)) big- - PI () ' B(1(c)) )

o’
Z pie) ( : (k,)(t gc)P’“)( (x )71(I>(t(c)))

kl) k)
CGC):'\I 8xiz e Ox

x P§j‘”(¢><xr1¢>(t(c))) P (B0 D (1(0)) -

From the harmonicity of ®,

> PP ()1 2(8(0)) =

ceCxN

By using the ergodicity (see [6, 7]) and the harmonicity of @, there exists C > 0
independent of N such that

N-—1
®) | XPult, 20) Y D p0) Y ple)exp™! Blo(e)) ' B (r(e))]

k=0 c€Cyx e€Ey

< CX?u(t, D(x))
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and

N—1
O |13 (Oxue Y Y p0 Y pe

i1,i<d; k=0 c€Cxx e€E
< exp ™ Blo(e)” B(1(e)] o exp~ Bloe)”B(H(e] o} ~ NS ()

< CX2ul(t, P(x)).
By the harmonicity of ® and the definition of Pl(k) (see also [6]), we have

3" PP (@)1 (t(c))) -+ P (@) (#(c))) < CNIKIT
c€CiN

where |[K| = ki + k, +--- + kj. Since g, € Uy, there exists a constant C; > 0 such

that
Jr
aju/ —ki—kyooo—
(k) 5. (k) %) (1 8) <Cj Z NEf=l bk (e, & (x)g).
axil 8xi2 .”axil k>kitho+--+ky
Hence the lemma follows. -

Remark 2.2 1If (1) and (2) are satisfied, then (8) and (9) are zero, so that
X2u(t, ®(x)) vanishes in (7).

For the proof of Theorem 1, we introduce some notations. We define

Gr/T
Si(x, y) = ‘m&))'

h(®(x), () (x,y€V),

1
s/ =— [ B(D i) d 1%
[509) = s [ (@ 000) dn 5y € V)
where F is a fundamental domain in Gr for the action of I'. We shall denote

k-Sx,y) =Y kix,2)S(z, y)m(2).

zeV

Let us also denote, for T > 0,

d(n) = sup |ku(x,y) — Su(x, ¥)|,

x,yeV

dr(n) = sup |(ky, — Su) - S7(x, ¥)] .

x,yeV

By using Gaussian bounds for k,,, Vk, (Theorem 2) and h; ([17]), we have
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Lemma 2.3 (Cf. [1, Lemma 11], [15, Lemma 1]) Assume that X is a non-bipartite
graph. Then, there are constants a, 3 > 0 independent of n and T such that

5(n) < adp(n) + BVTn = .

As an analogue of [1, Proposition 12], we have

Lemma 2.4  Assume that X is a non-bipartite graph. Let q > 0 and ] > 4. If there
exists a constant A > 0 such that

(10) 5() < Ai~ 3

foralli =1,2,...,n— 1, then there exists a constant C; > 0 such that

J—1 Jr

_bu 1 _D iy _Dij=2 | _Dik=2

é(n)gcj(n T +N'n 2+§ N2y~ +E N1y~
=3 =

-1
S -1, — 2 " k, — Dtk 1 _Dpn
+EN]n2+ENn > +T2n 2
j=3 k=J

J—1 ) Jr >

Diq . i—2 k=2 N
+A ’T{N’ll +T)+ Y NPT A SN (—)
n og(n ) 2 2 exp T

2

I ; J T k k N
+) NTIT724 ) NFT2 (—)])
Z Z *PoT
j=3 k=]
for sufficiently smaller N € N than n and T € N.

Proof By the previous lemma, we will consider dr(n). First we prove
(11) ISner — Su - Stllee < Cn™ %

Let R be a fundamental domain in X for the action of I" such that ®(R) C F. Since ®
is I"-equivariant, we get

Sn+T(~x; )/) - Sn : S%(X, )/)

_ |Gr/T| 1
= m(Xo) Z {m(XO)/F(hn(q)(X)y"Y@(Zo)n)hT(’y(I)(Zo)n7®(y))

y€l,zp€R

— (@), 7020 (Y®(z0)m, B(7) ) dn] m(z0)

< LS;(FX/OI;J Z {sup | 1 (@(x),7®(20)n) — hy(@(x),7P(20)) |

~El,zeRr ~ EF

< [ e (10, 20) dn] miz)
F

_ D+l

<Cn 7.
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Hence it is enough to estimate ||S,+1 — k,S’||oc. Let I € N be a quotient of n by N.
Then we have

Sn+T(xa )/) - knsg"(x; )/)

= Z {kinSu—in+T — ki )NSu—(i+1)N+T | (%, 9)

0<i<I—2
+ k(—1NSn—a—1N+1(%, ¥) — ki - S7(x, )

= Z kin (Su—in+t — knSu—i+nn+T) (%, ¥)

0<i<iz2

+ Z (kin = Sin) (Snin+t — knSu—givyner) (%, )
Bai<i—2

+ Z Sin (Sn—inet — knSu—gisnner) (%, 7)
22 cici—2

+ (kg—n = Sa—1n) (Sn—a—vn+1 — kn——)nST) (%, ¥)
+ Su—1N (Su—t—1N+T — k=N ST) (%, )
=E +E +E;+E,+Es.
Using Holder’s inequality,
E < Z lkine (e, )l || (Sn—iver — knSu—qivner) ()| -
0<i<i=2
By using (6) and (7), we have

D+2

E< Y C{Nz(n—(i+1)N+T)*%+(n—(i+1)N+T)*T
0<i<52

J-1 o '
FD N =+ DN+ T) T + Y N = G+ DN+ )7 ]
j=3 k=1

Since (% +1)N = % < 5, we get

J—1 Jr
D2 D i Dtj—2 1 — Dtk=2
By < Cj(Nn™ % N7l 8 4 3N e SN ).
= Py

To estimate E;, using Holder’s inequality and (10),
E < Z [ (kin = Sin) (%, *)loo]| (Su—ine — knSn—qrner) (59| 1o

S2ci<i—2

Z A(l'N)_%HJL/aN"‘(I—LN)}Sn—(i+1)N+T('a)’)HLr

S2ci<i—2

IN
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By using (6) and (7), we have
||{8N + - LN)}S - i+1)N+T( : >}’)||L1

< C}( sup N?

ot ‘31‘2 n— 1+1)N+T+9N((I)(Z) ‘I)()/))’

J—1
+ Xy N1 (R@), () + > NI X st (9(2), D(p))
j=3
Jr

+ sup ZNkahn—(i+1)N+T((I)(Z)g; P(y)) ) m(z)
g€Un k=J

(- ,(d@(z), B(y))’ )

gc}Z[N2<n—(z‘+1)N+T>‘[;e I(n— G+ DN +T)

zeV

d(®(z), ®(y))> )

+m—G+1)N+T)~ 2+exp( cdn—G+1)N+T)

1 b d(®(z), D(y))?
-1 ; -7 — :
+ ?_3 N7 (n—-(G+1)N+T) CXP( C/(n—(i+1)N+T))

k Dk d(2(2)g, 2(»))*
+gs€u£kZ]N(n—(z+l)N+T) exp( ’(n—(i+1)N+T))]m(z)'

Since the order of polynomial growth of X is D, there exists a constant C > 0 inde-
pendent of n, i, N, T and ®(y) such that

. -2 d(®(2), B(y))?
(n=G+DN+T) Z;ex"( T — G+ DN+ T)) =G

. -2 d(®(2)g, ®(y))* N?
gsgll%(n—(z+l)N+ T) Zezvexp(— c’(n—(i+1)N+T)> §Cexp(ﬁ>.

These imply

4
2

[{On + (T = IN)}Su— et 9| 0 < C;(N2<n —(+DN+T)”

J—
+n—G+DN+T)" ZNJ n—(i+ )N +T)"?
] 3
u k . _k I\]2
+ZN(71—(1+1)N+T) 2exp(C/—T)).

k=]
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Hence we conclude

I—1
E, gC}A(n—ZN)_Tq/ {Nz(n—(x+l)N+ T)"2
1

5—1

J—1
+(n—(x+DN+T) '+ ) N7 (n— (x+ )N +T) /"
=3
Jr L i N2
+ZN n—x+1)N+T) Zexp(C,—T)}dx

k=J

< CjA( 2N~ F (NT™+ N~ log(n + T)
/! j—2 Jr k k—2 N2
+) NI721=5 +Y N-lT— = (—))
2 2 = (o

E, is estimated by

Ey < || kg—1nv — Su—1m) &, oo | (Sn—t—vner — kneg—iv - S7) (5 0)||
<A(T-1N)~ | (Su—t=vnet = kn—a—nn = ST) G20 -
By using Gaussian bounds for h; [17, Theorem IV.4.2], we have
H (Su—t—vn+1 — kn——nn - S7) (- ,}/)H o

= Z m(i( ) / (hn—(l—l)N+T((I)(x)7 (I)(y)) — hn_(1_1)N+T(q)(x)777 (I)(}’))
ev 0/ JF

+ {0y + (I — Ln_u_l)N)}hT(‘I)( ), CI)(}’)) |x> dn

d(yD(xo)n, (y))? )
cmn—I—-1)N+T)

< Cj sup Z [(n—(I—I)N+T)_%exp<—

’
;ggv ~€l xER

Ay ®(xo)n, <I>(y))2)

(- NPT
+(n—(I—1N)>T exp( o

2
F T exp ( B d(vé(xi)/? () )
- — d(y® (xo)n, B(y))?
+Y (n—I-1)N)'T" 2 exp( — o
jz:; ( c'T )

Jr
#300n = (1= DNFT " exp

_d(y2(x)gn, <I>(y))2)]
k=J

c'T
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J—1 o 5
1 , N
<C(TTHANTT AT YN Y ONT e () ).
c
= [

where F’ is a compact subset in Gr.
Next, we consider E; + Es. Let [a] be the greatest integer not greater than a. Then,

E3 + E5 = (S[%]N . Snf[%]N+T - S(I—l)N : kn—(I—l)N : Sé‘) (xvy)

+ Z (Si+1)n — Siv - k) - Su—irnyNaT (X, ¥)

L2ei<i—

= E; + EL.
By using Holder’s inequality,

El < Z |(Sirnyn — Sin - kn) (%, )] oo || Sn—irnyn+T (5 ) ||
2ai<i—2

SC} Z (N2(1N)* > + (iN)~ e +ZN1 l(lN)f—

2ci<i—2 =3

Jr
+>ONKIN )
k=T
J—1

< C}n(N(n —2N)" N (n—2N)" 7 + ZNjfz(n _ ZN),DT*J
j=3

Jr
3 N - 2N)’M)

k=7J
Ej is estimated by
E3/ < ‘ls[%]NSn—[%]N+T - Sn+THoo + HSnJrT =S~ SITHOO
+[1(Sn = Su—)n * kn—g—1n) * STl -

Then we have

(S[é]NSn—[%]N+T - Sn+T)(xa )’)

r
_ [G/T > / By (260,72 (20) by nsr (12 (20), (1)

2
m(Xo) ~el z€R

g (@0 A, (7, 20) | dimzo)
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Gr/T
SUESS [ sup (17 (70(@0). @) = o111, ()

2
m(Xo) ermer " MEF

X h[%]N(tb(x), P (zp)) dn + sup | h[%]N(CI)(x), 7@(20)) — h[%]N(CD(x), 'yn)|
ner

X

J
J

Bt ier (0, ©(7) dn| m(zo)

n, -2 n 3 | -24
SC}((E) Z+(§—§N) z)-

D+1

By (11), ||Susr — SuSFlloc < Cn™ 2. S0 [|(Sy — Su—1)Nkn——1)N)S7| o Is estimated

by
(Sn=Su—vnkn——1)n) St(x, )
<N (Sn = Su=nn * kn——1n) (5 ) lloo ST, Pl
1 . D+j
< Cj[N2n—2N) " + (= 2N) T F £ YN 2Ny
=3
Jr D+k
+3 N - ZN)_T} .
Py
By the hypothesis of N, the lemma follows. ]

Proof of Theorem 1

First, we will consider the case that X is a non-bipartite graph. We note thatif (1) and
(2) are satisfied, then the terms N~'n=% and N! log(n + T) in Lemma 2.4 vanish.
Hence we can use the same arguments as Alexopoulos [1] by putting N = 1 and
g = 1. However, if (1) and (2) are not satisfied, then we put N = [n!/=2/(4J=0)]
T = To[nV=V/@=31(Ty € N)and g = (J — 2)/(2] — 3). In this case, if (i) <

. DrU—2)/(2J=3) . .

i 2 fori = 1,2,...n — 1, then there exists a constant o; > 1 and a
sequence {31, (n) } ,en which converges to zero as n | oo such that

_ D+J—=2)/(2]—3)
2

5(n) < a; (1 + T + A( By (n) + Ty U722 exp(l/c'To))) n

Hence we will use the induction for n. Fixs; € Rsuchthat 1 — 1/a; < s; < 1. Let
K and T be positive integers such that

(Br,(n) + Tf(Fz)/z exp(1/c'T))) <1—s5;

for all n > K. Since §(n) is uniformly bounded, there exists a constant A; > 0 such
that

_ D+U=2)/]=3)

o(n) <Ajn 2
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for all n < Kj. By the previous lemma and the assumption of K;, we have

D+(J—2)/(2]—3)

5(K}) < Oé](l + T}/2+A](1 —51))K

Put C; = max{Aj, (1 + T}/z)(l/a] + sy — 1)7'}. Then clearly we have

D+(J—2)/(2]—3)
2

o0(n) <Cjn~

foralln < Kj.
When n > K, we assume that

D+(J=2)/(2]=3)

8() < Cjim

fori =1,2,...n — 1. By the previous lemma and the definition of Cj, we conclude

D+(J=2)/(2]=3) _ D+(J=2)/(2]=3)
< C]I’l 2

!

5(n) < ap(1+ T2 +Cy(1 —sp)n~

Next, we will consider the case that X is a bipartite graph. Suppose that m and p
are a weight and a transition probability on X which gives a symmetric random walk.
The bipartition of V is denoted by V. = AJ[B. Let X4 = (A, E4) be an oriented
graph, where E4 = {(e1,e;) € Cy» | x € A}. Fore = (e1, e;) € Ey, let o(e) = o(ey),
t(e) = t(e;) and € = (€3, ;). Then a weight m, and a transition probability p
denoted by

ma(x) = m(x) x € A,

p*(e) = pler)ples) e=(e1,e) € Eq,

respectively. It is easy to show that m, and p* give a symmetric random walk on
Xa. The transition probability starting at x reaches y at time n on X, is denoted by
pA(x, y). Then the kernel function k? of the transition operator on X, is written by
KA(x,y) = p2(x, y)ma(y)~!. By using the argument of [8], X, is also a nilpotent
covering graph of a finite graph X4, whose covering transformation group I'; is I or
a subgroup of I' of index two. We note that X, have a loop for each vertex. Hence we

conclude
G D+1/2—e
sup | ph(x, y)m(y)~" _ |Gr/1 1|h‘*(q>( ), (7)) ‘ <Coan
x,y€EA m(Xa1)
where h# is the heat kernel with respect to m,4 and p#. Since p?t = py,, b2 = hy,, and
—‘g(r)gll)l = 2—‘5&5‘ , the theorem is proved when x, y € A for even n. If x € A,y €B
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orx € B, y € A, then we have

|Gr/T|
m(Xo)

= Z kan(x, 2)k(z, y)m(z) — 2

zZ€EA

hani1 ((IJ(x), ‘I)()’))

|Gr /|
m(Xo)

Pansi(x, y)m(y)~h =2

hani (@(x), ®(y))

_ |Gr/T
= (kaulx,2) =2 k) n(2(0), () Kz, y)m(2)

zZEA

|Gr/T|
m(Xo)

Gr/T
+ ; 2 |m?)/(o)| han(®(x), @(y))k(z, y)m(z) — 2 hani1 (®(x), @(y))

_ D+l/2—¢

<Cen™ 7 4+ [0+ T = Ly))Sau(x, y)

__ Dt1/2—¢ _ D+l/2—¢

< Cen z +Cn*% <Cen z
Hence we complete the proof of Theorem 1.

3 Gaussian Upper Bound for Vk,

First, we assume that X is a non-bipartite graph. For our proof of the Gaussian upper
bound for Vk,,, we introduce next two lemmas.

Lemma 3.1 (Cf.[5 Lemma3.2]) Let{,n € Nand f € L*(X). There exists a constant
Cy > 0 such that
(T = L) 2L  fll2 < Con™ 2| f] 2.

As an easy consequence of (3), we have
Lemma 3.2 (Cf. [5, Lemma 5.2]) Set wy(x, y) = exp(sdx(x, y)) (x,y € V). Then
(12) [k (x, ws(x, )| < Cn~70-1/9 exp(C's*n).
Proof of Theorem 2
By the same argument of [5], it is easy to show that

(13) Vka(x,y) <C sup Viku(x,z).
dx(y,2)<1

Hence we will consider V) k,(x, y). Fixs > 0, v = n + m, and note that wy(x, y) <
ws(x, z)ws(z, ¥). This implies

ws(xa }’)ngu(x, )/) S Hkm(xa : )Ws(xa : )HZHV%/kn( : 7}’)%( : ;)/)”2
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Lemma 3.2 yields a good bound for ||k,,(x, -)ws(x,-)||2. The second factor can be
estimated by

s VG D)3 SC S N, 2) Vo k(- 29)] miz3)

z3ER,

=C Z ZWQS(Z, Z3) Z ‘kn(za 23) - kn(Z,Z/)

Z3ER), z€EV d(z3,27)<2

2 m(z)ym(z)m(zs).

Since X is a non-bipartite graph, there exists ny € N such that
inf{ka,, (z',23) | dx(z3,2') <2, z3 € R} > 0.
Hence

[ws(-, IV ka (- 23

<c’ Z szs(z, z3) Z lku(z,25) — ku(z,2")[*

Z3ER, z€V d(z3,27)<2

X kayy(2', 23)m(z")m(z)m(z3)

<C' Y Y wnnz) (ke m) - ke zk(2,2) + ka2, 2')?)

z3E€ER, z,2' €V

X kyuy(2', 23)m(z")m(z)m(z3)

=2C" Y Y wnlz n)ki(z,2) (ka(z, 23) — ka2, 2"))

z3E€R, z,2' €V

X kyuy(2', 23)m(z")m(z)m(z3)

+c’( DD Wz 2)ka(z, 2"V kany (2, 23)m(z ym(z)m(z3)

z3€R, 2,2’ €V

=30 wnlz m)k(z, 23)2kzn0(2’,Z3)M(Z’)M(Z)M(Z3))

z3ER, z,2'€V

= B + B,.

By using Lemma 3.1 and Lemma 3.2, By is estimated by

By =2C" ) wni(z, 23)kn(z, 23)(I — L™)ky (2, 25)m(z)m(z;)
z3E€R,

<20 ||was( -, z3)kn (-, 23) |2+ 1T = L™)k( -, 23) || 2mi(z3)

<Cn % exp(C'sn) - n~'n~% =Cn 7% exp(C's*n).
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Because every z € V can be written as z = vz, (7 € I', zp € R,), and the weight m is
I'-invariant, we have

B, :C/( Z Z wzs(’th,Zs)kn(%Zl,’YzZz)zkzno(’YszZa)m(Zz)m(Z1)m(Zs)
23ERy 21, €ER,
7, €L

-y > wzmlzl,zﬁkn(mzbZ2)2k2no<Z2,vg‘zgmwm(zl)m(z»).

z3ER, 21,2ERy,
7,2 €D

By replacing y; with ;' in the second term,

Bz:C/( Z was(M21,23)kn (121, 1222) Kany (222, 23) (23 ) m(22)m(z; )
zl,zz.Z3€Ry,
7,2 €D

- Z wzs(7;17121,Zz)kn(7;17121,Zz)zkzno(’YzZz,Za)m(Zs)m(Zz)m(Z1))
21,22,23ER),
n,er

=C’ Z (was(nz1,23) — wa(nz1, 1222)) kn(nz1, 122)°
21,22,23€Ry,
N €l

X kany (Y222, 23)m(z3)m(zy)m(z,).

By inverting z, and z3, replacing v, 41 with 7, and 7, with v LB, is

B,=C’ Z (wanzi, 1222) — wanzi, z3)) ku(121,23)°
21,22,23€Ry,
T, €l

X kany (Y222, 23)m(z3)m(z2)m(z,).

Since |ws(x, ¥) — ws(x, 2)| < rols|(ws(x, ¥) +w(x, 2)) for dx(y,z) < ry (see [5, Lemma
2.3]), we have

C/
B, = 2 Z (Wars(nz1,23) — was(n21,72))
21,22,23ER,,
N €l

X (kn('leb’YzZz)z - kn(’YlZl,Zs)z) kany (7222, 23)m(z3)m(z2)m(z;)
< Cls| Z (was(mz1,23) + was(V121,7222))
21,22,23€Ry,

M€

X |kn(7121, %2)" — kn(’th,Zs)z} kany (7222, 23)m(z3)m(z)m(z;).
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By using the Cauchy-Schwarz inequality and Lemma 3.2,

B, < C\$|( Z {kn(’YlZl,Zz)(kn(”YlZl,Zz) - kn(”Yz’YlZl,Z3)) kan, (1222, 23)

21,22,23ERy,
My €Er

+ kn(m121, Z3)(kn(7121,23) — ky(mz, ’7222)) kany (7222, Za)}
/
X m(Za)m(Zz)m(zl))

12
(X lentozkloz) Bunen ko a2, 2z ()

2€ERyzZ'EV

+ 11 exp(C's*n) + n~ % exp(C's*n)

1/2
(0 etz 2 Buna 2 ko (23,2 ymi m(z) )

z3E€R,z'€V
Lemma 3.1 implies

12,
B, < C|s|< Z I (I — L2"°)1/2 kn(-,23)||§m(23)) no1

Z3ER,

exp(C’s*n)

< Cls|n™27 7 exp(C's*n).
By choosing n = m or n = m + 1 depending on whether v is even or odd, we obtain
wi(x, Y)Vk, (x, y) < C(1 + sy/0) 20 P27 12 exp(C's0).
Choosing s = dx(x, y)/2C'v in this last inequality yields the estimate
Vik, (x,y) < Cv™ V2P exp(—dx(x, ) /C').

Hence we conclude Theorem 2.
Finally, we consider a Gaussian bound for Vk, when X is a bipartite graph. By the
same argument of the last of Section 2, we have

VViku(x,y) = sup  |kyu(x, y) — kan(x, 2)]
dx(yz)=2

= sup [Ki(x,y) — Ki(x,2)|

dx, (y,2)=1
< Cn " exp(—dx(x, y)2/C'n)
forx,y € A. Ifx € A,y € Borx € B, y € A, we conclude

Va1 (6,y) = sup | Y k(x,w)(kan(w, ) = kan(w, 2))m(2)
dx(ra=2! S5

< sup Cn— % exp(—dx(w, y)*/C'n)
dx (x,w)<1

< Cn~ " exp(—dx(x, )2 /C'n).
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Hence we complete the proof of Theorem 2. ]
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