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Abstract. In the framework of the analytical theory of close encounters, and under suitable
assumptions, we compute the size of the region in orbital elements space containing collisions
solutions. In the linearized approximation in the semimajor axis/eccentricity plane the collision
region is the interior of an ellipse. Examples are given from past cases of Near Earth Asteroids
having the possibility of impacting our planet.
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1. Introduction
Impact monitoring programs like CLOMON2 and Sentry (Milani et al. 2004) routinely

find collision possibilities of Near-Earth Asteroids (NEAs) with the Earth at specific
dates, and characterize them with values of quantities like the stretching and the impact
probability (Milani et al. 1999, Milani et al. 2004, Milani et al. 2002). These quantities
depend, among other things, on the amount of observational data available for the given
NEA, and on assumptions on the statistical features of the data; thus, they do not depend
only on the orbital parameters of the NEA.

The question we address here is the following: leaving aside observations and statistics,
and considering only the celestial mechanics side of the problem, can we meaningfully
speak of the “size” of a collision solution and, if yes, how does it vary for different NEA
collisions? We look for an answer in the framework of the recent extension (Valsecchi
et al. 2003, Valsecchi 2004) of the analytical theory of close encounters (Öpik 1976).

2. Collision solutions
Let us start by considering the points in the space of orbital elements leading to an

exact collision with a point-mass Earth. We consider the Earth to be on a circular orbit
of radius 1 AU. The conditions on the orbital elements of the NEA for an exact collision
at a given time t are:

a(1 − e2)
1 ± e cos ω

= 1 (2.1)
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π
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where the upper sign is for collisions at the ascending node and λ⊕ is the longitude of the
Earth at the time t. Thus the collision solutions for a given date t lie on a 3-dimensional
manifold in the 6-dimensional space of orbital elements.

Note that for a collision at another date equations (2.1)–(2.3) would be the same, with
only λ⊕ changed. Thus, if we look for the set of collision solutions at an arbitrary date,
equation (2.2) would not introduce any constraint on the orbital elements (a, e, i, ω, f),
since Ω can be fixed at the suitable value as a function of λ⊕.

In the b-plane of Öpik’s theory (Valsecchi et al. 2003), the exact collision condition is
the point of coordinates ξ = ζ = 0. The impact radius of the Earth on that plane is:

b⊕ =
√

r2
⊕ + 2cr⊕;

where c = m/U2, m is the ratio of the mass of the Earth to that of the Sun,

U =

√
3 − 1

a
− 2

√
a(1 − e2) cos i

is the unperturbed geocentric speed of the NEA in units of the heliocentric velocity of
the Earth, and r⊕ is the actual radius of the Earth; the unit of length used here is the
AU. In the following, we use b⊕ to compute the region in elements space corresponding
to a physical collision.

2.1. The correspondence between orbital elements and b-plane coordinates
If at t = t0 the small body is near the Earth, at the point of geocentric cartesian coordi-
nates (X0, Y0, Z0), we have

ξ = X0 cos φ − Z0 sin φ

ζ = (X0 sin φ + Z0 cos φ) cos θ − Y0 sin θ,

where θ = θ(a, e, i) and φ = φ(a, e, i) are the usual angles of Öpik’s theory, given by:

cos θ =

√
a(1 − e2) cos i − 1√

3 − 1
a − 2

√
a(1 − e2) cos i

sin θ =

√
2 − 1

a − a(1 − e2) cos2 i√
3 − 1

a − 2
√

a(1 − e2) cos i

sin φ = ±

√
2 − 1

a − a(1 − e2)√
2 − 1

a − a(1 − e2) cos2 i

cos φ = ±
√

a(1 − e2) sin i√
2 − 1

a − a(1 − e2) cos2 i
.

In the expression for sinφ the upper sign applies to encounters in the post-perihelion
branch of the orbit, and in that for cosφ to encounters close to the ascending node.

By using equations (2.1)–(2.3) we can express X0, Y0, Z0 as functions of the orbital
parameters (to first order in X0, Y0, Z0):

X0 =
a(1 − e2)

1 + e cos f0
− 1

Y0 = Ω +
π

2
∓

{π

2
− arctan[cos i tan(ω + f0)]

}
− λ⊕
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Z0 = sin i sin(ω + f0),

where the upper sign is for collisions at the ascending node.
Let us now consider a NEA that, at a generic epoch t∗, has orbital parameters a, e,

i, ω, Ω, f , and at t = t0, when its true anomaly is f0, has a collision with the Earth,
located (at t = t0) at longitude λ⊕. Note that

t0 = t∗ + 2hπa3/2,

where h is the non-integer number of heliocentric revolutions made by the NEA between
t∗ and t0.

To understand what happens to ξ and ζ, when we apply small changes to the orbital
elements, we can compute

dξ =
∑

i=1,6

∂ξ

∂Ei
dEi

dζ =
∑

i=1,6

∂ζ

∂Ei
dEi,

where E1 = a, E2 = e, E3 = i, E4 = ω, E5 = Ω, E6 = f .

2.2. The derivatives of ξ, ζ with respect to the elements

At the collision, the derivatives ∂ξ/∂Ei, ∂ζ/∂Ei have the form:

∂ξ

∂Ei
=

∂X0

∂Ei
cos φ − ∂Z0

∂Ei
sin φ

∂ζ

∂Ei
=

∂X0

∂Ei
cos θ sin φ +

∂Z0

∂Ei
cos θ cos φ − ∂Y0

∂Ei
sin θ,

where we have dropped the terms with either X0, or Y0, or Z0 as factor (since X0 =
Y0 = Z0 = 0). Note that, among the derivatives, only ∂ξ/∂a and ∂ζ/∂a depend on the
elapsed time t0 − t∗; their expressions contain h, the non-integer number of heliocentric
revolutions made by the NEA between t∗ and t0.

We can then write:

(
δξ
δζ

)
=

( ∂ξ
∂a

∂ξ
∂e

∂ξ
∂i

∂ξ
∂ω

∂ξ
∂Ω

∂ξ
∂f

∂ζ
∂a

∂ζ
∂e

∂ζ
∂i

∂ζ
∂ω

∂ζ
∂Ω

∂ζ
∂f

)



δa
δe
δi
δω
δΩ
δf




. (2.4)

Actually, since an explicit computation shows that ∂ξ/∂i = ∂ξ/∂Ω = ∂ζ/∂i = 0, we have
that:

(
δξ
δζ

)
=

( ∂ξ
∂a

∂ξ
∂e

∂ξ
∂ω 0 ∂ξ

∂f

∂ζ
∂a

∂ζ
∂e

∂ζ
∂ω

∂ζ
∂Ω

∂ζ
∂f

) 


δa
δe
δω
δΩ
δf


 .

Note that, to first order, the changes in (ξ, ζ) do not depend upon the inclination i;
however, the partial derivatives do depend upon i, as also evidenced by the examples
given in the next Section.
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3. Collision solution size in a, e

As we have seen, the 2-dimensional vector giving a small displacement on the b-plane as
function of the orbital elements is given by the product of a 2 rows by 6 columns matrix
times a 6-dimensional vector in elements space (see equation 2.4). This corresponds to
the fact that each point on the b-plane, if the time of close approach is variable, has as
preimage a 4-dimensional manifold. However, if we fix four elements and leave only two
as variables, the inversion becomes possible. To select the two elements we want to use
as parameters, we have to take into account that the coordinates (i,Ω) play a different
role: the partial derivatives with respect to i are zero, and Ω is only a function of λ⊕,
that is of the close approach time t0.

If, for example, we set δω = δΩ = δf = δi = 0, we can find the size of a collision
solution in the a-e plane. In this case, in fact:(

δξ
δζ

)
=

(
∂ξ
∂a

∂ξ
∂e

∂ζ
∂a

∂ζ
∂e

) (
δa
δe

)
;

this can be inverted to give:(
δa
δe

)
=

1∣∣∣∣∣
∂ξ
∂a

∂ξ
∂e

∂ζ
∂a

∂ζ
∂e

∣∣∣∣∣

(
∂ζ
∂e −∂ξ

∂e

− ∂ζ
∂a

∂ξ
∂a

) (
δξ
δζ

)
.

Using the above expressions we can find the values of δa and δe corresponding to a circle of
radius b⊕ in the b-plane. The shape of the collision region, in this linear approximation, is
an ellipse; it does not need to have the major and minor axes aligned with the coordinate
axes.

3.1. Application: the 2019 collision of 2002 NT7 and the 2008 collision of 2003 EE16

We now compute the sizes in the a-e plane of the collision solutions of two NEAs that
have been of some interest in the recent past.

In the summer of 2002 the confidence region of 2002 NT7 in orbital elements space
contained a collision taking place about h = 7.3 revolutions of the asteroid later, in early
2019. The value of the Palermo scale (Chesley et al. 2002) for this collision became, for
a short time, larger than 0, before coming down quickly with the accumulation of new
observations.

Substituting the numeric values of the orbital elements of 2002 NT7 (a = 1.74, e = 0.53,
i = 42.◦3) in the expressions for δa and δe we get:

δa =
−0.19 δξ − 1.7 δζ

3.4h

δe =
0.09 δξ + 0.79 δζ

−4.9h
− 0.62 δξ.

The left panel of Fig. 1 shows this collision in the a-e plane; to highlight the dependence
on h (the non-integer number of heliocentric revolutions made by 2002 NT7 before the
collision), in the right panel we show the size of two collisions characterized by h = 1
and h = 50. The shrinking of the region along a, as h grows, is quite noticeable, as is the
change in the overall slope of the collision region.

In March 2003 the confidence region of 2003 EE16 in orbital elements space contained
a collision taking place about h = 2.9 revolutions of the asteroid later, in early 2008. This
collision solution did not go above the 0 of the Palermo scale at any time. Proceeding as
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Figure 1. Left: the size of the collision solution of 2002 NT7 in δe, δa space for h = 7.3. Right:
the size of collision solutions, of the same NEA, for h = 1 (larger ellipse) and h = 50.

Figure 2. Left: the size of the collision solution of 2003 EE16 in δe, δa space for h = 2.9. Right:
the size of collision solutions, of the same NEA, for h = 1 (larger ellipse) and h = 50. Note that
the scale for δa is much smaller than for δe, that is, the ellipse is much wider in the δe direction.

before, for a = 1.42, e = 0.62, i = 0.◦6 (the orbital elements of 2003 EE16), we get:

δa =
−0.19 δξ − 0.03 δζ

0.059h

δe =
0.09 δξ + 0.02 δζ

−0.071h
− 35 δξ.

Figure 2 shows the same information as Fig. 1 for 2003 EE16. The most important
difference between the two cases is the scale of the Figures: the collision solution of
2003 EE16 is more than an order of magnitude larger in both coordinates. Of course this
is due to the much lower inclination of 2003 EE16.

4. Conclusions
We have shown that, under suitable assumptions, it is possible to deduce analytical

expressions giving the size of the region in orbital elements space containing orbits col-
liding with the Earth at a given date. When computed in the a-e plane, the size depends
on the number of heliocentric revolutions h made by the NEA before hitting the Earth,
and is smaller for larger h.
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Applying the above mentioned expressions to two NEAs, we find that the size of the
collision region in the a-e plane differs significantly in the two cases.

We plan to continue this research, with the goal of providing an easy to compute first
approximation of the location of a Virtual Impactor. This could be a useful tool for the
impact monitoring systems.
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