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BANACH ENVELOPES OF NON-LOCALLY 
CONVEX SPACES 

N. J. KALTON 

1. Introduction. Let Xbe a quasi-Banach space whose dual X* separates 
the points of X. Then X* is a Banach space under the norm 

||x*|| = sup |x*(x) |. 
IWI^i 

From X we can construct the Banach envelope Xc of X by defining for 
x G X, the norm 

IW|C = sup \x*(x) |. 
\\x*m\ 

Then Xc is the completion of {X, \\ \\c). Alternatively || ||c is the Minkowski 
functional of the convex hull of the unit ball. Xc has the property that any 
bounded linear operator L:X —> Z into a Banach space extends with 
preservation of norm to an operator L\XC —» Z. 

The Banach envelope of / (0 < p < 1) is, of course, lx. In 1969, Duren, 
Romberg and Shields [3] identified the dual space of H_ (0 < p < 1) and 
thus its Banach envelope (cf. [14] ). The Banach envelope of H is a 
Bergman space which turns out to be isomorphic again to lx (see [18] for 
a recent direct proof of this). These examples and others prompted Joel 
Shapiro to ask what special properties a Banach envelope of a non-locally 
convex space (with separating dual) must have. 

An example of Pelczynski, the space l2(l
n
p) (0 < p < 1) has a reflexive 

Banach envelope (/2(/") ). This suggests that the answer to Shapiro's 
question lies with the finite-dimensional structure of the space. 

We say that a Banach space Y contains ln{s uniformly (or lx is finitely 
representable in Y) if for every n e N and € > 0 there is a subspace F of Y 
with dim F = n and a linear isomorphism T:f\ —» F with 

imiiir-'u < i +£. 

We say that Y contains uniformly complemented /"'s if in addition F can 
be chosen so that there is a projection P:Y —> F with ||P|| < 1 + c. 

Y fails to contain /"'s uniformly if and only if Y is of type p for some 
p > 1 i.e., for some C < oo and all yl9 . . . ,yn G Y 

Received April 30, 1984 and in revised form February 26, 1985. This research was 
supported by NSF grant MCS-8301099. 

65 

https://doi.org/10.4153/CJM-1986-004-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-004-2


66 N. J. KALTON 

A\\t eiyi\f) tact ||j# 

where e1?. . . , en is a sequence of independent Bernoulli random variables 
on some probability space (with P(et = 1) = P(ez = — 1) = Vi). 7 fails to 
contain uniformly complemented /"'s if and only if 7* fails to contain 
/^o's uniformly; this in turn is equivalent to 7* having finite cotype p for 
some/7 < co, i.e., for some c < 0 and allyf, . . . ,y* e 7* 

*(n£ e f̂ir) ^ c i : iijfir 
v 1 = 1 7 1 = 1 

See [10]. 
The author [5] has shown: 

THEOREM 1.1. Let X be a non-locally convex quasi-Banach space with 
separating dual. Then Xc contains ln{s uniformly. 

Thus I (I < p < oo) and L (\ < p < oo) cannot be Banach envelopes 
of such spaces. However the case of c0 (or l^) was left unresolved. Several 
examples have been suggested as possible spaces with Banach envelopes 
isomorphic to c0. For example, Shapiro has recently studied the harmonic 
Hardy spaces hp (0 < p < 1), and these have subspaces h® which are 
hereditarily c0 [15]. Similar examples have been studied by A. Matheson. 
The Banach space envelopes of these spaces have not been determined, 
however. 

In this paper, we shall show first that these and similar examples can 
never have c0 as a Banach envelope. Precisely, we introduce the concept of 
a natural quasi-Banach space. The idea is that all non-locally convex 
quasi-Banach spaces which commonly arise in analysis are natural (e.g. 
any subspace of an Orlicz function space or of a Lorentz function space). 
We then show that any non-locally convex subspace of a natural space 
with a basis (or the bounded approximation property) has a Banach 
envelope which contains uniformly complemented /"'s. The same conclu­
sion applies to any subspace of the nonseparable space h (Theorems 3.4 
and 3.5). The proofs of these facts depend on a theorem essentially due 
to Maurey [8] (cf. [9] ) on the factorization of operators into Lp where 
0 < p < 1. As we require a slight modification of Maurey's theorem and, 
in any case, his proof lies deeply embedded in [8], we shall present an 
exposition of the result we need in Section 2, using ideas of Bennett 
([1],[2]). 

In Section 4, however, we construct a non-locally convex space whose 
Banach envelope is isomorphic to c0; although this space has an uncondi­
tional basis, it cannot be natural. In Section 5 we show further that for 
any separable Banach space Z we can find a subspace of lp (0 < p < 1) 
whose Banach envelope is isomorphic to lx © Z. Thus although c0 is not 
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the Banach envelope of any subspace of / , lx © c0 is such a Banach 
envelope. Note, of course, that / has no infinite-dimensional locally 
convex subspaces. 

Finally in Section 6 we prove some special results for the Banach 
envelopes of spaces with unconditional bases. 

All our results are stated for real quasi-Banach spaces with the under­
standing that they generalize to the complex case without difficulty. 

We conclude the introduction by making a few remarks which we hope 
will assist the non-specialist reader. 

First we remark that Banach spaces which do not contain /"'s uni­
formly have been studied in the past both from the point of view of the 
geometry of Banach spaces and from the point of view of probability in 
Banach spaces; in the latter context such spaces are called 5-convex, and 
this terminology was used by the author in [5]. The reader is referred to 
[12] for several formulations of this notion. We note that every uniformly 
convex Banach space fails to contain /"'s uniformly, but, in the converse 
direction there do exist non-reflexive i?-convex spaces ( [4] ). The most 
important observation for the reader is that c0 does contain /"'s; 
indeed l\ embeds in / ^ if m = 2n, and c0 contains /^ ' s . However c0 

does not contain uniformly complemented /"'s since CQ = /] does not 
contain /J^'s. 

The second observation is that in Section 3 we introduce the notion of a 
natural space, building on ideas in [6]. However the reader who does not 
wish to delve into [6] may instead take the conclusion of Theorem 3.1 for 
the definition of a natural space. Using this it is easy enough to show that 
L. , 0 < p < 1, is natural since it is transitive (see [13] ). 

2. A theorem of Maurey. In this section we present a slight modification 
of a theorem due to Maurey [8]. This theorem is very difficult to trace in 
[8] however (cf. Theorem 93 and the remarks in [1] or [2] ) and so we 
present a direct proof based on ideas of Bennett ( [1], [2] ). 

Let (£2, 2, /A) be a measure space of total mass one. On L• (Q, 2 , ii) we 
define for £ G I the projection PE by PEf = \Ef where \E is the indicator 
function of E. 

LEMMA 2.1. Let X be a quasi-Banach space whose dual X* has finite 
cotype, and suppose 0 < p < 1. Then there is a constant C so that 
whenever 

T\X-> Lx(ti, 2 , /x) 

is an operator and e > 0 then there is E G 2 with p(E) ^ 1 — € and 

\\PET\\X ë CJ-V" \\T\\p. 

Here \\S\\r denotes the norm of the operator S:X —» Lr. 
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Proof. Since X* has finite cotype there exists an integer m so that 
whenever x*9 . . ., x^ e X* then 

max HSîytfll ^ 21//7 + 1 min ||jcf||. 
17^ = z±z 1 \=i = m 

Now suppose S.X—> Lj(fl, 2 , /x) is any operator and fix e > 0. We shall 
prove the existence of a set E e 2 with X(i?) â 1 — e so that for any 
x ^ X 

(*) llP^xlli ^ 2-1/lS||1|M| + _P_(™Y/P \\sx\\p. 
1 — p V € / 

To prove this select inductively xx,... ,xm e X and disjoint sets 
Ex,...,Em e 2 so that 

(a) \\xt\\ = 1 1 ^ i ^ m 

(b) p(Ei) = w_ 1£ 1 S i ï m 

(c) j [ j r j c | r f / i ^ ^ s u p jT |5y |4i 

where the supremum is taken over all i7 G S with 

jLt(F) = m_1€ and F c Q \ u £, 

and all j e X with ||>>|| - 1. Then let 

m 

clearly /x(£) = 1 — c. 
Now pick ut e L ^ with Halloo = 1 and supp ut c £"z so that 

JE u^Sx^dix = J£ iS^IJ/i. 

Then if S * : / ^ —> X* is the adjoint of S, 

IIS^JI ^ ^ \Sxt\dp. 

Now for T] • = zb 1 

||2 7,,S*M;|| ^ HSU, 

so th^t 

min ||S*u,|| S 2 - 1 / ' - 1 | | 5 | | 1 
i = / = m 

and hence 
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min f \Sxt\diL ^ l-v^ïïSWi. 

Now suppose x e X and let h = lpSx. Let /:(0, 1) —> R be the 
decreasing rearrangement of /z, i.e., 

/ ( 0 = inf sup \h(œ) |. 
p(A) = t ic£A 

Hence 

/(/) ^ rl/p\\sx\\p. 

It follows that there exists F e 2 with F c E, \i{F) = m~ e and 

J^IAI* si M , / ^ r ' * = -4-(^)'^-||&||p. 

However 

jf |/i|4* ^ (2 min ^ |Sx,l4*)lWI 

ë 2 - 1 / l s | | , | M | . 

Equation (*) now follows immediately. 
To complete the proof of the lemma fix an operator T:X —> Lx and 

define for € > 0 

#€) = inf{||P£r||1:/x(E) ^ 1 - c}. 

For convenience <j>(e) = 0 if e i= 1. Let 

^ = sup€1 / / 7 _ 1^(€). 
e>0 

Clearly vl ^ \\T\h. 
Now apply (*) to S = PET for any E with /x(2£) = 1 — c. We decide 

that 

tffc) ^ 2~1/1<>||1 + -^-mx/P-\x-x/P\\T\\p 
\ - p 

and hence that 

<K2e) â 2 - 1 / ^ c ) + -^-ml/P-V-l/P\\T\\p. 
\ - p 

We deduce that 

(2e)]/r-]<t>(2t) ^ ^ " ^ M + -^—(2m) , / ^- , l l ^ | | „ 
2 1 — p 

so that 
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A^\A+ -P—(2mfP-i\\T\\p. 
2 1 — p y 

Hence 

?\/P 

A ^ - ml/P'l\\T\\p 

\ - p 

and the lemma is proved with 

?\/P 

C mx/P-x\\T\\p. 
\ - p 

If X and Y are two quasi-Banach spaces we shall define s/(X, Y) to be 
the smallest linear subspace of J?(X, Y) containing the finite-rank 
operators and closed under pointwise convergence of uniformly bounded 
nets. If T e jtf(X, Y) we shall say that T is approximable. 

THEOREM 2.2. Let X be a quasi-Banach space such that X* has finite 
cotype and suppose 0 < p < 1. Then there is a constant C = C(p, X) so that 
if T:X —» L (Q, 2 , ju) is a bounded operator then the following are 
equivalent: 

(i) T is approximable 
(ii) For 0 < € < 1 there exists E e 2 with \L(E) i? 1 — e so that 

PET e S£{X, L,) and 

\\PET\\X g Cè-xl*\\T\\r 

(ili) For 0 < e < 1 there exists E e 2 with }i(E) = 1 — e so that PET is a 
bounded operator of X into Lx. 

Proof, (ii) => (hi). This is immediate, 
(iii) => (ii). For e > 0 select £ 0 so that 

and P£ JT maps X into Lj. Now apply Lemma 2.1 to PE T with e replaced 

by -e. Condition (ii) follows with C replaced by 2 1 / / 7 - 1 C 

(iii) => (i). Select a sequence £ n e 2 so that 

/*(£„) ^ 1 - - and PE T e ^ (X, L J ) . 

Now Lj has the metric approximation property so that each PE T is 
approximable in <Sf(X, Lx) and hence also in 3?{X, L ) . Thus T is ap­
proximable i n ^ X , L ) . 
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(i) => (iii). L e t ^ X , L ) be the set of operators T:X —» L^ so that for 
every € > 0 we can find £ e S with 

PET G ^(X, L ^ and n(E) ^ 1 - c. 

Hence ^/(X, L ) is a linear subspace of S£(Xy L ) and contains the 
finite-rank operators. Suppose T G J ^ ( ^ , L ); we will show that 
T G ̂ /(X, L ). Suppose Ta is a bounded net inf(X, L) so that 

lim Tax = Tx for x G X 
« 

Fix e > 0 and £„ e 2 so that ju(£a) ê 1 - e and 

H^jjl, ^ Ce'-^iirji,. 

(using (iii) = (ii) proved above). The net \E in the unit ball of L ^ f i , 2, /x) 
has a weak*-cluster point h with 0 ^ /z ^ 1 and 

J hdfi ^ 1 - €. 

Now for each x G X 

lh\Tx\dfx^ Cel-l/psup\\TJ\p\\x\\. 

Let L - {o):h(œ) ^ - } . Then 

H(E) g 1 - 2c and i^L G &(X, Lx) 

so that T G / ( X , L^). It follows that 

/ ( * , L,) => j/(Jf, L,) 

and hence (i) =̂> (iii). 

3. Natural spaces and Banach envelopes. Let 7 be a quasi-Banach 
lattice, y is said to L-convex (or lattice-convex) [6] if there exists 0 < 8 < 1 
so that if u ^ 0 and 0 ê ^ ^ M (1 ^ / ^ n) satisfy 

- ( * ! + . . . + xn) ^ (1 - S)u 
n 

then 

max ||x,|| ^ S|M|. 

As pointed out in [5] those function spaces commonly studied in analysis 
(e.g. Orlicz spaces, Lorentz spaces, etc.) are automatically L-convex; one 
needs an 'artificial' construction to make non L-convex lattices. Motivated 
by this idea we shall define a (real) quasi-Banach space X to be natural if it 
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is linearly isomorphic to a closed linear subspace of an L-convex lattice. 
This definition is rendered consistent by Theorem 4.2 of [6] which asserts 
that a natural quasi-Banach lattice is always L-convex. 

We now characterize natural quasi-Banach spaces. As noted in the 
introduction, this theorem can be used to define natural spaces. 

THEOREM 3.1. A quasi-Banach space X is natural if and only if there 
exists p > 0 and C < GO so that ifx G X with x ^ O there exists a measure 
space (fix, 2X, iix) with ii(tix) = 1 and an operator 

Tx:X-* Lp(Qx> 2X, llx) 

such that 

(i) ||rj| ^ own1 

(ii) Txx = 1 Q / 

Proof. For the "if" direction simply note that the map 

x^{\\y\\TyX}yeX^0 

embeds X into an /°°-product of spaces L (Qx, 2X, fxx) which is 
L-convex. 

The "only if" direction is essentially proved in [6] Theorem 3.3. We can 
suppose that X is a closed linear subspace of an L-convex quasi-Banach 
lattice Y. By Theorem 2.2 of [5] y is a/?-convex lattice for some/? > 0 i.e., 
for some constant B and yx, . . . 9yn e Y 

( 2 w) M 2 \\yi\\p) • 
Fix x e X c Y with x ¥* 0. Let v = |JC| and let V be the linear span of 
[ —v, v]. Taking [ — v, v] as the unit ball, Vis an abstract M-space and then 
may be isometrically and lattice isomorphically identified with a space 
C(£2X), where Q>x is compact Hausdorff. Let J:C(QX) —» V be the 
associated lattice isomorphism. Let 2^ be the Borel subsets of £lx. 

If/b . . . Jm e C(QX) then 

\\j<?\ml/p\r ^ B 2 ii/ir. 

Hence it is impossible that 
m « 

2 \m\p > BP\\V\\-P 2 lur/r 

for all s G £2̂ , since this would imply that 

j(nml/p â (i + < )« - • ( i iur/,n>)"v 
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for some € > 0. 
Now by a Hahn-Banach separation argument there is a probability 

measure \LX on £lx so that 

j [ j / i^x si *ivirwn' 
fo r / e X C(S2J . 

For^ G 7 + define Sy e ^ ( 2 * , JUJ by 

5y = sup /_ 1(j> A nv) 
n 

and extend by linearity. Then S is a bounded linear operator of Y into 
Lp$lx, ,xx) with HSU ^ B l l v i r 1 . 

Now define T^iX —» -^(fyt> M*) by 

rxz = (Sx) • & . 

Note that l^xl = 1, since 5 is a lattice isomorphism and Sv = S\x\ = 1. 
Thus 

\\TX\\ ^ fiHvir1 = B lWr 1 and 7 > = l f i / 

We now define a complex quasi-Banach space X to be natural if the 
underlying real space is natural. Then we observe that Theorem 3.1 holds 
also for complex spaces. One constructs the real-linear map Tx as in 
Theorem 3.1 and then complexifies by setting 

?xz = Tx(z) ~ iTx(iz) 

to obtain a complex linear map 

TX:X-> Lp(Qx9 2X, nx). 

Finally one sets 

Sx(z) = (Tx(x)ylTx(z) 

(noting that Re Tx(x) = 10 ). 
We shall need an observation before proceeding. 

LEMMA 3.2. Suppose X, Y, Z are quasi-Banach spaces and S:X —> Y9 

T.Y —> Z are linear operators. If either S or T is approximable then so 
is TS. 

Proof. For example if S is approximable set,/' c ££(X, Y) to be the set of 
all R so that TR is approximable in J?(X, Z). Then # contains the 
finite-rank operators and is closed under pointwise convergence of 
uniformly bounded nets. Thus S G £ The other case is similar. 

THEOREM 3.3. Let X and Y be quasi-Banach spaces and suppose X* has 
finite cotype and Y is natural. Then there is a constant C so that ifT:X—> Y 
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is an approximable linear operator, then 

117*11 ̂  C\\T\\ ||x||c x e x. 

Proof. There exists B and p > 0 so that if jy G Y and >> ^ 0 there is a 
bounded linear operator 

Sy:Y->Lp(Q,2,p) 

where 

/x(Q) = 1, \\Sy\\ ^ B\\y\rl and Syy = 10. 

We can use Theorem 2.2 to determine A (depending only on p) so that 
if 

R:X-^Lp(Q9 2,/x) 

then there exists ii e 2 with ti(E) â 1/2 and 

P^:X -> LrfQ, 2, /i) with l^/lll! ^ ,411*11,. 

Now fix x G X If 7JC = 0 there is nothing to prove. If 7x ^ 0, there 
exists 

S:Y-+Lp(Q, 2, fi 

so that 

||S|| ^ JBHrjcir1 and STx = 10. 

Choose £ e Hso that i^ST maps X into LX(Q, 2 , JU), 

llP^Srili ^ ,4115711, and ix(E) ^ 1/2. 

Now 

^ ^ 11^57*11, =i \\PEST\\x\\x\\c 

£ A\\ST\\p\\x\\c 

§ ^iirxir'iini IWIC 

so that 

\\Tx\\ â 2AB\\T\\ \\x\\e. 

THEOREM 3.4. Let Y be a natural quasi-Banach space with a basis {or 
more generally the identity on Y is approximable). Let X be any non-locally 
convex subspace of Y. Then the Banach envelope of X contains uniformly 
complemented ln{s {or equivalently X* does not have finite cotype). 

Proof The embedding J:X —> Y is approximable and the result follows 
from Theorem 3.3. 
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Examples. If X is a subspace of I or oî H (0 < p < 1) then Xc contains 
uniformly complemented /"'s. 

As a further example consider the space h (0 < p < 1) studied by 
Shapiro [12]. This consists of all complex harmonic functions u on the 
open disc A in C so that 

\\u\\h = sup f-1- f\\u{rel6)\Pde\/P <^. 
p o o < i \2<n J -" J 

Shapiro shows that h contains many copies of c0, and one might suspect 
that h has a non-locally convex subspace with a containing Banach space 
isomorphic to c0. This is impossible however; in this case a slightly 
different proof is needed, since the identity on h is not known to be 
approximable. 

THEOREM 3.5. Let X be a closed linear subspace ofh. If X is non-locally 
convex then Xc contains uniformly complemented f[9s. 

Proof. Suppose Xc does not contain uniformly complemented /"'s, and 
consider the map Tr:X —» L (T) given by 

Tru(ée) = u(rëe). 

If 0 < r < 1, Tr is approximable. In fact 

7 > = lim Tl?]u 
n—>co 

where 

where {u(k) }^L_00 are the Fourier coefficients of u. 
Thus for some constant C independent of r 

\\Tru\\p S C||«||c 

where || ||c is the Banach envelope norm on X. Hence 

Ml*, ^ c|l«llc 
i.e., X is locally convex. 

4. A Banach envelope isomorphic to c0. In this section we construct a 
non-locally convex quasi-Banach space with an unconditional basis, 
whose Banach envelope is isomorphic to c0. Of course such a space cannot 
be natural by Theorem 3.4. 

We start with an observation used by Talagrand [16] to construct 
a pathological submeasure. For each n G. N we can find a finite set 
£2 ( = fiw) and a collection of subsets {Ax,. . ., A2n) of Œ so that 

(i) U Al ¥= 2 
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whenever / c {1, 2, . . . , 2«} and |/| < n, and 

(ii) (iA + ...+iAj = n\0. 

Indeed let £2 consist of all subsets of {1, 2 , . . . , 2«} of cardinality n. Let 

Al = {co e fi:z G co}. 

Fix /? with 0 < p < 1 and quasi-norm the finite-dimensional space 
Vn = /°°(Q) by taking 

2w 

inf{2k/:|/| ^ 2 ^ }. 

Let 

= max |/(w) |. 

Then clearly H/H^ ^ | | / | | . Suppose ct = 0 and 

2 c,\Ai i= i0. 

Then let / = j /'ic, = -n \ . If |/ | < n then we may pick 

and then 

2 c.-i^u) < l. 

Hence |/ | ^ « and so 

i.e., 

lUoll ^ \»Up~l-

Next we note that for the Banach envelope norm || | |en 

1 2" 

lUoiU^- 2 nulla 2. 
« 1 = 1 

Clearly || \\cn is a lattice norm on /°°(Q) and || ||c„ i? || H^. Hence for 
/ e /°°(Q) ' 

H/IU ^ ||/||f =i 2H/IL. 
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We repeat this construction for each n and then form the c0-product 
c0(Vn) i.e., the space of all sequences/„ with/„ e Vn, \\fn\\ —> 0 and 

||(/„)|| = max||/J|. 
The Banach envelope norm on c0(Vn) is clearly seen to be 

| | ( / „ ) | | c = max||/„| |c„. 

Thus the Banach envelope of c0(Vn) is isomorphic to cQ. However the space 
is non-locally convex since 

||(0,0,..., 1^,0,...) || ^ V ' " 1 

but 

| | ( 0 , 0 , . . . , 1^,0, . . . ) l l c ^ 2 . 

5. Subspaces of / . We shall need the following simple lemma. 

LEMMA 5.1. Let (un:n e N) be a normalized sequence in lp (0 < p < 1) 
with disjoint supports. Let M = [un] be its closed linear span. Then 

(i) lp/M is linearly isomorphic to a subspace of lp 

(ii) The Banach envelope of IJM is isomorphic to lx. 

Proof. We first note that (ii) is essentially trivial. The Banach envelope 
A A 

of L/M is isomorphic to lx/M where M is the closure of M in lx. However 

M i s a complemented subspace of lx (by a projection of norm one) and 

lxIM = lx. 
To prove (i) first let (et) be the standard basis of / and 

un = 2 aft 

where \at\ > 0 for all / e An and 

2 W = \ « - l, 2, . . . . 
i*A„ 

We shall define a linear map 

S:lp -> lp(N X N). 

Letfj be the standard basis of / (N X N) and define S so that 

Set = fu if / g U An 
1 Ju « G N n 

Set = 2 ajfij - 2 ^ / * e ^*-

Then S extends to a bounded linear operator with \\S\\P ^ 2. Note that 
S'ŵ  = 0 for each n. We shall show that 
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inf ||JC - v|| = d(x9M) ^ \\Sx\\ 

for all x G / 
Indeed if 

oo 

x = 2 iiel 
1 = 1 

in / then we may select for each n e N, n\n so that 

2 {it ~ T)nai)ei 
i^A„ 

2 eft - Xun 
i^A„ 

for all À G R. 
Thus 

2 i£|07- - Vnaia/ = 2 l^- ~ èjai\p-
i^An 

Hence 

i^AM 

2 2 2 i^y - w * / ^ 2 2 2 i ^ - £/*/• 
/i = l y ^ ieAn n = \ JGAn i^An 

Since the right-hand side is at most \\Sx\\p we conclude that 2 \*}n\
p < 

oo and if we set y = 2 r]nun then 

oo 

II* - y\\p ^ 2 if/ + 2 2 2 \tfij - W 
i£UA„ n=\jeA„i£A„ 

^ H S J C I I " . 

Thus d(x, M) ^ 115x11 and S factors to an embedding of lp/M into 

/„(N X N) = lp. 

THEOREM 5.2. Let Zbe a separable Banach space and suppose 0 < p < 1. 
77ze« there is a closed subspace X of lp whose Banach envelope is linearly 
isomorphic to lx © Z. 

Proof. Let (et) be the standard basis of lp = /^(N) and let (ftj) be the 
standard basis of / (N X N) and, for convenience, we take the quasi-norm 
on the direct sum to be 

II (*,;>) || = m a x ( | W | , ||>>|| ). 

Choose an integer a so that 

•G-) > 3 and d = 2a. 
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Write N as a disjoint union U A„ where \A„\ = dn, and define the 

normalized sequence 

un = d-»* 2 e, 
i<EAn 

Select a total fundamental biorthogonal system (zn, z*) for Z so that 
\\zn\\ = 1 (/i e N) and ||z*|| ^ 2 for « G N (see [11]). We define 
^ : I M J ^ Z to be a bounded linear map such that 

Kun = 2-"zn. 

Note that \\K\\ ^ 1 and that K is one-one. In fact if x G [un], say 

oo 

X = 2 £„W„ 
« = 1 

then 

IztfAJc) I = 2 " " | ^ | g 2||AJc|| 

so that 

|{J ^ 2" + ,||À*||. 

Now let || ||j be the / r norm on lp(N). Then 

oo 

IMIi = 2 l£X (1~1/ /7 ) 

oo 

^ 2||AJC|| 2 l " ^ ™ 0 " * 1 ' * » 
« = 1 

oo 

â 2||Kx|| 2 4-" 

^ ||AJc||. 

Now let (_y(-:/ e N) be any sequence dense in the unit sphere 
{x:\\x\\ = l}oi[un]. Then 

7 = 1 

where 

2 la/ = I-
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Let 

7=1 

in ^(N X N) and define for (i,j) e N X N 

*ij=fij + Piej 

where 

^ = IWI./IIW 
Note 0 < Pi ^ 2/3 for all / G N and hence that [wtj] is isometric to lp. 

Let M = [vn], and consider the quotient / © / (N X N)/M. By Lemma 
5.1 this quotient is isomorphic to a subspace of / . Let q be the quotient 
mapping and X be the closed linear span of 

{q{w$:i e N J e N}. 

X will be our example; clearly X embeds into / . 
Note first that for fixed i 

2 ayWy = 2 fl^- + Pfij) = v,- + #>v 

Thus X contains a subspace 

*o = [<7U) ] = [«(«„) ]• 

We first identify the quotient space X/X0. To do this note that 

q-\X0) = [u„]®[y„] c / ,©I f (N 2 ) . 

Now suppose 

X = 2 ^ H - G [W(.] 
'J 

and that for some cn, 2 k j ^ < oo 

2 ^ - - 2cnvn \ \ < l. 

We shall show that 

2 ^ . - 2 cn(yn + /?„>>„) 
U 

< 1. 

Indeed we have 

2 l£y- - c,a/ < 1 
*ij 
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and hence 

2(£« _ cPijWj\ < l 
i'J 

2 Zyfifij - 2 c„p„y„ 
I,J 

< 1 

as required. 
Now suppose x e [wt] and J(x, [«„] © [v„] ) < 1. Then by the above 

d(x,[v„ + P„y„})< 1. 
However vn + /?nj>„ is a sequence with disjoint support with respect to 
(w-). Hence [wj/[vw + Pnyn] has a Banach envelope isomorphic to lx. It 
follows that X/X0 is isomorphic to [ w ^ ] / ^ + / ^ j j and hence embeds 
into / and has a Banach envelope isomorphic to lx. X0 is then weakly 
closed in X (X/X0 has a separating dual). 

Let X0 be the weak closure of X0 in Xc. Then 

* c / * 0 = (* /* 0 ) c = ll9 

and hence 

X S / X0. 

It remains to show that X, o Z. 
To do this we define a bounded linear map L0:[w^] —» Z so that 

A>(w(,-) = (sSn **/) nrKyi' ll̂ lli 
To see L is bounded we need only note that 

I IA>(V I I= 77^11^,11 = 1 
y Mi 

for all i, j . 
Suppose 

x = 2 tjjWg e [w,y] and d(x, M) < 1. 

Then there exist c,, 2 \c,f < 1 so that 

\\x - 2 C..V..H < 1. 

Hence 

2 ^ / 7 - 2c,v; 
'J 

< 1 
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and, as before, 

II* - 2c,(v, + A^)ll < i. 
Thus 

112 cMyft < 21//'. 
However 

Lo(vi + fiji) = 2 ayLoiwy) 
j 

= JM^-

since | | j , . | | , = 2 |fl,y|. 
y 

Thus 

l|L0(2cr(v, + ^ ) ) l l < 2 1 / p 

and hence 

HMI < 31"-
In general for x e [w-], 

||LO(JC) || ^ 317^ • </(*, M). 

Hence L0 factors to a linear operator L:X-> Z with ||L|| ^ 31//?. As Z is a 
Banach space 

M =i 3'̂ IUIU. 
Now 

Lq(y,) = Lq(yi + fr\) 

= L0(yt + fi7\.) = Ky, 

Hence 

11̂ -̂11 s ^'"Myd ||c. 
Extending by continuity, if x e [un] 

\\Kx\\ Si 3v"\\q(x) \\c. 

Conversely 

I I^UO iic = Prl ii9(v,-+ A - ^ ) iic 
^A-'Si^i i i^^iic 

j 

â /J-'WI. = M -
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Hence for x e [un] 

\\q(x)\\ctâ \\Kx\\. 

Thus 

3-Vp\\Kx\\ ^ \\q(x)\\c ^ \\Kx\\ for x G X0 

so that X0 = Z (since the range of AT is dense). 

6. Spaces with unconditional bases. In this section we give some special 
results for spaces with unconditional bases. 

THEOREM 6.1. Let X be a quasi-Banach space with an unconditional basis. 
Then X contains a complemented subspace isomorphic to c0 if and only if Xc 

contains a copy of c0. 

Proof Suppose (en) is a normalized unconditional basis of X with 
unconditional basis constant K so that if N e N, al9. . . , an e R and 
\ct\ ^ 1 (1 ^ i' ^ N) then 

N 

1 = 1 

^ K 
N 

/ = i 

Let e* be the biorthogonal functional in X*. Then 

lk*|| ^ K and â JT 

Suppose Xc contains a copy of c0. Then by a gliding hump argument we 
can find a block basic sequence (un) of the form 

K 
un = 2 Vi 

£„_! + l 

(where fc0 = 0 < fc] < fc2 • • • ) a n d s o t n a t f° r some 0 < C < oo and all 
ÛJ, . . . fln G R5 JV G N we have 

C l max \at\ ^ 

We may also determine 

2 ap; 
i = i 

^ C max |tf;|. 
1^/^vV 

«* = 2 cfit 
kn-\ + X 

so that 

sup ||w*|| = £ < oo and w*(wj = 1. 

Let A = [-2CK, 2CK\N, A is a compact metrizable space. For 
* = (€,-) G A d e f i n e ^ © G l b y 
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*„(© - 2 fo. 
, + i 

Let 

A0 = {£ G AiU^tf) + . . . + <t>n(Ç) Il =i 2 C ^ HŒ N}. 

A0 is a closed subset of A. 
For each n G N, 

|Wl + . . . + un\\c tk C 

and so we can express ux + . . . + un as a convex combination of elements 
of the unit ball of X. Identify x G l such that \\x\\ ^ 1 with £ G A so that 
x = 2 £#. Thus we can find a probability measure \in on A whose support 
is finite so that if 1 ^ m ^ n 

/ <t>m (£Wn(£) = IV 

(The integral is well-defined in the finite-dimensional space 
[ek + 1 , . . . ek ] ). Furthermore \in is supported on A0. 

Let fi be any weak*-cluster point of (/xn:« G N) in C(A)*. ju, is also 
supported on A0 and 

/ 

7-
4>„ ( & W 8 = um m e N. 

Thus 

* K * ( < U £ ) )*(£) = i 

and as 

we can conclude by the Bounded Convergence Theorem that there exists 
mk Î oo and £ G A0 so that 

<(*«X8) = & > Y > 0 . 

Let 

vt = K ' U 8 . 

Then v̂  is an unconditional basic sequence in X. 
We also have 

\\alvl + . . . + akvk\\ ë y * AT max \ak\ 

^ 2 C ^ 2 y _ i max \ak\. 

mk 

1 = 1 
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Now u^ (vk) = 1 so that \\vk\\ = B l so that (v^) is equivalent to the usual 
c0-basis and is complemented by the projection 

oo 

Px = 2 u^(x)vk. 
k=\ k 

In fact 

||P|| ^ 2BCK2y~\ 

The converse is trivial; if X = c0 © Y then Xc = c0 © Yc. 

If we further assume Xc = c0 then since (en) is also an unconditional 
basis for Xc with 

KTX f, \\en\\c ^ 1, 

then by a theorem of Lindenstrauss and Pelczynski [7] (en) is actually 
equivalent to the usual c0-basis in Xc. Thus in the preceding proof we can 
take un = en, and each vk is a multiple of em . Thus we have also 
proved: 

THEOREM 6.2. Let X be a quasi-Banach space with normalized uncondi­
tional basis (en). If Xc = c0, then some subsequence of(en) is equivalent (in 
X) to the standard basis of c0. 

COROLLARY 6.3. Let Xbe a quasi-Banach space with a symmetric basis. If 
Xc = c0, then X = c0. 

We remark that the example constructed in Section 4 has an 
unconditional basis and Xc = c0, but is not locally convex. We also 
remark that it is easy to find spaces X with unconditional basis which 
contain c0, but so that Xc does not contain c0. For example let X be the 
"weak" /^-sequence space (0 < p < 1) of all sequences xn so that the de­
creasing rearrangement x* satisfies nl/px* —» 0. This is quasi-normed by 

INI = sup nx/px*. 
n 

Then X has an unconditional basis and contains c0, but Xc = lx. 
Finally we conclude with a theorem suggested by the example in 

Section 5. 

THEOREM 6.4. Let Xbe a quasi-Banach space with an unconditional basis. 
Suppose Xc = /j © Y. Then 

(i) If Y does not contain ln{s uniformly, then X contains a complemented 
subspace isomorphic to Y. 
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(ii) If Y does not contain uniformly complemented l^s and X is natural, 
then X contains a complemented copy of Y. 

Proof In either case every operator from Y into l{ is compact. Let (en) 
be the unconditional basis of X. Then (en) is also an unconditional basis 
of Xc = lx © Y and also by a theorem of Wojtasczyk [17] there is an 
infinite subset [en:n e M] which is an unconditional basis of Y. Then 
[en:n <E M] spans a subspace X0 of X which is complemented and such 
that (X0)c = Y. Now apply either Theorem 1.1. or Theorem 3.4, to 
conclude that X0 = Y. 

Thus the examples in Theorem 6.2 do not have an unconditional basis 
in the case when Z does not contain uniformly complemented /"'s. 
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