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ABSTRACT

Let R be a commutative ring, let F' be a locally compact non-archimedean field of finite
residual field k of characteristic p, and let G be a connected reductive F-group. We show
that the pro-p-Iwahori Hecke R-algebra of G = G(F') admits a presentation similar to
the Iwahori-Matsumoto presentation of the Iwahori Hecke algebra of a Chevalley group,
and alcove walk bases satisfying Bernstein relations. This was previously known only
for a F-split group G.
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1. Introduction

This paper extends to a general reductive p-adic group G the description of the pro-p-Iwahori
Hecke algebra over any commutative ring R, that I gave 10 years ago for a split group G.
This is basic work which allows us to describe the center and to prove finiteness results of
the pro-p-Iwahori Hecke algebra for any (G, R). It is a fundamental tool for the theory of the
representations of G over a field C' of characteristic p: the inverse Satake isomorphism for spherical
Hecke algebras, the classification of the supersingular simple modules of the pro-p-Iwahori Hecke
C-algebra, and the classification of the irreducible admissible smooth C-representations of G in
terms of parabolic induction and irreducible supersingular representations of the Levi subgroups.

The study of congruences between classical modular forms naturally leads to representations
over arbitrary commutative rings R, rather than to complex representations. In our local setting,
that means studying R-modules with a smooth action of G = G(F') where F' is a locally compact
non-archimedean field of finite residue field k&, and G is a connected reductive group over F.

When C'is an algebraically closed field of characteristic equal to the characteristic p of k, very
little is known about the theory of the smooth C-representations of GG, besides the basic property
that a non-zero representation has a non-zero vector invariant by a pro-p-Iwahori subgroup. The
pro-p-Iwahori subgroups of G are the analogues of the p-Sylow subgroups of a finite group and the
study of the smooth C-representations of G involves naturally the pro-p-Iwahori Hecke C-algebra
He(1) of G. This is our motivation to study the pro-p-Iwahori Hecke algebra of G.

For any triple (R, F, G), we show that the pro-p-Iwahori Hecke R-algebra Hp(1) of G admits
a presentation, generalizing the Iwahori and Matsumoto presentation of the Iwahori Hecke
R-algebra of a Chevalley group. The proof of the quadratic relations is done by reduction to
the analogous Hecke R-algebra of a finite reductive group. The Iwahori Hecke R-algebra Hp of
G is a quotient of Hp(1) and all our results transfer to analogous and simpler results for the
Iwahori Hecke R-algebra.

The Iwahori-Matsumoto presentation of the pro-p-Iwahori Hecke R-algebra of G leads
naturally to the definition of R-algebras Hr(gs,cs) associated to a group W (1) and parameters
(gs, cs) satisfying simple conditions. The group W (1) is an extension by a commutative group
Z of an extended affine Weyl group W attached to a reduced root system 3. The group W is
more general than the group appearing in the Lusztig affine Hecke algebras Hg(gs,gs — 1). The
R-algebra Hp(gs,cs) is a free R-module of basis indexed by the elements of W (1) satisfying the
braid relations and quadratic relations with coefficients (gs, cs).

We show that the algebra Hp(gs,cs) admits, for any Weyl chamber, an alcove walk basis
indexed by the elements of W (1), a product formula involving alcove walk bases associated to
different Weyl chambers, and Bernstein relations. When the ¢, are invertible in R we obtain a
presentation of the algebra Hpr(gs,cs) generalizing the Bernstein—Lusztig presentation for the
Iwahori Hecke algebra of a split group. Our proofs proceed by reduction to the case ¢; = 1.
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We recall that we put no restriction on the triple (R, F, G), the reductive group G may be
not split, the local field may have characteristic p, and the commutative ring R may be the ring
of integers Z or a field of characteristic p.

When G is split, the complex Iwahori Hecke algebra H¢ of G was well understood. It is the
affine Hecke algebra attached to a based root datum of G and to the cardinal ¢ of k (the first proof
is due to Iwahori and Matsumoto for a Chevalley group). Starting from the Iwahori-Matsumoto
presentation of H¢, Bernstein and Lusztig gave another presentation of Hc, from which one can
recover the center of H¢ and which is an essential step for the classification of its simple modules.
The classification was done for G = GL(n) by Zelevinski and Rogawski, and for G simple, simply
connected with a connected center by Kazhdan-Lusztig, and by Ginzburg, using equivariant K-
theory of the variety of Steinberg triples. The condition ‘simply connected’ was waived by Reeder.
Gortz realized that the Bernstein basis could be understood using Ram’s alcove walks, and gave
a simpler proof of the Bernstein presentation of an affine Hecke complex algebra of a based root
datum with unequal invertible parameters. When G is split but for any pair (R, F'), I had shown
that the pro-p-Iwahori Hecke algebra of G admits an Iwahori-Matsumoto presentation and an
integral Bernstein basis, using Haines minimal expressions. A student of Grosse-Kloenne, Nicolas
Schmidt, in his unpublished Diplomarbeit, defined the alcove walk basis, proved the product
formula, and studied the Bernstein relations for algebras Hpg(gs,cs) containing the algebras
arising from a split G, but not all those arising from a general G.

For the field of complex numbers C, the pro-p-Iwahori-invariant functor is an equivalence of
categories from the C-representations of G generated by their vectors invariant by a pro-p-Iwahori
subgroup onto the category of right H¢(1)-modules. When C is replaced by an algebraically closed
field C of characteristic p, this does not remain true: the functor does not always send irreducible
representations onto simple modules. However, the pro-p-Iwahori Hecke algebra H¢ (1) appears
constantly in the theory of smooth C-representations of G. The most striking example is the
following.

For all integers n > 2, there exists a numerical Langlands correspondence for the pro-p-
Iwahori Hecke C-algebra Hc(1) of GL(n, F'): a bijection between the simple supersingular Hc(1)-
modules of dimension n and the dimension n irreducible continuous C-representations of the
Galois group Gal(F*®/F) of the separable closure F** of F.

In a forthcoming work with Abe et al. [AHHV14], we classify the irreducible admissible
C-representations of G which are not supercuspidal, in term of the irreducible admissible
supercuspidal (= supersingular) representations of the Levi subgroups and of parabolic induction.
The Bernstein relations in the pro-p-Iwahori Hecke C-algebra H¢ (1) of G, which is isomorphic to
a C-algebra H¢(0, ¢s) with parameters g5 = 0, is one of the main ingredients of the classification.

In a sequel to this paper, we describe the center of Hr(1), the inverse Satake isomorphisms,
and the classification of the simple supersingular H¢(1)-modules, extending my work and that
of Rachel Ollivier done only for split groups G.

2. Main results

2.1 Iwahori-Matsumoto presentation

Let G be a connected reductive group over a local non-archimedean field F' of finite residue
field k of characteristic p with ¢ elements, and let R be a commutative ring. We fix an Iwahori
subgroup I of G. Its pro-p-radical I(1) is called a pro-p-Iwahori group. It is the unique pro-p-Sylow
subgroup of I, and of every parahoric subgroup containing I. The pro-p-Iwahori subgroups of G
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are all conjugate. The Iwahori Hecke ring
H =Z[I\G/I

with the convolution product is isomorphic to the ring of intertwiners Endzi;Z[I\G] of the
regular right representation Z[I\G| of G associated to I. The Iwahori Hecke R-algebra obtained
by base change

Hr=R®zH = R[I\G/I] (1)

is isomorphic to the R-algebra of intertwiners End g R[/\G]. We replace I by I(1) and define in
the same way the pro-p-Iwahori Hecke ring H (1) = Z[I(1)\G/I(1)] and the pro-p-Iwahori Hecke
R-algebra Hp(1).

The sets I\G/I and I(1)\G/I(1) have a natural group structure, isomorphic to the Iwahori
Weyl group W and the pro-p-Iwahori Weyl group W (1) defined as follows.

The Iwahori group [ is the parahoric subgroup of G fixing an alcove € in the building of
the adjoint group of G. To define W and W (1) we choose an apartment 2[ containing €. The
apartment 2 is associated to a maximal F-split subtorus T of G. Let Z and N denote the
centralizer and the normalizer of T in G, and Z := Z(F'), N := N(F) their F-rational points.
Then W = N/N N I and W (1) = N/N N I(1). We check that these maximal split tori are
conjugate by I. The same is true for their normalizers and for the corresponding groups W and
W(1).

The apartment 2l is a finite-dimensional affine euclidean real space with a locally finite set
$ of hyperplanes, such that the orthogonal reflections with respect to H € §) generate an affine
Weyl group W (), and € is a connected component of 2 — s H. The group N acts on 2 by
affine automorphisms respecting $ and its subgroup Z acts by translations.

The parahoric subgroups of G generate a subgroup G*T, which is also the kernel of the
Kottwitz morphism k¢, and G is generated by Z U G*f. The maximal compact subgroup Zy of
Z acts trivially on 2l and contains the unique parahoric subgroup Zy of Z, of unique pro-p-Sylow
subgroup Zy(1). The group Z, is the kernel of the Kottwitz morphism k7 of Z and the quotient
Zy = Zy/Zp(1) is the group of rational points of a k-torus. We have

ZNnIl=2y, ZnNIQA)=2Zy(1), I=1I(1)Z. (2)
The action of N3 = N N G on the apartment 2 induces an isomorphism
wat = Nt 70 W (9). (3)

The groups Zy(1) C Zp are normalized by N and the maps n +— Inl, n + I(1)nI(1) induce
bijections
W =N/Zy— I\G/I, W(1)=N/Zy(1) - I(1)\G/I(1).

The pro-p-ITwahori Weyl group W (1) is an extension of the Iwahori Weyl group W by Zy/Z(1) ~
I/1(1)

11— Zy—>W(l1) > W — 1. (4)
The extension does not split in general (see [Vig05]). For a subset X C W, we denote by X (1)

the inverse image of X in W (1). For an element w € W, we denote by w € W(1) an element
lifting w (hence w € w(1)).
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For n € N, the double coset Inl depends only on the image w € W of n and the corresponding
intertwiner in the Iwahori Hecke ring H is denoted by Ty,. Thus (T3, )wew is a natural basis of H.
We do the same for H (1) and W(1). The relations satisfied by the products of the basis elements
follow from the fact that W is a semidirect product of the affine Weyl group W2 by the image
Q in W of the N-normalizer of €,

W =wa Q. (5)

The group € identifies with the image of the Kottwitz morphism kg. Let S ¢ W2 be the set
of orthogonal reflections with respect to the walls of €, using the isomorphism (3). The length ¢
of the Coxeter system (W2, §2) inflates to a length of W constant on the double cosets modulo
2, and to a length of W (1) constant on the double cosets modulo the inverse image (1) of Q.
The Bruhat order of W2 inflates to W (1) and to W as in [Vig06, Appendix].

For n € N of image w in W or in W (1), the sets

InI/I ~ I(1)nI(1)/I(1)

have the same number ¢,, of elements. The integer ¢,, is a power of the cardinal ¢ of the residue
field of F. When s, s € S* are conjugate in W (denote s ~ §'), ¢s = ¢y and qu = qs, . . . qs,, if
w=sq...s5,u with s; € 82 u € Q is a reduced decomposition.

THEOREM 2.1. The Iwahori Hecke ring H is the free Z-module with basis (Ty)wew endowed
with the unique ring structure satisfying:

e the braid relations Ty, Ty = Ty if w,w' € W, £(w) + {(w') = l(ww');

e the quadratic relations T? = g, + (qs — 1)T if s € S?f,

The Iwahori Hecke R-algebra Hp has the same presentation over R by base change (1).

The elements in the basis (T ),ew (1) of H(1) satisfy the braid relations, and similar quadratic
relations, but the coefficient gs — 1 is replaced by an element of Z[Zy], which we now define.

Let s € S2F and let K3, be the parahoric subgroup of G fixing the face of € supported
on the wall fixed by s, of codimension 1. The quotient of Kz, by its pro-p-radical Kj (1) is
the group K3, of k-points of a finite reductive connected group over k of semisimple rank 1.
Let Ty be the maximal compact subgroup of the maximal split torus T of G, let Tp(1) be the
pro-p-Sylow subgroup of Tp, and let T, = Ty/Tp(1). The group T} is a maximal split torus of
K3, 1 of centralizer Z, and the root system ®z, of Kj, ;. with respect to 7T} is contained in
the root system ® of G with respect to T. We denote by Ny (the group of k-points of) the
normalizer of T}, in Kg, i, by U,, i the root subgroup associated to a reduced root o, € @5, (we
have Usq, 1 C Uq, i if 205 € 5, 1), by K/Ss,k the group generated by Uq, 1 and U_q, i, by Zj s
the intersection Zy N Kés’ i» and by ¢s the element defined by the formula

cs = (qs — 1)|Zk,8|71 Z Ti. (6)
tEZk’S

The group U, i is a p-Sylow subgroup of K, 1, the integer ¢, is the number of elements of U, x
and (g5 — 1)|Zy.s| ! is an integer. For uy € Uz x = Ua,k — {1}, the intersection

U_oo kukU—_o, k O Ns g = {ma,(ur)}

consists of a single element. The image of the map mq, : U, _; — N is the coset mq, (uk) Zy,s =

Zy.sMa, (ug). The square mq, (ug)? is an element of Zj ;. We choose an arbitrary element uy, €
U x and we denote by § the image of mq, (ug) in W (1) (as in § 4.2). Such a lift § of s is called
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admissible. The quadratic relation of T3 in H(1) is the same as the quadratic relation of T; in
the finite Hecke algebra H (K5, i, Ua, k). The quadratic relation in Hgr(Kg, i, Ua, k) when R is a
large field of characteristic p was computed by Cabanes and Enguehard [CE04, Proposition 6.8].

THEOREM 2.2. The pro-p-Iwahori Hecke ring H(1) is the free Z-module with basis (T )wew (1)
endowed with the unique ring structure satisfying:

e the braid relations T\, Ty = Ty if w,w’ € W(1),4(w) + £(w') = L(ww');

° the quadratic relations T§2 = @515 + c5T5 for s € Saﬁ,

where ¢z = ¢, if the order of Zy, s is q; — 1 (for example, if G is F'-split), and in general there are
positive integers cz(t) = cs(t71) for t € Zy s, constant on the coset t{zs(z)™! | x € Z;}, of sum
Ztezk,s cs(t) = qs — 1 such that ¢z = Ztezk,s cs(t)T; and

cs = cs modulo p.

The Z-module of basis (T ),eq(1) is a subalgebra of (1) isomorphic to the group algebra
Z[2(1)] by the braid relations. The Z-module of basis (T,),,cpar (1) for the inverse image wat(1)
of W in W (1) is a subalgebra #*(1), and #(1) is isomorphic to the twisted product

H(1) = H (1) @gy7,) ZIQL))-

The pro-p-Iwahori Hecke R-algebra #Hp(1l) has the same presentation by base change.
Theorems 2.1 and 2.2 imply the following result (which can also proved directly).

COROLLARY 2.3. The surjective R-linear map Hpr(1) — Hrg,
Ty — Ty forw e W(1) of image w € W,
is an R-algebra homomorphism.

The properties of the pro-p-Iwahori Hecke R-algebra Hp(1) are transported to the Iwahori
Hecke R-algebra Hp via this surjective R-algebra homomorphism.

We describe conditions on elements (gs, cs) € R x R[Z] for s € S*(1), the inverse image of
S in W (1), implying the existence of an R-algebra Hg(qs,cs) of basis (Tw)wew (1) satisfying
braid and quadratic relations as in Theorem 2.2. We write ¢ = 3, , cs(t)t with ¢s(t) € R.

THEOREM 2.4. Let (gs,cs) € R x R[Z] for s € S*(1). The following property (A) implies the
following property (B):

(A) Forallt € Zy,s € S (1),w € W(1) such that wsw™! € S (1),
(1) @s = gst = Gusw—1;
(2) cst = csty and g1 =D 4z, cs(t)wtw™L.

(B) The free R-module HRg(qs,cs) of basis (Tw)wew() has a unique R-algebra structure
satisfying:
e  the braid relations Ty, Ty = Ty if w,w' € W(1),4(w) + £(w') = (ww');
e the quadratic relations T? = qs5% + ¢sTs for s € S2(1).
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In (B) the braid relations imply that the group algebra R[Z] embeds in Hg(gs,cs) by the
linear map sending t € Zj to T;.

If the ¢4 are not zero divisors in R, then properties (A) and (B) are equivalent. The maps
s+ ¢s from S*(1) to R satisfying A(1) are naturally in bijection with the maps from S*F/~
to R.

For indeterminates (qs)scga/n, We have the generic R[(qs)]-algebra Hpgj(q,)(ds,cs). The
R-algebra Hr(qgs, cs) is a specialization of the generic algebra.

PROPOSITION 2.5. Let (qs)scgan /., be indeterminates, qs = q2, and let (¢s)scgam(1) be elements
of R satisfying A(2).
The R[(qs,q;")]-algebra HR[(q&q?)](l, q5 tes) is isomorphic to Hpi(qe,070)] (qs, Cs)-

The generic algebra is a R[(qs)]-subalgebra of HR[(qS qgl)}(qs, ¢s). Different properties of the
R-algebra HRg(gs, ¢s), hence of the pro-p-Iwahori Hecke algebra, are proved by reduction to the
simpler case qs = 1 for all s € S / ~, using this proposition.

Remark 2.6. The presentation of H (Theorem 2.1) generalizing the Iwahori-Matsumoto
presentation for a Chevalley group [IM65] cannot be found in the literature for a general reductive
group G but follows from different results of Bruhat and Tits [BT84, 5.2.12 Proposition (i) and
(ii)] and exercises in Bourbaki [Bou68, IV.2, Examples 8, 22-25]. Borel [Bor76] considered a
semisimple group G and a ‘non-connected’ Iwahori subgroup I =1Zy. When G is F-quasisplit
and Zy = Zy, Z is a torus, I = I, then H is a Lusztig affine Hecke algebra [Lus89] attached to a
based root datum of G and to a system of unequal parameters (gs).

It is possible to compute the quadratic relations using the Bruhat—Tits theory without
reduction to finite reductive groups (when G is F-split [Vig05]).

2.2 Alcove walk bases and Bernstein presentation

We choose an alcove € to define I and an apartment 2 containing €. To define a new basis of
the algebra Hg(gs, cs), we choose first a special vertex zy of €. The special vertices of € may be
non-conjugate by an element of G. The orthogonal reflections with respect to the walls containing
xo generate a group isomorphic to Wy. The Iwahori Weyl group W is the semidirect product

WZANWO WhereA:Z/Zo. (7)
This implies
W(1) = A(1)Wy(1) where A(1) = Z/Zy(1), A(1) N Wy(1) = Zk.

The new basis is related to this decomposition.

We identify the apartment 2 with a euclidean real vector space V', the vertex xg becoming
the null vector 0 of V. We recall the natural bijections between: the (open) Weyl chambers of
2 of vertex xp; the alcoves of 2 of vertex xzg; the bases of the root system ® of T in G; the
(spherical) orientations of (2, ) (see § 5.2).

A Weyl chamber © of V' contains a unique alcove €5 of vertex 0 and the basis Agp of &
consists of the reduced roots « positive on ® such that Ker « is a wall of €5. The orientation
op is such that the ogp-positive side of a hyperplane H € §) is the set of z € V' with a(z) +7 >0
where H = Ker(a + r) for a € ® positive on D.
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The simply transitive action of Wy on the Weyl chambers of V' inflates to an action of W and
an action of W (1) on the spherical orientations o of (V,$), trivial on A(1). We denote o e w =
w~ (o). If ®, denotes the Weyl chamber defining the orientation o, then w™(D,) = Dy e w.

To define the new basis, we choose an orientation o of (2, ). For a pair (w,s) € W2 x gaff
such that ¢(ws) = ¢(w) 4+ 1, we set

eo(w,s) =1 if w(€) is contained in the o-negative side of w(Hj),

where H; is the affine hyperplane of V fixed by s. Otherwise we set €,(w,s) = —1. When we
walk from w(€) to ws(€) we cross the hyperplane H, in the €,(w, s) direction: positive direction
if €5(w, s) = 1 and negative direction if €,(w, s) = —1.

For w € W of reduced decomposition w = s1...s,, s; € S r = ¢(w), walking in a
minimal gallery of alcoves €, s1(€), s152(€), ..., w(&), we cross the hyperplanes Hy,, s1(Hs,), - -,
$1...8—-1(Hs,) in the €,(1,51),€0(81,82)s .-, €0(51 ... 871, S) directions.

For (w, s) in W (1) x $*¥(1) with £(ws) = £(w) + 1, lifting an element (w®Tw,3) in W x S
with w* € Wt 4 € 0,5 € 8 we write

o(w, 8) := €, (w,3),
ToWs) .= T, if e)(w,s) =1 and TeWS) =T, —¢, if e,(w,s) = —1.

We recall the quadratic relation (Ts — cs)Ts = gs5; it is easy to check that ¢, and T commute.

THEOREM 2.7. Let o be a spherical orientation and let w = sy ...s,u with u € (1) and s; €
Saff(1) for 1 <i < r = £(w). The element of Hp(qs,cs) defined by

Ey(w) = T;o(1751)Tsﬁo(31752) N ‘T;o(slnﬁrfl,sr)Tu (8)
1 2 T
does not depend on the choice of the reduced decomposition of w, satisfies

E,(w) — Ty € P ZTw, (9)

w! <w

and we have the product formula, for w,w’ € W (1),
Eo(w)Eoow('wl) = Qw,w’Eo(ww/)7 GQu,w’ = (Qwa’Q;i,/)lﬁ- (10)

The theorem, proved by reduction to gs = 1, implies that (Eo(w))wew(l) is a basis of
HR(QSacs)‘

COROLLARY 2.8. The R-module of basis (Eo()\))xen(1) is a subalgebra 21,(1) of Hr(gs,cs) with
product
Ey(N)Eo(N) = A v Eo(AX)  for A\, X € A(1).

The Bernstein relations that we will present allow us to give a presentation of Hg(gs, cs),
starting from the basis (Eo(w))yew (1) when the (¢s) scgan /. are invertible in R. But the Bernstein
relations exist without any conditions on (gs)scgan/. and their many applications will be
developed in the sequel to this article.

Let v : A(1) - V be the homomorphism such that A € A(1) acts on V' by translation by
v(A), and for o € ® let e, be the positive integer such that the set {e o | @ € @} is the reduced
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root system ¥ defining W2, A root § € ¥ taking positive values on the Weyl chamber ®F of

vertex xg containing the alcove € is called positive. For an arbitrary spherical orientation o of

Weyl chamber ®,, let A, be the corresponding basis of the reduced root system ¥ (not of ®),

and let S, and S be the sets of orthogonal reflections with respect to the walls of ®, and of D.
For s € (S N S,)(1) and A € A(1), the Bernstein relations show that

Eo(8)(Eoes(A) = Eo(N)) = Eo(sXs™") Eo(s) — Eo(s) Eo(\) (11)

belongs to A,(1) and give its expansion on the basis (E,(A))rea(1)- The proof proceeds by
reduction to g; = 1.

For a root 8 in X, sg € Wy and v(A) is fixed by sg if and only if 5o v(A) = 0. As the
translation by v(\) stabilizes $), we have o v(A\) € Z. When o v(\) # 0, we denote its sign
by €g(A).

THEOREM 2.9 (Bernstein relation in the generic algebra Hpgj(q,)(ds,¢s)). Let o be a spherical
orientation, s € (S N S,)(1), B € A such that s € sg(1), and let AeA(D).

When fov(X) =0, we have Eye5(A) = Eo(N).

When o v()) # 0, we have

|Bov(A)|—1
Eo(5)(Eoes(N) — Eo(N) = e5(Neo(L,5) Y alk, Ne(k, \) Eo(u(k, X)),
k=0

where c(k,\) € Z[Zg], n(k, ) € A1), (Bov)(u(k,\)) =2k —|Bov(N),

q(k,\) = H v, myA(s) €N, me\ (A) — (k).

seSaff

The values of q(k, \),c(k,A) and p(k, \) are explicit (Corollary 5.43) and depend on s but
not on o. They are simpler when the image of 5o v is Z (the other possibility is 27Z). When
B ov(A) # 0, moving the term indexed by k = 0 from the right-hand side to the left-hand side,
the Bernstein relation becomes

|Bor()|—1
Eo(sA) = Eoes(sA) = €00 s(1,5) a(k, Nag ' c(k, \) Eo(u(k, N)) if £(sX) < £(N),
k=1
|Bor(V)|-1
Eo(s\) — Eo(s)Eo(N) = 601, 5) alk, Ne(k, N Eo(u(k, \)) if £(s)) > £(N).
k=1

The right-hand side is 0 when [Sov(\)| = 1. Otherwise, we prove that q(k, \) # 1 for the integers
0<k<pBov(A).

When £(s\) < £(\), the term q(k, \)q; ! is a product of qs for s € S /~. We prove that
qlk,\q; 1 #1for 1 <k <|Bov(N\)|—1.

We obtain a presentation of the generic algebra Hpgj(q,)) (as,cs), and by specialization a
presentation of the R-algebra Hr(gs,cs) when the (gs) cgan . are invertible.

We choose the orientation o associated to the antidominant Weyl chamber —®T. We have
S =5, and E,(s) = Ts,e,(1,5) =1 for s € S(1). We denote by A®(1) the set of A € A(1) such
that v()\) is fixed by s. We set E = E,.
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THEOREM 2.10 (Bernstein presentation of the generic algebra). The R[(qs)]-algebra

HR(q,)](ds: Cs)

is isomorphic to the free R[(qs)]-module of basis (E(w))ew (1) endowed with the unique R[(qs)]-
algebra structure satisfying:

— braid relations E(w)E(w') = E(ww') for w,w’ € Wy(1),l(w) + {(w') = l(ww');
— quadratic relations E(s)? = qss% + csE(s) for s € S(1);
product E(A)E(w) = qy . E(Aw) for A € A(1),w € W(1);
Bernstein relations
E(sAs ™) E(s) — E(s)E(\)
=0 for (s,\)in S(1) x A%(1)
|Bor(N)|—1

=es(N) > alk,Ne(k, NE(u(k,N)  for (s,A) in S(1) x (A(1) — A*(1)).
k=0

3. Review of Bruhat—Tits theory

The aim of this section is to give precise references for the properties extracted from Bruhat—Tits
theory which will be used in the proofs of our results. The reader familiar with this theory should
skip this section and proceed directly to § 4.

We retain the notation of § 2.

For an algebraic group H defined over F', we denote H = H(F'). Let X*(H) and X,.(H) be
the group of F-characters and F-cocharacters of H.

We emphasize that the characteristic of F' may be 0 or p, and that the root system ® C X*(7")
of G may be not reduced; ® is the union of its irreducible components [Bou68, VI.1.2]

o= |_| ;. (12)
j=1

A basis A of ® is the union of bases of ®;, A =| [_; A;. The set of coroots ®" C X,(T) is the
union of the sets of coroots of ®;, ¥ = |_|j @}/. The real vector space V generated by ®V is a
product of the vector spaces V; generated by <I>}/,

V=Vx--xV,. (13)

The Weyl group Wy of @ is the direct product of the Weyl groups of ®;, Wy = Hj Wo,;. The
action of Wy ; on V; is irreducible, and the decomposition of V' is orthogonal for a fixed positive
definite bilinear form (, ) on V invariant by the action of Wy [Bou68, VI.1.2, V.3.7]. For a € @,
we have the root group U, (containing U, if 2« is a root). We denote by w the valuation of F'
normalized by w(F — {0}) = Z.

The results contained in the 316 pages of [BT72] and [BT84] are valid for the group G by
the fundamental theorem [BT84, 5.1.20, 5.1.23].

THEOREM 3.1. (Z,Uqy)aca is a root datum generating G and admitting a discrete valuation
© = (pa : Uy — {1} = R)nea compatible with the valuation w of F.

The definition of ‘a root datum generating G’ and of ‘a discrete valuation compatible with
w’ is given in [BT72, 6.1.1 and 6.1.2(8)] and in [BT72, 6.2.1, 6.2.21], [BT84, 5.1.23].

702

https://doi.org/10.1112/50010437X15007666 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007666

THE PRO-p-IWAHORI HECKE ALGEBRA OF A REDUCTIVE p-ADIC GROUP I

3.1 The element mq(u) for u € UX
For o € ® and u € U} = U, — {1}, there exists a unique triple (v}, (u), mqa(u),v2(u)) in U_qy X
N x U_, such that [BT72, 6.1.2 (2)]
u = v}, (w)me (w)vh (u). (14)
Remark 3.2. If 2o € ® and u € U, we have Usq C U, and maq(u) = mq(u) by unicity.
If a € ®,u € U, then my(u=t) = mg(u)~t.

The group Wy = N/Z identifies with the Weyl group of ® [BT65, § 5]. The image of m, (u)
in Wy is the reflection s, defined by a.

LEMMA 3.3. The group N is generated by Z and |J,cq ma(Uy).
Proof. [BT72, 6.1.2 (10), 6.1.3 ¢)], where we can replace M, by m(U%). O

PROPOSITION 3.4. Let A be a basis of ®. We can choose u,, € U} for all « € A such that, when

aF B,
ma(ua)mp(ug) ... = mg(ug)ma(ug) ..., (15)

where the number of factors is the order n(c, ) of sqsg € Wy.

Proof. (a) When G is F-split, semisimple, and simply connected (we recall that G is connected),
we choose a Chevalley system z, : G, — U, for a € ®. The elements u, = z4(1) for a € A
satisfy the proposition [Ste67, Lemma 56]. We reduce to this case in two steps.

(b) From (a) to the split case using a z-extension. We suppose that G is F-split. There exists
a reductive connected F-group H with a simply-connected derived group HI" which is a central
extension of G by a split F-torus [MS81, Proposition 3.1, Remark 3.3] when the characteristic
of F'is 0; the proof is valid in positive characteristic. There exists a maximal F-split subtorus
Ty of H of image T in G, and Ty N HY" is a maximal F-subtorus of H9". The root groups
of HY are equal to the root groups in H and identify with the root groups in G by the map
H — G [Bor91, Theorem 22.6]. The group H%" satisfies the condition of (a). The image by the
map H — G of a set of elements in H9" satisfying the proposition is a set of elements in G
satisfying the proposition.

(c) From the split case to the general case. By [BT65, Proposition 7.2(11)] G contains a split
connected subgroup Gy, with the same maximal split torus 7" and the following properties: the
system of roots of T in Gy, is the subset @, C ® of non-multipliable roots, the root group
in Gy of ¥ € Py is U,y jp N Gy if v/2 € ® and U, N Gy, otherwise. A basis A of & gives
a basis Apy = {anm | @ € A} of @y, where oy, = a if @ is not multipliable and ay, = 2a
otherwise. The root subgroup in G, of agny, is contained in U, for £a € A. The proposition
is true for G, by (b). A set of elements in Gy, satisfying the proposition is contained in G.
Applying Remark 3.2, the proposition is true for G. O

3.2 The group G’

Recall the decomposition (12) of the root system @ into its irreducible components ®;, let G’
(respectively, G}) be the subgroup of G generated by the root groups U, for o € ® (respectively,
ac®),andlet Z/ =2 NG, Z =Zn G, for 1 <i<r,be the intersections of Z with these
groups. The subgroups G’, G} are normal in G, each element of G, commutes with each element
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of G’ if i # j, and G N G, is contained in the center of G'; the center of G’ is contained in Z and
G = ZG'. Tt is obvious that (Z',Uy)aca (respectively, (Z],Uy)acd,;) is a root datum generating
G’ (respectively, G}) [BT72, 6.1.5].

LEMMA 3.5. The maps (¢q)ace define on the root datum (Z',U,)qce generating G' a discrete
valuation compatible with w.
The same statement is true for the maps (¢q)aca,; on the root datum (Z,,Uy)wce,; generating

G..

7

Proof. The conditions (V1), (V3), (V4), (V5) of the valuation [BT72, 6.2.1] remain obviously
satisfied. Condition (V2) is: for a € @,

the value ¢_o(u) — @o(mum™") is constant for u € U_, — {1}

if me My :={me ZG., | mUym=' C U_o,mU_om~! C U,} where G, is the group generated
by Uy, UU_,. The group M/, = M, N G, does not depend on Z. The group Z normalizes U, and
U_q, hence My, = ZM|,. As Z', Z] are contained in Z, condition (V2) remains satisfied. It is clear
that the valuation remains discrete and compatible with w [BT72, 6.2.21], [BT84, 5.1.23]. O

3.3 The apartment
The existence of the apartment is a consequence of the existence of the discrete valuation
© = (¢Ya)aced compatible with w on the root datum (Z, U, )aca generating G.

Remark 3.6. A valuation is constructed for the classical groups [BT72, ch. 10], or using a
Chevalley—Steinberg system when G is F-quasisplit [BT84, 4.1.3, 4.2.2, 4.2.3]. In general, G
is quasisplit over an unramified finite Galois extension F’/F. A valuation for G(F”) descends to
G [BT72,9.1.11, 9.2.10] but not necessarily the Chevalley—Steinberg valuation [BT84, 5.1.15].

We consider the unique homomorphism v : Z +— V such that
a(v(z)) = (woa)(z) (z€ S,acd). (16)

The kernel of v contains the maximal compact subgroup Zy of Z and the center of G. The index
of the subgroup T'Zy C Z is finite.

For a € @, ¢, is a function from U} = U, — {1} to R, satisfying properties described in
[BT72, 6.2.1 (V0)—(V5)], which is compatible with w:

alzuz™) = po(u) + (aov)(z) foralla € ®,uc Uk, 2 € Z. (17)

It is also discrete: I'y, = o (UY) is a discrete subset in R [BT72, 6.2.21]. If A is a basis of ®, ¢
is determined by (¢q)aca [BT72, 6.2.8]. We have [BT72, 6.2.2]

F_o=Ty ifa€®and paq =2palv;, T2a C2In if @20 € . (18)
For u € U}, the elements v/, (u),v”(u) € U*,, defined in (14) satisfy [BT72, 6.2.1 (V5)]
- a(Wy(1) = 9—a(t!l(1)) = —palu). (19)
For z € V, the family ¢ + 2 = ((¢ + 2)a)aco defined by

(p+ 2)a(u) = @o(u) + a(x), forall a € ®,u € U,, (20)
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is also a discrete valuation compatible with w [BT72, 6.2.5]. The set of discrete valuations
compatible with w on (Z, Uy )aecs is [BT84, 5.1.23]

A={p+z, forz eV} (21)

This is an affine euclidean real space with an action v of N by affine automorphisms [BT72,
6.2.5] such that for n € N of image w € Wy,

v(n)(p+2) =p+rv(n)(z), a(n)(@)=w"()(@)+ Pu-1@) 0 un) = pa(u),  (22)

for « € ®,u € U. Hence z € Z acts by translation by v(z) := —v(z), and for g € ®,v €
Uj, mp(v) (14) acts by orthogonal reflection sg,,(,) with respect to the affine hyperplane

Hpg o0y = ¢ + Ker(B + ¢5(v)),
v(mg(v))(x) =z — (B(z) + ¢p(v)) 8" = sp(x) — pp(v)BY, (23)

where 8V € ®V is the coroot of 3. The action of N determines the valuation ¢, and conversely.
The set of hyperplanes

H={Hopr =+ Ker(a+7)|a € Prq,r € Ty} (24)

is stable under the action v of N. We have [BT72, 6.2.10]

V(n)(HaJrgoa(u)) = Hw(a)—i—cpw(a)(nun—l)'

By (18), when o, 2a € ®,7 € I'gq, we have r/2 € 'y and Hogyr = Hyyrjo € 9.

The affine space 2l contains a valuation ¢ such that 0 € (U?) for all « in the set ®,,, of
non-multipliable roots [BT72, 6.2.15]. We suppose, as we may, that 0 € T, for all & € ®,,,,,. By
(1),

0el'y forallae ®. (25)

In particular, ¢ is special [BT72, 6.2.13].

For 1 < j <7, ¢j = (¢a)aca; is a discrete valuation of the root datum (Z}, (Ua)aca;)
compatible with w, A =24y x --- x A, is a product of affine euclidean real spaces 2; = ¢; + Vj,
and the set §) is the union of the sets $; = {p; + Ker(aw + ) | a € ®;req, 2 € I'o} of affine
hyperplanes in 2(; embedded in 2 by

Hji—>§2[1X-"XQlj_lejXQ[j_i_lX”-Xer (Hj Efjj,lﬁjg?“—l). (26)

The action v of N on 2 factorizes through an action v; of N on 2 such that v(n)(¢n,...,¢,)
= (1 (n)Y1, ..., v (n) () for (P1,...,10,) €A X -+ x A,

3.4 The affine Weyl group

Let S(H) be the set of orthogonal reflections sy with respect to the hyperplanes H € § (24)

and let W () C v(N) be the group generated by S(H). The group W ($)) is normal in v(N).
The group W($) = W is an affine Weyl group associated to a reduced root system ¥ of

V* [Bou68, VI.2.1; VI.2.5, Proposition 8] and [BT72, 6.2.22]

H={Hpn=9¢+Ker(f+n)| e neclZ} (27)
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We denote sy, = Sgn. The product sgy,5g4nt1 is the translation by the coroot 3Y of 3 € ¥
[Bou68, V.2.4, Proposition 5]. We have Hgini1 = Hpgypn — (1/2)8Y. The subgroup A($) of
translations in W($)) identifies with the Z-module Q(XV) generated by the set XV of coroots
[Bou68, VI.2.1].

Two points z,y € 2 are called $H-equivalent if, for all H € ), either x,y € H or they are
in the same connected component of 2 — H [Bou68, V.1.2], [BT72, 1.3]. A facet § C 2 is an
equivalence class. A facet of F is a facet contained in the closure § of §. A vertex is a point which
is a facet. A chamber of 2 (a connected component of 2 — | Jcy H) is called an alcove [Bou68,
V.1.3, Déf. 2] to avoid confusion with the chambers relative to , = {H € $ | ¢ € H} that
we call Weyl chambers. The group W ($)) acts simply transitively on the alcoves of 20 [Bou68,
VI.2.1].

We choose an alcove € C 2 of vertex the special point . A face of € is a facet of € contained
in a single H € §, called its support. A wall of € is a hyperplane H € ) containing a face of €
[Bou68, V.1.4, Déf. 3]. The set

S(€) = {sg | H € $H wall of €}

of orthogonal reflections sy with respect to the walls H of €, generates W ($), and (W (£)), S(€))
is a Coxeter system. The type of a facet § of € is the set

Sz ={sg | HeHwallof €,F C H}. (28)
We have S¢ = @. A facet § of € is determined by its type because
S={re€|z e HsJFCH for any wall H of ¢}.

The bijection between the facets of € and their types reverses the inclusion:
T is a facet of § = Sz C Sy

The types of the facets of € are the subsets of S(€) generating a finite subgroup. A facet of
is the image by an element of W ($)) of a unique facet of €, and we can define the type of any
facet [BT72, 1.3.5].

Let W5 be the group generated by Sz. Then (W5, Sz) is a finite Coxeter system. As ¢ is a
special point [Bou68, V.3.10], W ($)) is a semidirect product [Bou68, V.3.10, Proposition 9 and
Definition 1] and [BT72, (1.3)],

W) = AS) x Wy (29)

the groups W, the Weyl group of 3, the Weyl group of ®, and the group Wy = N/Z are
isomorphic. The group W, acts simply transitively on the Weyl chambers of .
The set of affine roots is the subset of automorphisms of 2,

s —(B4n|BeX,nel)

The action of the group W ($)) on 2 induces an action on 2. For A, A’ € £ we have Ker A =
Ker A" if and only if A" = £A. For 2 € €, A(x) # 0 and the sign of A(z) does not depend on the
choice of x. We say that

A is C-positive if A takes positive values on €.
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The set of affine €-positive roots is denoted by Y#*; we have £+ = ¥2f— 0 ¥, We denote
yaff.— 3~ for the €-negative roots. Let

AM — AdfT(@) = {4 € 2T+ | Ker A is a wall of €}. (30)

The set A is in bijection with ST = S(€) by the map A + s, of inverse s — A, and with a
subset Ax(€) of ¥ by the gradient map.

The pair (W2, 53 is an affine Coxeter system. We recall [Kum02, 1.3.11, (bs), (bs), proof
before (2)]:

(1) s(Ay) <0 and s(A) >0 for s € S, A e xaffit A £ A
(2) w(Ag) = Ay = wsw™! =& for 5,8 € S w e Wall;
(3) the length ¢ of (W, 52F) satisfies, for (w,s) € W x saff,
((ws) = l(w)+1 ?f w(Ag) > 0,
lw)—1 if w(As) <0.

For a facet § of €, let

vaff — 4 ¢ v | Ker A contains §}, (31)
A%f% = {A e 2+ | Ker 4 is a wall of ¢ containing §}. (32)
Any element of Z%H’Jr = Z%ﬁ N ¥+ is a linear combination of elements of A%ﬁs with unique

coefficients in N. The set A%ﬁ% is in bijection with the type Sy of § by the map A — s4 and with
a subset Ay, z of ¥ by the gradient map. We have Ay ¢ = A%{f@ =¥, and Ay = Ay , = A%fip is
a basis of X.

With the notation of (13) and (26), W = Waff x ... x Waf is the direct product of the affine
Weyl groups Wfﬂc =W ($;) for 1 < j < r; we consider W; as a subgroup of Wa with its natural
action on 2; and acting trivially on 2; for ¢ # j. The irreducible components of ¥ = |_|§:1 %
are the reduced root systems X; associated to WJ‘leﬂr considered as subsets of (V4 x --- x V,.)*
vanishing on V; for i # j. The alcoves € = € x --- x €, are the product of the alcoves €; of 2;
for 1 < j < r, [BT72, 6.2.12], [Bou68, V.3.8, Proposition 6], and the walls of € are the images
by (26) of the walls of €; for 1 < j < 7. The set S(€) = | [;_; S(€;) is the disjoint union of the
sets S(€;). The sets X1 = | f_ waff waflor — | s e — | 7 wf AT — | 7 AR
Ay, = |_|7]".:1 Agj are the disjoint unions of the similar sets for 1 < j < r. This often allows us to
reduce to an irreducible root system 3.

By [Bou68, VI.1.8, Proposition 25; VI.2.3, Proposition 5], the alcove €; is the set of ¢; +z
for x € Vj satisfying

y(x) >0 forally€ Ay, and Bi(x) <1< 0<y(x) <1 forallye E;, (33)

where Bj = Zve As, n,7 is the highest root of E;“ given explicitly in the tables of Bourbaki

[Bou68, pp. 250-275]. We have
T .
A%, =Ag, U{-B; +1}.

Returning to 3, we deduce

C={p+x,]0<~y(z)<1forall yext}, Aaﬂ:AEU{—Bl+1,...,—BT+1}. (34)
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An affine root A =a+k, a € ¥,k € Z, is positive if a(z) + k > 0 for = € C, or equivalently, if
k>0foracXt andif k>0forac X,

Mt = a4 k| (a,k) € (T x N)U (2™ x Nxg)}.

The vertices of €; are {¢;, p; + nlglwg(ﬁ € Ay;)} where wgv is a fundamental coweight [Bou68,
VI.2.3, Corollary to Proposition 5]. The vertex ¢ + n;lwgv is special if and only if ng = 1
[Bou68, VI.1.10, 2.2 Corollary; 2.2 Proposition 3]. Any set of vertices of €; is the set of vertices
of a facet of C.

For Y C Ay, the facet §,, y of vertices ¢j, (¢; + nEl(,Uﬂv)gey is the set of ¢; +  such that
Y(z) =0fory€ Ay, —Y,and 0 < B(z) < 1 for 8 € Y. The facet Fy of vertices (¢, +n§1w5v)5€y
is the set of ; + x such that y(z) =0 for y € Ay, =Y, Bj(z) =1l and 0 < f(z) <1 for B €Y.
We have

A3 = Az, Y, Aasz,gy = (A4, —Y)U {~B; +1}.

Ejﬁvj,y j

LEMMA 3.7. The translation by v; € V; stabilizes §; if and only if y(v;) € Z for all v € ¥;. The
translation by v; normalizes €; if and only if v; = 0.

Proof. v(z) + k = 0 is equivalent to y(x + v;) + k — y(v;) = 0 and for r € R, Kery +r € §; if
and only if 7 € Z. The image of €; by v € Ay, is an interval a, b[. The image of &; + v; by v
is the interval Ja + v(v;), b + v(v;)[. If &5 +v; = &;, we have y(v;) = 0 for all ¥ € Ay, hence
v = 0. O

3.5 The filtration of U,
The properties [BT72, 6.2.1] of the valuation ¢ imply that, for &« € ® and r € R, the set

Uatr = {u € Ua | a(u) =7} (35)

is a compact open subgroup of U, (note that Uy1o # Uy ), and (Ug+r)rer,, is a strictly decreasing
filtration of union U, and trivial intersection. For n € N of image w € Wy we have [BT72, 6.2.10
proof of (iii))]

Wartga@ ' = V(o) tpu(a) (nun—1)-

For o € ®,7 € Ty, let Uyyy, be the group Uyq,r for 7' € Ty, 7" > r, and 7' minimal for these
properties, and let
Ua+r,k = Ua+r/Ua+r+-

When the root system is not reduced, we make the following observation.
LEMMA 3.8. For a,2c € ®,r € (1/2)'9 C 'y, the sequence

1 = Usatork = Uagrk = Uasr/UasryUsayor = 1
is exact.

Proof. We have to show that Usqy2r N Uatry, = Usqy(2r), - By (18), the left-hand side is Uaq 2,7,
where 7’ is the smallest element of I, with 7/ > r, and for r” € T'y,, the strict inequality 2r < r”
is equivalent to the inequality 27’ < . The right-hand side is Uspypr and Usgyop = Usgyprr =

Usart(2r) - O

708

https://doi.org/10.1112/50010437X15007666 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X15007666

THE PRO-p-IWAHORI HECKE ALGEBRA OF A REDUCTIVE p-ADIC GROUP I

For a,2a € ®, we introduce the set

F/a == Foe - {7’ S (1/2)F20¢ | Uoz-l—r = a+r+U20¢+27‘} == {T S Foe | U2a+2r,k 7& Ua+r,k}-
This set is never empty [BT84, 4.2.21]. When a € ®,2a ¢ ® we put I}, = T',. The set
o = | Ja+T),
acd
is called the set of affine roots. We have a natural injection

U a+To— o (36)

a€Doq

sending o 4+ r to 2a + 2r if r € T, and to a + r otherwise. Let @?gi denote the image.

For o € ®,r € 'y, we say that o + r is €-positive when a(x) +r > 0 for x € €. The map
(36) respects €-positivity.

For o € ®, there exists a unique positive number e, > 0 such that the map

a—i—r'—)ea(oz—i-r):Ua—l—Fa—)Zaﬁ (37)
acd

is surjective, respects positivity and restricts to a bijection
paff, = waff, (38)

This bijection allows us to replace @?& by the affine root system X2 (the filtration is hidden in
the bijection).
It is obvious that e, = e_,. With (18),

1

Lo =%, Z, va=-¢e, if a€ Pryq. (39)

When a,2a € @, we have ez, = (1/2)eq, I'aq is a group because 0 € Ty (25) [BT72, Corollary
6.2.16], there exists a unique positive integer f, € N5¢ such that

Poa = Y202, 720 = 2fae;1 if a,2a0 € O. (40)
LEMMA 3.9. e, is a positive integer for all &« € ®, which is divisible by 2f,, if 2a € ®.

Proof. By the proof of [SS97, Lemma 1.2.10], T, contains n_'Z where n, € Nsq for any
a € P. O

3.6 The adjoint building
For x € V and a € 9,

the smallest element r,(«) € T',, such that a(x) + ry(a) >0 (41)

depends only on the facet § of 2( containing ¢ + z, and is also denoted by rz(«).

Example 3.10. r,(a) = 0 for all a € .

re(a) =0 if a € & is C-positive.

re(a) = et if a € ®peq is C-negative (39).
re(2a) = 2fae; b if @, 2a € @ are €-negative (40).
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Ezample 3.11. Let § be a facet contained in the wall Hyqp, a € &, € I'y. Then rz(a) =
—rz(—a) =r.

Let U, be the group generated by J,cq Ua+ra(a) @and let Ny be the stabilizer of ¢ +z in N.
The group N, normalizes U,, and
P, = N,U, (42)

is a group (denoted by P, in [BT72, 7.1.8]). These groups, depending only on the facet §
containing ¢ + x, are also denoted by Uz, N5, P5. For a € ® we have

Pz N Ua = Upiry(a)- (43)

This is clear if « is not multipliable. If «, 2a € @ this is true because Usy 1 r:(2a) = Untry(2a)/2 N
Usq is contained in Uy (a) a8 75(2c) is the smallest element of I'y, satisfying r3(2a) > 2rz(a)
by (18) [BT72, 7.4.1]. This shows also that

the group Us is generated by U Uatrg(a)- (44)
AED eq

Two facets § and §’ with rg(a) = rz(a) for all a € @, are equal. Therefore two facets § and
§' with Uz = Uy are equal.

DEFINITION 3.12. The adjoint building is
B(Gad) =G x A/~ (45)
where ~ is the equivalence relation on G x 2 defined by
(9,0 +z) ~ (h,p+y) & thereexistsn € N | o +y=n-(p+x) and g 'hn € P,
with the natural action of G, induced by (g, (h,®)) — (gh, ) for g,h € G, € 2.

The apartments of B(G,q) are the images by G of the apartment 2. The facets (respectively,
alcoves) of B(G,q) are the images by G of the facets (respectively, alcoves) of 2. The G-orbit of
a facet contains a unique facet of the chosen alcove € of 2.

The group P, is obviously the G-stabilizer of (1, ¢ + x). The pointwise G-stabilizer (or fixator)
Py of a facet § is the intersection of the G-stabilizers of its vertices.

The map ¢ — (1,9) : A — B(G.q) is an N-equivariant embedding. The G-stabilizer of 2 is
N. The G-fixator of 2 is the kernel of the homomorphism v : Z — V (16) (it is denoted by H in
[BT72, 4.1.2, 6.2.11, 7.4.10]). Let § be a facet of . The G-fixator of § is the semidirect product
(42) (see also [BT72, 4.1.1, 6.4.2, 7.1.3])

Py = Uz x Kerv.

It acts transitively on the apartments containing § [BT72, 7.4.9], hence Uz acts also transitively
on the apartments containing §.
We denote by U™ the subgroup of G generated by U, for a € @jed. The product maps

Il va=U" 1] Vetrgwy = Ui =U" NT; (46)

acdt acdt

are homeomorphisms [BT72, 6.1.6, 6.4.9], whatever ordering we choose on <I):re 4+ We have a similar
result for the groups Us U™ defined with ®__; = —oF

red”
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Remark 3.13. For A € ¥ we denote Uy = Uy, where a + 7 is the antecedent of A by the
bijection J,cq @+ Lo — yff (38). We have A = e (o + 1) with ey > 0.

The group Ug is generated by all Uy for A € ¥+,

The group Uy is generated by all Uy for A € Y and A > 0on §.

The group U§ generated by all Uy for A € ¥ and A = 0 on § satisfies U2 = {1}, Ug =U,.

3.7 Parahoric subgroups
We denote by F® a maximal separable extension of F', by F'"™ the maximal unramified extension
of F' contained in F*, by Z = Gal(F*/F"") the inertia group and by ¢ € Gal(F"™/F) the

~

Frobenius automorphism. Let Z(G) be the center of the Langlands dual group G of G with the
natural action of Gal(F*/F). The F5-character group m(G) = X*(Z(G)) of Z(QG) is the Borovoi
algebraic fundamental group of G. When G is semisimple and simply connected, 71 (G) is trivial.

Kottwitz [Kot97, 7.1-7.4] defined a functorial surjection from G onto the o-invariants of the
Z-coinvariants of m (G),

kg : G — m(G)7. (47)

DEFINITION 3.14. A parahoric subgroup of G is the fixator Kz = ker kg N P5 in the kernel of
kq of a facet § of the building B(Gaa)-
A pro-p-parahoric subgroup Kz(1) of G is the pro-p-radical of a parahoric subgroup Kz of G.
An Iwahori (respectively, pro-p-Iwahori) subgroup of G is the parahoric (respectively, pro-p-
parahoric) subgroup fixing an alcove.

This definition of a parahoric subgroup Kz, by Haines and Rapoport [HRO08], coincides with
the definition by Bruhat and Tits, denoted by &%(O%) in [BT84].

The pro-p-radical Kz(1) of a parahoric group Ky is the largest open normal pro-p-subgroup
[HV13, 3.6]. The quotient Kz = Kg/Kg(1) is the group of k-points of a connected reductive
group over the residue field k of F'.

A parahoric subgroup of G is G-conjugate to a parahoric subgroup fixing a facet of the alcove
¢ of A. The Iwahori (respectively, pro-p-Iwahori) subgroups of G are conjugate.

From now on, § is a facet of €, I is the Iwahori subgroup fixing €, and positive means
¢-positive.

The group Z admits a unique parahoric subgroup Zy, which is the kernel of the Kottwitz
morphism k7 [HR10, 4.1.1]. The group Zj is a subgroup of finite index of the maximal compact
subgroup Zy of Z. The group N normalizes Z, Zy, Zo(1), and the subgroup Z(gp ) of elements of
Zy of finite order prime to p. The quotient Zy, = Zy , = Zy/Zo(1) is the group of points over k of
a torus (not necessarily split). The quotient map Zy — Zj, restricted to ng ) is an isomorphism,
Zy is a semidirect product

Zo = Zo(1) x Z) ~ Zy(1) % Z. (48)

The group A = Z/Zj is finitely generated and commutative, of torsion subgroup Zy/Z. We have
Zo = Zo when Z is a split torus or when G is unramified, or semisimple and simply connected
[HR10, § 11]. The group A(1) = Z/Zy(1) is finitely generated, of torsion subgroup Zy/Zo(1) and
may be non-commutative.

The same considerations apply to the maximal split subtorus T of Z. The group Tp = Zo N T
is the maximal subgroup of 7'
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PROPOSITION 3.15. Z N K3 = Zj.
Proof. [HR10, Lemma 4.2.1]. O

The group Uz generated by Ug U Uy is normalized by Zo. The unipotent groups U, o € ®,
being contained in Ker k¢, we deduce from (43) that

K3 NUs=Upypy(ay forac® KynUt=Uf, Kzn U™ =Uj. (49)
PROPOSITION 3.16 [BT84, 5.2.4]. Ky = ZoUz = Uz U Uz Zy = Uz UF (N N Kp).
We have [SS97, Lemma 1.2.1]
K3(1) N Ua = Unsrz(a) (50)
for o € @, where r3(a) = rz(a)+ if § C Ker(a + rg(a)) and r3(a) = rg(a) otherwise.

Remark 3.17. When «,2a € ® and 2rg(a) € I'sa, we have 2rg(a) = rz(2a) and r3(2a) =
r5(2a)+.
We denote

Us(1) =Us N K3(1), UF(1)=Kz(1)nU*, U;(1)=Kz(1)nU".

The group Ug(1) is generated by Ug(l) and Uy (1). As in (46), the product map

H Ua+r§(a) - U,;(l) (51)

+
Oée(I)red

is a homeomorphism whatever ordering we choose on <I>:(;d [BT84, 5.2.3]. We have a similar result
for Uz (1).
s

Example 3.18. Let a € ® and let § be a facet of € such that ¢ is a vertex of §.

r3(a) # rz(a) = ry(a) if § C Kera.

r3(a) = rz(a) = re(@) if § ¢ Kera.
Let U§+ (respectively, Vé”) be the group generated by U,,o for o € ®* such that § C Ker«
(respectively, § ¢ Ker «). Then, U;r(l) C U;(l) C U;(l) C U; and, more precisely,

U, )TV =UF (1), UF(UST =08 (1) = Uy

We have a similar result for Ug .

PROPOSITION 3.19 (Iwahori decomposition). Kz(1) = Ug(l)Zo(l)Ug(l) and the factors

commute.

Proof. [SS97, Proposition 1.2.2]. O
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We denote 1T = U =US (1), I- =Ug =Ug (1).

COROLLARY 3.20. The Iwahori group I = I(1)Zy admits the Iwahori decomposition I =
I=ZyIT = It Zyl~, the factors commute, and the product maps

H Upto — I, H Ua+e;1—>l_

acdt, acd
are homeomorphisms.

Proof. Example 3.10. a

COROLLARY 3.21. The map § — Kj is decreasing and the map § — Kgz(1) is increasing,
K3(1) € Ky (1) € Ky C Ky,
if § is a facet of a facet §'.

Proof. If § is a facet of §', the inclusions Kz (1) C Kz C Kj are clear. The inclusion Kz(1) C
Ky (1) follows from (3.19). O

For a € ® and r € 'y, let Uy, = Uayr — Unayr, -

LEMMA 3.22. When § C Ker(a + rz(a)), we have ma(U;Jﬂ,g(a)) C Kz — Kz(1).

Proof. Let u € Uy (- Then mq(u) = vp (u) " tuwly (u) ~ with o), (u), v (u) € U_q (o) by (14)
and (19). By (49), mq(u) € Kz because rz(—a) = —rz(a) by Example 3.11. The image of mq (u)
in K3 is not trivial because r3(a) = rz(a)+ # rz(a). O

3.8 Finite quotients of parahoric groups
For H € 9, the set ®; of & € ® such that H = Ker(« + r) for r € '/, is never empty. Let

o= | oy
SCHeH

~

Let AQD,S C & be the image of A%% c ¥ (32) by the injection ¥ = @?gg — o2 given by
(36) and (38). In other words, Aj + is the set of a + 1 € &M with (a +r)/2 ¢ @+ such that
Ker(a + 1) is a wall of € containing §; note that 7 = rz(a) € I'y, and that ®% and Ag ; depend
only on the set of affine hyperplanes H € $ containing §.

PROPOSITION 3.23. The torus T}, is a maximal k-split torus of Ky j, and the root system of Kz i,
with respect to Ty is ®%. The set Ay 5 is a basis of ®%. The root subgroup associated to a € ®%
is

Ua,S,kz = Ua—&-rg(a)/Ua—&—rg(a) = Ua+r3(a)/Uoc+r3(a)+'
Proof. [BT84, 5.1.31]. O
Remark 3.24. When «, 2« € @, if 2a belongs to CD'& but not «, we have

Uz, = Ua—l—rg(a)/Ua—l-rg(a)Jrv

because 2rz(a) = r5(20), Ustri(a) = Uatrs(a): Uzatrs(2) and by Lemma 3.8.
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A minimal parabolic subgroup of K3 is By = Z X Ug  of unipotent radical ng =
II acdlt Ua,3,r whatever ordering we choose on the set ‘13? of positive roots of ‘I>' Let Nz be

the subgroup of K j, generated by Zj, and mq (uy) for a € (1)57 u € U* a5k and let sq ; € N3/ Zg
and sq(ug) € Nz i, be the images of mq(uy). Note that s, j is independent of uy. For av € Al B
let

G’a&k be the group generated by U, 31 and U_, 35 and Z;&k =7 N G/a,g,k

PropoSITION 3.25 ([HV13, 5.2 Lemmal, [CE04, 2.20, 6.3(ii)]). The finite groups Kj) and
G;&k, for a € A{:D,S? are generated by strongly split BN -pairs of characteristic p:

B = Bg L N= N&k, S = {Sa,k | o€ A&)73}, for K&k,
B = Z SkU 3.k N = Z(/Dt,g,k U ma(Uk)Zéx’g’k, S = {Sa,k}7 for GIO(,S,]C‘

A parabolic subgroup of K3 ; containing By is called standard.

PROPOSITION 3.26. Let §, 3 be two facets of € such that § is a facet of §'.

We have ®%, C ®%. The group Mg . 5 generated by Zy and U, g . for a € ®%, is the Levi
subgroup of a standard parabolic subgroup Qg 3 of Kg .

The parahoric subgroup Ky is the inverse image of Qg3 in Kz, the pro-p-parahoric
subgroup Kz (1) is the inverse image of the unipotent radical of Qg 5, and Kz, ~ Mg, .

Proof. [BT84, 4.6.33, 5.1.32]. O

COROLLARY 3.27. The reduction map Kz — Ky ;. induces isomorphisms
Ky\K3/Ky ~ Qs k3 \K5 1/ Qs k5, Ky (D\Kz/Kg (1) = Uy o \Kzp/Ug )y 50-

COROLLARY 3.28. The pro-p-Iwahori subgroup I1(1) and the Iwahori subgroup I are the inverse
images in Ky of U;k and of By .

Remark 3.29. A pro-p-Sylow subgroup of K3 is an open subgroup of finite index prime to p. The
pro-p-Iwahori subgroup I(1) is a pro-p-Sylow subgroup of K.

Proof. The index of I(1) in Kj is equal to the index of Ugrk in the finite group Ky, and the
Bruhat decomposition implies that this index is prime to p. O

For o € ®%, the parahoric subgroup Kz contains Uy, () (49) and 73(a) = rz(a)+. By
Proposition 3.23, the reduction map Kz — Kz} induces an isomorphism
w=> g Up (o) = Uatrg(a) = Uatrg@)s = Uagr = Uagk — {1}

and sends mq(u) € Kz to mqo(ur) € Kzi. We denote by s, € N/Z = Wy, Satry(a) € N/Zy,
Sa(u) € N/Zp(1) the images of mq(u). For u,u’ € U trg(a) We have ma(u)Ima(u) € Z N Kp
and Z N Kz =7 N I = Zy by Proposition 3.15. We have bijective maps

By kma(u) By /By k = Ug yma(un)Ug  /Us = Ua g g
COROLLARY 3.30. For a € <I> and u € U 5, we have

Ima(u) /T~ Uq g~ I(1)ma(u)I(1)/1(1).
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As U gk does not depend on the choice of u € Uj, ¢, the integer [Imqo(u)l/I| = |Uqazkl is
the same for all u € U} 5

For s € S(€) and §s the face of € contained in the wall H; fixed by s, the set A has a single
element as. We denote g, := |[Ima, (u)I/1|,qs 1 := |Ug, k.a,|- Corollary 3.30 1mphes the following
result.

COROLLARY 3.31. For s € S(€), qs = ¢s k-

3.9 The Iwahori Weyl groups
We recall the group G’ generated by |J,cq Ua (§ 3.2) and we define the subgroup G of @
generated by the parahoric subgroups of G. The subgroups G’ and G of G are normal and
(Proposition 3.16)

G=2G, G =2a.

For a subgroup X of G, weset X' = X NG’ X = X N G, We have (22, Nf) = (Z,2', ZyN').
DEFINITION 3.32. We call
Wo=N/Z, W =N z,, W =N/Zy, W*T(1)=N*/Zy(1), W(1)=N/Z(1)

the finite Weyl, affine Weyl, Iwahori Weyl, pro-p-affine Weyl, and pro-p-Iwahori Weyl groups
of G.

We note that Wy ~ W&t ~ W} and W2 ~ W’ Wa(1) ~ W’(1) for the natural definitions
Wl = Naft jzaff Wi = N'/Z! W' = N'/Z,, W'(1) = N'/Z}(1). The action of N* on 2 identifies
W($) with W2 and S(€) with a subset S of W, The group Wy identifies with a subgroup
of W($) hence of W2 and § = S2f N Wj.

Most of the properties of this section are encapsulated in an important theorem of Bruhat—
Tits theory [BT84, 5.2.12]:

TueorEM 3.33. (G, I, N*) is a double Tits system of Coxeter systems
(W, 57, (Wo, )
and the inclusion G* © G is I — N*-adapted of connected type.

We recall that by the first assertion, (G, I, N*f) and (G, B N2ff) are Tits systems
[BT72, 1.2.6, 5.1.1] hence satisfy the following properties.

(T1) Tu N generates G* and I N N* is normal in N?f.
(T2) For all s € S* w € W, we have sIw C Twl U Iswl.

(T3) For all s € S* we have sIs # I, and the same properties for (S, Wo, B*T) instead of
aff aff
(S WA T).
For the second assertion, see the definitions [BT72, 1.2.13, 4.1.3].

PROPOSITION 3.34 (Bruhat decompositions for G* [BT72, 1.2.7]). We have
Gatt — paff yaff paft — pvaffr — rynvafiz(1).
The maps n — B¥nB* n — InI,n— I(1)nI(1) induce bijections

Wo ~ BA\Ggatt/gafft et ~ nGgaffr wal (1) ~ r()\GA/1(1).
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Proof. The assertions IN*T = 1(1)Nf1(1), w2 (1) ~ 1(1)\G*/1(1) involving I(1) use I =
I(1)Zy and Zy C N* for the equality, and the N-equivariant semidirect product Zg = Zo(1)
Z(()p ) (48) with the disjoint decomposition
InI= || I(1)tnI(1), forallne N,
tezP

for the isomorphism. |

Note that the equality [Inl : I] = [I(1)nI(1) : I(1)] of indices for n € N (Corollary 3.30)
follows easily from I = Utezép) I(1)t, Inl = Utezép) I(1)tnI(1).

We have a similar Bruhat decomposition for G. Let B = ZU ™.

PROPOSITION 3.35 (Bruhat decompositions for G). We have
G=BNB=INI=1I(1)NI(1).
The maps n — BnB,n + Inl,n+~ I(1)nI(1) induce bijections
Wy~ B\G/B, W ~I\G/I, W(1)~I(L)\G/I(1), InI/I~I(1)nI(1)/I(1).

Proof. For B and I, the equalities and the isomorphism with W, follow from G = G*Z N =
Nt Z B = B Z and Proposition 3.34. For the isomorphism with Wy, see also [BT72, 5.1.32].
The isomorphism with W follows from [BT72, 4.2.2(iii)] where W, Zy are denoted by W, H.

We deduce G = I(1)NI(1) from G = INI,I = ZyI(1) and Zy C N. We have Inl/] ~
I(1)nI(1)/I(1) because

I/(Innln™Y)=1(1)Zy/(I(1) N nI(1)n Y2y ~ I(1)/(I(1) N nI(1)n1).
If I(1)nI(1) = I(1)n’I(1) we have Inl = In'I and the images w,w’ of n,n’ in W are equal.
As I = ZpI(1), the double coset InI = I(1)nZpI(1) is a disjoint union of I(1)nzI(1) for z €
2Zy/Zo(1) = Zj. This implies that the images of n,n’ in W(1) are equal. O
The Iwahori decomposition of I implies that
NN I=2,. (52)

Let Normg be the N-stabilizer of the alcove €. We denote by @ C W and (1) C W(1) the
images of Normg. We have

N = N Normg, Norme N N = Norme N I = Zy, Norme N Z = Kerv, (53)

because W2 acts simply transitively on the set of alcoves of 2, a translation normalizing € is
trivial (Lemma 3.7), z € Z acts on 2 by translation by —v(z) (16), and (52).

The G-stabilizer of the alcove € is also the G-normalizer of I because [ is the fixator of € in
the kernel of the Kottwitz morphism ¢ (Definition 3.14) and € is the only alcove of the (adjoint)
Bruhat—Tits building fixed by I (this follows from the comment after (44) and G’ C Ker kg).
The G-stabilizer of the apartment 2 is N (after Definition 3.12). The Iwahori group I acts
transitively on the apartments of the (adjoint) Bruhat—Tits building containing €, as Ug has
this property (paragraph before (46)) and I = ZyUg (Proposition 3.16). We deduce that the
apartments containing € are in bijection with I/Zy and

Normge/l = the G-normalizer of I = the G-stabilizer of €.
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PROPOSITION 3.36. (1) The groups
G/GM ~ 7/77% ~ N/N* ~ W/ W ~ Norme/Zy ~ O (54)

are commutative and finitely generated.
(2) G =NormeG* = NormgG’ and Normg normalizes I, N and I', N'.
(3) G’ satisfies the Bruhat decompositions G' = B'N'B' = I'N'I’.

The maps n + B'nB’,n+ I'nl’ induce isomorphisms

Wy~ B\G'/B', W~ ["\G'/I'.

Proof. (1) The isomorphisms (54) are clear. The groups are commutative and finitely generated
because Zy C Z*" and we recall that the group A = Z/Z is commutative and finitely generated
(before Proposition 3.15).

(2) The equalities for G follow from (54) and G = Z,G’ with Zy C Normg. Normg
normalizes I by the remarks made before the proposition; it normalizes N*f because G normalizes
G (see the beginning of this section); it normalizes the intersections I’, N’ of I, N with G
because G’ is normal in G (again, see the beginning of this section).

(3) This follows from

(G, Bt N T 1(1)) = (20G', ZoB', ZoN', ZoI', Zy(1)I'(1))
and the Bruhat decompositions of G** (Proposition 3.34). We have

Wo ~ B\ g /Bt — 7, B\ 2, | ZyB' ~ B'\G'/B',
Wt ~ NG /T = ZyI'\ZyG' | ZoI' ~ I'\G'/ T,

because Zp N G' C I' N B’ for the right isomorphisms. O
We note that (53) implies
w=wxq, wa=waa), w1 naa)=z. (55)
The extension W (1) — W of kernel Z; does not split in general [Vig05].

Remark 3.37 ([HRO8, Lemma 17], [Ricl3, Lemma 1.3]). The kernel of the Kottwitz morphism
ke is G, By Proposition 3.36, the image of k¢ is isomorphic to . By (53), the G*-stabilizer
of € is I and the G’'-stabilizer of € is I'.

The set S is invariant by conjugation by €, hence the length ¢ of the Coxeter group
(waff | §affy is invariant by conjugation by €. The length extends to a map on W and W (1), still
called a length and denoted by ¢:

() = L(w) = L(w"), (56)

for w € W (1) lifting w € W and w’ € W such that w = w'u,u € Q. The set of elements of
length 0 in W (respectively, W (1)) is © (respectively, €(1)).

The cardinal ¢, of |[Inl/I| = |[I(1)nI(1)/I(1)|, for n € N of image w € W or W(1)
(Proposition 3.35, Corollary 3.31), can be explicitly computed from the g, for s € S,
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PROPOSITION 3.38 (Braid relations for W). For wi,ws € W, quyw, = Gu,qu, 1S equivalent to
E(wl) + E(ZUQ) = E(wle).

Proof. The map n > [I : I N nIn~1] is invariant by conjugation by N¢ and £(w), g,, are invariant
by conjugation by €.

The braid relations for W2 imply the braid relations for W, and follow from the properties
of the affine Tits system (G, I, N*). This is well known but the only reference that I am aware
of is [Bou68, IV.2, Exercices 3, 8, 23]. O

4. Iwahori—-Matsumoto presentations

4.1 Generalities on Hecke rings
In this preliminary subsection, G is an arbitrary locally profinite group containing a compact
open subgroup I, and R is a commutative ring.

The Hecke R-algebra Hpr(G,I) of I in G is the ring of [-bi-invariant compactly supported
functions from G to R, with the convolution product *. The value at I is an isomorphism from
the intertwining algebra Endrg R[I\G] onto Hr(G,I). We have

HR(G, [) = R®y Hz(G, I).

We call Hz(G, I) the Hecke ring of I in G.

For g € G, the characteristic function of I¢/ is denoted by Ty. The Hecke R-algebra Hr(G, I)
is a free R-module of basis (T,)gen\q/1-

For g,h € G, the convolution product Ty * T}, is

TyxTh= >  (Ty*Th)(x)Ts, (57)
xel\IgIhI/I

where (T, * T)(z) is the cardinal of (Igl N xIh~'I)/I [Vig96, 1.3.4 (3)], or equivalently,
(T, * Ty) () is the cardinal of {u € Y, | u™ 'z € gIhI}, (58)

where Y} is a system of representatives of the cosets I/(glg~! N I). A system of representatives
of the coset Igl/I is Yyg. The number of elements of T¢I /I is denoted by g4. The linear map

d:Hg(G,I) > R, Ty q4(9€G) (59)

respects the product [Vig96, 1.3.5]. For g, h € G, the formula (57) implies

d9qn = Z (Tg o Th)(-r)(bc
w€I\IgIhI/I

For x € Iglhl, (T T})(x) is a positive integer less than or equal to min(gg, ¢s) and we have
(Ty * Th)(gh) = 1. Therefore q4q, > qgn and

q9qn = qgn,  1s equivalent to Ty * T}, = Typ,. (60)
We have
Ty * Ty =T, if g or h normalizes I. (61)
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4.2 Iwahori—Matsumoto presentation

The Hecke ring of the Iwahori subgroup I (respectively, pro-p-Iwahori subgroup I(1)) in the
reductive group G is called the Iwahori Hecke ring H (respectively, the pro-p-Iwahori Hecke ring
H(1)) of G. For n € N of image w in W or in W (1), we write T;, = Ty, in H or in H(1).

PROPOSITION 4.1. The Iwahori Hecke ring ‘H (respectively, pro-p-Iwahori Hecke ring H(1)) is a
free Z-module with basis (T )wew (respectively, (Tw)wew (1)) satisfying the braid relations

Ty * Ty = T if £(ww”) = £(w) + £(w').

Proof. For the basis, see Proposition 3.35. For the braid relations, see (60) and Propositions 3.35
and 3.38. O

Let s € S, We denote by S2¥(1) the inverse image of s in W (1). Let § € S(1). The
elements Ty in H and Ts in H(1) satisfy quadratic relations. It is possible to prove them using
Bruhat-Tits theory as in [Vig05] when G is split. But we will obtain them, using Proposition 3.25,
by following the carefully written proofs of the quadratic relations in the Hecke algebras of finite
groups with a strongly split BN-pair of characteristic p over a large field of characteristic p by
Cabanes and Enguehard [CE04, ch. 6].

We denote by Hy the wall of the alcove € fixed by s. A facet § of € contained in Hy is either
the face §s or a facet of §s. Let o € @jed be the reduced €-positive root and r € I', such that
H; =Ker(a+r). If r €T, then 2a € ®. The affine root As = a5 + 75,

as+rs=a+r whenrell, and as+7rs=2a+2r whenr¢gll,

belongs to Ag + (§ 3.8). For u € U = Ua, — Ua,4 we denote by ms(u) the unique element
of N N U_q,uU_q,. We have mgs(u) € U_a,uU_4,. The elements u, ms(u) belong to Kz. The
image s(u) of ms(u) in W (1) belongs to S (1). The Hecke operator T € H belongs to the Hecke
subring H (K5, I) by Lemma 3.22 and Ty, € H(1) belongs to the Hecke subring H (K3, I(1)).

The Iwahori subgroup I is the inverse image by the reduction map Kz — Kj;, of a minimal
Borel subgroup Bg, of Gz and I(1) is the inverse image of the unipotent radical Ug i of Bz
(Corollary 3.30). The Hecke rings H(K5,I) and Hg = H(Kg, Bg ) are isomorphic and the
Hecke rings H(Kg, 1(1)) and Hz r(1) = H(K5 i, ng) are isomorphic.

The finite group Ky x is a strongly split BNN-pair of characteristic p with B = Bg 1, N = Nz,
(Proposition 3.25). The root group of K j defined by A, is Ua, = Ua,/Ua, +. The root group of
Kj 1, defined by —Ag is U_a, ;, = U_4a,/U_4, +. The reduction uy, of u in Kz j belongs to Ul x=
Ua, r — {1} and the reduction mg(uy) of ms(u) is the unique element of Nz N U,As,kukU,;;s,k.
We have

s(u)? = ms(up)? € Zy.

We still denote by s the image of mg(uy) in Wg , = Nz 1/Zi. By Corollary 3.30,

qS = |UA57k|‘

The quadratic relations satisfied by Ts € 9,Ts € H(K5,1),Ts € Hg i are the same.

PROPOSITION 4.2 (Quadratic relations in £)).

TsxTs=qs+ (qgs — 1)Ts in $.
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Proof. The quadratic relations are proved in the ring Z[1/p] ® Hz . [CE04, Theorem 3.3], but
they hold true in Hz ;. because all the elements belong to Hz 1. a

By a general property of Hecke algebras [Vig96, 1.3.5], we have the following corollary.

COROLLARY 4.3. The linear map H — Z,

Ty = T

Secwy Lu ™ G = Qsy -+ Qsy,,  HW=51... Syt (s; € saff 4 e 0),

is a ring homomorph1sm.

The quadratic relations satisfied by Ty, € 9(1), Ty € H(K5, I(1)), Ty, (uy) € Hzi(1) are
the same. We need more notation. The group G, , generated by Ua, 1 UU_ 4, j is a strongly split
BN-pair of characteristic p with B = Zy ;Ua, k, N = Zg s U myy,)Zk,s and Zy s 1= G;ls N 2y
(Proposition 3.25). We have m,(ux) € G, ;, and ms(ug)? = s(u)?

Tt
t€Zy s

We identify Z[Zy] with a subring of Hg (1) by the map 3, c(t)t = > ;5 c(t)Tt, using the
braid relations.

is in Zj . Let

cs = (gs

PROPOSITION 4.4 (Quadratic relations in $(1)).
Ts(u) * Ts(u) = QSS(U)2 + Cs(u)Ts(u) in .Vj(l),
where cy(,) = cs if the order of Zy s is gs — 1 (for example, if G is F-split). In general,
Cs(u) = Z Cs(u) (t)t
tEZkVS

for positive integers c,(,(t) constant on the coset t{xs(x)™' | & € Zi}, cyu)(t) = cyu)(t™) for
t € Zis, of sum q; — 1, and
Cs(u) = s modulo p.

The proof is divided into three steps following the proof given by Cabanes and Enguehard in
[CE04, ch. 6] for the quadratic relations in the Hecke algebra of a p-Sylow subgroup of a finite
reductive group over a field of characteristic p (not over the ring R).

Step 1. The intersections
ms(ur)Ua, gms(ug) N Ua, s (up)tUa, g (62)
for t € Zy, s are disjoint and exhaust ms(ug)U}_,ms(ug) (where Uy , = Ua, x — {1}).

Proof. By the Bruhat decompositions of the strongly split B/N-pair of characteristic p generating
the group G, (Proposition 3.25), we have

= || UawsnUa,i
TLENks

where N, s = Zj, s Umg(uy)Zy s. The disjointness of the sets (62) follows from the disjointness
of the Uy, xms(up)tUa, i for t € Zj, 5. The union mg(ug)Ua, gms(ug) N Ua, gms(ug) ZgsUa, i
of the sets (62) does not contain mg(ux)? € Zp,. It is equal to ms(u)U} ms(ug) because
ms(uk)Ule’kms(uk) = UiAS’,Jns(uk)2 is contained in Uy, yms(ug) Z sUa, k- O
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Step 2. Let ¢y, (t) denote the cardinality of (62) and cyw) = > 4z, | Csu)(t)t. We have Ty, *
Ts(u) = qss(u)2 + Cs(u)Ts(u) in /H(l)

Proof. See the proof of Proposition 6.8(iii) in [CE04]. O

Step 3. The integers c,(,)(t) for t € Zy, ; satisfy the following properties:

(1) their sum is g5 — 1;
(2) cou)(t) = oy (tt') for t € Zy s, t' € {s(x)z™! |z € Zi};
(3) Cou)(t) = oy (t1) for t € Zy;
(4) they are constant modulo p;
(5)
(6)

they are positive;

when the order of Zj s is g5 — 1, in particular when G is F-split, cy,) = ¢s = Ztezk L

Proof. (1) The sets (62) of cardinal cy(,)(t) for t € Zy s, form a partition of Uy,  — {1} by Step 1.
Therefore

—1=gqs—1.

> estu(t) = U,k
tGZk’s
(2) The group {s(z)z™! = szs~tz~! | x € Z;} is contained in Zj, 5 because ms(uy) normalizes
Zy, and Zj, normalizes G’, .. We have

Crng (u) (£) = Cmy(uy) (1) for t' € {s(x)x™! |z € Z4}

because x € Zj commutes with cg,)Ts) by the quadratic relations, zTy) = Ts(u)s(x), x
commutes T,y * Ty(,) and Z is commutative.

(3) The set (62) multiplied by ms(ux) ™2 € Zgs, equal to Ua_, N Ua, gms(ug) " Ua, g, has
Cs(u) (t) elements. Its image by the inverse map also has Cs(u)(t) elements. It is equal to Ua_, x N
Ua,pt'ms(ue)Ua, ke = Ua_ i N Ua, pgms(ug)s(t1)Ua, , which has ¢y, (s(£)™!) elements. By
Step 2, ¢y (5(£) 1) = copy (s(t) 1) for ¢/ = s(t)t™F, hence cg(y)(t) = o) ().

(4) The function ¢ = € (uy)(t) : Zis/{s(x)z™ | & € Z} — Z is constant modulo p [CE04,
Proposition 6.10(i) and (ii)]. We repeat the arguments. If the function is not constant modulo p,
there is some non-trivial character 1y of Zj, , with values in k* such that

b= Z Cms(uk)(t)w()(t) 7é 0.

tEZkVS

The Hecke k-algebra Hy (G, Ua, k) is equal to k[Zys] + k[Zys] T, (u,) With the braid and
quadratic relations

2
Tongui)t = SO Ty ui)s Do (ug) = Cms (i) Ton () -

One may define |Z, 5| + 2 characters of Hk(G's,k, Ua, k) o equal to ¢ on t € Z, s and equal to b
on Ty, (uy), € equal to 1 on t € Zg 5 and equal to 0 on T, (,,) for every character ¢ of Z s and
&st trivial on Zj s and equal to —1 on T}, (y,) because Ztezk,s cms(uk)(t) = ¢s — 1 is congruent
to —1 modulo p.

G/
The Hecke algebra ’Hk(G; 1> UA, k) is isomorphic to Endyer k]c—IndUZ’f“ . 1. The simple modules
of Hp(G’ ., Ua, k) are in bijection with the isomorphism classes of indecomposable summands

G/
of the k-representation c—IndU:’kkl [CE04, Proof of (i) in Theorem 6.10]. This representation is
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a direct sum over the characters ¢ of Z ¢ inflated to B, = Zj ;Ua, i, of the representations
G’ G’

c—IndBZ::w. The restriction of c—Inde::@Z) to B;,k is isomorphic to the direct sum of 7 and of

the natural action of B, on the indecomposable regular module k[Ug, x]. The only character

G/
of G, is trivial. We deduce that the representation c-Ind;;"* 1 is the direct sum of |Zy 5| + 1

indecomposable subrepresentations [CE04, Lemma 6.4]. The Hecke algebra Endk[G/S k}c—Indg:‘f’kl
cannot have |Zj, ;| + 2 characters. This implies that we could not make our assumpi:ion; in other
words, the integers cms(uk)(t) for t € Zj, 5 are constant modulo p.

(5) Their sum g5 — 1 is not divisible by p, hence they are not divisible by p, in particular
they are not 0, they are positive.

(6) They are all equal to 1 if and only the order of Zj, ; is gs — 1 if and only if ¢y, = cs =

ZtEZk,S t.

When the group G is F-split, the order of Zj, 5 is ¢; — 1, and g5 = ¢ is the order of the residue

field k of F' [Vig05, § 2.2].
This ends the proof of Proposition 4.4. O

Remark. The positive integers cy(,)(t) for t € Zj s are all equal if and only if cy(,) = ;. When
this is the case, the order of Zj, ; divides g5 — 1.

We give an example where the order of Zj ; does not divide g; — 1 [KX15, Remark 3.8].
Suppose that ¢ is odd. Let G denote the F-rational points of the unramified unitary group U (2,
1)(E/F) where E/F is a quadratic unramified extension of residue field kg. Then Z; identifies
with k}, x U(1)(kg/k) and we have S = {s, s’} where, for gy = ¢, the group Z, ¢ identifies with
k* = k — {0} of order g4 — 1 and Cs'(u) = Cs; and for g5 = ¢, the group Z}, s identifies with
k% = kg — {0} of order ¢*> — 1 not dividing g5 — 1, and the positive integers Cs(uy(t) = 1 for t € k*
and cg(,)(t) = ¢ + 1 for t € k}, — k* are not constant. We note that

Cs(u) = Cs — s = ¢s mod q.
LEMMA 4.5. The set {ms(u') | u' € U} _,.} is a coset Zy sms(uy,).

Proof. By the Bruhat decomposition G;,k = ZysUa, kU UA, gms(ug)Zi,sUa, i, there exists a
map t: U}, — Z s defined by

mes(ug)u'ms(ug) = xms(ug)t(u')y  for some z,y € Ua, k.

Remembering the definition of m,(u') (14), we note that m(u’) = t(u')ms(uz)~'. The lemma
means that t(U}_ ;) = Zj,s.
Recalling Step 1, we have the disjoint union

ms(uk)UZsjkms(uk) = |_| (ms(ur)Ua, gms(ug) N Ua, pms(ug)tUa, k).
tet(U;;S,k)

By Step 2, we have
Cmaur) = D Do)

/ *
uEUAS’k

The lemma follows from part (4) of Step 3. O
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The set )
S = {s(u') | v € Ui, 1} = Ziss(u) = s(u) Zps

is a coset of Zj s in S (1) = Z;.s(u) = s(u)Zk, which depends only on s.

LEMMA 4.6. Let 5 € S?ff(l). We have Ts*Ts = q.8° +c3Ts where ¢z = cs(u)s(u)_lé; and cz = cy(y)
if and only if § € S2f.

Proof. We have, for t € Z,
Ts(u)t *® Ts(u)t = Ts(u) * Ts(u)s(t)t = (qss(u)2 + Cs(u)Ts(u))S(t)t = QS(S(u)t)Q + Cs(u)th(u)t' O

4.3 Generic algebra
Let R be a commutative ring, and let

Wt St Q W, Zy, W (1), (63)

satisfying:

(al) (W 52) is a Coxeter system;

(a2) Q is a group acting on W and stabilizing S

(a3) W is the semidirect product W2 x Q;

(ad)
(a5) 1 - Zy —> W(1) - W — 1 is an extension of W by Z.

For a subset X of W, we denote by X (1) the inverse image of X in W (1).

The length ¢ of (W2, §2f) heing invariant by conjugation by €, extends to a length ¢ of
W constant on the double cosets of €2, and inflates to a length on W (1), still denoted by ¢. The
subgroup of elements of length 0 in W is ©, and in W (1) is Q(1). The inverse image of W2 in
W (1) is a normal subgroup W2 (1) such that Z, = W2 (1) N Q(1) and W (1) = W2F(1)Q(1) as
in (55).

For w € W(1) and t € Zj, w(t) = wtw~! depends only on the image of w in W because Zj,
is commutative. By linearity the conjugation defines an action

(w,c) = wec: W(1) x R[Zy] — R[Z]

Z is a commutative group;

of W (1) on R[Zj] factorizing through the map W (1) — W. For s,s’ € S we write s ~ s’
if 5,5 € S are conjugate in W; if 5,5 € S (1) we write s ~ s’ if their image in S is
W-conjugate.

THEOREM 4.7. Let (qs,cs) € R x R[Zy] for all s € S*(1). We have, for all s ~ s’ in S*(1),
we W), ws'w st € Z,

(35) s = 4st = 4s,

(a6) cst = cst and W cy = Cppgryp—1-
Then the R-free module of basis (Ty)wew (1) admits a unique R-algebra structure satisfying

the braid relations Ty Ty = Ty for w,w’ € W (1), £(w) + (w') = L(ww'),
the quadratic relations T2 = q,Ty2 + csT, for s € S (1),

where cs = ), 5 ¢s(t)t € R[Zy] is identified with ), , cs(t)T;.
This algebra is denoted by Hg(qs,cs) and called the R-algebra of W (1) with parameters

(%708)'
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We will prove that the conditions (a5) and

(a6') cst = cst and wecy = ws'w s e if £(sw) > (w), gsw e cy = qyws'w s ey if £(sw) <
{(w),

are necessary for the existence of the algebra. We will not prove that (a5) and (a6’) are sufficient,
although the same proof as in [Sch09, Theorem 3.1.5] should work.

Remark 4.8. When (ab) is satisfied and for all s € S*(1), 2 € R, gsz = 0 implies z = 0, the
conditions (a6’) and (a6) are equivalent because gs = gy by (ab), ws'w™ls7les = cypg-1 by

cst = st and the commutativity of Zg, and can simplify by ¢s as ¢gso = 0 implies z = 0.

Proof. (1) We show that the conditions (ab) on (gs) and (a6’) on (cs) are necessary. The braid
relations identify R[Zy] with a subalgebra of Hg(gs, cs) and Tyt = Ty = wtw 1T, for w € W (1),
t € Z hence

Twe= (wec)Ty, (ce€ R[Zy],we W(1)). (64)

The equalities ¢; = gs; and cg = ¢t follow from
4s(5t)? 4 cstTyp = (TyTs)s st = TutTut = Tt Tsr = qst(st)? + st Tt

The equalities gy = q5 and wecy = ws'w™ s e, for 5,8 € S (1), w € W(1),swz = ws’ for
some z € Zy, follow from the associativity of the product

Ty(TwTy) = (TTw) T (65)
(a) Case £(sw) = (ws") = £(w) + 1. By the braid and quadratic relations,

Ts(TwTs’) = TsTws/ =TToy, = TTsTy, = QS52Twz + s Lswy-
(T, T Ty = TyTy = Thpero—1 Ty = ws'z L ws") 1T Ty

= ws'z W ws') 1T Ty Ty = ws'z (ws') ' Ty(qy s’ + coTy).

We compute ws’z_l(ws’)_lTws’2 = ws’z_l(ws’)_lws’Qw_lTw = swzw T, = $2T,.. This
implies
(TsTp) Ty = qg 5T + ws' 27 (ws") L (w e ey ) Ty
We compare and deduce gy = qs, w e cy = ws' z(ws') Lcs = ws'w s e,
b) Case £(sw) = f(ws') = £(w) — 1. We expand first T, Ty and 1T, using To,, =T, , 1Ty =
(b) (sw) ={( p wTs Ty using Ty, = T, 1T
TsT,-1,, by the braid relations. By the quadratic relations,
2 -1 1
TwTy = Tws/—l(qslsl + CS/TSI) = qs'Tys + (U)S/ .Cs’)Tws/—lTs’ = qsTys + Tw(S/ OCS/),
ToTw = (qs8* 4 ¢sTo) Ty-14p = qsTow + 5T

1

Recalling sw = ws’'z~", we have £(sws’) = £(ws’) + 1, and we compute

-1 -1
T (TwTs’) = QS’Tsws’ + TSTw(SI L4 Cs’) = QS’Tsws’ + (QSTsw + CsTw)(S/ .Cs’)a
—1
(TsTw)Ts’ = QSTsws’ + CsTwTs’ = QSTsws’ + QS’CsTws’ + CsTw(S/ i Cs’)'
We compare to get qg = qs, qsrCsTips = qSTsw(s’_1 e cy). Writing

—1

Tow(s " ecy) = swsl_luflTwS/(5’_1 ocy) = sws’_lwfl(w ocy)Tys,

we obtain gs(w e cy) = gows'w s e,
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(2) The algebra is unique if it exists because the expansion of the product T,,T,, for w,
w' € W(1), in the basis (Toy)ywrew (1) is uniquely determined by the braid and quadratic relations.
This is clear if E(ww’) = Z( ) 4+ £(w’) by the braid relations. Otherwise, let w = s1... 54U,
w =s].. sé( ,)u with s;, 3 € S (1), u,u’ € Q1) be two reduced decompositions of w, w’. We

note that s := us]u_1 lies in S (1) as Q(1) normalizes S**(1). Using the braid relations, we
compute
TuTw =Ty - Toyy LTy - Ty, T = Ty - Ty Ty Ty, Tt
=Ty, TS;‘/+1 ce TS;z/(w’)Tuul = Tw159/+1T53/ T, (PR ng(w/)Tuu/’
where wy := s1... 84S - .- 8] and L(w1s],;) = L(w1) — 1 = {(w) + j — 1. Using the quadratic

relations, we compute

Tursr T2 = e Tuwar +T

wy s’} +1 s w1s g wy s’} +

C yn T g qs Tw139’+1 + (wlsg'/—i-l) hd Cs;’+1Tw1 :
After finitely many steps we obtain the coefficients 1o, Ty, in the basis (T )wrew (1)

(3) The unicity and existence of the R-algebra are proved in [Sch09, Theorem 3.1.5] when
the quadratic relations are replaced by

T§2 = asT(§)2 + b T3 (8 S Saﬁ),

where 3 is a fixed lift of s, and the parameters (as,bs) € R x R[Z] for s € S* satisfy, for
5,8 € S we W), wsw (37! € Z:

(ab") az = ag;

(a6”) w e by = ws'w 1 (3) 1bs.

Recalling that the map (t,s) — t3 : Z;, x S — §2f(1) is bijective, we define a map
(as,bs)scgar — (qs,cs)sesaﬁ(l) such that gz := az, ¢s5 := tbs. Then (as, bs)s € S satisfies (a5”)
and (a6") if and only if (gs,cs)scgam(1) satisfies (ab) and (a6). Noting that the braid relations
imply T;; = T;T5, the braid and quadratic relations in [Sch09] are equivalent to our braid and
quadratic relations. O

Remark 4.9. (a) When (g,) satisfies (ab), (¢s = gs — 1) satisfies (a6).

(b) Condition (a6) implies sec, = cs (take w = s € S2T(1) in (a6)). This means that T
commutes with cs. It also implies ¢gsts™! = ¢4t for t € Zy, (use st @ csy = Cgp, S®Cs = Cg,Cst = Cst
and the commutativity of Zy). Hence, if cs # 0, the group {tst~1s~! |t € Z;} is finite.

(c) By [Bou68, VI.1.3, Proposition 3; VI.4.3, Theorem 4], [Bor76, 3.3], the number of W2f-
conjugacy classes of S(#) is the number of connected components of the graph obtained by
erasing the multiple edges of the Coxeter graph CoxS™ of S*; this number is: (1) if Cox S is
of type (An)n>27 (Dn)n>3a (En)n=6,7,8; (2) if Cox S is of type Aj, (Bn)n>27 Go, Fy; (3) if Cox S is
of type (Cn)n>3-

(d) Note that the Hecke R-algebra of a Coxeter system (W,S) with parameters (gs, ¢s)ses
in R x R, constant on the intersections with S of the conjugacy classes of W, was introduced in
[Bou68, Example 23].

(e) We can extend the parameters (gs, ¢s)scgamr(1) in R x R[Z] satisfying conditions (a5) and
(a6) to parameters (q(7),c(7))resm)(1) in R x R[Z}] satisfying s = q(s),cs = c(s) if s € saff (1)
and

(ab) q(7) is constant on the conjugacy classes of W (1) and q(7t) = q(7) for t € Zy;
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(a6) c(wrw™t) = wec(r) for w € W(1) and c(rt) = (1)t for t € Z,
(f) We can also choose indeterminates satisfying (a5). They are denoted by boldface letters
ds, q(7). We will also consider indeterminates q, and q(7) satisfying qs = q(s), (a5) and of square

q(r)? = a(7).

Ezample 4.10. (1) The Iwahori Hecke ring is H = Hyz(qs, qs — 1) with g given by Corollary 3.31
and Z = {1}, W = W(1).

(2) The pro-p-Iwahori Hecke ring H (1) = Hz(qs, ¢s) with gs given by Corollary 3.31, ¢s as in
Proposition 4.4, for s € S#(1).

(3) The group algebra R[W(1)] = Hg(1,0) with ¢s = 1, ¢, = 0 for all s € S2f(1).

(4) The Lusztig affine Hecke R-algebras with parameters (gs) with g5 an invertible square in
R [Lus89] are examples of R-algebras Hr(gs,qs — 1) with Z, = {1}, W = W(1).

The R-algebra H3(gs,cs) of Wall(1) is a subalgebra of the R-algebra Hp(gs,cs) of W(1).
By the braid relations, the R-linear map such that v — 7T, for u € Q(1), embeds the
group R-algebra R[Q(1)] of Q(1) in Hr(gs,cs). The intersection R[Q(1)] N Ha(gs,cs) is the
group R-algebra R[Zj| of Z.

PROPOSITION 4.11. The R-algebra Hg(qs, cs) is isomorphic to the twisted tensor product

R[Q(]‘)] ®R[Zk] H?{ﬁ(q87 CS)

with the product (T, & Ty, ) (T @ Tyy) = Ty @ Tyyr—1pu Tuy for u,u’ € Q(1),w,w’ € Wa(1).
Proof. Clear. a

LEMMA 4.12. Let T¥ = Ty — ¢, for s € S*(1). The quadratic relation in Hg(qs, cs) is
TiT, = T,TF = qs8* or TriTy=TT5 1 = gs.

For u € Q(1), we have

Cu-1su = Tt esTh, =T, MT*T,.

u= 1su

Proof. We have T;Ts = T,Ts — csTs = gss2 and Tys™2 = 72T = To-1,c4-1 = css~2, because
s? € Zj. The product T;Ts commutes because cs and s? commute with T,. Comparing the
quadratic relation for T, -1 = T, 75T, ! with the quadratic relation for T multiplied on the left
by T, and on the right by T, 1 we obtain c,4,—1 = TucsTy L. O

Let w = s1...8¢)u with u € Q(1) and s; € Saff (1) for 1 < i < £(w), and let

T: . =T, 1T* T

e(w) 51

PROPOSITION 4.13. (1) T, is invertible in H(gs, ¢s) of inverse q;' T _,, if q5 is invertible in R

for all s € S,
(2) T Ts*a )T does not depend on the decomposition of w.
(3) —1 w—TT—l—Qw
(4) Tk c= (wec)T for c € R[Zy].
(5) Ty Ty =Ty, =TT}, forweW(1),ue Q).
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(6) If w = s1...5, € W(1) is a reduced decomposition and u € Q(1), the elements ¢y, =
sy -+ - G and ¢y :=¢Cgy ... Coyy AT€ well defined.

Proof. By Remark 4.12, T\, = Ts, ... Ts,, T, (by the braid relations, it is independent of the

Sg(w) u
decomposition) is invertible of inverse

-1 —1 * * — 1
Tw = q,w TuilTse_(l) . T31_1 = qw Tu}_l’

with w™! = u‘lsz(ilu) ...s7". Replacing w™ by w = u(u='syu) ... (u"ts,u) with n = f(w) =

f(w™l) and uls;u € S we obtain T} = Ty, Ty, By Remark 4.12, Ty =
Ty ... Ty Ty As T, =T, .. 'TSe(w>Tu was independent of the decomposition, the same is true
for Ty, =15, ... S*Z(w)Tu'

From Ty = T3, ... T; T, and T, Ty = T;Ts = qs (Remark 4.12), we deduce that T, Ty, =

Se(w)

ToTw = qu. From Ty =T ... T, T, and (Ts —cs)t = T — cssts™t = stsTH Ty —c,) for t € 7,

Se(w)
(use the fact that Zj is commutative and Remark 4.9(b)), we deduce that T ¢ = (wec)T,, for
c € R[Zy]. From T =T7 .. T Tu and T, = T3, =TT, (Remark 4.12), we deduce
ToTy="Ty, =117, foruecQ(l).

The braid relations and (2) imply that g, and ¢, are well defined in (6). O

— 2
4'4 qwqw/ - qu’qw,w/
To a sequence ($1,...,S,) in S we associate the sequence

T(81y.vy8p) = (11 := 81,72 := slsgsfl, ey T =81 ...8p—18n(81 ... sn,l)_l) (66)

in S(H). We consider parameters which are indeterminates (Remark 4.9(e), (f)).

DEFINITION 4.14. For w = s1...spu with s; € S for 1 < i < nand u € Q, and ¥ € W(1)
lifting w, let Ty = T, = Ty, .5, be the set of elements of odd multiplicity in ¥(sy,...,s,) and
let

s =qu= ][ a(n).

Te‘zw

For w,w € W (1) lifting w,w’ € W, let
i’ = Qoo = (A Ay ) />

When w € W2, T, consists of the elements w’sw'~! for all triples (w’, w"”, s) € W2 x Wil x
S such that w = w'sw” and £(w) = £(w') + L(w") + 1.

When the decomposition w = s1...s)u is reduced, T(s1,...,spw)) = Tw (see [Boubs,
IV.1.4, Lemme 2, Remarque] and [Kum02, 1.3.14]),

Quw = gs; - - - ng(w)7

and %, q, depend only on w.
Remark 4.15. When w € W, T,, contains s € S if and only if £(sw) < £(w).

LEMMA 4.16. Let w,w’ € W. Then Qv = 1 if and only if {(w) + {(w') = L(ww').
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Proof. By the braid relations, q;qu = Quw if and only if ¢(w) + ¢(w') = L(ww"). O

LEMMA 4.17. Let w,w’ € W2, We have
Tww’ = (‘Iw U ‘Iww’w—l) - (Tw N ‘I’ww’w_l)'

Proof. If w=s1...8,,w" =8} ...s), are reduced decomposition of w,w’ then the multiset ¥ (s,
oy 8p, 8y .. 8h) is a union of Ty, and of wWTw ™t = T, un,-1. The elements of Ty, N Tyt

have multiplicity 2, the other ones have multiplicity 1. This implies the formula for <. O
Remark 4.18. Let w,w’ € W™, Then, f(ww') = £(w) + {(w') — 2 Card(Tw, N Tywrw-1)-

The computation of q, . can be done using the following lemma.
LEMMA 4.19. Let w,w’ € W and u, v/ € Q. We have

Quw = H q(T), Quu,w'v' = Qw,uw'v—1-
TETWNE, 1

ww'wT

Proof. The formula for q, s follows from Lemma 4.19. The group {2 normalizes S and w,

ww'v™, wuw'v' = wuw'u" uu’ belong to W, We compute

2 _ -1 _ -1 _ -1 _
Qyu,w'v’ = QuwuQw' v Dyyapra’ = DoQw Doy -1 = DwQuw' u=1y0-1 = Dwuw'v—1"

Ezample 4.20. Let w,w’ in W. Then qu = qy-1, Qy -1 = Qu. Furthermore, qu,-1 -1 =
[I;cz, nz ,alr) is equal to qu = [[,cg, a(7) if and only if T,, C Ty if and only if L(w'w) =
L(w') — L(w).

4.5 Reduction to g; = 1
We explain a method to reduce the proof of a property of the R-algebra Hr(gs, cs) (Theorem 4.7)
to the simpler case where g5 = 1 for all s.

We consider indeterminates qs, q(7) satisfying (a5) and of square q(7)? = q(7) and elements
cs, c(T) in R[Z}] satisfying (a6) as before (Remark 4.9(e), (f)). For w € W (1), let g = [[, 5, a(7)
as in Definition 4.14.

The ‘generic’ algebra Hpj(q.)(ds; ¢s) is a R[(qs)]-subalgebra of the R[(qs,q;")]-algebra

HR[(qs,qgl)] (q57 CS)?

HRi(a:) (s €s) © Hpy(q, q71))(As: ). (67)
In HR[(qS a5 )] (QS, ¢s), the elements

form a R[(qs,q;!)]-basis satisfying the braid relations and the quadratic relations with
parameters (1,q; 'cs):
(TS)Q = 5"+ qs_lcsTS (s € Saﬁ(l))- (69)

Applying Theorem 4.7, we obtain the following proposition.
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PROPOSITION 4.21. The R[(qs,q;!)]-linear map

Ty — Ty : %R[(q&qs—l)](l,q;lcs) — HR[(qs,q_;l)}(quCS) (70)

is an algebra isomorphism.

We can often reduce to the case ¢; = 1 by considering;:

(1) the R[(qs,q;")]-algebra HR[(qSngl)](la a5 cs);

(2) the R[(qs,q5 ')]-algebra isomorphism (70);

(3) the generic R[(qs)]-subalgebra H gy(q,) (ds; ¢s) C HRi(ge.a= )] (s, Cs);

(4) the specialization Hg(gs, ¢s) = R ®pj(q,)] HR[(qs)](ds; ¢s) sending g to gs for all s € Saff /o,

We give the following example.

PROPOSITION 4.22. Properties (2)—(5) of Proposition 4.13 are valid in Hg(gs,cs) even when g
is not invertible.

Proof. By Proposition 4.13, properties (2)—(5) of the proposition are true in the algebra
Heq., qs—1)](q5, ¢s). They are relations between elements of the generic R[(qs)]-subalgebra
HR|(q.)](ds; ¢s)- They remain true in the algebra Hg(gs, ¢s) = R ®@p((q.)] " R[(qs)) (s ¢s) obtained
by the specialization sending q to g, for s € S /~. O

PROPOSITION 4.23. The R-linear map ¢ of Hgr(qs,cs) defined by
UTy) = (=17 for w e W(1),
is an involutive automorphism.
Proof. 1}(Ts) = 1(=Ts + cs) = —t(Ts) + cs = Ty, hence if ¢ is involutive,
(L(T$))? = (Ts — ¢5)? = T2 = 2¢,Ts + ¢ = g5 — csTs + 2 = qs5° — cs(Ty — c5) = qs5° + cs1(T),

hence ¢ respects the quadratic relations.
Obviously the braid relations are respected. O

Remark 4.24. The reduction to ¢; = 1 is not possible in the classical framework of algebras with
parameters (gs,qs — 1).

5. Alcove walk bases and Bernstein relations

Let R, W2 saff Q W, Z,, W (1), (s, cs) be as in § 4.3, satisfying (al)—(a6). We have the following
hypotheses.

(b1) W is the affine Weyl group of a reduced root system ¥, generated by the orthogonal
reflections with respect to a set of affine hyperplanes

H={Ker(B+k)|BeX, kel}

in a euclidean real vector space V, and S*¥ is the set of orthogonal reflections with respect to
the walls of an alcove € of vertex 0 in V.
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(b2) The action of W on V' extends to an action of W such that for any w € W, an element
Wy Lw acts by a translation respecting §), for some wyq in the stabilizer Wy of 0 in W/,

(b3) For s,s" € S such that ss’ has finite order n(s,s’), there exist s(1),s'(1) € (1)
lifting s,s" such that s(1)s’(1)s(1)... = §/(1)s(1)s’(1) ... where the two products have n(s,s)
factors.

We use the notation of § 3.4, without X in the index because Y is now the unique root system
(there is no ®). The group © which normalizes S*T is the stabilizer of € in W = W3 x Q.

We denote by A (respectively, A*) the subgroup of W (respectively, WaT) acting by
translations on V', and by

v:A—>V

the homomorphism such that A € A acts by translations by v(\). The group A is normalized
by wg € Wy : woAwy L acts by translation by wg.v(\), the homomorphism v is Wy-equivariant:
v(wolwy ') = wo.v(N), and

W =Ax W(). (71)

The lattice Q(XY) generated by the set ¥V of coroots of ¥ is equal to v(A*") and
Q(xY) cv(A) C P(EY),

where P(XVY) is the lattice of weights of XV, that is, the elements v € V such that a(v) € Z for
all € 3.

The action of W on V inflates to an action of W (1) trivial on Zj and the homomorphism v
inflates to an homomorphism v : A(1) — V vanishing on Zj, where A(1) is the inverse image of
A in W(1). We have

W (1) = A)Wo(1), (72)
where Wy(1) is the inverse image of Wy in W(1), A(1) N Wy(1) = Z and A(1) is normal in
W(1).

Remark 5.1. Note that the data arising from (R, F, G) satisfies the hypotheses (bj) for j =1,2,3
and that A = Z/Zy, A(1) = Z/Zy(1), where the extension A(1) — A of kernel Z}, does not split
in general.

Proof. Property (b3) follows from Proposition 3.4 applied to the root data generating the finite
quotients of the parahoric subgroups of G (Theorem 3.1). See § 3.3 for (bl) and (b2). For the

last assertion, see [Vig05]. O
5.1 Length

We denote S8 := {8+ k| B € 5,k € Z}. The set {sg1x | B+ k € T2} is equal to S(H) defined
in § 4.4.

LEMMA 5.2. For any 8+ k € ¥* X\ € A, we have AsgprA ™t = S84k—Bov(\)-
Proof. Let & € V. The action of W on V is faithful. We have

sprr(r) = o — (B(x) + k)Y = sa(x ) kBY,
(AspreA™ ) (@) = sprp(@ —v(N) +v(A) =z — (B(z — v(N) + k)BY
= sp(x) — (k— Bov(N)sY 0
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For 8 € ¥ we have sg_1 = sgsgy153. The element of A

HB 1= S5+155 = S3p-1,

satisfying v(ug) = —" appears often in this work. The conjugation by pg sends sgij t0 Sg1kt2
for k € Z.

Remark 5.3. B ov(A) = 6Z with 6 € {1,2} as B(8Y) = 2. Lemma 5.2 implies that the set of
A-conjugates of sg is {sgyk | k € 6Z}.

For 7 € S(H), let H; be the affine hyperplane fixed pointwise by 7. When two facets of V'
are not contained in the connected component of V' — H., we say that H; is separates them. By
[Bou68, IV.1, Example 16 h)], for w € W2 the set of hyperplanes of $ separating the alcoves
¢ and w(€) is

N ={H; | 7€ Ty}, (73)

where the finite set T, of cardinal ¢(w) is defined in § 4.4.

Ezample 5.4. Let s € S w € W2, Then ¢(sw) = £(w) 4+ 1 means that w(¢) and € are on the
same side of the wall H of € fixed by s.

DEFINITION 5.5. Let z € €, 3 € ¥,w € W(1) lifting w € W. We define {g(w) = £g(w) € Z as the
integer such that

lg(w) < B(w(z)) < lg(w) + 1. (74)

The integer /g(w) does not depend on the choice of x € €, and depends only on the action
of w on V. Note that S(w(z)) = (w™(8))(z) where w=(B) € ¥,

Let X7, %~ be the set of positive, negative, roots of ¥ (we say positive instead of €-positive).
When B € 1, 0 < B(z) < 1 by (33). If w(8) € £F then £5(w) = 0.

LEMMA 5.6. Forw € W, 8 € ¥T and k € Z, the hyperplane Ker(3 + k) separates the alcoves €
and w(€) if and only if

kel0,—lg(w)—1] and (lg(w)<—1 or ke[-lg(w),—1] and {lg(w) > 1.

Proof. Then Ker(S + k) € $ separates € and w(€) if and only if 5(z) + k and S(w(x)) + k have
a different sign.

Let B € ¥7. Then k < f(x) +k < 1+k and lg(w) + k < B(w(x)) + k < £g(w) + k + 1. Hence
B(x)+k is positive if and only if k£ > 0 and B(w(x))+k is negative if and only if £g(w)+1+k < 0.
This holds if and only if £g(w) < —1 and k € [0, —¢g(w) — 1]. Similarly, 5(x) + k negative and
B(w(z)) + k positive is equivalent to k € [—{g(w), —1] and £g(w) > 1. O

PROPOSITION 5.7. The length of w € W or W(1) is {(w) = 3 _gex+ [€a(w)].
Proof. Let w € W2, The length of w is the cardinal of T,,. Use (73) and Lemma 5.6. The

number of Ker(8 + k) € $ with § € £7,k € Z separating € and w(€) is [¢g(w)|. This remains
valid for w € W because € normalizes €, and for w € W (1) because Zj, acts trivially. O
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Ezample 5.8. (1) When w acts trivially, ¢3(w) = 0if # € £ and lg(w) = -1 if € X™.

(2) Let w € Wy and 8 € . We have 8(w(z)) = w™(8)(x). Hence £g(w) = 0 if w™1(8) € B,
and lg(w) = —1 if w™(8) € 7. The hyperplane Ker 3 separates € and w(€) if and only if
w~Y(B) € ™. The length £(w) of w € Wy is the number of f € ¥F such that w™!(3) € ¥~

(3) Let v+ k € ¥, For 3 € % and 2 € € we have

B(syan(x)) = Bsy(2) — k") = s(v)(x) — kng,y,

PROPOSITION 5.9. Let g € ¥, A € A,w € Wy. Then:

(1) £3(X) equals Bov(\) if € X and fov(A\)—1if e X;

(2) £3(Aw) equals Bov(N) if B € w(ET) and Bov(N\) —1if B € w(X™);

(3) Lg(wA) equals w1 (B) ov(N) if B € w(ET) and w(B)ov(N) — 1 if B € w(X7).

Proof. Let x € €. We recall that Sor()) is an integer. When £ is positive, we have 0 < f(z) < 1
and S ov(A\) < Bz +v(\) <1+ Sorv(A). When S is negative, —1 < f(z) < 0 and —1 +
Borv(A) < B(z+rv(\) < Bor(A). We have Mw(z) = w(z) + v(A) , wA(z) = w(z + v(N)),
Bw(z)) = B(w(z)) + Bov(A) = w ! (B)(x) + Bov(N), and B(wA(z)) = w™ ' (B)(x +v(N)) =
wH(B)(z) +wH(B) o v(A). O

COROLLARY 5.10. We have, for (A\,w) € A x Wy,

(Ow)= > [Bor(N)+ D [Bowv(h)—1],

BeXT Nw(Xt) BeEXT Nw(X~)
Lwh) = > Bov(N)[+ D [Bov(\)+1].
BeXtnw-1(Zt) gextnw=1(Z-)

Proof. Propositions 5.7 and 5.9 imply the above equality of /(Aw) and

lwhy= Y et B evWI+ Y Jw (B ov(h) — 1.

BEST Nw(ZT) BeSt Nw(E™)
Replace w~!(B3) by § in the first sum and by —f in the second sum. O

COROLLARY 5.11. We have AN Q = Kerv and for A € A,w € Wy,

=3 1Bory

BeT+
U(w) = Lw™) = [T N w(E7)],
(N\) + ¢(w) if and only if [owv(A
L(wN) =
(wA) { if and only if [owv(\
(

(N for €2t N w(X7),
(A) = £(w)

{6()\) + {(w) if and only if [ov(A
() = (w)

for € 2t N w (X7),
for B e XN w(X7),
for Be Xt N w(X7)
0 for BeXtnwXt),
1 forBeXtnNwX).

o O o O

) >
) <
) <
if and only if [Bowv(\) >

)

((Aw) =0 ifandonlyif fov(\) = {

Compare with [Vig06, Appendix].
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A Weyl chamber of V' is the open set of z € V' with S(x) > 0 for all 8 in a basis of ¥. A
closed Weyl chamber is the closure of a Weyl chamber.

Ezample 5.12. For A\, N € A, L(AN) = £(\) + £(X) if v(X), v(N) belong to the same closed Weyl
chamber.

Proof. If x,2’ € V belong to the same closed Weyl chamber, then B(x)3(z") > 0 for all g € X.
Then |B(z +2')[ = [B(z)] + |B(2')]. Apply > gex |80 v(A)| = 2((N). O

For w € W, we recall q,, from Definition 4.14.

PROPOSITION 5.13. For A € A, the element q) depends only on the W-orbit of A. In particular,
¢(\) depends only on the W-orbit of \.

The length equality follows from the q.-equality, but is also a consequence of
Bovwlw ™) =wH(B)ov(N), for e, we Wy, (75)

which implies 2¢(wAw ™) = > ges lw=t(B) ov(\)| = > pex [Bov(A)] = 2((N).
If the elements of S*T are Waf_conjugate (Remark 4.9(c)) the length equality implies the
qs-equality.

Proof. Let a € Ayx. We denote s4()\) = saAsq € A. We will prove that qx = g, (). This implies
the proposition because the group Wy is generated by s, for a € Ay, and the Wy-orbit of A is
equal to the W-orbit of A € A, as W = A x Wy and A is commutative.

We have q) =[], <z, a(7) (Definition 4.14).

We apply Lemma 5.6 to compare Ty and T, (\). Let § € X7,k € Z. If § # «, then s4(8) € ¥F
and £g(sa(N)) = £s,(3)(A) (Proposition 5.9(1)). The affine hyperplane Ker(3 + k) € $ separates
¢ from A(€) if and only if Ker(so(83) + k) separates € from s,(A)(€). Hence sgyi € Ty if and
only if s (8) + k € T, (1) We have s, ()4 = SaSp1kSa-

We have £, (\) = aov(\) (Proposition 5.9(1)).

We suppose first that £o(A) = o v(A) # 0. We have £y (sa(N)) = l—a(X) = —La(N).

Ker(a+k) separates € from A.€ if and only if &£ in [0, —¢4(A)—1] or in [—¢(A), —1], depending
on the sign of £, ().

Ker(a + k') separates € from s,(\)(€) if and only if &' in [0,£,(\) — 1] or in [ln(N), —1],
depending on the sign of £4(A).

We have soSa+kSa = Sa—k and Ker(a+k) separates € from A(€) if and only if —k in [1, £ (N)]
or in [lo(A) + 1,0], depending on the sign of £, ().

Hence if a ov(A) # 0,

= gl)\ U {5}7 gsa()\) = ‘I;a(,\) U {S,}a glsa()\) = Sa ,/\Son
(5,8") = (SarSatea(n) i La(X) >0, (5,8) = (Satra(r),5a) if La(X) > 0.

If aov(X) =0, no affine hyperplane Ker(a + k) separates € from A(€) or from s,(\)(€). Setting
T\ = T we deduce
T;a()\) = sa‘I&sa.

In general q) is equal to

qy ifaov(A)=0, d\q(se) ifaov(A)>0, d\a(satacw(n)) if @ov(A)<0.
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where g 1= HTE@A q(7), and similarly q_(») is equal to

q;ao\) if aov(A) =0, q’sa(A)q(sa_aoy(A)) if aov(A) >0, q’sa()\)q(sa) if aov(A) <0,

as aov(sq(A)) = —aor(N). We recall that g(7) depends only on the W-orbit of 7 (Remark 4.9(e),
(f)). Applying Lemma 5.2 and ‘I’SQ(A) = 5aT)\8q, We obtain gy = qg_ (- O

PROPOSITION 5.14. Let 3 € Ay,. Then (8o v)(A*) = 27 when ¥; has rank 1, or when f3 is a
long root of ¥; and %; has type Cp,n > 2. Otherwise (8 o v)(A*) = Z.

Proof. The translation subgroup A of W2 is generated by 848441 for v € X7, and B o
v(sy8y+1) = B(vY) = n(B,7) is a Cartan integer. The group S o v(A*) is generated by the
Cartan integers n(3,v) for v € ¥ and contains 2 = n(f3, ). When ~ does not belong to the
irreducible component ¥; we have 0 = n(3,7).

On the Cartan matrix [Bou68, VI, Planches], we see that n(3,v) € 2Z for all v € ¥; if and
only if ¥; has a single element, or X; is of type C,, and f3 is a long root. |

We recall that for g € X, (fov)(A) = 0Z with § € {1,2} and § = 1 < sp_; is conjugate to
sg by A (Remark 5.3). For § € X, as in Proposition 5.14, § = 2 implies that ¥; has rank 1, or
B is a long root of ¥, and ¥, has type Cy,,n > 2.

We recall the element pg = sg155 = spsp—1 € A (after Lemma 5.2).

LEMMA 5.15. Let 8 € Ay, such that (3o V) (A = 27. Let Be Y; be the highest positive root
of Ej.
There exists s' € S w e Wy such that

sp_1 =wswt,  l(ug) = 26(w) + 2.
If ¥; has rank 1, then w = 1 and s = SB—1=S5_1-

If ¥; has type Cp,n > 2, and 3 is a long root of ¥;, then s’ = 51 and w(ﬁ) = 8.
Proof. By Lemma 5.6, the hyperplanes Ker(3+ k), for k € Z, separating € and pg(<) are Ker(/3)
and Ker(8 + 1). As € and pug(€) are not on the same side of Ker 3, we have £(sg_1) < £(up)
[Bou68, V.3.2, Theorem 1], hence

U(ug) = L(sp-1) + 1.

We choose a reduced decomposition sg_1 = s1...5, with s; € St for 1 < j<n=~{(sp_1). By
the strong exchange condition [Kum02, Theorem 1.3.11(c)], there exists a unique integer ¢ such
that 1 =5s1...;...5,. Set

=85, w=51...8-1=(841... Sn)il.
Then
sp_1 =ws'w ' with £(sg_1) = 20(w) + 1.
We deduce pg = sgws'w™L, €(ug) = 20(w) + 2.
If 3¥; has rank 1, w =1, s’ = sg_1 and £(ug) = 2.
It Xj has type Cp,n > 2, the long roots of ¥; are Wy-conjugate to the highest positive root
B. If 5 is a long root, let w € Wy such that w(5) = 8. Then w(sﬁ;l) = Sy(j-1) = 96-1- No
element of ST — {s5_,} is conjugate to 5, in WA (see [Bor76, 3.3] and [Bou68, VI, Planche

I]). We deduce s = s5_;. O
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5.2 Alcove walk

By [Go6r07, Definition 2.3.1], an orientation o of (V, ) is given by distinguishing, for each affine
hyperplane H € §), a positive half-space among the two half-spaces which form the complement
of H in V' (the non-positive half-space is called negative) such that for all H € §), either

(1) for any finite subset of §), the intersection of the negative half-spaces is non-empty, or

(2) for any finite subset of ), the intersection of the positive half-spaces is non-empty.

The group W (1) acts on the orientations of (V, §)). The image by w € W (1) of an orientation
0 is the orientation o e w is such that the o e w-positive side of H € $ is the image by w™"! of the
o-positive side of w(H). The action of W (1) factorizes through an action of W.

The group Wy acts simply transitively on the Weyl chambers (the connected components
of V. — UBGE Ker ), hence on the bases of ¥, and on the alcoves (the connected components
of V' — Us kyexan Ker(8 + k)) of vertex 0. The basis Agp associated to the Weyl chamber D is
the set of 3 € ¥ taking positive values on © such that sg is a wall of ©. The Weyl chamber ©
is called Ap-dominant. The action of Wy inflates to an action of Wy(1).

DEFINITION 5.16. Let A’ be a basis of ¥ associated to a Weyl chamber D a/. For H € ) there
exists a unique pair (3, k) € £ with H = Ker(3 + k) and j is positive on A’. The orientation
oas such that the oas-positive side of H is the set of x € V where f(x) + k > 0, for all H € ),
is called a spherical orientation.

The oa/-negative side of H is the o_as-positive side of H. The most oar-negative point of V'
lies infinitely far in the A’-antidominant Weyl chamber ©_r = —®as. The oas-negative side of
H contains a quartier of the form y + ® _as.

The spherical orientations oa,, and o_a,, are respectively called dominant and antidominant,
as the bases Ay, = Agp+, —Ayx = Ag- of ¥ are respectively associated to the dominant and
antidominant Weyl chambers D% (containing €) and @~ = —D™.

PROPOSITION 5.17. A spherical orientation oas is fixed by A(1) and opr @ w = 0,,-1(ary for w €
Wo(1).

Conversely one can prove that an orientation fixed by A(1) is a spherical orientation.

Proof. Let A\e A,z €V, € X,k € Z.

We suppose that § is A’-positive. Then x belongs to the oas @ A-positive side of Ker(8 + k)
if x + v(A) belongs to the oa/-positive side of Ker( + k) + v(A). We have Ker(5 + k) + v(A) =
Ker(B+k— (Bov)(N) and B(z +v(N\) +k — (Bov)(\) = B(x) + k. Therefore onr @ A = oar.

We suppose that 3 is w™1(A’)-positive, that is, w(j3) is A’-positive, and that = belongs to
the o,,-1(an-positive side of Ker(8 + k). We have (z) + k > 0 and S(z) = w(8)(w.z). Hence
w.x belongs to the oas-positive side of Ker(w(8) + k). We have Ker(w(f) + k) = w.Ker(5 + k).
Hence z belongs to the oas @ w-positive side of Ker(5 + k). O

Let o be an orientation of (V,$). We say that we cross H € §) in the o-positive direction if
we go from the o-negative side to the o-positive side (in the o-negative direction otherwise). Let
(w,s) € W x S, When we walk from the alcove w.€ to the alcove ws.€, we cross the affine
hyperplane H,,.,,—1 € $ fixed by wsw ™.
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DEFINITION 5.18. Let o be an orientation of (V) and let (w,s) € W x S, Let
e ¢,(w,s)=11if w.€ belongs to the o-negative side of H, 4,1,
e ¢, (w,s) =—11if w.€ belongs to the o-positive side of H,,g,-1-

Let €,(w, §) = €o(w, s) for w, 5 € W(1) lifting w, s.

When we walk from w.€ to ws.€, we cross H,,,~1 in the o-positive (respectively, o-negative)
direction if €,(w, s) = 1 (respectively, —1). We say that we cross H,,,,-1 in the €,(w, s) direction
with respect to o.

Let s1,...,5, in S*. The walk from € to si...s,(¢) following the gallery €, s;.C,
5182.€,...,51...8,.C, crosses the hyperplanes

I’IS1 = I{T17 81.]{;2 = HT2, c..,8182... Sn—1~H5n = HTn,
where T(s1,...,5,) = (71,...,7n) (66), in the
60(1, 81), 60(81, 82), ey 60(81 .. 8i—1, Si), e ,60(81 e Sp—1, Sn) (76)

directions with respect to o.

Example 5.19. For J C A, let Sy = {sg | 5 € J}, let W; C Wy be the subgroup generated by
S7 and let wy be the element of maximal length in Wj.

For w e Wy, s € S, we have €, ., (w,s) =1 if and only if £(ws) = £(w) + 1.

Proof. Let ¥; C ¥ be the root system generated by J. Let § € J such that s = sg. We have
H, -1 = Kerw(f). Let x € €. The alcove w.€ is contained in the Oy, (a)-negative side of
H,,— if and only if w(p) is ws(A)-negative because w(f)(w.z) = B(x) is positive. The root
w(f) belongs to ¥ ;; hence w(f) is wy(A)-negative, if and only if wyw(S) is A-negative, if and
only if w(B) is A-positive, if and only if {(wsg) > £(w). O

LEMMA 5.20. Let s,s' € S with ss’ of finite order n(s,s'). Then the sequences with n(s,s')
terms

(€0(1,8),€0(5,8),€0(58,5),...) and (e (1,5),€0(s,5),€0(5's,5),...)
are equal to (1,1,...,1,-1,—1...—1) and (-1,-1,...,—1,1,1...1), or to (—1,—1,...,—1,1,
1...1)and(1,1,...,1,—1,—1...—1), where (1,1...,1) have the same length k, 0 < k < n(s, s'),
in both sequences.

Proof. [Gor07, Proof of Theorem 3.3.1]. O

LEMMA 5.21. For (w,w’,s,u) in W x W x S* x Q, we have ¢,(ws, s) # €,(w, s) and

Coew(W,8) = eo(ww', s), e(wu,s) = eo(w,usu_l), €oeu(W, ) = eo(uwu_l,u_lsu).

In particular, €,(1,s) # €,e5(1, s).

Proof. (1) ws(€) and w(€) are on different sides of H,z,-1.

(2) €pew(w’,s) =1 if and only if w'.€ is contained in the o e w-negative side of H,y 1. The
0 ® w-negative side of H, /-1 is the image by w™! of the o-negative side of H,,,s,/—1,~1. Hence
coew(w',s) = 1 if and only if ww'.€ is contained in the o-negative side of H,,/g—14-1, if and
only if €,(ww’, s) = 1.

(3) We have u.€ = €. We have ¢,(wu, s) = 1 if and only if wu.€ = w.€ is contained in the
o-negative side of H,,4,-1,,-1 if and only if €,(w, usu™') = 1.

(4) We compute ¢, e (w,s) = €,(uw, s) = e,(vwu™t, u=tsu).

(5) €res(l,s) = €n(s,8) # €(1,5). O
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5.3 Alcove walk bases
We use notation as in Theorem 4.7 and Definition 5.16. We will associate to any orientation o of
(V. $) abasis (Eo(w))wew (1) of the R-algebra Hr(gs, cs) of W (1) with parameters (gs, ¢s) scgam(1)-

DEFINITION 5.22. For (w, s) € W (1) x $#(1) and an orientation o € (V, $), and for T, € Hg(qgs,

¢s), we set

TS =Ty if eg(w,s) =1, TOWS) =TF =T, —¢, if eg(w,s) = —1 (77)
where ¢,(w, s) is defined in Definition 5.18. For s1,...,s, in ST (1), u,u’ € Q(1), we set

Bo(t, 51, .., sp,u’) = T,Teolws1) | eelust-simnsi) | qeofustsnton)T, (78)

We remark that F,(s) = T;O(I’S), Eyes(s) = T;"‘S(l’s),
Eoes(s) = Eo(s) + €res(l,8)cs, Eo(s)Eses(s) = gss? (79)

(Remark 4.12 and Lemma 5.21).
We suppose first that gs = 1 for all s € S2F /~. In this case T = TS__l1

PROPOSITION 5.23. When qs = 1 for all s € S/~ Ey(w) = E,(u, s1,...,5,,u') depends only

on the product w = usy ...s,u'.

Proof. [Go6r07, Theorem 3.3.1], [Sch09, Theorem 3.3.19].
(a) Let s,s" € S of finite order n(s,s’) and s(1),s'(1) € S2¥(1) satisfying (b3) (this is the
only place where (b3) is needed). We show

Eo(s(1),5'(1),...) = Eo(s'(1), s(1),...).

By symmetry we can suppose that the sequences in Lemma 5.20 are (1,1,...,1,%,%,...,%)
and (#,%,...,%,1,1,...,1) with k& terms equal to 1. We decompose accordingly the products
s(1)s'(1) ... = wpwn(s sk, 8 (1)s(1) ... = w;(s s,)ikw;. By the braid relations,
E,(s(1),8(1),...) = T, T4 and  FE,(s'(1),s(1),...) =T, Ty -
wn(s,s/)fk w n(s,s’)—k k

The element w’;(lsvs/)_kwk = w}i,w;(ls o) has length n(s, s') because w’;(ls o)k ends by s'(1)~

while wy, begins with s(1). The additivity of the lengths is satisfied and by the braid relations
T -1 Ty, =T T, . We deduce FE,(s(1),5'(1),...) = Eo(s'(1),s(1),...).

w n(s,s’)—k n(s,s')—k

1

(b) Let ¢y ...t, € Zi such that s1...s, = s|...s), where s, = s;t; for 1 < i < n. The equality
Eo(s1,. .., 8n,u) = Ey(sh,..., s, u)

Y n

is obvious by the braid relations using the fact that the elements of Zj, have length 0, act trivially
on V, and Zj, is normal in W (1).
(c) We suppose that s;11 = si_l. We have

EO(Sb <oy Sny U) = Eo(81, sy 8i—1,8i42,- -5 Sn, U),
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because T;D(W’S)T;f(lws’s_l) = 1. This follows from €,(w,s) # €,(ws,s) (Lemma 5.21); we recall
that €,(ws, s™') = ¢,(ws, s) and that ¢, = 1.

(d) As the elements of the group (1) normalize S*F(1) and have length 0, the equality
Eo(u, 81,...,8,u) = Eo(uslu_l, o uspuT uu’)

follows from T, T} = T*, T, and €geu(w,s) = €o(uwu™", usu™?t) for s € S*(1),w € W(1),
u € Q(1) (Proposition 4.13(5)).
(e) The proposition follows from (a)—(d) and [Bou68, IV.1.5, Proposition 5]. O

PROPOSITION 5.24. When ¢ = 1 for all s € S™ /~, we have the product formula

Eo(ww') = Ey(w)Eyew(w') (w,w’ € W(1)). (80)
Proof. Let w = s1...spu,w’ = 5] ...5,u’ with s;, s} € S (1), 4" € Q(1). From Proposition 5.23
we have
E,(ww') = Ey(s1,. .., sn,ushu™t, ... ush, u™t uu').
From €,44(1,5) = €,(w, s) for (w,s) € W (1) x S (1) (Lemma 5.21), the right-hand side is equal
to
E,(51...52)Egew(usiu™t, ... us, u™t uu')

and Fyey(usiu™, ... usi ,u™ uu') = Eyey(uw') = TyEyew(w') from Proposition 5.23. Hence

E,(ww') = Ey(s1...80)TuEpew (W) = Ey(w)Eyew(w'). |
We recall gy = (Guudyn)/? for w,w' € W(1) (Definition 4.14).

THEOREM 5.25. Let o be an orientation of (V, ), let w,w’ € W(1), and let there be a reduced
decomposition w = s1 ... 5y U, u € (1), 5; € Saf(1) for 1 <i < £(w). Then

Eo(w) = Eo(s1,- - -, Sf(w)au) € Hr(gs, cs)
depends only on w and Ey(w)E,ew(w') = gy Eo(ww').

Proof. As in § 4.5, the R[(qs,q;')]-algebra H (. q;1)](1,C|;105) satisfies Propositions 5.23

and 5.24. Let s € S*(1) and u € Q(1). The elements T}, T, T = Ty — q; 'cs and E,(w) in
H i, q;1)](1,qs_105) are sent by the isomorphism > h (70) to elements of Hp, .-1y(qs, Cs)

equal to
TS =T, To=Tu (T =Ti—a; cs=a;"(Ts — ;) = a; ' T3,
Bo(w) = (Teey(qepr-simesdy | (qaelrsnsiw)y-p
‘We have

Eo(w) = q;lEO(Sb R Sf(w)au)'

In HR[(qs qs—l)}(qg,cs), the product q,F,(w) depends only on w hence the same is true for

Eo(s1,- - -5 S4(w),u). The product formula in HR[(% q;1)](1,q;105) implies the product formula

Eo(0) Boew(w') = Qi Bo(ww'),  Qu s = Guobur Gy (81)

in HR[(q&qS_l)}(qS,cs). The product formula holds true in the generic R[qs]-subalgebra Hp(q,)

(qs, ¢s). By specialization, it holds true in Hg(gs, ¢s). O
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The Bruhat partial order < on (W?F §3) extends to W = W x Q : wu < w'v' for w,
w e WMy € Qif w < w and v = «'. The extended Bruhat partial order < on W inflates
to W(1) : w < @' for w,w" € W(1) lifting w,w’ € W if w < w'.

COROLLARY 5.26. (Eo(w))wew (1) s an R-basis of Hg(gs, cs) satisfying the triangular decom-
position: for w € W (1), Eo(w) =Ty + "y 0w T with w’ € W(1),a, € R.

Proof. E,(w) — Ty, is a finite sum of elements T,y where w’ = s} ...sltu for t € Zy,u € Q(1),

/

and (s],...,s.) extracted from the sequence (si,...,s,) with r < n. O

COROLLARY 5.27. Let w = s1...s,u with s; € S*(1),u € Q(1) be a reduced decomposition.
Then

Eo(w) = Eo(sl)Eoosl (32)7 . 7E003152A..5T,1 (ST)T’U,'
Proof. g =1 when £(w) + {(w') = {(ww') (Lemma 4.16). O

One does not need to change the orientation o in the product formula in E,(A(1)) when A(1)
fixes 0. By Proposition 5.17 we have the following corollary.

COROLLARY 5.28. Let o be a spherical orientation of (V,$)). The R-submodule of Hr(qs,cs) of
basis (Eo()))xen(1) is an R-subalgebra A, of Hr(gs, cs), with product

Es(NEo(N) = ganEs(AN) (A, X € A(1)).

The R-algebras A,, A, associated to two spherical orientations o, o/, are isomorphic by the
linear map sending E,(A) to Ey (M) for all A € A(1).

For each (open) Weyl chamber © of V, let A5(1) the monoid of elements A € A(1) such that
v()) belongs to the closure D of ®. For w € Wy(1), the R-linear map A — w(\) := wAw ! is an
isomorphism R[A(1)z] — R[A(l)w@)}.

Let A, N € A(1). We have qy » = 1 if and only if £(AN') = £(X)+£(\)(Lemma 4.16) if and only
if v(\), v(\') belong to the same closed Weyl chamber (Example 5.12). We deduce the following
result.

COROLLARY 5.29. Let o be a spherical orientation of (V,$)) and let © be a Weyl chamber of V.
Then the monoid R-algebra R[A%(1)] embeds in Hr(qs,cs) by the linear map such that

A= Ey(A) (A eD(1)).

Ezample 5.30. Let A’ be a basis of ¥ and A € A,t € Kerv of lift \,7 € A(1). Then

E,,, () =Ty if v(X) belongs to the closed A’-dominant Weyl chamber,
E,,, (A) = 5 if v()) belongs to the closed —A'-dominant Weyl chamber,
EOA/(S\tN) = EOA/ (X)TE = T;\fj\—l (N (5‘)

Proof. When we walk from the alcove € to the alcove € + v(\) we cross hyperplanes in the
oa/-positive (respectively, negative) direction because we walk away from (respectively, toward)
the most oa/-negative point of V' which lies infinitely deep in the —A’ dominant Weyl chamber.
When t € Kerv we have gyt = ¢t = ot = @2 = 1 because Kerv C Q (Corollary 5.11) and
Guu = GQuw for w € W u € Q (Definition 4.14). O
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We recall the involutive automorphism ¢ of Hg(qs,cs) such that «(Ty) = (—1)“®T% for
w e W(l).

LEMMA 5.31. o(E,,, (w)) = (—1)"WE, ,(w) forw e W(1).

Proof. The oas-positive side and the o_a/-negative side of any hyperplane H € § are equal. We
have ((Ts) = —T% and «(T¥) = —T; for s € S2(1). O

Ezample 5.32. With the notation of Example 5.19, for J C A and w € W;(1) we have

EOwJ(A) (w) = T, EOwJ(A) ew-1(w) =Ty, EOwJ(A) (w)EOwJ(A) 'w(w_l) = Qu-
In particular, for w € Wy(1),

Eo 4 (w) = Evowfl(w) = Tuw, EO_A ew1 (W) = Eox (w) = T:;.

Proof. (1) We have €0y (a) (w,s) =1 for (w,s) € Wy x Sy with ¢(ws) > ¢(w) (Example 5.19).

Applying this to (s1...s;-1,8;) if w = s1...5,) is a reduced expression for w, we get
E%J(A) (w) = Ty

(2) €0y (a) ew—1(81...8i—1,8))= €0y () (S .- 8i,8i)# €0y () (S ---Si+1,8i) =1 (Lemma 5.21).

(3) Propositions 4.13 and 4.22. O

Ezample 5.33. For s € S(1),5 € (1) — S(1),w € Wy(1), we have

E, ,(8)=T;, E, jew(s)=Ts ifandonlyif {((ws)> {(w).
Proof. (a) Let x € €. We have €,(1,5) = —1 if and only if x belongs in the o_a-positive part
of H;. We have H; = Ker(—Bj + 1) where Bj is the longest root of an irreducible component
Aj of A, and —Bz(x) +1> 0. As —f3; is —A positive, z belongs in the o_a-positive part of
Ker(—f; 4 1).

(b) €o_now(l,s) =€,_,(w,s) by Lemma 5.21. Then use Example 5.19. O

LEMMA 5.34. Let A’ be a basis of &, § € ¥ N £A’ and w € W (1) such that {g(w) = 0. Then
E,,, .Sﬁ(w) =E,,, (w).
Proof. If B € £A’ and o € ¥ — {£}, then the oas-positive and oas e sz-positive sides of Ker(a +
n), for all n € Z, are equal.
If 3 € &7, then ¢3(w) = 0 if and only if the alcoves €, w(€) are on the same side of Hg,,, for
all n € Z (Lemma 5.6). This means that no Hg,, for n € Z, belongs to ¥,, (Definition 4.14).
We deduce that if § € ¥t N £A’, fg(w) = 0, then the oas-positive side of H is equal to the

oar @ sg-positive side of H; for all 7 € T, or equivalently, E,,,es,(w) = E,,, (w). O

For the rest of this article, we consider only spherical orientations of (V, ).
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5.4 Bernstein relations

Let o be a spherical orientation of Weyl chamber ©, associated to the basis A, of X formed by
the set of 5 € ¥ positive on D, and such that Kerg is a wall of ©, (Definition 5.16). We denote
the corresponding Coxeter system by (W, S,), where S, := {sg | 5 € Ay}. We have S, = S when
0 is dominant or antidominant. For w € W (1) and A € A(1) we have w()\) := wAw ™! € A(1).

PROPOSITION 5.35. E,(5)Eyes(A) = Ey(sAs 1) Ey(s) if A € A(1),s € W,(1) and s? € Zj,.

Proof. As s? € Zy,, the product formula implies (Theorem 5.25)
Eo(8)Epes(A) = qs7,\E0(s/\), Eo(5(N)Eo(s) = qS()\),SEO(S)\)7

and
qs, X = 4s(\),s

because q‘f’)\ = qsq,\q;)\1 and qi/\s,l’s = qs)\s_lqsq;\l by Definition 4.14, and g, ,-1 = ¢y as s € W,(1)

by Proposition 5.13. O

We denote by A*(1) the group of A € A(1) such that v()) is fixed by s € W,(1); note that if
s lifts sg, 8 € ¥, then A € A®(1) is equivalent to (5o v)()\) = 0.

DEFINITION 5.36. Let A € A(1),s € W,(1),5? € Z;,. Then
Eo(5)(Eoes(A) = Eo(N)) = Eo(sXs™) Eo(s) — Eo(s) Eo(\) (82)

will be called a Bernstein element. Note that when A € A%(1),s € S,(1), the Bernstein element
vanishes because E,¢5(A) — Ey(A) = 0 by Lemma 5.34.

When s € (SN S,)(1) we will show that the Bernstein element (82) belongs to the subalgebra
A, (Corollary 5.28); its explicit expansion in the alcove walk basis (Eo(w))ywew (1) is called a
Bernstein relation.

Notation 5.37. We suppose s € sg(1),8 € A, (B ov)(A) # 0. We denote by eg(\) € {1,—1} the
sign of § o v(A). By Corollary 5.10,

es(N) = —1 & £(s)) < L(\), es(N) =1 £(s\) > £(N).

The image of o v is §Z with 6 € {1,2} (Remark 5.3). Let ng(\) be the positive integer such
that

Bov(A) =eg(A)ong(N).

We choose A\; € A(1) with 5o v(As) = —d. If § = 1 there is no other condition on Ag. If 6 = 2,
we suppose that A is a lift of pg = sgy155 € A as in Lemma 5.15. Hence

A = swiw™t, L) = 20(w) + 2,

where w € W2 (1), 5 € 52(1) lifts s_ 441 for the highest root B of the irreducible component

Y; of ¥ containing 3. Note that v(ug) = —8Y and that the image of swsw™ls™1 in W is
SBSB_158 = SB41-
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We define elements B,,,, € A, for n € N5o. For n =1,
By = (6 — 1)(wecs)s*Eo(AS") + ¢, (83)

where the term containing (w e ¢z) appears only when ¢ = 2. For n > 2,
Bon =Y Eo(s(\")B,1E,(\;"). (84)

For n > 1, the inner kth term

Eo(s(X$))Boa Bo(A*) = Bo(s(AD)((6 — 1) (w e c5)s” Eo(A\S ) + ¢5) Bo(AS ")

S

is the sum of § = 1,2 terms
(0—1)c(2k+1)Ey(u(2k+1)) +c(5k) Eo(11(5k)) = (6 = 1) Eo(u(2k+ 1)) (2k +1) + Eo(u(5k) ) (6k),
where u(k) € A(1) and ¢(k), (k) in R[Zk] depend on s and are defined, for k € Z, by

(k) = sONNTF, c(0k) = s(\F) ec,,  ¢(0k) = NFec,

s

and if 6 = 2,

w2k +1) = sOOATFEFL 2k +1) =s(M\) e, d(2k+1)=MNtec,
2 = Wegs?w ! for any w € W (1) lifting w.
We obtain the expansions

where 7 = wecss

on—1 on—1
Bon = Y c(kK)Eo(u(k)) = Y Eo(p(k))d (k).
k=0 k=0

We recall the signs €,(1,s) # €,e5(1, ) (Lemma 5.21).
The Bernstein relations when ¢s = 1 for s € S are given by the following theorem.

THEOREM 5.38. We suppose that g, = 1 for s € S,
Let s € (S N S,)(1) and A € A(1) — A®(1). The Bernstein element (82) is equal to

€oes(1,8) By, Bo(A) if eg(A) = =1, €(1,5)Eo(sAs™ ) Bop,n) i €g(A) =1,
where s € sg(1), 5 € A.

The proof is divided into steps given as lemmas. We use the notation of (5.37).

LEMMA 5.39. We suppose that qs = 1 for s € S,
When 6 =1,s € S(1), we have

Eo(5)(Foes(As) — Eo(As)) = €es(l,8)csEo(Ns).
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Proof. We have 5 € sg(X7) because (3 is positive. The hypothesis fov(As) = —1 implies £g(sAs) =
—Bov(As) —1 =0 by Proposition 5.9(3) and E,(sAs) = Eoes(sAs) by Lemma 5.34. Applying
the product formula,

Ey(5)(Epes(As) — Eo(As)) = Eo(sAs) — Eo(8)Ep(As
= Foes(sAs) — Eo(s)E,(
= Eoos(S)Eo(As) - ED(S)EO()‘S)
= (Eoes(s) — Eols)
= 6008(17 S)CSEO()\S

The last equality follows from s € S(1) and (79). O

LEMMA 5.40. We suppose that qs = 1 for s € S,
When § =2,s € (S N S,)(1), we have

Eo(5)(Eoes(Xs) — Eo(Xs)) = €es(1,8)[(wecs)s® + csEo(Xs)].
Proof. Applying the product formula,
Eo(As) = Eo(swdw™) = Eo(5)Eoes(w) Eoesw(3) Eoesws(w™),
Eoes(Xs) = Eoes(8)Eo(w) Epew(5) Eoews(w™).
We have £5(w) = 0 because w='(8) = § € ©F (Lemma 5.15 and the remark before Lemma 5.6).

We note that oe sws = oew because sws = A\sw and the orientation o is spherical. We deduce
(the first equality follows from Lemma 5.34):

Eoes(w) = Eo(w), Foesws(w™) = Egew(w™),
Eo(As) = Eo(8)Eo(w) Epesw(5)Eoew(w™ 1)’
and FEyes(As) — Eo(As) is the sum of (Eo.s( ) — Eu(8))Ey(w)Eyesw(3) Eoew(w™) and
Eoes(8)Eo(w)(Eoew(8) — Epesw(5))Eoew(w ) y (79) and s € S(1),
Eoes(As) = Eo(As) = €oas(1,5)csEoas(Wiw™) + €raw(1,5) Eges(sw)csEoew(w™)

= €res(1,8)(csEpes(wsw™ 1) + (swocS)EO.S(sw)EO.w(w_l))

= €res(1,5)(csEpes(wiw™) + (swecs)Eyes(s)).
For the second line, we note that sg € S, permutes the o-positive roots of X different from
4. The o-positive side is equal to the o e s-positive side for the affine hyperplanes of the form
Ker(y+k), k € Z,y € —{£}, between €, \;(€). The affine hyperplanes of the form Ker(8 + k),

k € Z, separating €, \s(¢), are Ker 3, Ker(8 4+ 1) (Lemma 5.6). We cross the hyperplanes Ker
and Ker(8 + 1) in the same sense when we go from € to As(€) = €+ v(Ay), hence €,45(1,5) =

€oew(l,8).
Multiplying on the left by E,(s), we obtain

Eo(s)(Eoes(As) = Eo(As)) = €oes(1,8)(csEo(As) + (woc§)82),
using the product formula, E,(s)c = (sec)E,(s) for ¢ € R[Zy], secs = cs and (79). O
We summarize Lemmas 5.34, 5.39, and 5.40: for y € A%(1),z = As,

Eoes(y) — Eo(y) =0,
Eo(s)(Eoes(x) — Eo(x)) = €res(1,5)((6 — 1)(w005)82 + csEo(x)) = €0es(1,5)Bo1Eo(x),

with B, ; defined by (83). By a formal computation we will deduce the expansion of the Bernstein
element at any A € A(1). First, we take A = 271
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LEMMA 5.41. We suppose that g; = 1 for s € S, When s € (S N S,)(1),
Eo(8)(Eoes(z™h) = Bo(z71)) = €o(1,8) Eo(s (xil))Bo,l-

Proof. We recall that E,(w) is invertible for w € W (1) because g5 = 1 for s € ST/~ and that
the inverse of E,(\) is E,(A~!) because the orientation o is spherical. We multiply the equality
Eo(s)(Eoes(z) — Eo(z)) = €5es(1,5)Bo1E,(x) on the left by

Eo(8)Eoes() ' Eo(5)™" = Eo(8)Eoes(2™ ) Eges(s™") = Eo(s(z™)),
and on the right by E,(z)~! = E,(z7!) to obtain
EO(S)(EO-S($_1) - Eo{x_l)) = _EOOS(LS)EO(S(l‘_l))BO,la
and we use €,(1,5) = —€,e5(1,5). O
Now we relate the Bernstein element at z € A(1) to the Bernstein element at 2™ for n € Ns.

LEMMA 5.42. We suppose that g; = 1 for s € S, When s € (S N S,)(1),
Eo(s)(Eoes(2") — Eo(2")) = ZEo(ssz_l)Eo(s)(Eo.s(z) - EO(Z))EO(Zn_l_k)‘

Proof. Using that the orientations o and o e s are fixed by z € A(1), we have
Eoes(2") = Eo(2") = Fous(z" ") (Eoes(2) = Eo(2)) + (Boes (2" 1) = Eo(2" 1)) Eo(2). By

induction on n,

We multiply this equality on the left by F,(s), and we observe that
E,(5)Eyes(2F) = Eo(s2%) = Ey(s2s71s) = Ey(s2"s 1) E,(s). 0

We now conclude the proof of Theorem 5.38. For n € Ny, by Lemma 5.42 applied to z =z
and z = 2!, the Bernstein element (82) at 2" is equal to

i
L

€oes(l, S)EO(s(xk))Bo,lEo(i)Eo(xnflfk) = €oes(1,5)BonEo(z"),
0

i

with B, defined in (84), and the Bernstein element (82) at 27", n € Ny, is equal to

n—1

€o(1,8) > Eo(s(x™ ") Eo(s(z7)Bon Eo(2™") = €o(1, 5) Eo(s(z ")) Bon-
k=0

As x = Ag, (Bov)(As) = =0, an arbitrary A € A(1) is equal to

5= "y ifeg(N) = -1,
Clyz ifep(N) =1,
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where y € A*(1) and n € N. We multiply on the right by E,(y) the Bernstein element at " to
obtain the Bernstein element at A = z™y,

Eo(8)(Eous(\) — Eo(N) = €ons(1,5)BonEo(N).

We have E,(sys 1) E,(s) = Ey(sy) = Eo(s)Eoes(y) = Eo(s)Es(y). We multiply on the left by

E,(sys—') the Bernstein element at ™" to obtain the Bernstein element at A\ = yz ",

Eo(3)(Eoes(A) — Eo(N) = Eo(s(y)) Eo(8)(Eoes(x™") — Eo(z™")) = €5(1, 8) Eo(8())) Boyn.-

)

This ends the proof of Theorem 5.38.

COROLLARY 5.43. When ¢, = 1 for s € S, with Notation 5.37 and the hypothesis of
Theorem 5.38, the Bernstein element (82) is equal to

|Bov(N)|—1 |Bov (V)| -1
60<173>6,3()‘) Z C(k7)‘)EO(:u(k7)‘)) = 60(178)65(/\) EO(M(k7)‘))C/(k7 )‘)
k=0 k=0
where c(k, \), d (k,\), u(k, \), which depend on c(k),c (k), u(k) and hence on \s, are defined by
c(k, ) =c(k), (k) =X"Ted(k), plk,\)=pulk)\ ifeg(\)=—1,
c(k,N) =s(N)ec(k), (k) =Cdk), pk ) =sNulk) ifeg(\)=1.
Proof.
n—1 n—1
BonE(\) = Y c(k)Eo(u(k)A) = > Eo(u(k)\)(A " 0 (k).
k=0 k=0
n—1 n—1
Eo(s(A\)Bon = ) s(N) e c(k) Eo(s(Au(k)) = Y Eo(s(Nu(k))e (k) O
k=0 k=0

Recalling Notation 5.37, we have
v(p(k)) = kBY = v(puz"), Bov(u(k, X)) =2k —|Bov()), (85)

because when 6 = 1, v(sAss 1) = s(v(As)) = v(Xs) + 3 because Bov(\s) = —1, and when § = 2,
v(pg) = —BY, v(spgs') = BY. For k # k' we have Zpu(k,\) # Zgu(k',\). Corollary 5.43 gives
the coefficients of the expansion of (82) in the basis (Eo(w))wew (1)-

We pass from the case gs = 1 to the general case using the method explained in § 4.5. The
Bernstein relations in the R[(gs,qs *)]-algebra HR[(qs,qs‘l)](l’ q5 lcs), are given by Corollary 5.43
where cs and cz are replaced by g5 'cs and qg_lc§ in the formula for ¢(k). A quick inspection
shows that this means replacing c(0k) by q;'e(6k), and, when § = 2, replacing c¢(2k + 1) by

—1
: c(2k+1).

LEMMA 5.44. The isomorphism h — h : H (g, Cl;1)](1, q; tes) — H Ri(g0,00)] (qs, ¢s) (see (68) and
(70)) sends E,(w),w € W (1), to

Eo(w) = q;lEo(w) € HR[(qS’q;I)}(q57 Cs)~
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Proof. Let s € S*(1). The image of T* = T, — q; '¢cs € H R((qe.as)]
95 1(Ts — ¢cs) = q5 'T7 in HR[(qS,qgl)](qu Cs). O

(1,95 ¢,) is Ty — q5 tes =

We multiply Eo(s)(Eoes(A) — Eo(\)) by qsqx and we note that ds(n) = qx (Proposition 5.13).
Corollary 5.43 implies the following result.

PROPOSITION 5.45 (Bernstein relations in Hpi(q. q;1)](qs,cs)). Let s € (S N S,)(1),A € A(1).
With Notation 5.37, the Bernstein element (82) is 0 if A € A®*(1). Otherwise, it is equal to

|Bov(M)]—1

65()‘)60(178) Z q(ka/\)c(kv)‘)Eo(lu’(kv)‘))v
k=0

where q(dk, \) = qu;(I(Sk,A) and, when § = 2,q(2k + 1,\) = qu;ékJrL)\)qsqg_l depends on s.

They are also the Bernstein relations in the subalgebra H gj(q,)(ds, cs) because this is the
expansion of Ey(s)(Eoes(A) — Eo(\)) in the basis (Eo(w))ywew(1). We deduce

a(k, Ne(k,A) € R[(qs)][Zk] for 0 <k < |Borv(N)].

This is true for any choice of R and (cs),cga(1) satisfying (a6) of § 4.3. We may choose R = Z
and cs # 0 for all s. Then c(k, \) € Z is not 0, therefore

akt. ) = [ @™ (mpa(s) €N). (86)
sesaff /o

We will later (in Proposition 5.49) give more properties of q(k, A). The Bernstein relations in the
R-algebra Hg(gs, cs) are obtained by specialization of the Bernstein relations in H gy(q,) (s, Cs)
by the map qs — ¢ for s € S /~. We denote by ¢(k, \) the specialization of q(k, \).

THEOREM 5.46 (Bernstein relations in Hg(gs,cs)). Fors € (S N S,)(1), A € A(1), the Bernstein
element (82) belongs to the subalgebra A, of HR(gs, cs) of basis (Eo(\))aea(1)- It vanishes when
A € A%(1), otherwise it is equal to

|Bov(N)]|—1

50(173)65()‘) Z q(k7A)c<k7A)EO(M(k7A))7
k=0

with Notation 5.37 and also the notation of Proposition 5.45.

For the dominant and antidominant spherical orientation o we have S = S,; for the
antidominant orientation o we have also (Example 5.32)

E,(w) =T, forall we Wy(1).

Writing E(w) = E,(w) where o is the antidominant orientation, we obtain a presentation of the
generic algebra Hpj(q,) (ds; Cs)-

COROLLARY 5.47 (Bernstein presentation of the generic algebra). The R[(qs)]-algebra

HR[(q.)](Ds> Cs)

is the free R[(qs)]-module of basis (E,(w)),ew (1) endowed with the unique R[(qs)]-algebra
structure satisfying:
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— braid relations for w,w' € Wy(1), E(w)E(w') = E(ww') if {(w) + L(w') = L(ww');
— quadratic relations for s € S(1), E(s)? = qss® + csE(s);

— product formula for A € A(1),w € W(1), E(A)E(w) = qxwE(Aw);

— Bernstein relations for s € S(1), A € A(1),

when v(\) is fixed by s, and

[Bor(N)|-1
E(s(\)E(s) = E(s)E(A) = €5(A) ak, Ae(k; A) E(u(k, A))

I
<)

when v(\) is not fixed by s.

5.5 Variants of the Bernstein relations
This section is motivated by applications to the theory of smooth representations of G over a
field C of characteristic p.

In the Bernstein relations in Hg((q,))(ds, ¢s) (Proposition 5.45), we move the term with k = 0
from the right-hand side to the left-hand side, which (using (82)) becomes

Eo(s(A) Eo(s) = Eo(s)Eo(A) — €5(A)eo(1,5)q(0, A)e(0, A) Eo(14(0, A)). (87)

PROPOSITION 5.48 (Variant of the Bernstein relations in H gy(q,) (ds; ¢s)). With the hypothesis
of Proposition 5.45, (87) is equal to

jfeﬁO‘) =1, E,(s(N\)Eo(s) = (Eo(8) + €oes(1,5)cs) Eo(N)
= qs(Eo(sA) — Epes(sA))
|Bov(N)|—1

co(ls) Y alk, Ne(k, \) Eo(u(k, M),
k=1
ifeg(A) =1, Eu(s(N))(Eo(s) + €0es(1,5)cs) — Eo(s)Eo(N)
|Bov(A)[—1
= 60(178) q(k7 )‘)c(k’)‘)EO(H(k))‘))‘

X
—_

The term Zlﬂ ! ! appears only if |3 o v(\)| > 1 and q(k, Na; ! € Z[(qs)] if eg(A) = —1.
Proof. The term with k£ = 0 in the Bernstein relation (Theorem 5.46) is
eg(Neo(1,5)q(0,A)c(0, \) Eo(1(0, X)) = —€o(1, 5)cs Eo(N)
= €oes(1l,5)csEp(N) if eg(N) = —1,
= €o(1,5)(s(A) @ cs) Eo(s())
= —€oes(1,5)Eo(s(N))cs  if eg(X) =1,

using €,e5(1,5) + €,(1,s) = 0, Corollary 5.43, Proposition 5.45, property (a5), and Lemma 5.21.
Case eg(A) = —1. Then (87) is equal to

Eo(s(A)Eo(s) = Eo(8)Eo(A) — €0as(1,8)csEo(A) = Eo(s)Eoes(A) — (Eo(s) + €0as(1, 5)cs) Eo(A)
= Ey(5)Fpes(N) — Eoes(s)Eo())
= qS(EO(S)\) - Eoos(S)\»
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using £(s\) = £(X\) —1,qs x = qs (proof of Proposition 5.35, E,(s) +€ses(1, 5)cs = Epes(s) (79)).
When R =Z, ¢(1,)\) € Z is not 0, hence the Bernstein relations imply q(k, A\)q; ' € Z[(qs)].
Case €g(\) = 1. Then (87) is equal to

Eo(5(N)Eo(8)—Eo(8)Eo(N) + €oes(1,8)Eo(s(A))es = Eo(s(N))(Eo(s) + 60.5(1, s)cs)—Eo(s)Eq(A)
= Eo(5(A\) Eoes(s) — Eo(s)Eo(A)
= EO(S)‘) - EO(S)EO()\)

using £(sA) = 1+ £()\),qs.x = ds(n),s = 1 (proof of Proposition 5.35). O
By specialization, the proposition is valid in the algebra Hpg(gs,cs). We now study the
elements
2 _ _
H Js i CIAqu(lk,)\)% mk,)\(s) € Nv HAS {17 qsqg 1}7 (88)
seSaff jn

by (86) and Proposition 5.45, for q2 = q, for s € S*¥(1) and = = 1 if and only if = 1 or k is
even.

PROPOSITION 5.49. Let 5 € A, X € Ak € Nyg with k < |fov(X)|. Then q(k,\) # 1. If eg(\) =
—1, we have:

(a) a(k,Nag, # 1 for 1 <k <|[Bov(\)|—1;
(b) a(l, N} =1 a(|Bor(\)| -1, ag) =16 ) = Luz'A) = 2;
(c) if A€ A~ then (X)) — K(Mﬂl)\) =2.

Proof. The proof relies on four claims:

(1) Dsesanjm 2mua(s) = £(A) — L(u(k, N));

(2) Lplk, N)) = LA ™) and () = L™V 7EN);

(3) if eg(A) =1 then £(X) — £(ukX) > 2M1n(k,ﬁ ov(\) —k) > 2;
(4) if X € AT then ugh € AT.

From (88) and Claim 1, q(k,\) # 1 < 4(\) # ¢(u(k,N)). This is always true by Claims 2
and 3.
Suppose now eg(A) = —1. By Proposition 5.48 and Claims 1 and 2,

a(k, Vg, =1 & () = ((usa") =
a(k, N)ds, 7 16 LA) = LpfA") > 2
We have £(\) = £(A71) and eg(A™1) = 1. We deduce from Claim 2 that
) = £(upA™Y) = £(A) — £(uly VTN,

We deduce from Claim 3 that £(\) — (3 EAH) >2ifl<k<|Bor(\)]—1.

Let p be the half-sum of the positive roots of ¥, If v € X is positive, p(v") > 1 with equality
if and only if +y is a simple root [Bou68, Proposition 29(iii)]. If A € A~, we have ¢(\) = —2p( (N)
(Corollary 5.10), ugl)\ € A~ by Claim 4, and —v(ug) = 8" (85). We obtain ¢(\) — E(uﬁ A) =

—2pov(A) +2pov(pz'A) = —2pov(ug) = 2p(8Y) = 2.
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It remains to prove the claims. Claim 4 follows from v(ug)) = =Y + v(\) and B(—8Y +
v(\)) = =2+ Bor(\) =0 because 0 < k < Sov(N), —a(BY) and a o v()) are non-negative for
all simple roots a € X — {3} because A € AT. O

We prove the remaining three claims. Claim 1 is easy and is valid without restriction on
k € Z. Note that p(k, \) and my »(s) (88) are well defined for k € Z.

LEMMA 5.50. 23" cganr . mia(s) = €(A) — L(p(k, N)) for A € Ak € Z.

Proof. Choosing reduced decompositions of A and u(k, A), we have

quH(k A) H CI Ns k) € Z, Z ns(k) = f()\) - E(N(kﬂ )‘))

seSaft fn seSaff

We compare with (88). O

We now prove Claim 2. It is valid without restriction on k € Z. The second formula is valid
for any root a € ¥, jta = Sat154 € DM with vpe) = —aV.

LEMMA 5.51. £(u(k, X)) = LA D) and £(uhA) = L(ue™™ 7 N) for A€ Ak € Z,a € T
Proof. Recalling (85) and Corollary 5.43, the value of v(u(k, X)) is

v(p(k)) +v(\) = V(#Ek)\) if eg(N) = —1,
V() + m(s(N) = v(3*s(N) = SN if es(N) = 1.

We have
sa(V(uZ)\)) = s5q4(—ka’ +v(\) = (k—aov(\))a’ +v(\) = (MgoV(A) k).

The length of € A depends only on v(z) € V' (Corollary 5.10), is constant on the Wy-orbit

of x, is stable by taking inverse, and the homomorphism v : A — V is Wy-equivariant. Hence
(kX)) = €A~ 0) = LA 0) and £(EA) = E(E™O5N), 0

We prove Claim 3. It is valid for any root o € X.
LEMMA 5.52. For a € ¥, A € A,k € Ny such that k < aov()), we have
C(N) — £(pEX) > 2min(k, a o v(\) — k).

Proof. (a) Reduction to v(\) dominant.

There exists w € Wy such that w(\) € A*. By Wy-invariance of v, we have aov()\) = w(a)o
v(w(X)). We have w(pia) = WSat15aW ™" = fy(a)- By Wo-invariance of £, O(ukN) = é(uﬁj(a)w()\)).
The lemma is true for (w(a),w(A)) if and only if it is true for the pair (a, A). From now on, we
suppose that A € AT,

(b) By [Kum02, 1.3.22 Corollary and 1.4.2 Proposition], v(A) —w(v(A)) € 37 A, Nv". Hence

2p(v(A) —w(r(X))) =2 0 with equality if and only if v(A) = w(v(N)).
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(c) For w € Wy such that w(v(uk))) = w(—ka" + v()\)) is dominant, we have £(uk\) =
2p(w(—ka" 4+ v(X))) as the length is Wy-invariant. Hence

() — (EN) = 20((0) — w(v(V)) + 2kp(w(a)).

We deduce that (1) £(\) — £(uEN) > 2k if there exists w € Wy such that w(a) is positive and
w(—ka 4+ v(N\)) is dominant; and (2) £(A\) — £(uE\) = 2k if there exists w € W) fixing v()\) such
that w(a) is a simple root and w(—ka" + v()\)) is dominant.

(d) Suppose 2k = aov(\), or equivalently —ka + v()) fixed by so. For w € Wy, w(—ka" +
v(N) = wsa(—ka" + v(\)) and either w(a) or wsy(a) is positive. We deduce from our first
deduction in (c) that £(X) — £(u5X) > 2k. The lemma is proved when 2k = oo v/(X).

(e) Suppose 2k < aov(\). For w € Wy such that w(—ka" +v()\)) is dominant, w(«) is
positive because w(a)(w(—ka"+v(N))) = a(—ka"+v()\)) = aov(N)—2k is positive by hypothesis.
A root which takes a positive value on a point in the dominant Weyl chamber of V' is positive.
We deduce again from our first deduction in (c) that £(\) — £(u%)\) > 2k. The lemma is proved
in this case.

(f) Suppose a o v(\) < 2k < 2a0v(X). We have £(uf)\) = f(,ugw()‘)*k)\) by Lemma 5.51. We
deduce from (e) applied to k' = aov(\) — k that £(\) — £(uEN) = 2(aov(X\) — k). This ends the
proof of the lemma. O

COROLLARY 5.53. We suppose that g, = 0 for all s € S (1). If A\ € A(1), o is a spherical
orientation and B € A are such that sg € S, and s € S*(1) lifts s3, we have

i Bov(N) =0, Eo(s(\)Es(s) = Eo(s)Es(N), (89)
iFBov(A) <0, BEy(s(\)Eo(s) = Eves(s)Eo(N), (90)
i Bov(N) >0, Eo(s(\)Epes(s) = Eo(5)Eo(N), (91)

where the sets {E,(s), Foes(s)} = {Ts, T} are equal.

Proof. Use Propositions 5.48 and 5.49, (79), and the remark following (82). |
COROLLARY 5.54. If o is the dominant or anti-dominant spherical orientation and w € Wy(1),
we have .
Eo(whw ™) Eo() — Eo(0)Eo(A) € Y Ty A,. (92)
v<w
In particular, ATy C Y2, To Ao

Proof. As S = S,, the Bernstein relations (Theorem 5.46) imply E,(5(X))E,(3) — E,(3)E,(\) €
A, for any s € S. We prove the lemma by induction on ¢(w). Let w € Wy, w # 1, and s € S such
that £(sw) = 14 ¢(w) and (92) is true for s and v < w. Hence the element

Eo(3(N)) Eo(30) — Eo(51) Eo(X) = Eo(51(N)) Eo(8) Eo(@) — Eo(5) Eo(w)Eo()
lies in

(B0 E((0) + A o) ~ Eol5) (Ea(DE0) + (3 Tod, ) )

v<w

= AEo () + Y Eo(3)T5.A,.
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The triangular expression for E,(w) in the Iwahori-Matsumoto basis (Corollary 5.26) and (92)
for v < w imply A, Eo(w) C ), ., T5Ao- The product formula implies that E,(5)15 € ) ;. RT:
if v < w. Therefore, we have

Eo(3(N) Eo(30) — Eo(30)Eo(X) € > T A,

v<w

In particular (92) is true for sw. O

We give the proof of another variant of the Bernstein relations when g, = 1 for all s € S/~
using the end of the proof of Theorem 5.38 after the Lemma 5.42. When o is the anti-dominant
orientation, this variant was discovered by Abe.

As in Notation 5.37, for s € S(1), let Ay € A(1), let § € Ay, such that s lifts sg and let
0 € {1,2} such that S ov(A) = dZ and S ov(As) = —0, and for k € Z let pu(k) € A(1) and
c(k),d (k) € R[Zy] depending on s, Ay, k defined in Notation 5.37.

As in Definitions 5.18 and 5.22, for an orientation o, we have E,(s) = T if €,e5(1,5) = 1,
meaning that the alcove € belongs to the o-negative side of Hy, and F,(s) = Ts — ¢s if €505(1, 5)
= -1

PROPOSITION 5.55 (Variant of the Bernstein relations). We suppose that qs = 1 for all s €
Saff /. Let s € (S N S,)(1), and let A*, A\~ € A(1) such that Bov(\t) = —Bov(A™) =dn > 0.
Then

on

Eo(s(A7)Eo(s) = Eo($)Eo(A7) = €0es(1,8) D Eo(s(\)u(—k))c'(—k)
k=1
on—1

= —€oes(1,5) Z c(k)Eo(u(k)AN),
on
Eo(s(A)Eo(s) — Eo(s) Eo(AT) = €00s(1,8) > c(—k) Eo(u(—k)A™)

= cous(1,8) > Eols(AT)p(k))d (k).

k=0

Proof. Let z = A\s and y,y’ € A%(1) such that
AN =2"y=9ya2", ANt =y "=y
The Bernstein element (82) at 2™, computed after Lemma 5.42, multiplied on the left by E,(s(y'))
is the Bernstein element at A~ = 3’2" because E,(s(y'))Ey(s) = Eo(8)Eves(y') = Eo(s)Eo(y'),
and we obtain
Eo(s(A7))Eo(s) — Eo(s)Eo(A™) = Eo(s(y"))(Eo(s(z")) Eo(s) — Eo(s)Eo(z"))
= €oes(1, S)EO(S(y/))BO,nEO($n)-

Similarly, the Bernstein element at =", computed after the Lemma 5.42, multiplied on the right
by E,(y') is the Bernstein element at A™ = 27"/, and we obtain:

Eo(s(A")Eo(s) — Eo(8)Eo(AT) = (Eo(s(x™")) Eo(s) — Eo(s)Eo(z™")) Eo(y)
= €oes(1,8)Eo(s(x7™)) By Eo(y').

n
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The explicit expansion of B,,, given after (84) gives B, ,FE,(z") = Zirgl c(k)Eo(p(k)x™); we
compute the product in the inner terms c(k)E,(u(k)z™) = Ey(u(k)x™)(u(k)x™ e c(k)), and we
replace k by dn — k to obtain

Multiplying on the left by €,e5(1, $)Eo(s(y')), we get

on

EosN)Eols) — Eo(8) Eo( A7) = cons(1,8) S Bo(s(y Ju(dn—k)a™) (u(6n—k)e™) ™" e c(Sn—k)).

k=1

Analogously, the second explicit expansion of B, ,, given after (84) gives
on—1
Eo<3<$_n))Bo,n = Z EO(*S(x_n)U(k))C/(k)
k=0

on—1
= > (s(@™)ulk) o (k) Bo(s(z ™) (k)
k=0
on
=) (s(z™™)u(dn —k)ed (6n —k))E,(s(x™™")u(én — k)).
k=1
Multiplying on the right by €,e5(1,5)E,(y'), we get
on

Eo(s(A))Eo(s)=Eo(8) Eo(A") = €oes(1,5) Z(swin)ﬂ(én_k) o ' (0n—k))Eo(s(z™")u(dn—k)y').
k=1

Recalling the values of (k) and c(k), for k € Z, we have: if k = ér, then u(on—Fk)z™ = s(z"")z"
and s(x) "u(on — k) = s(x™")a" ",
s(y)p(on — k)a" = s(y'z" )" = s(A7)s(z) 2" = s(A7)u(=k),
(u (5n—k) " lec(dn—k) =z "ec, = (—k),
s(@™")p(on — k)y' = s(z7")a""y = s(x) 2N = p(—k)AT
s(x)"u(én —k)ecd(n—k)=s(x™") ecs = c(—k);
if 6 =2,k =2r—1, then u(2n —k)z" = u(2(n —7r) +1)2" = s(z"")a" ! and s(z)"u(én — k) =

S(LE_T)I‘T_n_l,
sy )u(2n — k2" = s(A7)s(z) 2"t = s(AT)u(—k),
(p(2n —Ek)z") Lec2n —k) =2 " ec, = (—k),
sz u(6n — k)y = s(z7")z" AT = p(—k)AT,
s(x) "u(on —k)ed(n—k)=s(z"")ec, = c(—k). O
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