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Abstract

Let R be a commutative ring, let F be a locally compact non-archimedean field of finite
residual field k of characteristic p, and let G be a connected reductive F -group. We show
that the pro-p-Iwahori Hecke R-algebra of G = G(F ) admits a presentation similar to
the Iwahori–Matsumoto presentation of the Iwahori Hecke algebra of a Chevalley group,
and alcove walk bases satisfying Bernstein relations. This was previously known only
for a F -split group G.
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1. Introduction

This paper extends to a general reductive p-adic group G the description of the pro-p-Iwahori

Hecke algebra over any commutative ring R, that I gave 10 years ago for a split group G.

This is basic work which allows us to describe the center and to prove finiteness results of

the pro-p-Iwahori Hecke algebra for any (G,R). It is a fundamental tool for the theory of the

representations ofG over a field C of characteristic p: the inverse Satake isomorphism for spherical

Hecke algebras, the classification of the supersingular simple modules of the pro-p-Iwahori Hecke

C-algebra, and the classification of the irreducible admissible smooth C-representations of G in

terms of parabolic induction and irreducible supersingular representations of the Levi subgroups.

The study of congruences between classical modular forms naturally leads to representations

over arbitrary commutative rings R, rather than to complex representations. In our local setting,

that means studying R-modules with a smooth action of G = G(F ) where F is a locally compact

non-archimedean field of finite residue field k, and G is a connected reductive group over F .

When C is an algebraically closed field of characteristic equal to the characteristic p of k, very

little is known about the theory of the smooth C-representations of G, besides the basic property

that a non-zero representation has a non-zero vector invariant by a pro-p-Iwahori subgroup. The

pro-p-Iwahori subgroups of G are the analogues of the p-Sylow subgroups of a finite group and the

study of the smooth C-representations of G involves naturally the pro-p-Iwahori Hecke C-algebra

HC(1) of G. This is our motivation to study the pro-p-Iwahori Hecke algebra of G.

For any triple (R,F,G), we show that the pro-p-Iwahori Hecke R-algebra HR(1) of G admits

a presentation, generalizing the Iwahori and Matsumoto presentation of the Iwahori Hecke

R-algebra of a Chevalley group. The proof of the quadratic relations is done by reduction to

the analogous Hecke R-algebra of a finite reductive group. The Iwahori Hecke R-algebra HR of

G is a quotient of HR(1) and all our results transfer to analogous and simpler results for the

Iwahori Hecke R-algebra.

The Iwahori–Matsumoto presentation of the pro-p-Iwahori Hecke R-algebra of G leads

naturally to the definition of R-algebras HR(qs, cs) associated to a group W (1) and parameters

(qs, cs) satisfying simple conditions. The group W (1) is an extension by a commutative group

Zk of an extended affine Weyl group W attached to a reduced root system Σ. The group W is

more general than the group appearing in the Lusztig affine Hecke algebras HR(qs, qs − 1). The

R-algebra HR(qs, cs) is a free R-module of basis indexed by the elements of W (1) satisfying the

braid relations and quadratic relations with coefficients (qs, cs).

We show that the algebra HR(qs, cs) admits, for any Weyl chamber, an alcove walk basis

indexed by the elements of W (1), a product formula involving alcove walk bases associated to

different Weyl chambers, and Bernstein relations. When the qs are invertible in R we obtain a

presentation of the algebra HR(qs, cs) generalizing the Bernstein–Lusztig presentation for the

Iwahori Hecke algebra of a split group. Our proofs proceed by reduction to the case qs = 1.
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We recall that we put no restriction on the triple (R,F,G), the reductive group G may be

not split, the local field may have characteristic p, and the commutative ring R may be the ring

of integers Z or a field of characteristic p.

When G is split, the complex Iwahori Hecke algebra HC of G was well understood. It is the

affine Hecke algebra attached to a based root datum of G and to the cardinal q of k (the first proof

is due to Iwahori and Matsumoto for a Chevalley group). Starting from the Iwahori–Matsumoto

presentation of HC, Bernstein and Lusztig gave another presentation of HC, from which one can

recover the center of HC and which is an essential step for the classification of its simple modules.

The classification was done for G = GL(n) by Zelevinski and Rogawski, and for G simple, simply

connected with a connected center by Kazhdan-Lusztig, and by Ginzburg, using equivariant K-

theory of the variety of Steinberg triples. The condition ‘simply connected’ was waived by Reeder.

Görtz realized that the Bernstein basis could be understood using Ram’s alcove walks, and gave

a simpler proof of the Bernstein presentation of an affine Hecke complex algebra of a based root

datum with unequal invertible parameters. When G is split but for any pair (R,F ), I had shown

that the pro-p-Iwahori Hecke algebra of G admits an Iwahori–Matsumoto presentation and an

integral Bernstein basis, using Haines minimal expressions. A student of Grosse-Kloenne, Nicolas

Schmidt, in his unpublished Diplomarbeit, defined the alcove walk basis, proved the product

formula, and studied the Bernstein relations for algebras HR(qs, cs) containing the algebras

arising from a split G, but not all those arising from a general G.

For the field of complex numbers C, the pro-p-Iwahori-invariant functor is an equivalence of

categories from the C-representations of G generated by their vectors invariant by a pro-p-Iwahori

subgroup onto the category of rightHC(1)-modules. When C is replaced by an algebraically closed

field C of characteristic p, this does not remain true: the functor does not always send irreducible

representations onto simple modules. However, the pro-p-Iwahori Hecke algebra HC(1) appears

constantly in the theory of smooth C-representations of G. The most striking example is the

following.

For all integers n > 2, there exists a numerical Langlands correspondence for the pro-p-

Iwahori Hecke C-algebraHC(1) of GL(n, F ): a bijection between the simple supersingularHC(1)-

modules of dimension n and the dimension n irreducible continuous C-representations of the

Galois group Gal(F s/F ) of the separable closure F s of F .

In a forthcoming work with Abe et al. [AHHV14], we classify the irreducible admissible

C-representations of G which are not supercuspidal, in term of the irreducible admissible

supercuspidal (= supersingular) representations of the Levi subgroups and of parabolic induction.

The Bernstein relations in the pro-p-Iwahori Hecke C-algebra HC(1) of G, which is isomorphic to

a C-algebra HC(0, cs) with parameters qs = 0, is one of the main ingredients of the classification.

In a sequel to this paper, we describe the center of HR(1), the inverse Satake isomorphisms,

and the classification of the simple supersingular HC(1)-modules, extending my work and that

of Rachel Ollivier done only for split groups G.

2. Main results

2.1 Iwahori–Matsumoto presentation

Let G be a connected reductive group over a local non-archimedean field F of finite residue

field k of characteristic p with q elements, and let R be a commutative ring. We fix an Iwahori

subgroup I ofG. Its pro-p-radical I(1) is called a pro-p-Iwahori group. It is the unique pro-p-Sylow

subgroup of I, and of every parahoric subgroup containing I. The pro-p-Iwahori subgroups of G
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are all conjugate. The Iwahori Hecke ring

H = Z[I\G/I]

with the convolution product is isomorphic to the ring of intertwiners EndZ[G]Z[I\G] of the

regular right representation Z[I\G] of G associated to I. The Iwahori Hecke R-algebra obtained

by base change

HR = R⊗Z H = R[I\G/I] (1)

is isomorphic to the R-algebra of intertwiners EndR[G]R[I\G]. We replace I by I(1) and define in

the same way the pro-p-Iwahori Hecke ring H(1) = Z[I(1)\G/I(1)] and the pro-p-Iwahori Hecke

R-algebra HR(1).

The sets I\G/I and I(1)\G/I(1) have a natural group structure, isomorphic to the Iwahori

Weyl group W and the pro-p-Iwahori Weyl group W (1) defined as follows.

The Iwahori group I is the parahoric subgroup of G fixing an alcove C in the building of

the adjoint group of G. To define W and W (1) we choose an apartment A containing C. The

apartment A is associated to a maximal F -split subtorus T of G. Let Z and N denote the

centralizer and the normalizer of T in G, and Z := Z(F ), N := N(F ) their F -rational points.

Then W = N/N ∩ I and W (1) = N/N ∩ I(1). We check that these maximal split tori are

conjugate by I. The same is true for their normalizers and for the corresponding groups W and

W (1).

The apartment A is a finite-dimensional affine euclidean real space with a locally finite set

H of hyperplanes, such that the orthogonal reflections with respect to H ∈ H generate an affine

Weyl group W (H), and C is a connected component of A−⋃H∈HH. The group N acts on A by

affine automorphisms respecting H and its subgroup Z acts by translations.

The parahoric subgroups of G generate a subgroup Gaff , which is also the kernel of the

Kottwitz morphism κG, and G is generated by Z ∪Gaff . The maximal compact subgroup Z̃0 of

Z acts trivially on A and contains the unique parahoric subgroup Z0 of Z, of unique pro-p-Sylow

subgroup Z0(1). The group Zo is the kernel of the Kottwitz morphism κZ of Z and the quotient

Zk = Z0/Z0(1) is the group of rational points of a k-torus. We have

Z ∩ I = Z0, Z ∩ I(1) = Z0(1), I = I(1)Z0. (2)

The action of Naff = N ∩ Gaff on the apartment A induces an isomorphism

W aff = Naff/Z0 → W (H). (3)

The groups Z0(1) ⊂ Z0 are normalized by N and the maps n 7→ InI, n 7→ I(1)nI(1) induce

bijections

W = N/Z0 → I\G/I, W (1) = N/Z0(1) → I(1)\G/I(1).

The pro-p-Iwahori Weyl group W (1) is an extension of the Iwahori Weyl group W by Z0/Z0(1) '
I/I(1)

1 → Zk → W (1) → W → 1. (4)

The extension does not split in general (see [Vig05]). For a subset X ⊂ W , we denote by X(1)

the inverse image of X in W (1). For an element w ∈ W , we denote by w̃ ∈ W (1) an element

lifting w (hence w̃ ∈ w(1)).
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For n ∈N , the double coset InI depends only on the image w ∈W of n and the corresponding

intertwiner in the Iwahori Hecke ring H is denoted by Tw. Thus (Tw)w∈W is a natural basis of H.

We do the same for H(1) and W (1). The relations satisfied by the products of the basis elements

follow from the fact that W is a semidirect product of the affine Weyl group W aff by the image

Ω in W of the N -normalizer of C,

W = W aff o Ω. (5)

The group Ω identifies with the image of the Kottwitz morphism κG. Let Saff ⊂W aff be the set

of orthogonal reflections with respect to the walls of C, using the isomorphism (3). The length `

of the Coxeter system (W aff , Saff) inflates to a length of W constant on the double cosets modulo

Ω, and to a length of W (1) constant on the double cosets modulo the inverse image Ω(1) of Ω.

The Bruhat order of W aff inflates to W (1) and to W as in [Vig06, Appendix].

For n ∈ N of image w in W or in W (1), the sets

InI/I ' I(1)nI(1)/I(1)

have the same number qw of elements. The integer qw is a power of the cardinal q of the residue

field of F . When s, s′ ∈ Saff are conjugate in W (denote s ∼ s′), qs = qs′ and qw = qs1 . . . qsn if

w = s1 . . . snu with si ∈ Saff , u ∈ Ω is a reduced decomposition.

Theorem 2.1. The Iwahori Hecke ring H is the free Z-module with basis (Tw)w∈W endowed

with the unique ring structure satisfying:

• the braid relations TwTw′ = Tww′ if w,w′ ∈W, `(w) + `(w′) = `(ww′);

• the quadratic relations T 2
s = qs + (qs − 1)Ts if s ∈ Saff .

The Iwahori Hecke R-algebra HR has the same presentation over R by base change (1).

The elements in the basis (Tw)w∈W (1) ofH(1) satisfy the braid relations, and similar quadratic

relations, but the coefficient qs − 1 is replaced by an element of Z[Zk], which we now define.

Let s ∈ Saff and let KFs be the parahoric subgroup of G fixing the face of C supported

on the wall fixed by s, of codimension 1. The quotient of KFs by its pro-p-radical KFs(1) is

the group KFs,k of k-points of a finite reductive connected group over k of semisimple rank 1.

Let T0 be the maximal compact subgroup of the maximal split torus T of G, let T0(1) be the

pro-p-Sylow subgroup of T0, and let Tk = T0/T0(1). The group Tk is a maximal split torus of

KFs,k of centralizer Zk, and the root system ΦFs of KFs,k with respect to Tk is contained in

the root system Φ of G with respect to T . We denote by Ns,k (the group of k-points of) the

normalizer of Tk in KFs,k, by Uαs,k the root subgroup associated to a reduced root αs ∈ ΦFs (we

have U2αs,k ⊂ Uαs,k if 2αs ∈ ΦFs,k), by K ′Fs,k the group generated by Uαs,k and U−αs,k, by Zk,s
the intersection Zk ∩ K ′Fs,k, and by cs the element defined by the formula

cs = (qs − 1)|Zk,s|−1
∑
t∈Zk,s

Tt. (6)

The group Uαs,k is a p-Sylow subgroup of KFs,k, the integer qs is the number of elements of Uαs,k
and (qs − 1)|Zk,s|−1 is an integer. For uk ∈ U∗αs,k = Uαs,k − {1}, the intersection

U−αs,kukU−αs,k ∩ Ns,k = {mαs(uk)}
consists of a single element. The image of the map mαs : U∗αs,k → Ns,k is the coset mαs(uk)Zk,s =

Zk,smαs(uk). The square mαs(uk)
2 is an element of Zk,s. We choose an arbitrary element uk ∈

U∗αs,k and we denote by s̃ the image of mαs(uk) in W (1) (as in § 4.2). Such a lift s̃ of s is called
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admissible. The quadratic relation of Ts̃ in H(1) is the same as the quadratic relation of Ts̃ in

the finite Hecke algebra H(KFs,k, Uαs,k). The quadratic relation in HR(KFs,k, Uαs,k) when R is a

large field of characteristic p was computed by Cabanes and Enguehard [CE04, Proposition 6.8].

Theorem 2.2. The pro-p-Iwahori Hecke ring H(1) is the free Z-module with basis (Tw)w∈W (1)

endowed with the unique ring structure satisfying:

• the braid relations TwTw′ = Tww′ if w,w′ ∈W (1), `(w) + `(w′) = `(ww′);

• the quadratic relations T 2
s̃ = qsTs̃2 + cs̃Ts̃ for s ∈ Saff ,

where cs̃ = cs if the order of Zk,s is qs− 1 (for example, if G is F -split), and in general there are

positive integers cs̃(t) = cs̃(t
−1) for t ∈ Zk,s, constant on the coset t{xs(x)−1 | x ∈ Zk}, of sum∑

t∈Zk,s cs̃(t) = qs − 1 such that cs̃ =
∑

t∈Zk,s cs̃(t)Tt and

cs̃ ≡ cs modulo p.

The Z-module of basis (Tw)w∈Ω(1) is a subalgebra of H(1) isomorphic to the group algebra

Z[Ω(1)] by the braid relations. The Z-module of basis (Tw)w∈W aff(1) for the inverse image W aff(1)

of W aff in W (1) is a subalgebra Haff(1), and H(1) is isomorphic to the twisted product

H(1) ' Haff(1)⊗Z[Zk] Z[Ω(1)].

The pro-p-Iwahori Hecke R-algebra HR(1) has the same presentation by base change.

Theorems 2.1 and 2.2 imply the following result (which can also proved directly).

Corollary 2.3. The surjective R-linear map HR(1) → HR,

Tw̃ 7→ Tw for w̃ ∈W (1) of image w ∈W,

is an R-algebra homomorphism.

The properties of the pro-p-Iwahori Hecke R-algebra HR(1) are transported to the Iwahori

Hecke R-algebra HR via this surjective R-algebra homomorphism.

We describe conditions on elements (qs, cs) ∈ R×R[Zk] for s ∈ Saff(1), the inverse image of

Saff in W (1), implying the existence of an R-algebra HR(qs, cs) of basis (Tw)w∈W (1) satisfying

braid and quadratic relations as in Theorem 2.2. We write cs =
∑

t∈Zk cs(t)t with cs(t) ∈ R.

Theorem 2.4. Let (qs, cs) ∈ R × R[Zk] for s ∈ Saff(1). The following property (A) implies the

following property (B):

(A) For all t ∈ Zk, s ∈ Saff(1), w ∈W (1) such that wsw−1 ∈ Saff(1),

(1) qs = qst = qwsw−1 ;

(2) cst = cst, and cwsw−1 =
∑

t∈Zk cs(t)wtw
−1.

(B) The free R-module HR(qs, cs) of basis (Tw)w∈W (1) has a unique R-algebra structure

satisfying:

• the braid relations TwTw′ = Tww′ if w,w′ ∈W (1), `(w) + `(w′) = `(ww′);

• the quadratic relations T 2
s = qss

2 + csTs for s ∈ Saff(1).
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In (B) the braid relations imply that the group algebra R[Zk] embeds in HR(qs, cs) by the

linear map sending t ∈ Zk to Tt.

If the qs are not zero divisors in R, then properties (A) and (B) are equivalent. The maps

s 7→ qs from Saff(1) to R satisfying A(1) are naturally in bijection with the maps from Saff/∼
to R.

For indeterminates (qs)s∈Saff/∼, we have the generic R[(qs)]-algebra HR[(qs)](qs, cs). The

R-algebra HR(qs, cs) is a specialization of the generic algebra.

Proposition 2.5. Let (qs)s∈Saff/∼ be indeterminates, qs = q2
s, and let (cs)s∈Saff(1) be elements

of R satisfying A(2).

The R[(qs, q
−1
s )]-algebra HR[(qs,q

−1
s )](1, q

−1
s cs) is isomorphic to HR[(qs,q

−1
s )](qs, cs).

The generic algebra is a R[(qs)]-subalgebra of HR[(qs,q
−1
s )](qs, cs). Different properties of the

R-algebra HR(qs, cs), hence of the pro-p-Iwahori Hecke algebra, are proved by reduction to the

simpler case qs = 1 for all s ∈ Saff/∼, using this proposition.

Remark 2.6. The presentation of H (Theorem 2.1) generalizing the Iwahori–Matsumoto

presentation for a Chevalley group [IM65] cannot be found in the literature for a general reductive

group G but follows from different results of Bruhat and Tits [BT84, 5.2.12 Proposition (i) and

(ii)] and exercises in Bourbaki [Bou68, IV.2, Examples 8, 22–25]. Borel [Bor76] considered a

semisimple group G and a ‘non-connected’ Iwahori subgroup Ĩ = IZ̃0. When G is F -quasisplit

and Z0 = Z̃0, Z is a torus, I = Ĩ, then H is a Lusztig affine Hecke algebra [Lus89] attached to a

based root datum of G and to a system of unequal parameters (qs).

It is possible to compute the quadratic relations using the Bruhat–Tits theory without

reduction to finite reductive groups (when G is F -split [Vig05]).

2.2 Alcove walk bases and Bernstein presentation

We choose an alcove C to define I and an apartment A containing C. To define a new basis of

the algebra HR(qs, cs), we choose first a special vertex x0 of C. The special vertices of C may be

non-conjugate by an element of G. The orthogonal reflections with respect to the walls containing

x0 generate a group isomorphic to W0. The Iwahori Weyl group W is the semidirect product

W = Λ oW0 where Λ = Z/Z0. (7)

This implies

W (1) = Λ(1)W0(1) where Λ(1) = Z/Z0(1), Λ(1) ∩ W0(1) = Zk.

The new basis is related to this decomposition.

We identify the apartment A with a euclidean real vector space V , the vertex x0 becoming

the null vector 0 of V . We recall the natural bijections between: the (open) Weyl chambers of

A of vertex x0; the alcoves of A of vertex x0; the bases of the root system Φ of T in G; the

(spherical) orientations of (A,H) (see § 5.2).

A Weyl chamber D of V contains a unique alcove CD of vertex 0 and the basis ∆D of Φ

consists of the reduced roots α positive on D such that Ker α is a wall of CD. The orientation

oD is such that the oD-positive side of a hyperplane H ∈ H is the set of x ∈ V with α(x) + r > 0

where H = Ker(α+ r) for α ∈ Φ positive on D.
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The simply transitive action of W0 on the Weyl chambers of V inflates to an action of W and

an action of W (1) on the spherical orientations o of (V,H), trivial on Λ(1). We denote o •w =

w−1(o). If Do denotes the Weyl chamber defining the orientation o, then w−1(Do) = Do •w.

To define the new basis, we choose an orientation o of (A,H). For a pair (w, s) ∈W aff × Saff

such that `(ws) = `(w) + 1, we set

εo(w, s) = 1 if w(C) is contained in the o-negative side of w(Hs),

where Hs is the affine hyperplane of V fixed by s. Otherwise we set εo(w, s) = −1. When we

walk from w(C) to ws(C) we cross the hyperplane Hs in the εo(w, s) direction: positive direction

if εo(w, s) = 1 and negative direction if εo(w, s) = −1.

For w ∈ W aff of reduced decomposition w = s1 . . . sr, si ∈ Saff , r = `(w), walking in a

minimal gallery of alcoves C, s1(C), s1s2(C), . . . , w(C), we cross the hyperplanes Hs1 , s1(Hs2), . . . ,

s1 . . . sr−1(Hsr) in the εo(1, s1), εo(s1, s2), . . . , εo(s1 . . . sr−1, sr) directions.
For (w, s) in W (1)× Saff(1) with `(ws) = `(w) + 1, lifting an element (waffu, s) in W × Saff ,

with waff ∈W aff , u ∈ Ω, s ∈ Saff , we write

εo(w, s) := εo(w
aff , s),

T εo(w,s)s := Ts if εo(w, s) = 1 and T εo(w,s)s := Ts − cs if εo(w, s) = −1.

We recall the quadratic relation (Ts − cs)Ts = qss
2; it is easy to check that cs and Ts commute.

Theorem 2.7. Let o be a spherical orientation and let w = s1 . . . sru with u ∈ Ω(1) and si ∈
Saff(1) for 1 6 i 6 r = `(w). The element of HR(qs, cs) defined by

Eo(w) = T εo(1,s1)
s1 T εo(s1,s2)

s2 . . . T εo(s1...sr−1,sr)
sr Tu (8)

does not depend on the choice of the reduced decomposition of w, satisfies

Eo(w)− Tw ∈
⊕
w′<w

ZTw′ , (9)

and we have the product formula, for w,w′ ∈W (1),

Eo(w)Eo •w(w′) = qw,w′Eo(ww
′), qw,w′ = (qwqw′q

−1
ww′)

1/2. (10)

The theorem, proved by reduction to qs = 1, implies that (Eo(w))w∈W (1) is a basis of

HR(qs, cs).

Corollary 2.8. The R-module of basis (Eo(λ))λ∈Λ(1) is a subalgebra Ao(1) of HR(qs, cs) with

product

Eo(λ)Eo(λ
′) = qλ,λ′Eo(λλ

′) for λ, λ′ ∈ Λ(1).

The Bernstein relations that we will present allow us to give a presentation of HR(qs, cs),

starting from the basis (Eo(w))w∈W (1) when the (qs)s∈Saff/∼ are invertible in R. But the Bernstein

relations exist without any conditions on (qs)s∈Saff/∼ and their many applications will be

developed in the sequel to this article.

Let ν : Λ(1) → V be the homomorphism such that λ ∈ Λ(1) acts on V by translation by

ν(λ), and for α ∈ Φ let eα be the positive integer such that the set {eαα | α ∈ Φ} is the reduced
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root system Σ defining W aff . A root β ∈ Σ taking positive values on the Weyl chamber D+ of

vertex x0 containing the alcove C is called positive. For an arbitrary spherical orientation o of

Weyl chamber Do, let ∆o be the corresponding basis of the reduced root system Σ (not of Φ),

and let So and S be the sets of orthogonal reflections with respect to the walls of Do and of D+.

For s ∈ (S ∩ So)(1) and λ ∈ Λ(1), the Bernstein relations show that

Eo(s)(Eo • s(λ)− Eo(λ)) = Eo(sλs
−1)Eo(s)− Eo(s)Eo(λ) (11)

belongs to Ao(1) and give its expansion on the basis (Eo(λ))λ∈Λ(1). The proof proceeds by

reduction to qs = 1.

For a root β in Σ, sβ ∈ W0 and ν(λ) is fixed by sβ if and only if β ◦ ν(λ) = 0. As the

translation by ν(λ) stabilizes H, we have β ◦ ν(λ) ∈ Z. When β ◦ ν(λ) 6= 0, we denote its sign

by εβ(λ).

Theorem 2.9 (Bernstein relation in the generic algebra HR[(qs)](qs, cs)). Let o be a spherical

orientation, s ∈ (S ∩ So)(1), β ∈ ∆ such that s ∈ sβ(1), and let λ ∈ Λ(1).

When β ◦ ν(λ) = 0, we have Eo • s(λ) = Eo(λ).

When β ◦ ν(λ) 6= 0, we have

Eo(s)(Eo • s(λ)− Eo(λ)) = εβ(λ)εo(1, s)

|β◦ν(λ)|−1∑
k=0

q(k, λ)c(k, λ)Eo(µ(k, λ)),

where c(k, λ) ∈ Z[Zk], µ(k, λ) ∈ Λ(1), (β ◦ ν)(µ(k, λ)) = 2k − |β ◦ ν(λ)|,

q(k, λ) =
∏

s∈Saff/∼

q
mk,λ(s)
s , mk,λ(s) ∈ N,

∑
s

mk,λ(s) = `(λ)− `(µ(k)).

The values of q(k, λ), c(k, λ) and µ(k, λ) are explicit (Corollary 5.43) and depend on s but
not on o. They are simpler when the image of β ◦ ν is Z (the other possibility is 2Z). When
β ◦ ν(λ) 6= 0, moving the term indexed by k = 0 from the right-hand side to the left-hand side,
the Bernstein relation becomes

Eo(sλ)− Eo • s(sλ) = εo • s(1, s)

|β◦ν(λ)|−1∑
k=1

q(k, λ)q−1
s c(k, λ)Eo(µ(k, λ)) if `(sλ) < `(λ),

Eo(sλ)− Eo(s)Eo(λ) = εo(1, s)

|β◦ν(λ)|−1∑
k=1

q(k, λ)c(k, λ)Eo(µ(k, λ)) if `(sλ) > `(λ).

The right-hand side is 0 when |β◦ν(λ)| = 1. Otherwise, we prove that q(k, λ) 6= 1 for the integers

0 < k < β ◦ ν(λ).

When `(sλ) < `(λ), the term q(k, λ)q−1
s is a product of qs for s ∈ Saff/∼. We prove that

q(k, λ)q−1
s 6= 1 for 1 < k < |β ◦ ν(λ)| − 1.

We obtain a presentation of the generic algebra HR[(qs)](qs, cs), and by specialization a

presentation of the R-algebra HR(qs, cs) when the (qs)s∈Saff/∼ are invertible.

We choose the orientation o associated to the antidominant Weyl chamber −D+. We have

S = So and Eo(s) = Ts, εo(1, s) = 1 for s ∈ S(1). We denote by Λs(1) the set of λ ∈ Λ(1) such

that ν(λ) is fixed by s. We set E = Eo.
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Theorem 2.10 (Bernstein presentation of the generic algebra). The R[(qs)]-algebra

HR[(qs)](qs, cs)

is isomorphic to the free R[(qs)]-module of basis (E(w))w∈W (1) endowed with the unique R[(qs)]-

algebra structure satisfying:

– braid relations E(w)E(w′) = E(ww′) for w,w′ ∈W0(1), `(w) + `(w′) = `(ww′);

– quadratic relations E(s)2 = qss
2 + csE(s) for s ∈ S(1);

– product E(λ)E(w) = qλ,wE(λw) for λ ∈ Λ(1), w ∈W (1);

– Bernstein relations

E(sλs−1)E(s)− E(s)E(λ)

= 0 for (s, λ) in S(1)× Λs(1)

= εβ(λ)

|β◦ν(λ)|−1∑
k=0

q(k, λ)c(k, λ)E(µ(k, λ)) for (s, λ) in S(1)× (Λ(1)− Λs(1)).

3. Review of Bruhat–Tits theory

The aim of this section is to give precise references for the properties extracted from Bruhat–Tits

theory which will be used in the proofs of our results. The reader familiar with this theory should

skip this section and proceed directly to § 4.

We retain the notation of § 2.

For an algebraic group H defined over F , we denote H = H(F ). Let X∗(H) and X∗(H) be

the group of F -characters and F -cocharacters of H.

We emphasize that the characteristic of F may be 0 or p, and that the root system Φ ⊂X∗(T )

of G may be not reduced; Φ is the union of its irreducible components [Bou68, VI.1.2]

Φ =

r⊔
j=1

Φj . (12)

A basis ∆ of Φ is the union of bases of Φj , ∆ =
⊔r
j=1 ∆j . The set of coroots Φ∨ ⊂ X∗(T ) is the

union of the sets of coroots of Φj , Φ∨ =
⊔
j Φ∨j . The real vector space V generated by Φ∨ is a

product of the vector spaces Vj generated by Φ∨j ,

V = V1 × · · · × Vr. (13)

The Weyl group W0 of Φ is the direct product of the Weyl groups of Φj , W0 =
∏
jW0,j . The

action of W0,j on Vj is irreducible, and the decomposition of V is orthogonal for a fixed positive

definite bilinear form ( , ) on V invariant by the action of W0 [Bou68, VI.1.2, V.3.7]. For α ∈ Φ,

we have the root group Uα (containing U2α if 2α is a root). We denote by ω the valuation of F

normalized by ω(F − {0}) = Z.

The results contained in the 316 pages of [BT72] and [BT84] are valid for the group G by

the fundamental theorem [BT84, 5.1.20, 5.1.23].

Theorem 3.1. (Z,Uα)α∈Φ is a root datum generating G and admitting a discrete valuation

ϕ = (ϕα : Uα − {1}→ R)α∈Φ compatible with the valuation ω of F .

The definition of ‘a root datum generating G’ and of ‘a discrete valuation compatible with

ω’ is given in [BT72, 6.1.1 and 6.1.2(8)] and in [BT72, 6.2.1, 6.2.21], [BT84, 5.1.23].
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3.1 The element mα(u) for u ∈ U∗α
For α ∈ Φ and u ∈ U∗α = Uα − {1}, there exists a unique triple (v′α(u),mα(u), v′′α(u)) in U−α ×
N × U−α such that [BT72, 6.1.2 (2)]

u = v′α(u)mα(u)v′′α(u). (14)

Remark 3.2. If 2α ∈ Φ and u ∈ U∗2α, we have U2α ⊂ Uα and m2α(u) = mα(u) by unicity.

If α ∈ Φ, u ∈ U∗α, then mα(u−1) = mα(u)−1.

The group W0 = N/Z identifies with the Weyl group of Φ [BT65, § 5]. The image of mα(u)

in W0 is the reflection sα defined by α.

Lemma 3.3. The group N is generated by Z and
⋃
α∈Φmα(U∗α).

Proof. [BT72, 6.1.2 (10), 6.1.3 c)], where we can replace Mα by mα(U∗α). 2

Proposition 3.4. Let ∆ be a basis of Φ. We can choose uα ∈ U∗α for all α ∈ ∆ such that, when

α 6= β,

mα(uα)mβ(uβ) . . . = mβ(uβ)mα(uα) . . . , (15)

where the number of factors is the order n(α, β) of sαsβ ∈W0.

Proof. (a) When G is F -split, semisimple, and simply connected (we recall that G is connected),

we choose a Chevalley system xα : Ga → Uα for α ∈ Φ. The elements uα = xα(1) for α ∈ ∆

satisfy the proposition [Ste67, Lemma 56]. We reduce to this case in two steps.

(b) From (a) to the split case using a z-extension. We suppose that G is F -split. There exists

a reductive connected F -group H with a simply-connected derived group Hder which is a central

extension of G by a split F -torus [MS81, Proposition 3.1, Remark 3.3] when the characteristic

of F is 0; the proof is valid in positive characteristic. There exists a maximal F -split subtorus

TH of H of image T in G, and TH ∩ Hder is a maximal F -subtorus of Hder. The root groups

of Hder are equal to the root groups in H and identify with the root groups in G by the map

H → G [Bor91, Theorem 22.6]. The group Hder satisfies the condition of (a). The image by the

map H → G of a set of elements in Hder satisfying the proposition is a set of elements in G

satisfying the proposition.

(c) From the split case to the general case. By [BT65, Proposition 7.2(11)] G contains a split

connected subgroup Gnm with the same maximal split torus T and the following properties: the

system of roots of T in Gnm is the subset Φnm ⊂ Φ of non-multipliable roots, the root group

in Gnm of γ ∈ Φnm is Uγ/2 ∩ Gnm if γ/2 ∈ Φ and Uγ ∩ Gnm otherwise. A basis ∆ of Φ gives

a basis ∆nm = {αnm | α ∈ ∆} of Φnm, where αnm = α if α is not multipliable and αnm = 2α

otherwise. The root subgroup in Gnm of αnm is contained in Uα for ±α ∈ ∆. The proposition

is true for Gnm by (b). A set of elements in Gnm satisfying the proposition is contained in G.

Applying Remark 3.2, the proposition is true for G. 2

3.2 The group G′

Recall the decomposition (12) of the root system Φ into its irreducible components Φi, let G′

(respectively, G′i) be the subgroup of G generated by the root groups Uα for α ∈ Φ (respectively,

α ∈ Φi), and let Z ′ = Z ∩ G′, Z ′i = Z ∩ G′i, for 1 6 i 6 r, be the intersections of Z with these

groups. The subgroups G′, G′i are normal in G, each element of G′i commutes with each element
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of G′j if i 6= j, and G′i ∩ G′j is contained in the center of G′; the center of G′ is contained in Z and

G = ZG′. It is obvious that (Z ′, Uα)α∈Φ (respectively, (Z ′i, Uα)α∈Φi) is a root datum generating

G′ (respectively, G′i) [BT72, 6.1.5].

Lemma 3.5. The maps (ϕα)α∈Φ define on the root datum (Z ′, Uα)α∈Φ generating G′ a discrete

valuation compatible with ω.

The same statement is true for the maps (ϕα)α∈Φi on the root datum (Z ′i, Uα)α∈Φi generating

G′i.

Proof. The conditions (V1), (V3), (V4), (V5) of the valuation [BT72, 6.2.1] remain obviously

satisfied. Condition (V2) is: for α ∈ Φ,

the value ϕ−α(u)− ϕα(mum−1) is constant for u ∈ U−α − {1}

if m ∈Mα := {m ∈ ZG′α | mUαm−1 ⊂ U−α,mU−αm−1 ⊂ Uα} where G′α is the group generated

by Uα∪U−α. The group M ′α = Mα ∩ G′α does not depend on Z. The group Z normalizes Uα and

U−α, hence Mα = ZM ′α. As Z ′, Z ′i are contained in Z, condition (V2) remains satisfied. It is clear

that the valuation remains discrete and compatible with ω [BT72, 6.2.21], [BT84, 5.1.23]. 2

3.3 The apartment

The existence of the apartment is a consequence of the existence of the discrete valuation

ϕ = (ϕα)α∈Φ compatible with ω on the root datum (Z,Uα)α∈Φ generating G.

Remark 3.6. A valuation is constructed for the classical groups [BT72, ch. 10], or using a

Chevalley–Steinberg system when G is F -quasisplit [BT84, 4.1.3, 4.2.2, 4.2.3]. In general, G

is quasisplit over an unramified finite Galois extension F ′/F . A valuation for G(F ′) descends to

G [BT72, 9.1.11, 9.2.10] but not necessarily the Chevalley–Steinberg valuation [BT84, 5.1.15].

We consider the unique homomorphism v : Z 7→ V such that

α(v(z)) = (ω ◦ α)(z) (z ∈ S, α ∈ Φ). (16)

The kernel of v contains the maximal compact subgroup Z̃0 of Z and the center of G. The index

of the subgroup TZ̃0 ⊂ Z is finite.

For α ∈ Φ, ϕα is a function from U∗α = Uα − {1} to R, satisfying properties described in

[BT72, 6.2.1 (V0)–(V5)], which is compatible with ω:

ϕα(zuz−1) = ϕα(u) + (α ◦ v)(z) for all α ∈ Φ, u ∈ U∗α, z ∈ Z. (17)

It is also discrete: Γα = ϕα(U∗α) is a discrete subset in R [BT72, 6.2.21]. If ∆ is a basis of Φ, ϕ

is determined by (ϕα)α∈∆ [BT72, 6.2.8]. We have [BT72, 6.2.2]

Γ−α = Γα if α ∈ Φ and ϕ2α = 2ϕα|U∗2α , Γ2α ⊂ 2Γα if α, 2α ∈ Φ. (18)

For u ∈ U∗α, the elements v′α(u), v′′α(u) ∈ U∗−α defined in (14) satisfy [BT72, 6.2.1 (V5)]

ϕ−α(v′α(u)) = ϕ−α(v′′α(u)) = −ϕα(u). (19)

For x ∈ V , the family ϕ+ x = ((ϕ+ x)α)α∈Φ defined by

(ϕ+ x)α(u) := ϕα(u) + α(x), for all α ∈ Φ, u ∈ Uα, (20)
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is also a discrete valuation compatible with ω [BT72, 6.2.5]. The set of discrete valuations

compatible with ω on (Z,Uα)α∈Φ is [BT84, 5.1.23]

A = {ϕ+ x, for x ∈ V }. (21)

This is an affine euclidean real space with an action ν of N by affine automorphisms [BT72,

6.2.5] such that for n ∈ N of image w ∈W0,

ν(n)(ϕ+ x) = ϕ+ ν(n)(x), α(ν(n)(x)) = w−1(α)(x) + ϕw−1(α)(n
−1un)− ϕα(u), (22)

for α ∈ Φ, u ∈ U∗α. Hence z ∈ Z acts by translation by ν(z) := −v(z), and for β ∈ Φ, v ∈
U∗β , mβ(v) (14) acts by orthogonal reflection sβ+ϕβ(v) with respect to the affine hyperplane

Hβ+ϕβ(v) = ϕ+ Ker(β + ϕβ(v)),

ν(mβ(v))(x) = x− (β(x) + ϕβ(v))β∨ = sβ(x)− ϕβ(v)β∨, (23)

where β∨ ∈ Φ∨ is the coroot of β. The action of N determines the valuation ϕ, and conversely.

The set of hyperplanes

H = {Hα+r = ϕ+ Ker(α+ r) | α ∈ Φred, r ∈ Γα} (24)

is stable under the action ν of N . We have [BT72, 6.2.10]

ν(n)(Hα+ϕα(u)) = Hw(α)+ϕw(α)(nun
−1).

By (18), when α, 2α ∈ Φ, r ∈ Γ2α, we have r/2 ∈ Γα and H2α+r = Hα+r/2 ∈ H.

The affine space A contains a valuation ψ such that 0 ∈ ψ(U∗α) for all α in the set Φnm of

non-multipliable roots [BT72, 6.2.15]. We suppose, as we may, that 0 ∈ Γα for all α ∈ Φnm. By

(18),

0 ∈ Γα for all α ∈ Φ. (25)

In particular, ϕ is special [BT72, 6.2.13].

For 1 6 j 6 r, ϕj = (ϕα)α∈Φj is a discrete valuation of the root datum (Z ′j , (Uα)α∈Φj )

compatible with ω, A = A1 × · · · × Ar is a product of affine euclidean real spaces Aj = ϕj + Vj ,

and the set H is the union of the sets Hj = {ϕj + Ker(α + x) | α ∈ Φj,red, x ∈ Γα} of affine

hyperplanes in Aj embedded in A by

Hj 7→ A1 × · · · × Aj−1 ×Hj × Aj+1 × · · · × Ar (Hj ∈ Hj , 1 6 j 6 r − 1). (26)

The action ν of N on A factorizes through an action νj of N on Aj such that ν(n)(ψ1, . . . , ψr)

= (ν1(n)ψ1, . . . , νr(n)(ψr)) for (ψ1, . . . , ψr) ∈ A1 × · · · × Ar.

3.4 The affine Weyl group

Let S(H) be the set of orthogonal reflections sH with respect to the hyperplanes H ∈ H (24)

and let W (H) ⊂ ν(N) be the group generated by S(H). The group W (H) is normal in ν(N).

The group W (H) = W aff is an affine Weyl group associated to a reduced root system Σ of

V ∗ [Bou68, VI.2.1; VI.2.5, Proposition 8] and [BT72, 6.2.22]

H = {Hβ+n = ϕ+ Ker(β + n) | β ∈ Σ, n ∈ Z}. (27)
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We denote sHβ+n
= sβ+n. The product sβ+nsβ+n+1 is the translation by the coroot β∨ of β ∈ Σ

[Bou68, V.2.4, Proposition 5]. We have Hβ+n+1 = Hβ+n − (1/2)β∨. The subgroup Λ(H) of

translations in W (H) identifies with the Z-module Q(Σ∨) generated by the set Σ∨ of coroots

[Bou68, VI.2.1].

Two points x, y ∈ A are called H-equivalent if, for all H ∈ H, either x, y ∈ H or they are

in the same connected component of A − H [Bou68, V.1.2], [BT72, 1.3]. A facet F ⊂ A is an

equivalence class. A facet of F is a facet contained in the closure F of F. A vertex is a point which

is a facet. A chamber of A (a connected component of A−⋃H∈HH) is called an alcove [Bou68,

V.1.3, Déf. 2] to avoid confusion with the chambers relative to Hϕ = {H ∈ H | ϕ ∈ H} that

we call Weyl chambers. The group W (H) acts simply transitively on the alcoves of A [Bou68,

VI.2.1].

We choose an alcove C ⊂ A of vertex the special point ϕ. A face of C is a facet of C contained

in a single H ∈ H, called its support. A wall of C is a hyperplane H ∈ H containing a face of C

[Bou68, V.1.4, Déf. 3]. The set

S(C) = {sH | H ∈ H wall of C}

of orthogonal reflections sH with respect to the walls H of C, generates W (H), and (W (H), S(C))

is a Coxeter system. The type of a facet F of C is the set

SF = {sH | H ∈ H wall of C,F ⊂ H}. (28)

We have SC = ∅. A facet F of C is determined by its type because

F = {x ∈ C | x ∈ H ⇔ F ⊂ H for any wall H of C}.

The bijection between the facets of C and their types reverses the inclusion:

F′ is a facet of F⇒ SF ⊂ SF′ .

The types of the facets of C are the subsets of S(C) generating a finite subgroup. A facet of A

is the image by an element of W (H) of a unique facet of C, and we can define the type of any

facet [BT72, 1.3.5].

Let WF be the group generated by SF. Then (WF, SF) is a finite Coxeter system. As ϕ is a

special point [Bou68, V.3.10], W (H) is a semidirect product [Bou68, V.3.10, Proposition 9 and

Definition 1] and [BT72, (1.3)],

W (H) ' Λ(H) oWϕ; (29)

the groups Wϕ, the Weyl group of Σ, the Weyl group of Φ, and the group W0 = N/Z are

isomorphic. The group Wϕ acts simply transitively on the Weyl chambers of A.

The set of affine roots is the subset of automorphisms of A,

Σaff = {β + n | β ∈ Σ, n ∈ Z}.

The action of the group W (H) on A induces an action on Σaff . For A,A′ ∈ Σaff , we have KerA =

KerA′ if and only if A′ = ±A. For x ∈ C, A(x) 6= 0 and the sign of A(x) does not depend on the

choice of x. We say that

A is C-positive if A takes positive values on C.
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The set of affine C-positive roots is denoted by Σaff,+; we have Σ+ = Σaff,− ∩ Σ. We denote

Σaff,−,Σ− for the C-negative roots. Let

∆aff
Σ = ∆aff

Σ (C) = {A ∈ Σaff,+ | KerA is a wall of C}. (30)

The set ∆aff
Σ is in bijection with Saff = S(C) by the map A 7→ sA of inverse s 7→ As, and with a

subset ∆Σ(C) of Σ by the gradient map.

The pair (W aff , Saff) is an affine Coxeter system. We recall [Kum02, 1.3.11, (b4), (b5), proof

before (2)]:

(1) s(As) < 0 and s(A) > 0 for s ∈ Saff , A ∈ Σaff,+, A 6= As;

(2) w(As) = As′ ⇒ wsw−1 = s′ for s, s′ ∈ Saff , w ∈W aff ;

(3) the length ` of (W aff , Saff) satisfies, for (w, s) ∈W aff × Saff ,

`(ws) =

{
`(w) + 1 if w(As) > 0,

`(w)− 1 if w(As) < 0.

For a facet F of C, let

Σaff
F = {A ∈ Σaff | KerA contains F}, (31)

∆aff
Σ,F = {A ∈ Σaff,+ | KerA is a wall of C containing F}. (32)

Any element of Σaff,+
F = Σaff

F ∩ Σaff,+ is a linear combination of elements of ∆aff
Σ,F with unique

coefficients in N. The set ∆aff
Σ,F is in bijection with the type SF of F by the map A 7→ sA and with

a subset ∆Σ,F of Σ by the gradient map. We have ∆Σ,C = ∆aff
Σ,C = ∅, and ∆Σ = ∆Σ,ϕ = ∆aff

Σ,ϕ is

a basis of Σ.

With the notation of (13) and (26), W aff = W aff
1 ×· · ·×W aff

r is the direct product of the affine

Weyl groups W aff
j = W (Hj) for 1 6 j 6 r; we consider Wj as a subgroup of W aff with its natural

action on Aj and acting trivially on Ai for i 6= j. The irreducible components of Σ =
⊔r
j=1 Σj

are the reduced root systems Σj associated to W aff
j considered as subsets of (V1 × · · · × Vr)∗

vanishing on Vi for i 6= j. The alcoves C = C1 × · · · × Cr are the product of the alcoves Cj of Aj
for 1 6 j 6 r, [BT72, 6.2.12], [Bou68, V.3.8, Proposition 6], and the walls of C are the images

by (26) of the walls of Cj for 1 6 j 6 r. The set S(C) =
⊔r
j=1 S(Cj) is the disjoint union of the

sets S(Cj). The sets Σaff =
⊔r
j=1 Σaff

j , Σaff,+ =
⊔r
j=1 Σaff,+

j , Σ+ =
⊔r
j=1 Σ+

j , ∆aff
Σ =

⊔r
j=1 ∆aff,+

Σj
,

∆Σ =
⊔r
j=1 ∆Σj are the disjoint unions of the similar sets for 1 6 j 6 r. This often allows us to

reduce to an irreducible root system Σ.

By [Bou68, VI.1.8, Proposition 25; VI.2.3, Proposition 5], the alcove Cj is the set of ϕj + x

for x ∈ Vj satisfying

γ(x) > 0 for all γ ∈ ∆Σj and β̃j(x) < 1⇔ 0 < γ(x) < 1 for all γ ∈ Σ+
j , (33)

where β̃j =
∑

γ∈∆Σj
nγγ is the highest root of Σ+

j given explicitly in the tables of Bourbaki

[Bou68, pp. 250–275]. We have

∆aff
Σj = ∆Σj ∪ {−β̃j + 1}.

Returning to Σ, we deduce

C = {ϕ+ x, | 0 < γ(x) < 1 for all γ ∈ Σ+}, ∆aff
Σ = ∆Σ ∪ {−β̃1 + 1, . . . ,−β̃r + 1}. (34)
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An affine root A = α+ k, α ∈ Σ, k ∈ Z, is positive if α(x) + k > 0 for x ∈ C, or equivalently, if

k > 0 for α ∈ Σ+ and if k > 0 for α ∈ Σ−,

Φaff,+ = {α+ k | (α, k) ∈ (Σ+ × N) ∪ (Σ− × N>0)}.

The vertices of Cj are {ϕj , ϕj + n−1
β ωβ(β ∈ ∆Σj )} where ωβ∨ is a fundamental coweight [Bou68,

VI.2.3, Corollary to Proposition 5]. The vertex ϕ + n−1
β ωβ∨ is special if and only if nβ = 1

[Bou68, VI.1.10, 2.2 Corollary; 2.2 Proposition 3]. Any set of vertices of Cj is the set of vertices

of a facet of C.
For Y ⊂ ∆Σj , the facet Fϕj ,Y of vertices ϕj , (ϕj + n−1

β ωβ∨)β∈Y is the set of ϕj + x such that

γ(x) = 0 for γ ∈∆Σj−Y , and 0 < β(x) < 1 for β ∈ Y . The facet FY of vertices (ϕj+n−1
β ωβ∨)β∈Y

is the set of ϕj + x such that γ(x) = 0 for γ ∈ ∆Σj − Y , β̃j(x) = 1 and 0 < β(x) < 1 for β ∈ Y .

We have

∆aff
Σj ,Fϕj,Y

= ∆Σj ,ϕj − Y, ∆aff
Σj ,FY

= (∆Σj ,ϕj − Y ) ∪ {−β̃j + 1}.

Lemma 3.7. The translation by vj ∈ Vj stabilizes Hj if and only if γ(vj) ∈ Z for all γ ∈ Σj . The

translation by vj normalizes Cj if and only if vj = 0.

Proof. γ(x) + k = 0 is equivalent to γ(x + vj) + k − γ(vj) = 0 and for r ∈ R, Ker γ + r ∈ Hj if

and only if r ∈ Z. The image of Cj by γ ∈ ∆Σj is an interval ]a, b[. The image of Cj + vj by γ

is the interval ]a + γ(vj), b + γ(vj)[. If Cj + vj = Cj , we have γ(vj) = 0 for all γ ∈ ∆Σj , hence

vj = 0. 2

3.5 The filtration of Uα
The properties [BT72, 6.2.1] of the valuation ϕ imply that, for α ∈ Φ and r ∈ R, the set

Uα+r = {u ∈ Uα | ϕα(u) > r} (35)

is a compact open subgroup of Uα (note that Uα+0 6= Uα), and (Uα+r)r∈Γα is a strictly decreasing

filtration of union Uα and trivial intersection. For n ∈ N of image w ∈W0 we have [BT72, 6.2.10

proof of (iii))]

nUα+ϕα(u)n
−1 = Uw(α)+ϕw(α)(nun

−1).

For α ∈ Φ, r ∈ Γα, let Uα+r+ be the group Uα+r′ for r′ ∈ Γα, r
′ > r, and r′ minimal for these

properties, and let

Uα+r,k = Uα+r/Uα+r+ .

When the root system is not reduced, we make the following observation.

Lemma 3.8. For α, 2α ∈ Φ, r ∈ (1/2)Γ2α ⊂ Γα, the sequence

1 → U2α+2r,k → Uα+r,k → Uα+r/Uα+r+U2α+2r → 1

is exact.

Proof. We have to show that U2α+2r ∩ Uα+r+ = U2α+(2r)+
. By (18), the left-hand side is U2α+2r′ ,

where r′ is the smallest element of Γα with r′ > r, and for r′′ ∈ Γ2α, the strict inequality 2r < r′′

is equivalent to the inequality 2r′ 6 r′′. The right-hand side is U2α+r′′ and U2α+2r′ = U2α+r′′ =

U2α+(2r)+
. 2
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For α, 2α ∈ Φ, we introduce the set

Γ′α = Γα − {r ∈ (1/2)Γ2α | Uα+r = Uα+r+U2α+2r} = {r ∈ Γα | U2α+2r,k 6= Uα+r,k}.

This set is never empty [BT84, 4.2.21]. When α ∈ Φ, 2α 6∈ Φ we put Γ′α = Γα. The set

Φaff =
⋃
α∈Φ

α+ Γ′α

is called the set of affine roots. We have a natural injection⋃
α∈Φred

α+ Γα → Φaff (36)

sending α+ r to 2α+ 2r if r 6∈ Γ′α, and to α+ r otherwise. Let Φaff
red denote the image.

For α ∈ Φ, r ∈ Γα, we say that α + r is C-positive when α(x) + r > 0 for x ∈ C. The map

(36) respects C-positivity.

For α ∈ Φ, there exists a unique positive number eα > 0 such that the map

α+ r 7→ eα(α+ r) :
⋃
α∈Φ

α+ Γα → Σaff (37)

is surjective, respects positivity and restricts to a bijection

Φaff
red

'−→ Σaff . (38)

This bijection allows us to replace Φaff
red by the affine root system Σaff (the filtration is hidden in

the bijection).

It is obvious that eα = e−α. With (18),

Γα = γα,Z, γα = e−1
α if α ∈ Φred. (39)

When α, 2α ∈ Φ, we have e2α = (1/2)eα, Γ2α is a group because 0 ∈ Γ0 (25) [BT72, Corollary

6.2.16], there exists a unique positive integer fα ∈ N>0 such that

Γ2α = γ2αZ, γ2α = 2fαe
−1
α if α, 2α ∈ Φ. (40)

Lemma 3.9. eα is a positive integer for all α ∈ Φ, which is divisible by 2fα if 2α ∈ Φ.

Proof. By the proof of [SS97, Lemma I.2.10], Γα contains n−1
α Z where nα ∈ N>0 for any

α ∈ Φ. 2

3.6 The adjoint building

For x ∈ V and α ∈ Φ,

the smallest element rx(α) ∈ Γα such that α(x) + rx(α) > 0 (41)

depends only on the facet F of A containing ϕ+ x, and is also denoted by rF(α).

Example 3.10. rϕ(α) = 0 for all α ∈ Φ.

rC(α) = 0 if α ∈ Φ is C-positive.

rC(α) = e−1
α if α ∈ Φred is C-negative (39).

rC(2α) = 2fαe
−1
α if α, 2α ∈ Φ are C-negative (40).
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Example 3.11. Let F be a facet contained in the wall Hα+r, α ∈ Φ, r ∈ Γα. Then rF(α) =

−rF(−α) = r.

Let Ux be the group generated by
⋃
α∈Φ Uα+rx(α) and let Nx be the stabilizer of ϕ+ x in N .

The group Nx normalizes Ux, and

Px = NxUx (42)

is a group (denoted by P̂x in [BT72, 7.1.8]). These groups, depending only on the facet F

containing ϕ+ x, are also denoted by UF, NF, PF. For α ∈ Φ we have

PF ∩ Uα = Uα+rF(α). (43)

This is clear if α is not multipliable. If α, 2α ∈ Φ this is true because U2α+rF(2α) = Uα+rF(2α)/2 ∩
U2α is contained in Uα+rF(α) as rF(2α) is the smallest element of Γ2α satisfying rF(2α) > 2rF(α)

by (18) [BT72, 7.4.1]. This shows also that

the group UF is generated by
⋃

α∈Φred

Uα+rF(α). (44)

Two facets F and F′ with rF(α) = rF′(α) for all α ∈ Φ+
red are equal. Therefore two facets F and

F′ with UF = UF′ are equal.

Definition 3.12. The adjoint building is

B(Gad) := G× A/∼ (45)

where ∼ is the equivalence relation on G× A defined by

(g, ϕ+ x) ∼ (h, ϕ+ y)⇔ there exists n ∈ N | ϕ+ y = n · (ϕ+ x) and g−1hn ∈ Px,
with the natural action of G, induced by (g, (h, ψ)) 7→ (gh, ψ) for g, h ∈ G,ψ ∈ A.

The apartments of B(Gad) are the images by G of the apartment A. The facets (respectively,

alcoves) of B(Gad) are the images by G of the facets (respectively, alcoves) of A. The G-orbit of

a facet contains a unique facet of the chosen alcove C of A.

The group Px is obviously theG-stabilizer of (1, ϕ+x). The pointwiseG-stabilizer (or fixator)

PF of a facet F is the intersection of the G-stabilizers of its vertices.

The map ψ 7→ (1, ψ) : A → B(Gad) is an N -equivariant embedding. The G-stabilizer of A is

N . The G-fixator of A is the kernel of the homomorphism v : Z → V (16) (it is denoted by Ĥ in

[BT72, 4.1.2, 6.2.11, 7.4.10]). Let F be a facet of A. The G-fixator of F is the semidirect product

(42) (see also [BT72, 4.1.1, 6.4.2, 7.1.3])

PF = UF o Ker v.

It acts transitively on the apartments containing F [BT72, 7.4.9], hence UF acts also transitively

on the apartments containing F.

We denote by U+ the subgroup of G generated by Uα for α ∈ Φ+
red. The product maps∏

α∈Φ+
red

Uα → U+,
∏

α∈Φ+
red

Uα+rF(α) → U+
F := U+ ∩ UF (46)

are homeomorphisms [BT72, 6.1.6, 6.4.9], whatever ordering we choose on Φ+
red. We have a similar

result for the groups U−F , U
− defined with Φ−red = −Φ+

red.
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Remark 3.13. For A ∈ Σaff , we denote UA = Uα+r where α + r is the antecedent of A by the

bijection
⋃
α∈Φred

α+ Γα → Σaff (38). We have A = eα(α+ r) with eα > 0.

The group UC is generated by all UA for A ∈ Σaff,+.

The group UF is generated by all UA for A ∈ Σaff and A > 0 on F.

The group U0
F generated by all UA for A ∈ Σaff , and A = 0 on F satisfies U0

C = {1}, U0
ϕ = Uϕ.

3.7 Parahoric subgroups

We denote by F s a maximal separable extension of F , by F unr the maximal unramified extension

of F contained in F s, by I = Gal(F s/F unr) the inertia group and by σ ∈ Gal(F unr/F ) the

Frobenius automorphism. Let Z(Ĝ) be the center of the Langlands dual group Ĝ of G with the

natural action of Gal(F s/F ). The F s-character group π1(G) = X∗(Z(Ĝ)) of Z(Ĝ) is the Borovoi

algebraic fundamental group of G. When G is semisimple and simply connected, π1(G) is trivial.

Kottwitz [Kot97, 7.1–7.4] defined a functorial surjection from G onto the σ-invariants of the

I-coinvariants of π1(G),

κG : G → π1(G)σI . (47)

Definition 3.14. A parahoric subgroup of G is the fixator KF = kerκG ∩ PF in the kernel of

κG of a facet F of the building B(Gad).

A pro-p-parahoric subgroup KF(1) of G is the pro-p-radical of a parahoric subgroup KF of G.

An Iwahori (respectively, pro-p-Iwahori) subgroup of G is the parahoric (respectively, pro-p-

parahoric) subgroup fixing an alcove.

This definition of a parahoric subgroup KF, by Haines and Rapoport [HR08], coincides with

the definition by Bruhat and Tits, denoted by G0
F(O\) in [BT84].

The pro-p-radical KF(1) of a parahoric group KF is the largest open normal pro-p-subgroup

[HV13, 3.6]. The quotient KF,k = KF/KF(1) is the group of k-points of a connected reductive

group over the residue field k of F .

A parahoric subgroup of G is G-conjugate to a parahoric subgroup fixing a facet of the alcove

C of A. The Iwahori (respectively, pro-p-Iwahori) subgroups of G are conjugate.

From now on, F is a facet of C, I is the Iwahori subgroup fixing C, and positive means

C-positive.

The group Z admits a unique parahoric subgroup Z0, which is the kernel of the Kottwitz

morphism κZ [HR10, 4.1.1]. The group Z0 is a subgroup of finite index of the maximal compact

subgroup Z̃0 of Z. The group N normalizes Z,Z0, Z0(1), and the subgroup Z
(p)
0 of elements of

Z0 of finite order prime to p. The quotient Zk = Z0,k = Z0/Z0(1) is the group of points over k of

a torus (not necessarily split). The quotient map Z0 → Zk restricted to Z
(p)
0 is an isomorphism,

Z0 is a semidirect product

Z0 = Z0(1) o Z
(p)
0 ' Z0(1) o Zk. (48)

The group Λ = Z/Z0 is finitely generated and commutative, of torsion subgroup Z̃0/Z0. We have

Z0 = Z̃0 when Z is a split torus or when G is unramified, or semisimple and simply connected

[HR10, § 11]. The group Λ(1) = Z/Z0(1) is finitely generated, of torsion subgroup Z̃0/Z0(1) and

may be non-commutative.

The same considerations apply to the maximal split subtorus T of Z. The group T0 = Z0 ∩ T
is the maximal subgroup of T .
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Proposition 3.15. Z ∩ KF = Z0.

Proof. [HR10, Lemma 4.2.1]. 2

The group UF generated by U+
F ∪U−F is normalized by Z̃0. The unipotent groups Uα, α ∈ Φ,

being contained in KerκG, we deduce from (43) that

KF ∩ Uα = Uα+rF(α) for α ∈ Φ, KF ∩ U+ = U+
F , KF ∩ U− = U−F . (49)

Proposition 3.16 [BT84, 5.2.4]. KF = Z0UF = U−F U
+
F U
−
F Z0 = U−F U

+
F (N ∩ KF).

We have [SS97, Lemma I.2.1]

KF(1) ∩ Uα = Uα+r∗F(α) (50)

for α ∈ Φ, where r∗F(α) = rF(α)+ if F ⊂ Ker(α+ rF(α)) and r∗F(α) = rF(α) otherwise.

Remark 3.17. When α, 2α ∈ Φ and 2rF(α) ∈ Γ2α, we have 2rF(α) = rF(2α) and r∗F(2α) =

rF(2α)+.

We denote

UF(1) = UF ∩ KF(1), U+
F (1) = KF(1) ∩ U+, U−F (1) = KF(1) ∩ U−.

The group UF(1) is generated by U+
F (1) and U−F (1). As in (46), the product map∏
α∈Φ+

red

Uα+r∗F(α) → U+
F (1) (51)

is a homeomorphism whatever ordering we choose on Φ+
red [BT84, 5.2.3]. We have a similar result

for U−F (1).

Example 3.18. Let α ∈ Φ and let F be a facet of C such that ϕ is a vertex of F.

r∗ϕ(α) 6= rϕ(α) = 0.

r∗C(α) = rC(α).

r∗F(α) 6= rF(α) = rϕ(α) if F ⊂ Kerα.

r∗F(α) = rF(α) = rC(α) if F 6⊂ Kerα.

Let U0+
F (respectively, V 0+

F ) be the group generated by Uα+0 for α ∈ Φ+ such that F ⊂ Kerα

(respectively, F 6⊂ Kerα). Then, U+
ϕ (1) ⊂ U+

F (1) ⊂ U+
C (1) ⊂ U+

C and, more precisely,

Uϕ(1)+V 0+
F = U+

F (1), U+
F (1)U0+

F = U+
C (1) = U+

C .

We have a similar result for U−F .

Proposition 3.19 (Iwahori decomposition). KF(1) = U+
F (1)Z0(1)U−F (1) and the factors

commute.

Proof. [SS97, Proposition I.2.2]. 2
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We denote I+ = U+
C = U+

C (1), I− = U−C = U−C (1).

Corollary 3.20. The Iwahori group I = I(1)Z0 admits the Iwahori decomposition I =

I−Z0I
+ = I+Z0I

−, the factors commute, and the product maps∏
α∈Φ+

red

Uα+0 → I+,
∏

α∈Φ−red

Uα+e−1
α

→ I−

are homeomorphisms.

Proof. Example 3.10. 2

Corollary 3.21. The map F 7→ KF is decreasing and the map F 7→ KF(1) is increasing,

KF(1) ⊂ KF′(1) ⊂ KF′ ⊂ KF,

if F is a facet of a facet F′.

Proof. If F is a facet of F′, the inclusions KF′(1) ⊂ KF′ ⊂ KF are clear. The inclusion KF(1) ⊂
KF′(1) follows from (3.19). 2

For α ∈ Φ and r ∈ Γα, let U∗α+r = Uα+r − Uα+r+ .

Lemma 3.22. When F ⊂ Ker(α+ rF(α)), we have mα(U∗α+rF(α)) ⊂ KF −KF(1).

Proof. Let u ∈ U∗α,rF(α). Then mα(u) = v′α(u)−1uv′′α(u)−1 with v′α(u), v′′α(u) ∈ U−α,−rF(α) by (14)

and (19). By (49), mα(u) ∈ KF because rF(−α) = −rF(α) by Example 3.11. The image of mα(u)

in KF,k is not trivial because r∗F(α) = rF(α)+ 6= rF(α). 2

3.8 Finite quotients of parahoric groups

For H ∈ H, the set Φ′H of α ∈ Φ such that H = Ker(α+ r) for r ∈ Γ′α is never empty. Let

Φ′F =
⋃

F⊂H∈H
Φ′H .

Let ∆′Φ,F ⊂ Φaff be the image of ∆aff
Σ,F ⊂ Σaff (32) by the injection Σaff '−→ Φaff

red → Φaff given by

(36) and (38). In other words, ∆′Φ,F is the set of α + r ∈ Φaff with (α + r)/2 6∈ Φaff,+ such that

Ker(α+ r) is a wall of C containing F; note that r = rF(α) ∈ Γ′α and that Φ′F and ∆′Φ,F depend

only on the set of affine hyperplanes H ∈ H containing F.

Proposition 3.23. The torus Tk is a maximal k-split torus of KF,k, and the root system of KF,k

with respect to Tk is Φ′F. The set ∆′Φ,F is a basis of Φ′F. The root subgroup associated to α ∈ Φ′F
is

Uα,F,k = Uα+rF(α)/Uα+r∗F(α) = Uα+rF(α)/Uα+rF(α)+
.

Proof. [BT84, 5.1.31]. 2

Remark 3.24. When α, 2α ∈ Φ, if 2α belongs to Φ′F but not α, we have

U2α,F,k = Uα+rF(α)/Uα+rF(α)+
,

because 2rF(α) = rF(2α), Uα+rF(α) = Uα+rF(α)+
U2α+rF(2α) and by Lemma 3.8.
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A minimal parabolic subgroup of KF,k is BF,k = Zk o U+
F,k of unipotent radical U+

F,k =∏
α∈Φ′+F

Uα,F,k whatever ordering we choose on the set Φ′+F of positive roots of Φ′F. Let NF,k be

the subgroup of KF,k generated by Zk and mα(uk) for α ∈ Φ′F, uk ∈ U∗α,F,k, and let sα,k ∈ NF,k/Zk
and sα(uk) ∈ NF,k be the images of mα(uk). Note that sα,k is independent of uk. For α ∈ ∆′Φ,F,

let

G′α,F,k be the group generated by Uα,F,k and U−α,F,k and Z ′α,F,k = Zk ∩ G′α,F,k.

Proposition 3.25 ([HV13, 5.2 Lemma], [CE04, 2.20, 6.3(ii)]). The finite groups KF,k and
G′α,F,k, for α ∈ ∆′Φ,F, are generated by strongly split BN -pairs of characteristic p:

B = BF,k, N = NF,k, S = {sα,k | α ∈ ∆′Φ,F}, for KF,k,

B = Z ′α,F,kUα,F,k, N = Z ′α,F,k ∪mα(uk)Z
′
α,F,k, S = {sα,k}, for G′α,F,k.

A parabolic subgroup of KF,k containing BF,k is called standard.

Proposition 3.26. Let F,F′ be two facets of C such that F is a facet of F′.

We have Φ′F′ ⊂ Φ′F. The group MF,k,F′ generated by Zk and Uα,F′,k for α ∈ Φ′F′ is the Levi

subgroup of a standard parabolic subgroup QF,k,F′ of KF,k.

The parahoric subgroup KF′ is the inverse image of QF,k,F′ in KF, the pro-p-parahoric

subgroup KF′(1) is the inverse image of the unipotent radical of QF,k,F′ , and KF′,k 'MF,k,F′ .

Proof. [BT84, 4.6.33, 5.1.32]. 2

Corollary 3.27. The reduction map KF → KF,k induces isomorphisms

KF′\KF/KF′ ' QF,k,F′\KF,k/QF,k,F′ , KF′(1)\KF/KF′(1) ' U+
F,k,F′\KF,k/U

+
F,k,F′ .

Corollary 3.28. The pro-p-Iwahori subgroup I(1) and the Iwahori subgroup I are the inverse

images in KF of U+
F,k and of BF,k.

Remark 3.29. A pro-p-Sylow subgroup of KF is an open subgroup of finite index prime to p. The

pro-p-Iwahori subgroup I(1) is a pro-p-Sylow subgroup of KF.

Proof. The index of I(1) in KF is equal to the index of U+
F,k in the finite group KF,k, and the

Bruhat decomposition implies that this index is prime to p. 2

For α ∈ Φ′F, the parahoric subgroup KF contains Uα+rF(α) (49) and r∗F(α) = rF(α)+. By

Proposition 3.23, the reduction map KF → KF,k induces an isomorphism

u 7→ uk : U∗α+rF(α) = Uα+rF(α) − Uα+rF(α)+
→ U∗α,F,k = Uα,F,k − {1},

and sends mα(u) ∈ KF to mα(uk) ∈ KF,k. We denote by sα ∈ N/Z = W0, sα+rF(α) ∈ N/Z0,

sα(u) ∈ N/Z0(1) the images of mα(u). For u, u′ ∈ U∗α+rF(α) we have mα(u′)−1mα(u) ∈ Z ∩ KF

and Z ∩ KF = Z ∩ I = Z0 by Proposition 3.15. We have bijective maps

BF,kmα(uk)BF,k/BF,k ' U+
F,kmα(uk)U

+
F,k/U

+
F,k ' Uα,F,k.

Corollary 3.30. For α ∈ Φ′F and u ∈ U∗α,F, we have

Imα(u)I/I ' Uα,F,k ' I(1)mα(u)I(1)/I(1).
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As Uα,F,k does not depend on the choice of u ∈ U∗α,F, the integer |Imα(u)I/I| = |Uα,F,k| is

the same for all u ∈ U∗α,F.

For s ∈ S(C) and Fs the face of C contained in the wall Hs fixed by s, the set ∆′Fs has a single

element αs. We denote qs := |Imαs(u)I/I|, qs,k := |UFs,k,αs |. Corollary 3.30 implies the following

result.

Corollary 3.31. For s ∈ S(C), qs = qs,k.

3.9 The Iwahori Weyl groups

We recall the group G′ generated by
⋃
α∈Φ Uα (§ 3.2) and we define the subgroup Gaff of G

generated by the parahoric subgroups of G. The subgroups G′ and Gaff of G are normal and

(Proposition 3.16)

G = ZG′, Gaff = Z0G
′.

For a subgroupX ofG, we setX ′ =X ∩G′, Xaff =X ∩Gaff . We have (Zaff , Naff) = (Z0Z
′, Z0N

′).

Definition 3.32. We call

W0 = N/Z, W aff = Naff/Z0, W = N/Z0, W aff(1) = Naff/Z0(1), W (1) = N/Z0(1)

the finite Weyl, affine Weyl, Iwahori Weyl, pro-p-affine Weyl, and pro-p-Iwahori Weyl groups

of G.

We note that W0 ' W aff
0 ' W ′0 and W aff ' W ′,W aff(1) ' W ′(1) for the natural definitions

W aff
0 = Naff/Zaff ,W ′0 = N ′/Z ′,W ′ = N ′/Z ′0,W

′(1) = N ′/Z ′0(1). The action of Naff on A identifies

W (H) with W aff and S(C) with a subset Saff of W aff . The group W0 identifies with a subgroup

of W (H) hence of W aff and S = Saff ∩W0.

Most of the properties of this section are encapsulated in an important theorem of Bruhat–

Tits theory [BT84, 5.2.12]:

Theorem 3.33. (Gaff , I,Naff) is a double Tits system of Coxeter systems

(W aff , Saff), (W0, S)

and the inclusion Gaff ⊂ G is I −Naff -adapted of connected type.

We recall that by the first assertion, (Gaff , I,Naff) and (Gaff , Baff , Naff) are Tits systems

[BT72, 1.2.6, 5.1.1] hence satisfy the following properties.

(T1) I ∪Naff generates Gaff and I ∩ Naff is normal in Naff .

(T2) For all s ∈ Saff , w ∈W aff , we have sIw ⊂ IwI ∪ IswI.

(T3) For all s ∈ Saff , we have sIs 6= I, and the same properties for (S,W0, B
aff) instead of

(Saff ,W aff , I).

For the second assertion, see the definitions [BT72, 1.2.13, 4.1.3].

Proposition 3.34 (Bruhat decompositions for Gaff [BT72, 1.2.7]). We have

Gaff = BaffNaffBaff = INaffI = I(1)NaffI(1).

The maps n 7→ BaffnBaff , n 7→ InI, n 7→ I(1)nI(1) induce bijections

W0 ' Baff\Gaff/Baff , W aff ' I\Gaff/I, W aff(1) ' I(1)\Gaff/I(1).
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Proof. The assertions INaffI = I(1)NaffI(1),W aff(1) ' I(1)\Gaff/I(1) involving I(1) use I =

I(1)Z0 and Z0 ⊂ Naff for the equality, and the N -equivariant semidirect product Z0 = Z0(1) o
Z

(p)
0 (48) with the disjoint decomposition

InI =
⊔

t∈Z(p)
0

I(1)tnI(1), for all n ∈ N,

for the isomorphism. 2

Note that the equality [InI : I] = [I(1)nI(1) : I(1)] of indices for n ∈ N (Corollary 3.30)

follows easily from I =
⊔
t∈Z(p)

0

I(1)t, InI =
⊔
t∈Z(p)

0

I(1)tnI(1).

We have a similar Bruhat decomposition for G. Let B = ZU+.

Proposition 3.35 (Bruhat decompositions for G). We have

G = BNB = INI = I(1)NI(1).

The maps n 7→ BnB, n 7→ InI, n 7→ I(1)nI(1) induce bijections

W0 ' B\G/B, W ' I\G/I, W (1) ' I(1)\G/I(1), InI/I ' I(1)nI(1)/I(1).

Proof. For B and I, the equalities and the isomorphism with W0 follow from G = GaffZ,N =

NaffZ,B = BaffZ and Proposition 3.34. For the isomorphism with W0, see also [BT72, 5.1.32].

The isomorphism with W follows from [BT72, 4.2.2(iii)] where W,Z0 are denoted by Ŵ ,H.

We deduce G = I(1)NI(1) from G = INI, I = Z0I(1) and Z0 ⊂ N . We have InI/I '
I(1)nI(1)/I(1) because

I/(I ∩ nIn−1) = I(1)Z0/(I(1) ∩ nI(1)n−1)Z0 ' I(1)/(I(1) ∩ nI(1)n−1).

If I(1)nI(1) = I(1)n′I(1) we have InI = In′I and the images w,w′ of n, n′ in W are equal.

As I = Z0I(1), the double coset InI = I(1)nZ0I(1) is a disjoint union of I(1)nzI(1) for z ∈
Z0/Z0(1) = Zk. This implies that the images of n, n′ in W (1) are equal. 2

The Iwahori decomposition of I implies that

N ∩ I = Z0. (52)

Let NormC be the N -stabilizer of the alcove C. We denote by Ω ⊂ W and Ω(1) ⊂ W (1) the

images of NormC. We have

N = NaffNormC, NormC ∩ Naff = NormC ∩ I = Z0, NormC ∩ Z = Ker v, (53)

because W aff acts simply transitively on the set of alcoves of A, a translation normalizing C is

trivial (Lemma 3.7), z ∈ Z acts on A by translation by −v(z) (16), and (52).

The G-stabilizer of the alcove C is also the G-normalizer of I because I is the fixator of C in

the kernel of the Kottwitz morphism κG (Definition 3.14) and C is the only alcove of the (adjoint)

Bruhat–Tits building fixed by I (this follows from the comment after (44) and G′ ⊂ KerκG).

The G-stabilizer of the apartment A is N (after Definition 3.12). The Iwahori group I acts

transitively on the apartments of the (adjoint) Bruhat–Tits building containing C, as UC has

this property (paragraph before (46)) and I = Z0UC (Proposition 3.16). We deduce that the

apartments containing C are in bijection with I/Z0 and

NormCI = the G-normalizer of I = the G-stabilizer of C.
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Proposition 3.36. (1) The groups

G/Gaff ' Z/Zaff ' N/Naff 'W/W aff ' NormC/Z0 ' Ω (54)

are commutative and finitely generated.

(2) G = NormCG
aff = NormCG

′ and NormC normalizes I,Naff and I ′, N ′.

(3) G′ satisfies the Bruhat decompositions G′ = B′N ′B′ = I ′N ′I ′.

The maps n 7→ B′nB′, n 7→ I ′nI ′ induce isomorphisms

W0 ' B′\G′/B′, W aff ' I ′\G′/I ′.

Proof. (1) The isomorphisms (54) are clear. The groups are commutative and finitely generated

because Z0 ⊂ Zaff and we recall that the group Λ = Z/Z0 is commutative and finitely generated

(before Proposition 3.15).

(2) The equalities for G follow from (54) and Gaff = Z0G
′ with Z0 ⊂ NormC. NormC

normalizes I by the remarks made before the proposition; it normalizesNaff becauseG normalizes

Gaff (see the beginning of this section); it normalizes the intersections I ′, N ′ of I,N with G′

because G′ is normal in G (again, see the beginning of this section).

(3) This follows from

(Gaff , Baff , Naff , I, I(1)) = (Z0G
′, Z0B

′, Z0N
′, Z0I

′, Z0(1)I ′(1))

and the Bruhat decompositions of Gaff (Proposition 3.34). We have

W0 ' Baff\Gaff/Baff = Z0B
′\Z0G

′/Z0B
′ ' B′\G′/B′,

W aff ' I\Gaff/I = Z0I
′\Z0G

′/Z0I
′ ' I ′\G′/I ′,

because Z0 ∩ G′ ⊂ I ′ ∩ B′ for the right isomorphisms. 2

We note that (53) implies

W = W aff o Ω, W (1) = W aff(1)Ω(1), W aff(1) ∩ Ω(1) = Zk. (55)

The extension W (1) → W of kernel Zk does not split in general [Vig05].

Remark 3.37 ([HR08, Lemma 17], [Ric13, Lemma 1.3]). The kernel of the Kottwitz morphism

κG is Gaff . By Proposition 3.36, the image of κG is isomorphic to Ω. By (53), the Gaff -stabilizer

of C is I and the G′-stabilizer of C is I ′.

The set Saff is invariant by conjugation by Ω, hence the length ` of the Coxeter group

(W aff , Saff) is invariant by conjugation by Ω. The length extends to a map on W and W (1), still

called a length and denoted by `:

`(w̃) = `(w) = `(w′), (56)

for w̃ ∈ W (1) lifting w ∈ W and w′ ∈ W aff such that w = w′u, u ∈ Ω. The set of elements of

length 0 in W (respectively, W (1)) is Ω (respectively, Ω(1)).

The cardinal qw of |InI/I| = |I(1)nI(1)/I(1)|, for n ∈ N of image w ∈ W or W (1)

(Proposition 3.35, Corollary 3.31), can be explicitly computed from the qs for s ∈ Saff .
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Proposition 3.38 (Braid relations for W ). For w1, w2 ∈ W , qw1w2 = qw1qw2 is equivalent to

`(w1) + `(w2) = `(w1w2).

Proof. The map n 7→ [I : I ∩ nIn−1] is invariant by conjugation by NC and `(w), qw are invariant

by conjugation by Ω.

The braid relations for W aff imply the braid relations for W , and follow from the properties

of the affine Tits system (Gaff , I,Naff). This is well known but the only reference that I am aware

of is [Bou68, IV.2, Exercices 3, 8, 23]. 2

4. Iwahori–Matsumoto presentations

4.1 Generalities on Hecke rings

In this preliminary subsection, G is an arbitrary locally profinite group containing a compact

open subgroup I, and R is a commutative ring.

The Hecke R-algebra HR(G, I) of I in G is the ring of I-bi-invariant compactly supported

functions from G to R, with the convolution product ∗. The value at I is an isomorphism from

the intertwining algebra EndRGR[I\G] onto HR(G, I). We have

HR(G, I) = R⊗Z HZ(G, I).

We call HZ(G, I) the Hecke ring of I in G.

For g ∈ G, the characteristic function of IgI is denoted by Tg. The Hecke R-algebra HR(G, I)

is a free R-module of basis (Tg)g∈I\G/I .

For g, h ∈ G, the convolution product Tg ∗ Th is

Tg ∗ Th =
∑

x∈I\IgIhI/I

(Tg ∗ Th)(x)Tx, (57)

where (Tg ∗ Th)(x) is the cardinal of (IgI ∩ xIh−1I)/I [Vig96, I.3.4 (3)], or equivalently,

(Tg ∗ Th)(x) is the cardinal of {u ∈ Yg | u−1x ∈ gIhI}, (58)

where Yg is a system of representatives of the cosets I/(gIg−1 ∩ I). A system of representatives

of the coset IgI/I is Ygg. The number of elements of IgI/I is denoted by qg. The linear map

d : HR(G, I) → R, Tg 7→ qg (g ∈ G) (59)

respects the product [Vig96, I.3.5]. For g, h ∈ G, the formula (57) implies

qgqh =
∑

x∈I\IgIhI/I

(Tg ◦ Th)(x)qx.

For x ∈ IgIhI, (Tg ∗ Th)(x) is a positive integer less than or equal to min(qg, qh) and we have

(Tg ∗ Th)(gh) > 1. Therefore qgqh > qgh and

qgqh = qgh is equivalent to Tg ∗ Th = Tgh. (60)

We have

Tg ∗ Th = Tgh if g or h normalizes I. (61)
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4.2 Iwahori–Matsumoto presentation

The Hecke ring of the Iwahori subgroup I (respectively, pro-p-Iwahori subgroup I(1)) in the

reductive group G is called the Iwahori Hecke ring H (respectively, the pro-p-Iwahori Hecke ring

H(1)) of G. For n ∈ N of image w in W or in W (1), we write Tn = Tw in H or in H(1).

Proposition 4.1. The Iwahori Hecke ring H (respectively, pro-p-Iwahori Hecke ring H(1)) is a

free Z-module with basis (Tw)w∈W (respectively, (Tw)w∈W (1)) satisfying the braid relations

Tw ∗ Tw′ = Tww′ if `(ww′) = `(w) + `(w′).

Proof. For the basis, see Proposition 3.35. For the braid relations, see (60) and Propositions 3.35

and 3.38. 2

Let s ∈ Saff . We denote by Saff
s (1) the inverse image of s in W (1). Let s̃ ∈ Saff

s (1). The

elements Ts in H and Ts̃ in H(1) satisfy quadratic relations. It is possible to prove them using

Bruhat–Tits theory as in [Vig05] when G is split. But we will obtain them, using Proposition 3.25,

by following the carefully written proofs of the quadratic relations in the Hecke algebras of finite

groups with a strongly split BN -pair of characteristic p over a large field of characteristic p by

Cabanes and Enguehard [CE04, ch. 6].

We denote by Hs the wall of the alcove C fixed by s. A facet F of C contained in Hs is either

the face Fs or a facet of Fs. Let α ∈ Φ+
red be the reduced C-positive root and r ∈ Γα such that

Hs = Ker(α+ r). If r 6∈ Γ′α, then 2α ∈ Φ. The affine root As = αs + rs,

αs + rs = α+ r when r ∈ Γ′α and αs + rs = 2α+ 2r when r 6∈ Γ′α,

belongs to ∆′Φ,F (§ 3.8). For u ∈ U∗As = UAs − UAs+ we denote by ms(u) the unique element

of N ∩ U−αsuU−αs . We have ms(u) ∈ U−AsuU−As . The elements u,ms(u) belong to KF. The

image s(u) of ms(u) in W (1) belongs to Saff
s (1). The Hecke operator Ts ∈ H belongs to the Hecke

subring H(KF, I) by Lemma 3.22 and Ts(u) ∈ H(1) belongs to the Hecke subring H(KF, I(1)).

The Iwahori subgroup I is the inverse image by the reduction map KF → KF,k of a minimal

Borel subgroup BF,k of GF,k and I(1) is the inverse image of the unipotent radical U+
F,k of BF,k

(Corollary 3.30). The Hecke rings H(KF, I) and HF,k = H(KF,k, BF,k) are isomorphic and the

Hecke rings H(KF, I(1)) and HF,k(1) = H(KF,k, U
+
F,k) are isomorphic.

The finite group KF,k is a strongly split BN -pair of characteristic p with B = BF,k, N = NF,k

(Proposition 3.25). The root group of KF,k defined by As is UAs,k = UAs/UAs,+. The root group of

KF,k defined by −As is U−As,k = U−As/U−As,+. The reduction uk of u in KF,k belongs to U∗As,k =

UAs,k−{1} and the reduction ms(uk) of ms(u) is the unique element of NF,k ∩ U−As,kukU−As,k.
We have

s(u)2 = ms(uk)
2 ∈ Zk.

We still denote by s the image of ms(uk) in WF,k = NF,k/Zk. By Corollary 3.30,

qs = |UAs,k|.

The quadratic relations satisfied by Ts ∈ H, Ts ∈ H(KF, I), Ts ∈ HF,k are the same.

Proposition 4.2 (Quadratic relations in H).

Ts ∗ Ts = qs + (qs − 1)Ts in H.
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Proof. The quadratic relations are proved in the ring Z[1/p] ⊗ HF,k [CE04, Theorem 3.3], but

they hold true in HF,k because all the elements belong to HF,k. 2

By a general property of Hecke algebras [Vig96, I.3.5], we have the following corollary.

Corollary 4.3. The linear map H→ Z,

Tw = Ts1 . . . Ts`(w)
Tu 7→ qw = qs1 . . . qs`(w)

if w = s1 . . . s`(w)u (si ∈ Saff , u ∈ Ω),

is a ring homomorphism.

The quadratic relations satisfied by Ts(u) ∈ H(1), Ts(u) ∈ H(KF, I(1)), Tms(uk) ∈ HF,k(1) are

the same. We need more notation. The group G′s,k generated by UAs,k ∪U−As,k is a strongly split

BN -pair of characteristic p with B = Zk,sUAs,k, N = Zk,s ∪ms(uk)Zk,s and Zk,s := G′As,k ∩Zk
(Proposition 3.25). We have ms(uk) ∈ G′s,k and ms(uk)

2 = s(u)2 is in Zk,s. Let

cs = (qs − 1)|Zk,s|−1
∑
t∈Zk,s

t.

We identify Z[Zk] with a subring of HF,k(1) by the map
∑

t∈Zk c(t)t 7→
∑

t∈Zk c(t)Tt, using the

braid relations.

Proposition 4.4 (Quadratic relations in H(1)).

Ts(u) ∗ Ts(u) = qss(u)2 + cs(u)Ts(u) in H(1),

where cs(u) = cs if the order of Zk,s is qs − 1 (for example, if G is F -split). In general,

cs(u) =
∑
t∈Zk,s

cs(u)(t)t

for positive integers cs(u)(t) constant on the coset t{xs(x)−1 | x ∈ Zk}, cs(u)(t) = cs(u)(t
−1) for

t ∈ Zk,s, of sum qs − 1, and

cs(u) ≡ cs modulo p.

The proof is divided into three steps following the proof given by Cabanes and Enguehard in

[CE04, ch. 6] for the quadratic relations in the Hecke algebra of a p-Sylow subgroup of a finite

reductive group over a field of characteristic p (not over the ring R).

Step 1. The intersections

ms(uk)UAs,kms(uk) ∩ UAs,kms(uk)tUAs,k (62)

for t ∈ Zk,s are disjoint and exhaust ms(uk)U
∗
As,k

ms(uk) (where U∗As,k = UAs,k − {1}).

Proof. By the Bruhat decompositions of the strongly split BN -pair of characteristic p generating

the group G′s,k (Proposition 3.25), we have

G′s,k =
⊔

n∈Nk,s

UAs,knUAs,k

where Nk,s = Zk,s tms(uk)Zk,s. The disjointness of the sets (62) follows from the disjointness

of the UAs,kms(uk)tUAs,k for t ∈ Zk,s. The union ms(uk)UAs,kms(uk) ∩ UAs,kms(uk)Zk,sUAs,k
of the sets (62) does not contain ms(uk)

2 ∈ Zk,s. It is equal to ms(uk)U
∗
As,k

ms(uk) because

ms(uk)U
∗
As,k

ms(uk) = U∗−As,kms(uk)
2 is contained in UAs,kms(uk)Zk,sUAs,k. 2
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Step 2. Let cs(u)(t) denote the cardinality of (62) and cs(u) =
∑

t∈Zk,s cs(u)(t)t. We have Ts(u) ∗
Ts(u) = qss(u)2 + cs(u)Ts(u) in H(1).

Proof. See the proof of Proposition 6.8(iii) in [CE04]. 2

Step 3. The integers cs(u)(t) for t ∈ Zk,s satisfy the following properties:

(1) their sum is qs − 1;

(2) cs(u)(t) = cs(u)(tt
′) for t ∈ Zk,s, t′ ∈ {s(x)x−1 | x ∈ Zk};

(3) cs(u)(t) = cs(u)(t
−1) for t ∈ Zk,s;

(4) they are constant modulo p;

(5) they are positive;

(6) when the order of Zk,s is qs − 1, in particular when G is F -split, cs(u) = cs =
∑

t∈Zk,s t.

Proof. (1) The sets (62) of cardinal cs(u)(t) for t ∈ Zk,s, form a partition of UAs,k−{1} by Step 1.

Therefore ∑
t∈Zk,s

cs(u)(t) = |UAs,k| − 1 = qs − 1.

(2) The group {s(x)x−1 = sxs−1x−1 | x ∈ Zk} is contained in Zk,s because ms(uk) normalizes

Zk and Zk normalizes G′s,k. We have

cms(uk)(t) = cms(uk)(tt
′) for t′ ∈ {s(x)x−1 | x ∈ Zk}

because x ∈ Zk commutes with cs(u)Ts(u) by the quadratic relations, xTs(u) = Ts(u)s(x), x

commutes Ts(u) ∗ Ts(u) and Zk is commutative.

(3) The set (62) multiplied by ms(uk)
−2 ∈ Zk,s, equal to UA−s,k ∩ UAs,kms(uk)

−1tUAs,k, has

cs(u)(t) elements. Its image by the inverse map also has cs(u)(t) elements. It is equal to UA−s,k ∩
UAs,kt

−1ms(uk)UAs,k = UA−s,k ∩ UAs,kms(uk)s(t
−1)UAs,k which has cs(u)(s(t)

−1) elements. By

Step 2, cs(u)(s(t)
−1) = cs(u)(s(t)

−1t′) for t′ = s(t)t−1, hence cs(u)(t) = cs(u)(t
−1).

(4) The function t 7→ cms(uk)(t) : Zk,s/{s(x)x−1 | x ∈ Zk}→ Z is constant modulo p [CE04,

Proposition 6.10(i) and (ii)]. We repeat the arguments. If the function is not constant modulo p,

there is some non-trivial character ψ0 of Zk,s with values in k∗ such that

b =
∑
t∈Zk,s

cms(uk)(t)ψ0(t) 6= 0.

The Hecke k-algebra Hk(G′s,k, UAs,k) is equal to k[Zk,s] + k[Zk,s]Tms(uk) with the braid and

quadratic relations

Tms(uk)t = s(t)Tms(uk), T 2
ms(uk) = cms(uk)Tms(uk).

One may define |Zk,s|+ 2 characters of Hk(G′s,k, UAs,k): ξ0 equal to ψ0 on t ∈ Zk,s and equal to b

on Tms(uk), ξ equal to ψ on t ∈ Zk,s and equal to 0 on Tms(uk) for every character ψ of Zk,s and

ξst trivial on Zk,s and equal to −1 on Tms(uk) because
∑

t∈Zk,s cms(uk)(t) = qs − 1 is congruent

to −1 modulo p.

The Hecke algebraHk(G′s,k, UAs,k) is isomorphic to Endk[G′s,k]c-Ind
G′s,k
UAs,k

1. The simple modules

of Hk(G′s,k, UAs,k) are in bijection with the isomorphism classes of indecomposable summands

of the k-representation c-Ind
G′s,k
UAs,k

1 [CE04, Proof of (i) in Theorem 6.10]. This representation is
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a direct sum over the characters ψ of Zk,s inflated to B′s,k = Zk,sUAs,k, of the representations

c-Ind
G′s,k
B′s,k

ψ. The restriction of c-Ind
G′s,k
B′s,k

ψ to B′s,k is isomorphic to the direct sum of ψ and of

the natural action of B′s,k on the indecomposable regular module k[UAs,k]. The only character

of G′s,k is trivial. We deduce that the representation c-Ind
G′s,k
UAs,k

1 is the direct sum of |Zk,s| + 1

indecomposable subrepresentations [CE04, Lemma 6.4]. The Hecke algebra Endk[G′s,k]c-Ind
G′s,k
UAs,k

1

cannot have |Zk,s|+ 2 characters. This implies that we could not make our assumption; in other

words, the integers cms(uk)(t) for t ∈ Zk,s are constant modulo p.

(5) Their sum qs − 1 is not divisible by p, hence they are not divisible by p, in particular

they are not 0, they are positive.

(6) They are all equal to 1 if and only the order of Zk,s is qs − 1 if and only if cs(u) = cs =∑
t∈Zk,s t.

When the group G is F -split, the order of Zk,s is qs−1, and qs = q is the order of the residue

field k of F [Vig05, § 2.2].

This ends the proof of Proposition 4.4. 2

Remark. The positive integers cs(u)(t) for t ∈ Zk,s are all equal if and only if cs(u) = cs. When

this is the case, the order of Zk,s divides qs − 1.

We give an example where the order of Zk,s does not divide qs − 1 [KX15, Remark 3.8].

Suppose that q is odd. Let G denote the F -rational points of the unramified unitary group U(2,

1)(E/F ) where E/F is a quadratic unramified extension of residue field kE . Then Zk identifies

with k∗E ×U(1)(kE/k) and we have S = {s, s′} where, for qs′ = q, the group Zk,s′ identifies with

k∗ = k − {0} of order qs′ − 1 and cs′(u) = cs′ ; and for qs = q3, the group Zk,s identifies with

k∗E = kE −{0} of order q2− 1 not dividing qs− 1, and the positive integers cs(u)(t) = 1 for t ∈ k∗
and cs(u)(t) = q + 1 for t ∈ k∗E − k∗ are not constant. We note that

cs(u) = cs − qcs′ ≡ cs mod q.

Lemma 4.5. The set {ms(u
′) | u′ ∈ U∗As,k} is a coset Zk,sms(uk).

Proof. By the Bruhat decomposition G′s,k = Zk,sUAs,k t UAs,kms(uk)Zk,sUAs,k, there exists a

map t : U∗As,k → Zk,s defined by

ms(uk)u
′ms(uk) = xms(uk)t(u

′)y for some x, y ∈ UAs,k.

Remembering the definition of ms(u
′) (14), we note that ms(u

′) = t(u′)ms(uk)
−1. The lemma

means that t(U∗As,k) = Zk,s.

Recalling Step 1, we have the disjoint union

ms(uk)U
∗
As,kms(uk) =

⊔
t∈t(U∗As,k)

(ms(uk)UAs,kms(uk) ∩ UAs,kms(uk)tUAs,k).

By Step 2, we have

cms(uk) =
∑

u′∈U∗As,k

Tt(u′).

The lemma follows from part (4) of Step 3. 2
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The set

S̃aff
s = {s(u′) | u′ ∈ U∗As,k} = Zk,ss(u) = s(u)Zk,s

is a coset of Zk,s in Saff
s (1) = Zks(u) = s(u)Zk, which depends only on s.

Lemma 4.6. Let s̃ ∈ Saff
s (1). We have Ts̃∗Ts̃ = qss̃

2 +cs̃Ts̃ where cs̃ = cs(u)s(u)−1s̃; and cs̃ = cs(u)

if and only if s̃ ∈ S̃aff
s .

Proof. We have, for t ∈ Zk,
Ts(u)t ∗ Ts(u)t = Ts(u) ∗ Ts(u)s(t)t = (qss(u)2 + cs(u)Ts(u))s(t)t = qs(s(u)t)2 + cs(u)tTs(u)t. 2

4.3 Generic algebra

Let R be a commutative ring, and let

W aff , Saff ,Ω,W,Zk,W (1), (63)

satisfying:

(a1) (W aff , Saff) is a Coxeter system;

(a2) Ω is a group acting on W aff and stabilizing Saff ;

(a3) W is the semidirect product W aff o Ω;

(a4) Zk is a commutative group;

(a5) 1 → Zk → W (1) → W → 1 is an extension of W by Zk.

For a subset X of W , we denote by X(1) the inverse image of X in W (1).

The length ` of (W aff , Saff), being invariant by conjugation by Ω, extends to a length ` of

W constant on the double cosets of Ω, and inflates to a length on W (1), still denoted by `. The

subgroup of elements of length 0 in W is Ω, and in W (1) is Ω(1). The inverse image of W aff in

W (1) is a normal subgroup W aff(1) such that Zk = W aff(1) ∩ Ω(1) and W (1) = W aff(1)Ω(1) as

in (55).

For w ∈ W (1) and t ∈ Zk, w(t) = wtw−1 depends only on the image of w in W because Zk
is commutative. By linearity the conjugation defines an action

(w, c) 7→ w • c : W (1)×R[Zk] → R[Zk]

of W (1) on R[Zk] factorizing through the map W (1) → W . For s, s′ ∈ Saff we write s ∼ s′

if s, s′ ∈ Saff are conjugate in W ; if s, s′ ∈ Saff(1) we write s ∼ s′ if their image in Saff is

W -conjugate.

Theorem 4.7. Let (qs, cs) ∈ R × R[Zk] for all s ∈ Saff(1). We have, for all s ∼ s′ in Saff(1),

w ∈W (1), ws′w−1s−1, t ∈ Zk,
(a5) qs = qst = qs′ ,

(a6) cst = cst and w • cs′ = cws′w−1 .

Then the R-free module of basis (Tw)w∈W (1) admits a unique R-algebra structure satisfying

the braid relations TwTw′ = Tww′ for w,w′ ∈W (1), `(w) + `(w′) = `(ww′),

the quadratic relations T 2
s = qsTs2 + csTs for s ∈ Saff(1),

where cs =
∑

t∈Zk cs(t)t ∈ R[Zk] is identified with
∑

t∈Zk cs(t)Tt.

This algebra is denoted by HR(qs, cs) and called the R-algebra of W (1) with parameters

(qs, cs).
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We will prove that the conditions (a5) and

(a6′) cst = cst and w • cs′ = ws′w−1s−1cs if `(sw) > `(w), qsw • cs′ = qs′ws
′w−1s−1cs if `(sw) <

`(w),

are necessary for the existence of the algebra. We will not prove that (a5) and (a6′) are sufficient,

although the same proof as in [Sch09, Theorem 3.1.5] should work.

Remark 4.8. When (a5) is satisfied and for all s ∈ Saff(1), x ∈ R, qsx = 0 implies x = 0, the

conditions (a6′) and (a6) are equivalent because qs = qs′ by (a5), ws′w−1s−1cs = cws′w−1 by

cst = cst and the commutativity of Zk, and can simplify by qs as qsx = 0 implies x = 0.

Proof. (1) We show that the conditions (a5) on (qs) and (a6′) on (cs) are necessary. The braid

relations identify R[Zk] with a subalgebra of HR(qs, cs) and Twt = Twt = wtw−1Tw for w ∈W (1),

t ∈ Zk hence

Twc = (w • c)Tw (c ∈ R[Zk], w ∈W (1)). (64)

The equalities qs = qst and cst = cst follow from

qs(st)
2 + cstTst = (TsTs)s

−1tst = TstTst = TstTst = qst(st)
2 + cstTst.

The equalities qs′ = qs and w • cs′ = ws′w−1s−1cs for s, s′ ∈ Saff(1), w ∈ W (1), swz = ws′ for

some z ∈ Zk, follow from the associativity of the product

Ts(TwTs′) = (TsTw)Ts′ . (65)

(a) Case `(sw) = `(ws′) = `(w) + 1. By the braid and quadratic relations,

Ts(TwTs′) = TsTws′ = TsTswz = TsTsTwz = qss
2Twz + csTswz.

(TsTw)Ts′ = TswTs′ = Tws′z−1Ts′ = ws′z−1(ws′)−1Tws′Ts′

= ws′z−1(ws′)−1TwTs′Ts′ = ws′z−1(ws′)−1Tw(qs′s
′2 + cs′Ts′).

We compute ws′z−1(ws′)−1Tws
′2 = ws′z−1(ws′)−1ws′2w−1Tw = s2wzw−1Tw = s2Twz. This

implies

(TsTw)Ts′ = qs′s
2Twz + ws′z−1(ws′)−1(w • cs′)Tws′ .

We compare and deduce qs′ = qs, w • cs′ = ws′z(ws′)−1cs = ws′w−1s−1cs.
(b) Case `(sw) = `(ws′) = `(w)−1. We expand first TwTs′ and TsTw using Tw = Tws′−1Ts′ =

TsTs−1w by the braid relations. By the quadratic relations,

TwTs′ = Tws′−1(qs′s
′2 + cs′Ts′) = qs′Tws′ + (ws′

−1 • cs′)Tws′−1Ts′ = qs′Tws′ + Tw(s′
−1 • cs′),

TsTw = (qss
2 + csTs)Ts−1w = qsTsw + csTw.

Recalling sw = ws′z−1, we have `(sws′) = `(ws′) + 1, and we compute

Ts(TwTs′) = qs′Tsws′ + TsTw(s′
−1 • cs′) = qs′Tsws′ + (qsTsw + csTw)(s′

−1 • cs′),
(TsTw)Ts′ = qsTsws′ + csTwTs′ = qsTsws′ + qs′csTws′ + csTw(s′

−1 • cs′).

We compare to get qs′ = qs, qs′csTws′ = qsTsw(s′−1 • cs′). Writing

Tsw(s′
−1 • cs′) = sws′

−1
w−1Tws′(s

′−1 • cs′) = sws′
−1
w−1(w • cs′)Tws′ ,

we obtain qs(w • cs′) = qs′ws
′w−1s−1cs.
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(2) The algebra is unique if it exists because the expansion of the product TwTw′ , for w,
w′ ∈W (1), in the basis (Tw′′)w′′∈W (1) is uniquely determined by the braid and quadratic relations.
This is clear if `(ww′) = `(w) + `(w′) by the braid relations. Otherwise, let w = s1 . . . s`(w)u,

w′ = s′1 . . . s
′
`(w′)u

′ with si, s
′
j ∈ Saff(1), u, u′ ∈ Ω(1) be two reduced decompositions of w,w′. We

note that s′′j := us′ju
−1 lies in Saff(1) as Ω(1) normalizes Saff(1). Using the braid relations, we

compute

TwTw′ = Ts1 . . . Ts`(w)
TuTs′1 . . . Ts′`(w′)

Tu′ = Ts1 . . . Ts`(w)
Ts′′1 . . . Ts′′`(w′)

Tuu′

= Tw1Ts′′j+1
. . . Ts′′

`(w′)
Tuu′ = Tw1s′′j+1

T 2
s′′j+1

Ts′′j+2
. . . Ts′′

`(w′)
Tuu′ ,

where w1 := s1 . . . s`(w)s
′′
1 . . . s

′′
j and `(w1s

′′
j+1) = `(w1) − 1 = `(w) + j − 1. Using the quadratic

relations, we compute

Tw1s′′j+1
T 2
s′′j+1

= qs′′j+1
Tw1s′′j+1

+ Tw1s′′j+1
cs′′j+1

Ts′′j+1
= qs′′j+1

Tw1s′′j+1
+ (w1s

′′
j+1) • cs′′j+1

Tw1 .

After finitely many steps we obtain the coefficients TwTw′ in the basis (Tw′′)w′′∈W (1).

(3) The unicity and existence of the R-algebra are proved in [Sch09, Theorem 3.1.5] when

the quadratic relations are replaced by

T 2
s̃ = asT(s̃)2 + bsTs̃ (s ∈ Saff),

where s̃ is a fixed lift of s, and the parameters (as, bs) ∈ R × R[Zk] for s ∈ Saff satisfy, for

s, s′ ∈ Saff , w ∈W (1), ws̃′w−1(s̃)−1 ∈ Zk:
(a5′′) as̃ = as̃′ ;

(a6′′) w • bs̃′ = ws̃′w−1(s̃)−1bs̃.

Recalling that the map (t, s) 7→ ts̃ : Zk × Saff
→ Saff(1) is bijective, we define a map

(as, bs)s∈Saff 7→ (qs, cs)s∈Saff(1) such that qts̃ := as̃, cts̃ := tbs̃. Then (as, bs)s ∈ Saff satisfies (a5′′)

and (a6′′) if and only if (qs, cs)s∈Saff(1) satisfies (a5) and (a6). Noting that the braid relations

imply Tts̃ = TtTs̃, the braid and quadratic relations in [Sch09] are equivalent to our braid and

quadratic relations. 2

Remark 4.9. (a) When (qs) satisfies (a5), (cs = qs − 1) satisfies (a6).

(b) Condition (a6) implies s • cs = cs (take w = s ∈ Saff(1) in (a6′)). This means that Ts
commutes with cs. It also implies cssts

−1 = cst for t ∈ Zk (use st • cst = cst, s • cs = cs, cst = cst

and the commutativity of Zk). Hence, if cs 6= 0, the group {tst−1s−1 | t ∈ Zk} is finite.

(c) By [Bou68, VI.1.3, Proposition 3; VI.4.3, Theorem 4], [Bor76, 3.3], the number of W aff -

conjugacy classes of S(H) is the number of connected components of the graph obtained by

erasing the multiple edges of the Coxeter graph CoxSaff of Saff ; this number is: (1) if CoxS is

of type (An)n>2, (Dn)n>3, (En)n=6,7,8; (2) if CoxS is of type A1, (Bn)n>2, G2, F4; (3) if CoxS is

of type (Cn)n>3.

(d) Note that the Hecke R-algebra of a Coxeter system (W,S) with parameters (qs, cs)s∈S
in R×R, constant on the intersections with S of the conjugacy classes of W , was introduced in

[Bou68, Example 23].

(e) We can extend the parameters (qs, cs)s∈Saff(1) in R×R[Zk] satisfying conditions (a5) and

(a6) to parameters (q(τ), c(τ))τ∈S(H)(1) in R×R[Zk] satisfying qs = q(s), cs = c(s) if s ∈ Saff(1)

and

(a5) q(τ) is constant on the conjugacy classes of W (1) and q(τt) = q(τ) for t ∈ Zk;
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(a6) c(wτw−1) = w • c(τ) for w ∈W (1) and c(τt) = c(τ)t for t ∈ Zk,
(f) We can also choose indeterminates satisfying (a5). They are denoted by boldface letters

qs,q(τ). We will also consider indeterminates qs and q(τ) satisfying qs = q(s), (a5) and of square

q(τ)2 = q(τ).

Example 4.10. (1) The Iwahori Hecke ring is H = HZ(qs, qs− 1) with qs given by Corollary 3.31

and Zk = {1},W = W (1).

(2) The pro-p-Iwahori Hecke ring H(1) = HZ(qs, cs) with qs given by Corollary 3.31, cs as in

Proposition 4.4, for s ∈ Saff(1).

(3) The group algebra R[W (1)] = HR(1, 0) with qs = 1, cs = 0 for all s ∈ Saff(1).

(4) The Lusztig affine Hecke R-algebras with parameters (qs) with qs an invertible square in

R [Lus89] are examples of R-algebras HR(qs, qs − 1) with Zk = {1},W = W (1).

The R-algebra Haff
R (qs, cs) of W aff(1) is a subalgebra of the R-algebra HR(qs, cs) of W (1).

By the braid relations, the R-linear map such that u 7→ Tu for u ∈ Ω(1), embeds the

group R-algebra R[Ω(1)] of Ω(1) in HR(qs, cs). The intersection R[Ω(1)] ∩ Haff
R (qs, cs) is the

group R-algebra R[Zk] of Zk.

Proposition 4.11. The R-algebra HR(qs, cs) is isomorphic to the twisted tensor product

R[Ω(1)] ⊗̂R[Zk]Haff
R (qs, cs)

with the product (Tu ⊗̂Tw)(Tu′ ⊗̂Tw′) = Tuu′ ⊗̂Tu′−1wu′Tw′ for u, u′ ∈ Ω(1), w, w′ ∈W aff(1).

Proof. Clear. 2

Lemma 4.12. Let T ∗s = Ts − cs for s ∈ Saff(1). The quadratic relation in HR(qs, cs) is

T ∗s Ts = TsT
∗
s = qss

2 or T ∗s−1Ts = TsT
∗
s−1 = qs.

For u ∈ Ω(1), we have

cu−1su = T−1
u csTu, T ∗u−1su = T−1

u T ∗s Tu.

Proof. We have T ∗s Ts = TsTs − csTs = qss
2 and Tss

−2 = s−2Ts = Ts−1 , cs−1 = css
−2, because

s2 ∈ Zk. The product T ∗s Ts commutes because cs and s2 commute with Ts. Comparing the

quadratic relation for Tusu−1 = TuTsT
−1
u with the quadratic relation for Ts multiplied on the left

by Tu and on the right by T−1
u we obtain cusu−1 = TucsT

−1
u . 2

Let w = s1 . . . s`(w)u with u ∈ Ω(1) and si ∈ Saff(1) for 1 6 i 6 `(w), and let

T ∗w−1 := T−1
u T ∗

s−1
`(w)

. . . T ∗
s−1
1
.

Proposition 4.13. (1) Tw is invertible in HR(qs, cs) of inverse q−1
w T ∗w−1 , if qs is invertible in R

for all s ∈ Saff .

(2) T ∗w = T ∗s1 . . . T
∗
s`(w)

Tu does not depend on the decomposition of w.

(3) T ∗w−1Tw = TwT
∗
w−1 = qw.

(4) T ∗w c = (w • c)T ∗w for c ∈ R[Zk].

(5) T ∗w Tu = T ∗wu = TuT
∗
u−1wu for w ∈W (1), u ∈ Ω(1).
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(6) If w = s1 . . . sn ∈ W aff(1) is a reduced decomposition and u ∈ Ω(1), the elements qwu :=

qs1 . . . qs`(w)
and cw := cs1 . . . cs`(w)

are well defined.

Proof. By Remark 4.12, Tw = Ts1 . . . Ts`(w)
Tu (by the braid relations, it is independent of the

decomposition) is invertible of inverse

T−1
w = q−1

w Tu−1T ∗
s−1
`(w)

. . . T ∗
s−1
1

= q−1
w T ∗w−1 ,

with w−1 = u−1s−1
`(w) . . . s

−1
1 . Replacing w−1 by w = u(u−1s1u) . . . (u−1snu) with n = `(w) =

`(w−1) and u−1siu ∈ Saff , we obtain T ∗w = TuT
∗
u−1s1u

. . . T ∗u−1snu
. By Remark 4.12, T ∗w =

T ∗s1 . . . T
∗
snTu. As Tw = Ts1 . . . Ts`(w)

Tu was independent of the decomposition, the same is true

for T ∗w = T ∗s1 . . . T
∗
s`(w)

Tu.

From T ∗w = T ∗s1 . . . T
∗
s`(w)

Tu and TsT
∗
s = T ∗s Ts = qs (Remark 4.12), we deduce that TwT

∗
w =

T ∗wTw = qw. From T ∗w = T ∗s1 . . . T
∗
s`(w)

Tu and (Ts− cs)t = Tst− cssts−1 = sts−1(Ts− cs) for t ∈ Zk
(use the fact that Zk is commutative and Remark 4.9(b)), we deduce that T ∗w c = (w • c)T ∗w for

c ∈ R[Zk]. From T ∗w = T ∗s1 . . . T
∗
s`(w)

Tu and T ∗s Tu = T ∗su = TuT
∗
u−1su (Remark 4.12), we deduce

T ∗w Tu = T ∗wu = TuT
∗
u−1wu for u ∈ Ω(1).

The braid relations and (2) imply that qw and cw are well defined in (6). 2

4.4 qwqw′ = qww′q2
w,w′

To a sequence (s1, . . . , sn) in Saff we associate the sequence

T(s1, . . . , sn) = (τ1 := s1, τ2 := s1s2s
−1
1 , . . . , τn := s1 . . . sn−1sn(s1 . . . sn−1)−1) (66)

in S(H). We consider parameters which are indeterminates (Remark 4.9(e), (f)).

Definition 4.14. For w = s1 . . . snu with si ∈ Saff for 1 6 i 6 n and u ∈ Ω, and w̃ ∈ W (1)

lifting w, let Tw̃ = Tw = Ts1...sn be the set of elements of odd multiplicity in T(s1, . . . , sn) and

let

qw̃ = qw =
∏
τ∈Tw

q(τ).

For w̃, w̃′ ∈W (1) lifting w,w′ ∈W , let

qw̃,w̃′ = qw,w′ = (qwqw′q
−1
ww′)

1/2.

When w ∈W aff , Tw consists of the elements w′sw′−1 for all triples (w′, w′′, s) ∈W aff×W aff×
Saff such that w = w′sw′′ and `(w) = `(w′) + `(w′′) + 1.

When the decomposition w = s1 . . . s`(w)u is reduced, T(s1, . . . , s`(w)) = Tw (see [Bou68,

IV.1.4, Lemme 2, Remarque] and [Kum02, 1.3.14]),

qw = qs1 . . .qs`(w)
,

and Tw,qw depend only on w.

Remark 4.15. When w ∈W , Tw contains s ∈ Saff if and only if `(sw) < `(w).

Lemma 4.16. Let w,w′ ∈W . Then qw,w′ = 1 if and only if `(w) + `(w′) = `(ww′).
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Proof. By the braid relations, qwqw′ = qww′ if and only if `(w) + `(w′) = `(ww′). 2

Lemma 4.17. Let w,w′ ∈W aff . We have

Tww′ = (Tw ∪ Tww′w−1)− (Tw ∩ Tww′w−1).

Proof. If w = s1 . . . sn, w
′ = s′1 . . . s

′
m are reduced decomposition of w,w′ then the multiset T(s1,

. . . , sn, s
′
1 . . . s

′
m) is a union of Tw and of wTw′w

−1 = Tww′w−1 . The elements of Tw ∩ Tww′w−1

have multiplicity 2, the other ones have multiplicity 1. This implies the formula for Tww′ . 2

Remark 4.18. Let w,w′ ∈W aff . Then, `(ww′) = `(w) + `(w′)− 2 Card(Tw ∩ Tww′w−1).

The computation of qw,w′ can be done using the following lemma.

Lemma 4.19. Let w,w′ ∈W aff and u, u′ ∈ Ω. We have

qw,w′ =
∏

τ∈Tw ∩Tww′w−1

q(τ), qwu,w′u′ = qw,uw′u−1 .

Proof. The formula for qw,w′ follows from Lemma 4.19. The group Ω normalizes Saff and w,

uw′u−1, wuw′u′ = wuw′u−1uu′ belong to W aff . We compute

q2
wu,w′u′ = qwuqw′u′q

−1
wuw′u′ = qwqw′q

−1
wuw′u−1uu′

= qwquw′u−1q−1
wuw′u−1 = q2

w,uw′u−1 . 2

Example 4.20. Let w,w′ in W . Then qw = qw−1 , qw,w−1 = qw. Furthermore, qw−1,ww′w−1 =∏
τ∈Tw ∩Tw′

q(τ) is equal to qw =
∏
τ∈Tw q(τ) if and only if Tw ⊂ Tw′ if and only if `(w′w) =

`(w′)− `(w).

4.5 Reduction to qs = 1

We explain a method to reduce the proof of a property of the R-algebra HR(qs, cs) (Theorem 4.7)

to the simpler case where qs = 1 for all s.

We consider indeterminates qs, q(τ) satisfying (a5) and of square q(τ)2 = q(τ) and elements

cs, c(τ) in R[Zk] satisfying (a6) as before (Remark 4.9(e), (f)). For w ∈W (1), let qw =
∏
τ∈Tw q(τ)

as in Definition 4.14.

The ‘generic’ algebra HR[(qs)](qs, cs) is a R[(qs)]-subalgebra of the R[(qs, q
−1
s )]-algebra

HR[(qs,q
−1
s )](qs, cs),

HR[(qs)](qs, cs) ⊂ HR[(qs,q
−1
s )](qs, cs). (67)

In HR[(qs,q
−1
s )](qs, cs), the elements

T̃w := q−1
w Tw (w ∈W (1)) (68)

form a R[(qs, q
−1
s )]-basis satisfying the braid relations and the quadratic relations with

parameters (1, q−1
s cs):

(T̃s)
2 = s2 + q−1

s csT̃s (s ∈ Saff(1)). (69)

Applying Theorem 4.7, we obtain the following proposition.
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Proposition 4.21. The R[(qs, q
−1
s )]-linear map

Tw 7→ T̃w : HR[(qs,q
−1
s )](1, q

−1
s cs) → HR[(qs,q

−1
s )](qs, cs) (70)

is an algebra isomorphism.

We can often reduce to the case qs = 1 by considering:

(1) the R[(qs, q
−1
s )]-algebra HR[(qs,q

−1
s )](1, q

−1
s cs);

(2) the R[(qs, q
−1
s )]-algebra isomorphism (70);

(3) the generic R[(qs)]-subalgebra HR[(qs)](qs, cs) ⊂ HR[(qs,q
−1
s )](qs, cs);

(4) the specialization HR(qs, cs) = R ⊗R[(qs)] HR[(qs)](qs, cs) sending qs to qs for all s ∈ Saff/∼.

We give the following example.

Proposition 4.22. Properties (2)–(5) of Proposition 4.13 are valid in HR(qs, cs) even when qs
is not invertible.

Proof. By Proposition 4.13, properties (2)–(5) of the proposition are true in the algebra

HR[(qs,q
−1
s )](qs, cs). They are relations between elements of the generic R[(qs)]-subalgebra

HR[(qs)](qs, cs). They remain true in the algebra HR(qs, cs) = R ⊗R[(qs)] HR[(qs)](qs, cs) obtained

by the specialization sending qs to qs for s ∈ Saff/∼. 2

Proposition 4.23. The R-linear map ι of HR(qs, cs) defined by

ι(Tw) = (−1)`(w)T ∗w, for w ∈W (1),

is an involutive automorphism.

Proof. ι2(Ts) = ι(−Ts + cs) = −ι(Ts) + cs = Ts, hence if ι is involutive,

(ι(Ts))
2 = (Ts − cs)2 = T 2

s − 2csTs + c2
s = qss

2 − csTs + c2
s = qss

2 − cs(Ts − cs) = qss
2 + csι(Ts),

hence ι respects the quadratic relations.

Obviously the braid relations are respected. 2

Remark 4.24. The reduction to qs = 1 is not possible in the classical framework of algebras with

parameters (qs, qs − 1).

5. Alcove walk bases and Bernstein relations

Let R,W aff , Saff ,Ω,W,Zk,W (1), (qs, cs) be as in § 4.3, satisfying (a1)–(a6). We have the following

hypotheses.

(b1) W aff is the affine Weyl group of a reduced root system Σ, generated by the orthogonal

reflections with respect to a set of affine hyperplanes

H = {Ker(β + k) | β ∈ Σ, k ∈ Z}

in a euclidean real vector space V , and Saff is the set of orthogonal reflections with respect to

the walls of an alcove C of vertex 0 in V .
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(b2) The action of W aff on V extends to an action of W such that for any w ∈W , an element

w−1
0 w acts by a translation respecting H, for some w0 in the stabilizer W0 of 0 in W aff .

(b3) For s, s′ ∈ Saff such that ss′ has finite order n(s, s′), there exist s(1), s′(1) ∈ Saff(1)

lifting s, s′ such that s(1)s′(1)s(1) . . . = s′(1)s(1)s′(1) . . . where the two products have n(s, s′)

factors.

We use the notation of § 3.4, without Σ in the index because Σ is now the unique root system

(there is no Φ). The group Ω which normalizes Saff is the stabilizer of C in W = W aff o Ω.

We denote by Λ (respectively, Λaff) the subgroup of W (respectively, W aff) acting by

translations on V , and by

ν : Λ → V

the homomorphism such that λ ∈ Λ acts by translations by ν(λ). The group Λ is normalized

by w0 ∈ W0 : w0λw
−1
0 acts by translation by w0.ν(λ), the homomorphism ν is W0-equivariant:

ν(w0λw
−1
0 ) = w0.ν(λ), and

W = Λ oW0. (71)

The lattice Q(Σ∨) generated by the set Σ∨ of coroots of Σ is equal to ν(Λaff) and

Q(Σ∨) ⊂ ν(Λ) ⊂ P (Σ∨),

where P (Σ∨) is the lattice of weights of Σ∨, that is, the elements v ∈ V such that α(v) ∈ Z for

all α ∈ Σ.

The action of W on V inflates to an action of W (1) trivial on Zk and the homomorphism ν

inflates to an homomorphism ν : Λ(1) → V vanishing on Zk, where Λ(1) is the inverse image of

Λ in W (1). We have

W (1) = Λ(1)W0(1), (72)

where W0(1) is the inverse image of W0 in W (1), Λ(1) ∩ W0(1) = Zk and Λ(1) is normal in

W (1).

Remark 5.1. Note that the data arising from (R,F,G) satisfies the hypotheses (bj) for j = 1, 2, 3

and that Λ = Z/Z0,Λ(1) = Z/Z0(1), where the extension Λ(1) → Λ of kernel Zk does not split

in general.

Proof. Property (b3) follows from Proposition 3.4 applied to the root data generating the finite

quotients of the parahoric subgroups of G (Theorem 3.1). See § 3.3 for (b1) and (b2). For the

last assertion, see [Vig05]. 2

5.1 Length

We denote Σaff := {β + k | β ∈ Σ, k ∈ Z}. The set {sβ+k | β + k ∈ Σaff} is equal to S(H) defined

in § 4.4.

Lemma 5.2. For any β + k ∈ Σaff , λ ∈ Λ, we have λsβ+kλ
−1 = sβ+k−β◦ν(λ).

Proof. Let x ∈ V . The action of W aff on V is faithful. We have

sβ+k(x) = x− (β(x) + k)β∨ = sβ(x)− kβ∨,
(λsβ+kλ

−1)(x) = sβ+k(x− ν(λ)) + ν(λ) = x− (β(x− ν(λ)) + k)β∨

= sβ(x)− (k − β ◦ ν(λ))β∨. 2
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For β ∈ Σ we have sβ−1 = sβsβ+1sβ. The element of Λaff ,

µβ := sβ+1sβ = sβsβ−1,

satisfying ν(µβ) = −β∨ appears often in this work. The conjugation by µβ sends sβ+k to sβ+k+2

for k ∈ Z.

Remark 5.3. β ◦ ν(Λ) = δZ with δ ∈ {1, 2} as β(β∨) = 2. Lemma 5.2 implies that the set of

Λ-conjugates of sβ is {sβ+k | k ∈ δZ}.

For τ ∈ S(H), let Hτ be the affine hyperplane fixed pointwise by τ . When two facets of V

are not contained in the connected component of V −Hτ , we say that Hτ is separates them. By

[Bou68, IV.1, Example 16 h)], for w ∈ W aff , the set of hyperplanes of H separating the alcoves

C and w(C) is

Hw = {Hτ | τ ∈ Tw}, (73)

where the finite set Tw of cardinal `(w) is defined in § 4.4.

Example 5.4. Let s ∈ Saff , w ∈W aff . Then `(sw) = `(w) + 1 means that w(C) and C are on the

same side of the wall Hs of C fixed by s.

Definition 5.5. Let x ∈ C, β ∈ Σ, w̃ ∈W (1) lifting w ∈W . We define `β(w̃) = `β(w) ∈ Z as the

integer such that

`β(w) < β(w(x)) < `β(w) + 1. (74)

The integer `β(w) does not depend on the choice of x ∈ C, and depends only on the action

of w on V . Note that β(w(x)) = (w−1(β))(x) where w−1(β) ∈ Σaff .

Let Σ+,Σ− be the set of positive, negative, roots of Σ (we say positive instead of C-positive).

When β ∈ Σ+, 0 < β(x) < 1 by (33). If w−1(β) ∈ Σ+ then `β(w) = 0.

Lemma 5.6. For w ∈W , β ∈ Σ+ and k ∈ Z, the hyperplane Ker(β + k) separates the alcoves C

and w(C) if and only if

k ∈ [0,−`β(w)− 1] and `β(w) 6 −1 or k ∈ [−`β(w),−1] and `β(w) > 1.

Proof. Then Ker(β + k) ∈ H separates C and w(C) if and only if β(x) + k and β(w(x)) + k have

a different sign.

Let β ∈ Σ+. Then k < β(x) + k < 1 + k and `β(w) + k < β(w(x)) + k < `β(w) + k+ 1. Hence

β(x)+k is positive if and only if k > 0 and β(w(x))+k is negative if and only if `β(w)+1+k 6 0.

This holds if and only if `β(w) 6 −1 and k ∈ [0,−`β(w) − 1]. Similarly, β(x) + k negative and

β(w(x)) + k positive is equivalent to k ∈ [−`β(w),−1] and `β(w) > 1. 2

Proposition 5.7. The length of w ∈W or W (1) is `(w) =
∑

β∈Σ+ |`β(w)|.

Proof. Let w ∈ W aff . The length of w is the cardinal of Tw. Use (73) and Lemma 5.6. The

number of Ker(β + k) ∈ H with β ∈ Σ+, k ∈ Z separating C and w(C) is |`β(w)|. This remains

valid for w ∈W because Ω normalizes C, and for w ∈W (1) because Zk acts trivially. 2
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Example 5.8. (1) When w acts trivially, `β(w) = 0 if β ∈ Σ+ and `β(w) = −1 if β ∈ Σ−.

(2) Let w ∈W0 and β ∈ Σ. We have β(w(x)) = w−1(β)(x). Hence `β(w) = 0 if w−1(β) ∈ Σ+,

and `β(w) = −1 if w−1(β) ∈ Σ−. The hyperplane Kerβ separates C and w(C) if and only if

w−1(β) ∈ Σ−. The length `(w) of w ∈W0 is the number of β ∈ Σ+ such that w−1(β) ∈ Σ−.

(3) Let γ + k ∈ Σaff . For β ∈ Σ+ and x ∈ C we have

β(sγ+k(x)) = β(sγ(x)− kγ∨) = sβ(γ)(x)− knβ,γ ,

Proposition 5.9. Let β ∈ Σ, λ ∈ Λ, w ∈W0. Then:

(1) `β(λ) equals β ◦ ν(λ) if β ∈ Σ+ and β ◦ ν(λ)− 1 if β ∈ Σ−;

(2) `β(λw) equals β ◦ ν(λ) if β ∈ w(Σ+) and β ◦ ν(λ)− 1 if β ∈ w(Σ−);

(3) `β(wλ) equals w−1(β) ◦ ν(λ) if β ∈ w(Σ+) and w−1(β) ◦ ν(λ)− 1 if β ∈ w(Σ−).

Proof. Let x ∈ C. We recall that β ◦ν(λ) is an integer. When β is positive, we have 0 < β(x) < 1

and β ◦ ν(λ) < β(x + ν(λ)) < 1 + β ◦ ν(λ). When β is negative, −1 < β(x) < 0 and −1 +

β ◦ ν(λ) < β(x + ν(λ)) < β ◦ ν(λ). We have λw(x) = w(x) + ν(λ) , wλ(x) = w(x + ν(λ)),

β(λw(x)) = β(w(x)) + β ◦ ν(λ) = w−1(β)(x) + β ◦ ν(λ), and β(wλ(x)) = w−1(β)(x + ν(λ)) =

w−1(β)(x) + w−1(β) ◦ ν(λ). 2

Corollary 5.10. We have, for (λ,w) ∈ Λ×W0,

`(λw) =
∑

β∈Σ+ ∩w(Σ+)

|β ◦ ν(λ)|+
∑

β∈Σ+ ∩w(Σ−)

|β ◦ ν(λ)− 1|,

`(wλ) =
∑

β∈Σ+ ∩w−1(Σ+)

|β ◦ ν(λ)|+
∑

β∈Σ+ ∩w−1(Σ−)

|β ◦ ν(λ) + 1|.

Proof. Propositions 5.7 and 5.9 imply the above equality of `(λw) and

`(wλ) =
∑

β∈Σ+ ∩w(Σ+)

|w−1(β) ◦ ν(λ)|+
∑

β∈Σ+ ∩w(Σ−)

|w−1(β) ◦ ν(λ)− 1|.

Replace w−1(β) by β in the first sum and by −β in the second sum. 2

Corollary 5.11. We have Λ ∩ Ω = Ker ν and for λ ∈ Λ, w ∈W0,

`(λ) =
∑
β∈Σ+

|β ◦ ν(λ)|,

`(w) = `(w−1) = |Σ+ ∩ w(Σ−)|,

`(wλ) =

{
`(λ) + `(w) if and only if β ◦ ν(λ) > 0 for β ∈ Σ+ ∩ w−1(Σ−),

`(λ)− `(w) if and only if β ◦ ν(λ) < 0 for β ∈ Σ+ ∩ w−1(Σ−),

`(λw) =

{
`(λ) + `(w) if and only if β ◦ ν(λ) 6 0 for β ∈ Σ+ ∩ w(Σ−),

`(λ)− `(w) if and only if β ◦ ν(λ) > 0 for β ∈ Σ+ ∩ w(Σ−),

`(λw) = 0 if and only if β ◦ ν(λ) =

{
0 for β ∈ Σ+ ∩ w(Σ+),

1 for β ∈ Σ+ ∩ w(Σ−).

Compare with [Vig06, Appendix].
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A Weyl chamber of V is the open set of x ∈ V with β(x) > 0 for all β in a basis of Σ. A

closed Weyl chamber is the closure of a Weyl chamber.

Example 5.12. For λ, λ′ ∈ Λ, `(λλ′) = `(λ) + `(λ′) if ν(λ), ν(λ′) belong to the same closed Weyl

chamber.

Proof. If x, x′ ∈ V belong to the same closed Weyl chamber, then β(x)β(x′) > 0 for all β ∈ Σ.

Then |β(x+ x′)| = |β(x)|+ |β(x′)|. Apply
∑

β∈Σ |β ◦ ν(λ)| = 2`(λ). 2

For w ∈W , we recall qw from Definition 4.14.

Proposition 5.13. For λ ∈ Λ, the element qλ depends only on the W -orbit of λ. In particular,

`(λ) depends only on the W -orbit of λ.

The length equality follows from the q∗-equality, but is also a consequence of

β ◦ ν(wλw−1) = w−1(β) ◦ ν(λ), for β ∈ Σ, w ∈W0, (75)

which implies 2`(wλw−1) =
∑

β∈Σ |w−1(β) ◦ ν(λ)| = ∑β∈Σ |β ◦ ν(λ)| = 2`(λ).

If the elements of Saff are W aff -conjugate (Remark 4.9(c)) the length equality implies the

q∗-equality.

Proof. Let α ∈ ∆Σ. We denote sα(λ) = sαλsα ∈ Λ. We will prove that qλ = qsα(λ). This implies

the proposition because the group W0 is generated by sα for α ∈ ∆Σ and the W0-orbit of λ is

equal to the W -orbit of λ ∈ Λ, as W = Λ oW0 and Λ is commutative.

We have qλ =
∏
τ∈Tλ q(τ) (Definition 4.14).

We apply Lemma 5.6 to compare Tλ and Tsα(λ). Let β ∈ Σ+, k ∈ Z. If β 6= α, then sα(β) ∈ Σ+

and `β(sα(λ)) = `sα(β)(λ) (Proposition 5.9(1)). The affine hyperplane Ker(β + k) ∈ H separates

C from λ(C) if and only if Ker(sα(β) + k) separates C from sα(λ)(C). Hence sβ+k ∈ Tλ if and

only if sα(β) + k ∈ Tsα(λ). We have ssα(β)+k = sαsβ+ksα.

We have `α(λ) = α ◦ ν(λ) (Proposition 5.9(1)).

We suppose first that `α(λ) = α ◦ ν(λ) 6= 0. We have `α(sα(λ)) = `−α(λ) = −`α(λ).

Ker(α+k) separates C from λ.C if and only if k in [0,−`α(λ)−1] or in [−`α(λ),−1], depending

on the sign of `α(λ).

Ker(α + k′) separates C from sα(λ)(C) if and only if k′ in [0, `α(λ) − 1] or in [`α(λ),−1],

depending on the sign of `α(λ).

We have sαsα+ksα = sα−k and Ker(α+k) separates C from λ(C) if and only if −k in [1, `α(λ)]

or in [`α(λ) + 1, 0], depending on the sign of `α(λ).
Hence if α ◦ ν(λ) 6= 0,

Tλ = T′λ t {s}, Tsα(λ) = T′sα(λ) t {s′}, T′sα(λ) = sαT
′
λsα,

(s, s′) = (sα, sα+`α(λ)) if `α(λ) > 0, (s, s′) = (sα+`α(λ), sα) if `α(λ) > 0.

If α ◦ ν(λ) = 0, no affine hyperplane Ker(α+ k) separates C from λ(C) or from sα(λ)(C). Setting

Tλ = T′λ we deduce

T′sα(λ) = sαT
′
λsα.

In general qλ is equal to

q′λ if α ◦ ν(λ) = 0, q′λq(sα) if α ◦ ν(λ) > 0, q′λq(sα+α◦ν(λ)) if α ◦ ν(λ) < 0.
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where q′λ :=
∏
τ∈T′λ

q(τ), and similarly qsα(λ) is equal to

q′sα(λ) if α ◦ ν(λ) = 0, q′sα(λ)q(sα−α◦ν(λ)) if α ◦ ν(λ) > 0, q′sα(λ)q(sα) if α ◦ ν(λ) < 0,

as α◦ν(sα(λ)) = −α◦ν(λ). We recall that q(τ) depends only on the W -orbit of τ (Remark 4.9(e),

(f)). Applying Lemma 5.2 and T′sα(λ) = sαT
′
λsα, we obtain qλ = qsα(λ). 2

Proposition 5.14. Let β ∈ ∆Σj . Then (β ◦ ν)(Λaff) = 2Z when Σj has rank 1, or when β is a

long root of Σj and Σj has type Cn, n > 2. Otherwise (β ◦ ν)(Λaff) = Z.

Proof. The translation subgroup Λaff of W aff is generated by sγsγ+1 for γ ∈ Σ+, and β ◦
ν(sγsγ+1) = β(γ∨) = n(β, γ) is a Cartan integer. The group β ◦ ν(Λaff) is generated by the

Cartan integers n(β, γ) for γ ∈ Σ and contains 2 = n(β, β). When γ does not belong to the

irreducible component Σj we have 0 = n(β, γ).

On the Cartan matrix [Bou68, VI, Planches], we see that n(β, γ) ∈ 2Z for all γ ∈ Σj if and

only if Σj has a single element, or Σj is of type Cn and β is a long root. 2

We recall that for β ∈ Σ, (β ◦ ν)(Λ) = δZ with δ ∈ {1, 2} and δ = 1⇔ sβ−1 is conjugate to

sβ by Λ (Remark 5.3). For β ∈ Σj as in Proposition 5.14, δ = 2 implies that Σj has rank 1, or

β is a long root of Σj and Σj has type Cn, n > 2.

We recall the element µβ = sβ+1sβ = sβsβ−1 ∈ Λaff (after Lemma 5.2).

Lemma 5.15. Let β ∈ ∆Σj such that (β ◦ ν)(Λaff) = 2Z. Let β̃ ∈ Σj be the highest positive root

of Σj .

There exists s′ ∈ Saff , w ∈W0 such that

sβ−1 = ws′w−1, `(µβ) = 2`(w) + 2.

If Σj has rank 1, then w = 1 and s′ = sβ−1 = sβ̃−1.

If Σj has type Cn, n > 2, and β is a long root of Σj , then s′ = sβ̃−1 and w(β̃) = β.

Proof. By Lemma 5.6, the hyperplanes Ker(β+k), for k ∈ Z, separating C and µβ(C) are Ker(β)

and Ker(β + 1). As C and µβ(C) are not on the same side of Kerβ, we have `(sβ−1) < `(µβ)

[Bou68, V.3.2, Theorem 1], hence

`(µβ) = `(sβ−1) + 1.

We choose a reduced decomposition sβ−1 = s1 . . . sn with sj ∈ Saff for 1 6 j 6 n = `(sβ−1). By

the strong exchange condition [Kum02, Theorem 1.3.11(c)], there exists a unique integer i such

that 1 = s1 . . . ŝi . . . sn. Set

s′ = si, w = s1 . . . si−1 = (si+1 . . . sn)−1.

Then

sβ−1 = ws′w−1 with `(sβ−1) = 2`(w) + 1.

We deduce µβ = sβws
′w−1, `(µβ) = 2`(w) + 2.

If Σj has rank 1, w = 1, s′ = sβ−1 and `(µβ) = 2.

If Σj has type Cn, n > 2, the long roots of Σj are W0-conjugate to the highest positive root

β̃. If β is a long root, let w ∈ W0 such that w(β̃) = β. Then w(sβ̃−1) = sw(β̃−1) = sβ−1. No

element of Saff − {sβ̃−1} is conjugate to β̃−1 in W aff (see [Bor76, 3.3] and [Bou68, VI, Planche

III]). We deduce s′ = sβ̃−1. 2
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5.2 Alcove walk

By [Gör07, Definition 2.3.1], an orientation o of (V,H) is given by distinguishing, for each affine

hyperplane H ∈ H, a positive half-space among the two half-spaces which form the complement

of H in V (the non-positive half-space is called negative) such that for all H ∈ H, either

(1) for any finite subset of H, the intersection of the negative half-spaces is non-empty, or

(2) for any finite subset of H, the intersection of the positive half-spaces is non-empty.

The group W (1) acts on the orientations of (V,H). The image by w ∈W (1) of an orientation

o is the orientation o •w is such that the o •w-positive side of H ∈ H is the image by w−1 of the

o-positive side of w(H). The action of W (1) factorizes through an action of W .

The group W0 acts simply transitively on the Weyl chambers (the connected components

of V − ⋃β∈Σ Kerβ), hence on the bases of Σ, and on the alcoves (the connected components

of V −⋃(β,k)∈Σaff Ker(β + k)) of vertex 0. The basis ∆D associated to the Weyl chamber D is

the set of β ∈ Σ taking positive values on D such that sβ is a wall of D. The Weyl chamber D

is called ∆D-dominant. The action of W0 inflates to an action of W0(1).

Definition 5.16. Let ∆′ be a basis of Σ associated to a Weyl chamber D∆′ . For H ∈ H there

exists a unique pair (β, k) ∈ Σaff with H = Ker(β + k) and β is positive on ∆′. The orientation

o∆′ such that the o∆′-positive side of H is the set of x ∈ V where β(x) + k > 0, for all H ∈ H,

is called a spherical orientation.

The o∆′-negative side of H is the o−∆′-positive side of H. The most o∆′-negative point of V

lies infinitely far in the ∆′-antidominant Weyl chamber D−∆′ = −D∆′ . The o∆′-negative side of

H contains a quartier of the form y + D−∆′ .

The spherical orientations o∆Σ
and o−∆Σ

are respectively called dominant and antidominant,

as the bases ∆Σ = ∆D+ ,−∆Σ = ∆D− of Σ are respectively associated to the dominant and

antidominant Weyl chambers D+ (containing C) and D− = −D+.

Proposition 5.17. A spherical orientation o∆′ is fixed by Λ(1) and o∆′ •w = ow−1(∆′) for w ∈
W0(1).

Conversely one can prove that an orientation fixed by Λ(1) is a spherical orientation.

Proof. Let λ ∈ Λ, x ∈ V, β ∈ Σ, k ∈ Z.

We suppose that β is ∆′-positive. Then x belongs to the o∆′ •λ-positive side of Ker(β + k)

if x+ ν(λ) belongs to the o∆′-positive side of Ker(β + k) + ν(λ). We have Ker(β + k) + ν(λ) =

Ker(β + k − (β ◦ ν)(λ)) and β(x+ ν(λ)) + k − (β ◦ ν)(λ) = β(x) + k. Therefore o∆′ •λ = o∆′ .

We suppose that β is w−1(∆′)-positive, that is, w(β) is ∆′-positive, and that x belongs to

the ow−1(∆′)-positive side of Ker(β + k). We have β(x) + k > 0 and β(x) = w(β)(w.x). Hence

w.x belongs to the o∆′-positive side of Ker(w(β) + k). We have Ker(w(β) + k) = w.Ker(β + k).

Hence x belongs to the o∆′ •w-positive side of Ker(β + k). 2

Let o be an orientation of (V,H). We say that we cross H ∈ H in the o-positive direction if

we go from the o-negative side to the o-positive side (in the o-negative direction otherwise). Let

(w, s) ∈ W × Saff . When we walk from the alcove w.C to the alcove ws.C, we cross the affine

hyperplane Hwsw−1 ∈ H fixed by wsw−1.
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Definition 5.18. Let o be an orientation of (V,H) and let (w, s) ∈W × Saff . Let

• εo(w, s) = 1 if w.C belongs to the o-negative side of Hwsw−1 ,

• εo(w, s) = −1 if w.C belongs to the o-positive side of Hwsw−1 .

Let εo(w̃, s̃) = εo(w, s) for w̃, s̃ ∈W (1) lifting w, s.

When we walk from w.C to ws.C, we cross Hwsw−1 in the o-positive (respectively, o-negative)

direction if εo(w, s) = 1 (respectively, −1). We say that we cross Hwsw−1 in the εo(w, s) direction

with respect to o.

Let s1, . . . , sn in Saff . The walk from C to s1 . . . sn(C) following the gallery C, s1.C,

s1s2.C, . . . , s1 . . . sn.C, crosses the hyperplanes

Hs1 = Hτ1 , s1.Hs2 = Hτ2 , . . . , s1s2 . . . sn−1.Hsn = Hτn ,

where T(s1, . . . , sn) = (τ1, . . . , τn) (66), in the

εo(1, s1), εo(s1, s2), . . . , εo(s1 . . . si−1, si), . . . , εo(s1 . . . sn−1, sn) (76)

directions with respect to o.

Example 5.19. For J ⊂ ∆, let SJ = {sβ | β ∈ J}, let WJ ⊂ W0 be the subgroup generated by

SJ and let wJ be the element of maximal length in WJ .

For w ∈WJ , s ∈ SJ , we have εowJ (∆)
(w, s) = 1 if and only if `(ws) = `(w) + 1.

Proof. Let ΣJ ⊂ Σ be the root system generated by J . Let β ∈ J such that s = sβ. We have

Hwsw−1 = Kerw(β). Let x ∈ C. The alcove w.C is contained in the owJ (∆)-negative side of

Hsws−1 if and only if w(β) is wJ(∆)-negative because w(β)(w.x) = β(x) is positive. The root

w(β) belongs to ΣJ ; hence w(β) is wJ(∆)-negative, if and only if wJw(β) is ∆-negative, if and

only if w(β) is ∆-positive, if and only if `(wsβ) > `(w). 2

Lemma 5.20. Let s, s′ ∈ Saff with ss′ of finite order n(s, s′). Then the sequences with n(s, s′)

terms

(εo(1, s), εo(s, s
′), εo(ss

′, s), . . .) and (εo(1, s
′), εo(s

′, s), εo(s
′s, s′), . . .)

are equal to (1, 1, . . . , 1,−1,−1 . . .− 1) and (−1,−1, . . . ,−1, 1, 1 . . . 1), or to (−1,−1, . . . ,−1, 1,

1 . . . 1) and (1, 1, . . . , 1,−1,−1 . . .−1), where (1, 1 . . . , 1) have the same length k, 0 6 k 6 n(s, s′),

in both sequences.

Proof. [Gör07, Proof of Theorem 3.3.1]. 2

Lemma 5.21. For (w,w′, s, u) in W ×W × Saff × Ω, we have εo(ws, s) 6= εo(w, s) and

εo •w(w′, s) = εo(ww
′, s), εo(wu, s) = εo(w, usu

−1), εo •u(w, s) = εo(uwu
−1, u−1su).

In particular, εo(1, s) 6= εo • s(1, s).

Proof. (1) ws(C) and w(C) are on different sides of Hwsw−1 .

(2) εo •w(w′, s) = 1 if and only if w′.C is contained in the o •w-negative side of Hw′sw′−1 . The

o •w-negative side of Hw′sw′−1 is the image by w−1 of the o-negative side of Hww′sw′−1w−1 . Hence

εo •w(w′, s) = 1 if and only if ww′.C is contained in the o-negative side of Hww′sw′−1w−1 , if and

only if εo(ww
′, s) = 1.

(3) We have u.C = C. We have εo(wu, s) = 1 if and only if wu.C = w.C is contained in the

o-negative side of Hwusu−1w−1 if and only if εo(w, usu
−1) = 1.

(4) We compute εo •u(w, s) = εo(uw, s) = εo(uwu
−1, u−1su).

(5) εo • s(1, s) = εo(s, s) 6= εo(1, s). 2

736

https://doi.org/10.1112/S0010437X15007666 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007666


The pro-p-Iwahori Hecke algebra of a reductive p-adic group I

5.3 Alcove walk bases

We use notation as in Theorem 4.7 and Definition 5.16. We will associate to any orientation o of

(V,H) a basis (Eo(w))w∈W (1) of the R-algebraHR(qs, cs) of W (1) with parameters (qs, cs)s∈Saff(1).

Definition 5.22. For (w, s) ∈W (1)×Saff(1) and an orientation o ∈ (V,H), and for Ts ∈ HR(qs,

cs), we set

T εo(w,s)s = Ts if εo(w, s) = 1, T εo(w,s)s = T ∗s = Ts − cs if εo(w, s) = −1 (77)

where εo(w, s) is defined in Definition 5.18. For s1, . . . , sn in Saff(1), u, u′ ∈ Ω(1), we set

Eo(u, s1, . . . , sn, u
′) = TuT

εo(u,s1)
s1 . . . T

εo(us1...si−1,si)
si . . . T εo(us1...sn−1,sn)

sn Tu′ . (78)

We remark that Eo(s) = T
εo(1,s)
s , Eo • s(s) = T

εo • s(1,s)
s ,

Eo • s(s) = Eo(s) + εo • s(1, s)cs, Eo(s)Eo • s(s) = qss
2 (79)

(Remark 4.12 and Lemma 5.21).

We suppose first that qs = 1 for all s ∈ Saff/∼. In this case T ∗s = T−1
s−1 .

Proposition 5.23. When qs = 1 for all s ∈ Saff/∼, Eo(w) = Eo(u, s1, . . . , sn, u
′) depends only

on the product w = us1 . . . snu
′.

Proof. [Gör07, Theorem 3.3.1], [Sch09, Theorem 3.3.19].

(a) Let s, s′ ∈ Saff of finite order n(s, s′) and s(1), s′(1) ∈ Saff(1) satisfying (b3) (this is the

only place where (b3) is needed). We show

Eo(s(1), s′(1), . . .) = Eo(s
′(1), s(1), . . .).

By symmetry we can suppose that the sequences in Lemma 5.20 are (1, 1, . . . , 1, ∗, ∗, . . . , ∗)
and (∗, ∗, . . . , ∗, 1, 1, . . . , 1) with k terms equal to 1. We decompose accordingly the products

s(1)s′(1) . . . = wkwn(s,s′)−k, s
′(1)s(1) . . . = w′n(s,s′)−kw

′
k. By the braid relations,

Eo(s(1), s′(1), . . .) = TwkT
−1

w−1
n(s,s′)−k

and Eo(s
′(1), s(1), . . .) = T−1

w′−1
n(s,s′)−k

Tw′k .

The element w′−1
n(s,s′)−kwk = w′kw

−1
n(s,s′)−k has length n(s, s′) because w′−1

n(s,s′)−k ends by s′(1)−1

while wk begins with s(1). The additivity of the lengths is satisfied and by the braid relations

Tw′−1
n(s,s′)−k

Twk = Tw′kTw−1
n(s,s′)−k

. We deduce Eo(s(1), s′(1), . . .) = Eo(s
′(1), s(1), . . .).

(b) Let t1 . . . tn ∈ Zk such that s1 . . . sn = s′1 . . . s
′
n where s′i = siti for 1 6 i 6 n. The equality

Eo(s1, . . . , sn, u) = Eo(s
′
1, . . . , s

′
n, u)

is obvious by the braid relations using the fact that the elements of Zk have length 0, act trivially

on V , and Zk is normal in W (1).

(c) We suppose that si+1 = s−1
i . We have

Eo(s1, . . . , sn, u) = Eo(s1, . . . , si−1, si+2, . . . , sn, u),
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because T
εo(w,s)
s T

εo(ws,s−1)
s−1 = 1. This follows from εo(w, s) 6= εo(ws, s) (Lemma 5.21); we recall

that εo(ws, s
−1) = εo(ws, s) and that qs = 1.

(d) As the elements of the group Ω(1) normalize Saff(1) and have length 0, the equality

Eo(u, s1, . . . , sn, u
′) = Eo(us1u

−1, . . . , usnu
−1, uu′)

follows from TuT
∗
s = T ∗usu−1Tu and εo •u(w, s) = εo(uwu

−1, usu−1) for s ∈ Saff(1), w ∈ W (1),

u ∈ Ω(1) (Proposition 4.13(5)).

(e) The proposition follows from (a)–(d) and [Bou68, IV.1.5, Proposition 5]. 2

Proposition 5.24. When qs = 1 for all s ∈ Saff/∼, we have the product formula

Eo(ww
′) = Eo(w)Eo •w(w′) (w,w′ ∈W (1)). (80)

Proof. Let w = s1 . . . snu,w
′ = s′1 . . . s

′
mu
′ with si, s

′
j ∈ Saff(1), u′ ∈ Ω(1). From Proposition 5.23

we have

Eo(ww
′) = Eo(s1, . . . , sn, us

′
1u
−1, . . . , us′mu

−1, uu′).

From εo •w(1, s) = εo(w, s) for (w, s) ∈W (1)×Saff(1) (Lemma 5.21), the right-hand side is equal

to

Eo(s1 . . . sn)Eo •w(us′1u
−1, . . . , us′mu

−1, uu′)

and Eo •w(us′1u
−1, . . . , us′mu

−1, uu′) = Eo •w(uw′) = TuEo •w(w′) from Proposition 5.23. Hence

Eo(ww
′) = Eo(s1 . . . sn)TuEo •w(w′) = Eo(w)Eo •w(w′). 2

We recall qw,w′ = (qwqw′q
−1
ww′)

1/2 for w,w′ ∈W (1) (Definition 4.14).

Theorem 5.25. Let o be an orientation of (V,H), let w,w′ ∈ W (1), and let there be a reduced

decomposition w = s1 . . . s`(w)u, u ∈ Ω(1), si ∈ Saff(1) for 1 6 i 6 `(w). Then

Eo(w) = Eo(s1, . . . , s`(w), u) ∈ HR(qs, cs)

depends only on w and Eo(w)Eo •w(w′) = qw,w′Eo(ww
′).

Proof. As in § 4.5, the R[(qs, q
−1
s )]-algebra HR[(qs,q

−1
s )](1, q

−1
s cs) satisfies Propositions 5.23

and 5.24. Let s ∈ Saff(1) and u ∈ Ω(1). The elements Ts, Tu, T
∗
s = Ts − q−1

s cs and Eo(w) in
HR[(qs,q

−1
s )](1, q

−1
s cs) are sent by the isomorphism h 7→ h̃ (70) to elements ofHR[(qs,q

−1
s )](qs, cs)

equal to

Ts̃ = q−1
s Ts, Tũ = Tu, (T ∗s )̃ = T̃s − q−1

s cs = q−1
s (Ts − cs) = q−1

s T ∗s ,

Ẽo(w) = (T εo(1,s1)
s1 )̃ . . . (T

εo(s1...si−1,si)
si )̃ . . . (T

εo(s1...sn−1,s`(w))
s`(w)

)̃ T̃u.

We have

Ẽo(w) = q−1
w Eo(s1, . . . , s`(w), u).

In HR[(qs,q
−1
s )](qs, cs), the product qwẼo(w) depends only on w hence the same is true for

Eo(s1, . . . , s`(w), u). The product formula in HR[(qs,q
−1
s )](1, q

−1
s cs) implies the product formula

Eo(w)Eo •w(w′) = qw,w′Eo(ww
′), qw,w′ = qwqw′q

−1
ww′ , (81)

in HR[(qs,q
−1
s )](qs, cs). The product formula holds true in the generic R[qs]-subalgebra HR[qs]

(qs, cs). By specialization, it holds true in HR(qs, cs). 2
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The Bruhat partial order < on (W aff , Saff) extends to W = W aff o Ω : wu < w′u′ for w,

w′ ∈ W aff , u, u′ ∈ Ω if w < w′ and u = u′. The extended Bruhat partial order < on W inflates

to W (1) : w̃ < w̃′ for w̃, w̃′ ∈W (1) lifting w,w′ ∈W if w < w′.

Corollary 5.26. (Eo(w))w∈W (1) is an R-basis of HR(qs, cs) satisfying the triangular decom-

position: for w ∈W (1), Eo(w) = Tw +
∑

w′<w aw′Tw′ with w′ ∈W (1), aw′ ∈ R.

Proof. Eo(w) − Tw is a finite sum of elements Tw′ where w′ = s′1 . . . s
′
rtu for t ∈ Zk, u ∈ Ω(1),

and (s′1, . . . , s
′
r) extracted from the sequence (s1, . . . , sn) with r < n. 2

Corollary 5.27. Let w = s1 . . . sru with si ∈ Saff(1), u ∈ Ω(1) be a reduced decomposition.

Then

Eo(w) = Eo(s1)Eo • s1(s2), . . . , Eo • s1s2...sr−1(sr)Tu.

Proof. qw,w′ = 1 when `(w) + `(w′) = `(ww′) (Lemma 4.16). 2

One does not need to change the orientation o in the product formula in Eo(Λ(1)) when Λ(1)

fixes o. By Proposition 5.17 we have the following corollary.

Corollary 5.28. Let o be a spherical orientation of (V,H). The R-submodule of HR(qs, cs) of

basis (Eo(λ))λ∈Λ(1) is an R-subalgebra Ao of HR(qs, cs), with product

Eo(λ)Eo(λ
′) = qλ,λ′Eo(λλ

′) (λ, λ′ ∈ Λ(1)).

The R-algebras Ao,Ao′ associated to two spherical orientations o, o′, are isomorphic by the

linear map sending Eo(λ) to Eo′(λ) for all λ ∈ Λ(1).

For each (open) Weyl chamber D of V , let ΛD(1) the monoid of elements λ ∈ Λ(1) such that

ν(λ) belongs to the closure D of D. For w ∈W0(1), the R-linear map λ 7→ w(λ) := wλw−1 is an

isomorphism R[Λ(1)D] → R[Λ(1)w(D)].

Let λ, λ′ ∈ Λ(1). We have qλ,λ′ = 1 if and only if `(λλ′) = `(λ)+`(λ′)(Lemma 4.16) if and only

if ν(λ), ν(λ′) belong to the same closed Weyl chamber (Example 5.12). We deduce the following

result.

Corollary 5.29. Let o be a spherical orientation of (V,H) and let D be a Weyl chamber of V .

Then the monoid R-algebra R[ΛD(1)] embeds in HR(qs, cs) by the linear map such that

λ 7→ Eo(λ) (λ ∈ D(1)).

Example 5.30. Let ∆′ be a basis of Σ and λ ∈ Λ, t ∈ Ker ν of lift λ̃, t̃ ∈ Λ(1). Then

Eo∆′ (λ̃) = Tλ̃ if ν(λ) belongs to the closed ∆′-dominant Weyl chamber,

Eo∆′ (λ̃) = T ∗
λ̃

if ν(λ) belongs to the closed −∆′-dominant Weyl chamber,

Eo∆′ (λ̃t̃) = Eo∆′ (λ̃)Tt̃ = Tλ̃t̃λ̃−1Eo∆′ (λ̃).

Proof. When we walk from the alcove C to the alcove C + ν(λ) we cross hyperplanes in the

o∆′-positive (respectively, negative) direction because we walk away from (respectively, toward)

the most o∆′-negative point of V which lies infinitely deep in the −∆′ dominant Weyl chamber.

When t ∈ Ker ν we have qλt = qλt = qλ,t = qt.λ = 1 because Ker ν ⊂ Ω (Corollary 5.11) and

qwu = quw for w ∈W,u ∈ Ω (Definition 4.14). 2
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We recall the involutive automorphism ι of HR(qs, cs) such that ι(Tw) = (−1)`(w)T ∗w for

w ∈W (1).

Lemma 5.31. ι(Eo∆′ (w)) = (−1)`(w)Eo−∆′ (w) for w ∈W (1).

Proof. The o∆′-positive side and the o−∆′-negative side of any hyperplane H ∈ H are equal. We

have ι(Ts) = −T ∗s and ι(T ∗s ) = −Ts for s ∈ Saff(1). 2

Example 5.32. With the notation of Example 5.19, for J ⊂ ∆ and w ∈WJ(1) we have

EowJ (∆)
(w) = Tw, EowJ (∆) •w−1(w) = T ∗w, EowJ (∆)

(w)EowJ (∆) •w(w−1) = qw.

In particular, for w ∈W0(1),

Eo−∆(w) = Eo∆ •w−1(w) = Tw, Eo−∆ •w−1(w) = Eo∆(w) = T ∗w.

Proof. (1) We have εowJ (∆)
(w, s) = 1 for (w, s) ∈ WJ × SJ with `(ws) > `(w) (Example 5.19).

Applying this to (s1 . . . si−1, si) if w = s1 . . . s`(w) is a reduced expression for w, we get

EowJ (∆)
(w) = Tw.

(2) εowJ (∆) •w−1(s1 . . . si−1, si)= εowJ (∆)
(sn . . . si, si) 6= εowJ (∆)

(sn . . . si+1, si) =1 (Lemma 5.21).

(3) Propositions 4.13 and 4.22. 2

Example 5.33. For s ∈ S(1), s̃ ∈ Saff(1)− S(1), w ∈W0(1), we have

Eo−∆(s̃) = T ∗s̃ , Eo−∆ •w(s) = Ts if and only if `(ws) > `(w).

Proof. (a) Let x ∈ C. We have εo(1, s̃) = −1 if and only if x belongs in the o−∆-positive part

of Hs̃. We have Hs̃ = Ker(−β̃j + 1) where β̃j is the longest root of an irreducible component

∆j of ∆, and −β̃i(x) + 1 > 0. As −β̃i is −∆ positive, x belongs in the o−∆-positive part of

Ker(−β̃j + 1).

(b) εo−∆ •w(1, s) = εo−∆(w, s) by Lemma 5.21. Then use Example 5.19. 2

Lemma 5.34. Let ∆′ be a basis of Σ, β ∈ Σ+ ∩ ±∆′ and w ∈W (1) such that `β(w) = 0. Then

Eo∆′ • sβ (w) = Eo∆′ (w).

Proof. If β ∈ ±∆′ and α ∈ Σ−{±β}, then the o∆′-positive and o∆′ • sβ-positive sides of Ker(α +

n), for all n ∈ Z, are equal.

If β ∈ Σ+, then `β(w) = 0 if and only if the alcoves C, w(C) are on the same side of Hβ+n for

all n ∈ Z (Lemma 5.6). This means that no Hβ+n, for n ∈ Z, belongs to Tw (Definition 4.14).

We deduce that if β ∈ Σ+ ∩ ±∆′, `β(w) = 0, then the o∆′-positive side of Hτ is equal to the

o∆′ • sβ-positive side of Hτ for all τ ∈ Tw, or equivalently, Eo∆′ • sβ (w) = Eo∆′ (w). 2

For the rest of this article, we consider only spherical orientations of (V,H).
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5.4 Bernstein relations

Let o be a spherical orientation of Weyl chamber Do associated to the basis ∆o of Σ formed by

the set of β ∈ Σ positive on Do and such that Kerβ is a wall of Do (Definition 5.16). We denote

the corresponding Coxeter system by (Wo, So), where So := {sβ | β ∈ ∆o}. We have So = S when

o is dominant or antidominant. For w ∈W (1) and λ ∈ Λ(1) we have w(λ) := wλw−1 ∈ Λ(1).

Proposition 5.35. Eo(s)Eo • s(λ) = Eo(sλs
−1)Eo(s) if λ ∈ Λ(1), s ∈Wo(1) and s2 ∈ Zk.

Proof. As s2 ∈ Zk, the product formula implies (Theorem 5.25)

Eo(s)Eo • s(λ) = qs,λEo(sλ), Eo(s(λ))Eo(s) = qs(λ),sEo(sλ),

and

qs,λ = qs(λ),s

because q2
s,λ = qsqλq

−1
sλ and q2

sλs−1,s = qsλs−1qsq
−1
sλ by Definition 4.14, and qsλs−1 = qλ as s ∈Wo(1)

by Proposition 5.13. 2

We denote by Λs(1) the group of λ ∈ Λ(1) such that ν(λ) is fixed by s ∈Wo(1); note that if

s lifts sβ, β ∈ Σ, then λ ∈ Λs(1) is equivalent to (β ◦ ν)(λ) = 0.

Definition 5.36. Let λ ∈ Λ(1), s ∈Wo(1), s2 ∈ Zk. Then

Eo(s)(Eo • s(λ)− Eo(λ)) = Eo(sλs
−1)Eo(s)− Eo(s)Eo(λ) (82)

will be called a Bernstein element. Note that when λ ∈ Λs(1), s ∈ So(1), the Bernstein element

vanishes because Eo • s(λ)− Eo(λ) = 0 by Lemma 5.34.

When s ∈ (S ∩ So)(1) we will show that the Bernstein element (82) belongs to the subalgebra

Ao (Corollary 5.28); its explicit expansion in the alcove walk basis (Eo(w))w∈W (1) is called a

Bernstein relation.

Notation 5.37. We suppose s ∈ sβ(1), β ∈ ∆, (β ◦ ν)(λ) 6= 0. We denote by εβ(λ) ∈ {1,−1} the

sign of β ◦ ν(λ). By Corollary 5.10,

εβ(λ) = −1⇔ `(sλ) < `(λ), εβ(λ) = 1⇔ `(sλ) > `(λ).

The image of β ◦ ν is δZ with δ ∈ {1, 2} (Remark 5.3). Let nβ(λ) be the positive integer such

that

β ◦ ν(λ) = εβ(λ)δnβ(λ).

We choose λs ∈ Λ(1) with β ◦ ν(λs) = −δ. If δ = 1 there is no other condition on λs. If δ = 2,

we suppose that λs is a lift of µβ = sβ+1sβ ∈ Λaff as in Lemma 5.15. Hence

λs = sws̃w−1, `(λs) = 2`(w) + 2,

where w ∈ W aff(1), s̃ ∈ Saff(1) lifts s−β̃+1 for the highest root β̃ of the irreducible component

Σj of Σ containing β. Note that ν(µβ) = −β∨ and that the image of sws̃w−1s−1 in W is

sβsβ−1sβ = sβ+1.
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We define elements Bo,n ∈ Ao for n ∈ N>0. For n = 1,

Bo,1 := (δ − 1)(w • cs̃)s2Eo(λ
−1
s ) + cs, (83)

where the term containing (w • cs̃) appears only when δ = 2. For n > 2,

Bo,n :=

n−1∑
k=0

Eo(s(λ
k
s))Bo,1Eo(λ

−k
s ). (84)

For n > 1, the inner kth term

Eo(s(λ
k
s))Bo,1Eo(λ

−k
s ) = Eo(s(λ

k
s))((δ − 1)(w • cs̃)s2Eo(λ

−1
s ) + cs)Eo(λ

−k
s )

is the sum of δ = 1, 2 terms

(δ−1)c(2k+1)Eo(µ(2k+1))+c(δk)Eo(µ(δk)) = (δ−1)Eo(µ(2k+1))c′(2k+1)+Eo(µ(δk))c′(δk),

where µ(k) ∈ Λ(1) and c(k), c′(k) in R[Zk] depend on λs and are defined, for k ∈ Z, by

µ(δk) = s(λks)λ
−k
s , c(δk) = s(λks) • cs, c′(δk) = λks • cs,

and if δ = 2,

µ(2k + 1) = s(λks)λ
−k−1
s , c(2k + 1) = s(λks) • cτ , c′(2k + 1) = λk+1

s • cτ

where τ = w • cs̃s2 = w̃cs̃s
2w̃−1 for any w̃ ∈W (1) lifting w.

We obtain the expansions

Bo,n =
δn−1∑
k=0

c(k)Eo(µ(k)) =
δn−1∑
k=0

Eo(µ(k))c′(k).

We recall the signs εo(1, s) 6= εo • s(1, s) (Lemma 5.21).

The Bernstein relations when qs = 1 for s ∈ Saff are given by the following theorem.

Theorem 5.38. We suppose that qs = 1 for s ∈ Saff .

Let s ∈ (S ∩ So)(1) and λ ∈ Λ(1)− Λs(1). The Bernstein element (82) is equal to

εo • s(1, s)Bo,nβ(λ)Eo(λ) if εβ(λ) = −1, εo(1, s)Eo(sλs
−1)Bo,nβ(λ) if εβ(λ) = 1,

where s ∈ sβ(1), β ∈ ∆.

The proof is divided into steps given as lemmas. We use the notation of (5.37).

Lemma 5.39. We suppose that qs = 1 for s ∈ Saff .

When δ = 1, s ∈ S(1), we have

Eo(s)(Eo • s(λs)− Eo(λs)) = εo • s(1, s)csEo(λs).
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Proof. We have β ∈ sβ(Σ−) because β is positive. The hypothesis β◦ν(λs) =−1 implies `β(sλs) =
−β ◦ ν(λs) − 1 = 0 by Proposition 5.9(3) and Eo(sλs) = Eo • s(sλs) by Lemma 5.34. Applying
the product formula,

Eo(s)(Eo • s(λs)− Eo(λs)) = Eo(sλs)− Eo(s)Eo(λs)
= Eo • s(sλs)− Eo(s)Eo(λs)
= Eo • s(s)Eo(λs)− Eo(s)Eo(λs)
= (Eo • s(s)− Eo(s))Eo(λs)
= εo • s(1, s)csEo(λs).

The last equality follows from s ∈ S(1) and (79). 2

Lemma 5.40. We suppose that qs = 1 for s ∈ Saff .

When δ = 2, s ∈ (S ∩ So)(1), we have

Eo(s)(Eo • s(λs)− Eo(λs)) = εo • s(1, s)[(w • cs̃)s2 + csEo(λs)].

Proof. Applying the product formula,

Eo(λs) = Eo(sws̃w
−1) = Eo(s)Eo • s(w)Eo • sw(s̃)Eo • sws̃(w

−1),

Eo • s(λs) = Eo • s(s)Eo(w)Eo •w(s̃)Eo •ws̃(w
−1).

We have `β(w) = 0 because w−1(β) = β̃ ∈ Σ+ (Lemma 5.15 and the remark before Lemma 5.6).
We note that o • sws̃ = o •w because sws̃ = λsw and the orientation o is spherical. We deduce
(the first equality follows from Lemma 5.34):

Eo • s(w) = Eo(w), Eo • sws̃(w
−1) = Eo •w(w−1),

Eo(λs) = Eo(s)Eo(w)Eo • sw(s̃)Eo •w(w−1),

and Eo • s(λs) − Eo(λs) is the sum of (Eo • s(s) − Eo(s))Eo(w)Eo • sw(s̃)Eo •w(w−1) and
Eo • s(s)Eo(w)(Eo •w(s̃)− Eo • sw(s̃))Eo •w(w−1). By (79) and s ∈ S(1),

Eo • s(λs)− Eo(λs) = εo • s(1, s)csEo • s(ws̃w
−1) + εo •w(1, s̃)Eo • s(sw)cs̃Eo •w(w−1)

= εo • s(1, s)(csEo • s(ws̃w
−1) + (sw • cs̃)Eo • s(sw)Eo •w(w−1))

= εo • s(1, s)(csEo • s(ws̃w
−1) + (sw • cs̃)Eo • s(s)).

For the second line, we note that sβ ∈ So permutes the o-positive roots of Σ different from

±β. The o-positive side is equal to the o • s-positive side for the affine hyperplanes of the form

Ker(γ+k), k ∈ Z, γ ∈ Σ−{±β}, between C, λs(C). The affine hyperplanes of the form Ker(β + k),

k ∈ Z, separating C, λs(C), are Kerβ,Ker(β + 1) (Lemma 5.6). We cross the hyperplanes Kerβ

and Ker(β + 1) in the same sense when we go from C to λs(C) = C+ ν(λs), hence εo • s(1, s) =

εo •w(1, s̃).

Multiplying on the left by Eo(s), we obtain

Eo(s)(Eo • s(λs)− Eo(λs)) = εo • s(1, s)(csEo(λs) + (w • cs̃)s2),

using the product formula, Eo(s)c = (s • c)Eo(s) for c ∈ R[Zk], s • cs = cs and (79). 2

We summarize Lemmas 5.34, 5.39, and 5.40: for y ∈ Λs(1), x = λs,

Eo • s(y)− Eo(y) = 0,

Eo(s)(Eo • s(x)− Eo(x)) = εo • s(1, s)((δ − 1)(w • cs̃)s2 + csEo(x)) = εo • s(1, s)Bo,1Eo(x),

with Bo,1 defined by (83). By a formal computation we will deduce the expansion of the Bernstein

element at any λ ∈ Λ(1). First, we take λ = x−1.
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Lemma 5.41. We suppose that qs = 1 for s ∈ Saff . When s ∈ (S ∩ So)(1),

Eo(s)(Eo • s(x
−1)− Eo(x−1)) = εo(1, s)Eo(s(x

−1))Bo,1.

Proof. We recall that Eo(w) is invertible for w ∈ W (1) because qs = 1 for s ∈ Saff/∼ and that

the inverse of Eo(λ) is Eo(λ
−1) because the orientation o is spherical. We multiply the equality

Eo(s)(Eo • s(x)− Eo(x)) = εo • s(1, s)Bo,1Eo(x) on the left by

Eo(s)Eo • s(x)−1Eo(s)
−1 = Eo(s)Eo • s(x

−1)Eo • s(s
−1) = Eo(s(x

−1)),

and on the right by Eo(x)−1 = Eo(x
−1) to obtain

Eo(s)(Eo • s(x
−1)− Eo(x−1)) = −εo • s(1, s)Eo(s(x−1))Bo,1,

and we use εo(1, s) = −εo • s(1, s). 2

Now we relate the Bernstein element at z ∈ Λ(1) to the Bernstein element at zn for n ∈ N>0.

Lemma 5.42. We suppose that qs = 1 for s ∈ Saff . When s ∈ (S ∩ So)(1),

Eo(s)(Eo • s(z
n)− Eo(zn)) =

n−1∑
k=0

Eo(sz
ks−1)Eo(s)(Eo • s(z)− Eo(z))Eo(zn−1−k).

Proof. Using that the orientations o and o • s are fixed by z ∈ Λ(1), we have

Eo • s(z
n)−Eo(zn) = Eo • s(z

n−1)(Eo • s(z)−Eo(z)) + (Eo • s(z
n−1)−Eo(zn−1))Eo(z). By

induction on n,

Eo • s(z
n)− Eo(zn) =

n−1∑
k=0

Eo • s(z
k)(Eo • s(z)− Eo(z))Eo(zn−1−k).

We multiply this equality on the left by Eo(s), and we observe that

Eo(s)Eo • s(z
k) = Eo(sz

k) = Eo(sz
ks−1s) = Eo(sz

ks−1)Eo(s). 2

We now conclude the proof of Theorem 5.38. For n ∈ N>0, by Lemma 5.42 applied to z = x

and z = x−1, the Bernstein element (82) at xn is equal to

n−1∑
k=0

εo • s(1, s)Eo(s(x
k))Bo,1Eo(x)Eo(x

n−1−k) = εo • s(1, s)Bo,nEo(x
n),

with Bo,n defined in (84), and the Bernstein element (82) at x−n, n ∈ N>0, is equal to

εo(1, s)

n−1∑
k=0

Eo(s(x
−n+k+1))Eo(s(x

−1))Bo,1Eo(x
−k) = εo(1, s)Eo(s(x

−n))Bo,n.

As x = λs, (β ◦ ν)(λs) = −δ, an arbitrary λ ∈ Λ(1) is equal to

λ =

{
xny if εβ(λ) = −1,

yx−n if εβ(λ) = 1,
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where y ∈ Λs(1) and n ∈ N. We multiply on the right by Eo(y) the Bernstein element at xn to

obtain the Bernstein element at λ = xny,

Eo(s)(Eo • s(λ)− Eo(λ)) = εo • s(1, s)Bo,nEo(λ).

We have Eo(sys
−1)Eo(s) = Eo(sy) = Eo(s)Eo • s(y) = Eo(s)Eo(y). We multiply on the left by

Eo(sys
−1) the Bernstein element at x−n to obtain the Bernstein element at λ = yx−n,

Eo(s)(Eo • s(λ)− Eo(λ)) = Eo(s(y))Eo(s)(Eo • s(x
−n)− Eo(x−n)) = εo(1, s)Eo(s(λ))Bo,n.

This ends the proof of Theorem 5.38.

Corollary 5.43. When qs = 1 for s ∈ Saff , with Notation 5.37 and the hypothesis of

Theorem 5.38, the Bernstein element (82) is equal to

εo(1, s)εβ(λ)

|β◦ν(λ)|−1∑
k=0

c(k, λ)Eo(µ(k, λ)) = εo(1, s)εβ(λ)

|β◦ν(λ)|−1∑
k=0

Eo(µ(k, λ))c′(k, λ)

where c(k, λ), c′(k, λ), µ(k, λ), which depend on c(k), c′(k), µ(k) and hence on λs, are defined by

c(k, λ) = c(k), c′(k, λ) = λ−1 • c′(k), µ(k, λ) = µ(k)λ if εβ(λ) = −1,

c(k, λ) = s(λ) • c(k), c′(k, λ) = c′(k), µ(k, λ) = s(λ)µ(k) if εβ(λ) = 1.

Proof.

Bo,nE(λ) =
n−1∑
k=0

c(k)Eo(µ(k)λ) =
n−1∑
k=0

Eo(µ(k)λ)(λ−1 • c′(k)),

Eo(s(λ))Bo,n =

n−1∑
k=0

s(λ) • c(k)Eo(s(λ)µ(k)) =

n−1∑
k=0

Eo(s(λ)µ(k))c′(k). 2

Recalling Notation 5.37, we have

ν(µ(k)) = kβ∨ = ν(µ−kβ ), β ◦ ν(µ(k, λ)) = 2k − |β ◦ ν(λ)|, (85)

because when δ = 1, ν(sλss
−1) = s(ν(λs)) = ν(λs)+β∨ because β ◦ν(λs) = −1, and when δ = 2,

ν(µβ) = −β∨, ν(sµβs
−1) = β∨. For k 6= k′ we have Zkµ(k, λ) 6= Zkµ(k′, λ). Corollary 5.43 gives

the coefficients of the expansion of (82) in the basis (Eo(w))w∈W (1).

We pass from the case qs = 1 to the general case using the method explained in § 4.5. The

Bernstein relations in the R[(qs, q
−1
s )]-algebra HR[(qs,q

−1
s )](1, q

−1
s cs), are given by Corollary 5.43

where cs and cs̃ are replaced by q−1
s cs and q−1

s̃ cs̃ in the formula for c(k). A quick inspection

shows that this means replacing c(δk) by q−1
s c(δk), and, when δ = 2, replacing c(2k + 1) by

q−1
s̃ c(2k + 1).

Lemma 5.44. The isomorphism h 7→ h̃ :HR[(qs,q
−1
s )](1, q

−1
s cs) →HR[(qs,q

−1
s )](qs, cs) (see (68) and

(70)) sends Eo(w), w ∈W (1), to

Ẽo(w) = q−1
w Eo(w) ∈ HR[(qs,q

−1
s )](qs, cs).
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Proof. Let s ∈ Saff(1). The image of T ∗s = Ts − q−1
s cs ∈ HR[(qs,q

−1
s )](1, q

−1
s cs) is T̃s − q−1

s cs =

q−1
s (Ts − cs) = q−1

s T ∗s in HR[(qs,q
−1
s )](qs, cs). 2

We multiply Ẽo(s)(Ẽo • s(λ)− Ẽo(λ)) by qsqλ and we note that qs(λ) = qλ (Proposition 5.13).

Corollary 5.43 implies the following result.

Proposition 5.45 (Bernstein relations in HR[(qs,q
−1
s )](qs, cs)). Let s ∈ (S ∩ So)(1), λ ∈ Λ(1).

With Notation 5.37, the Bernstein element (82) is 0 if λ ∈ Λs(1). Otherwise, it is equal to

εβ(λ)εo(1, s)

|β◦ν(λ)|−1∑
k=0

q(k, λ)c(k, λ)Eo(µ(k, λ)),

where q(δk, λ) = qλq
−1
µ(δk,λ) and, when δ = 2,q(2k + 1, λ) = qλq

−1
µ(2k+1,λ)qsq

−1
s̃ depends on s.

They are also the Bernstein relations in the subalgebra HR[(qs)](qs, cs) because this is the

expansion of Eo(s)(Eo • s(λ)− Eo(λ)) in the basis (Eo(w))w∈W (1). We deduce

q(k, λ)c(k, λ) ∈ R[(qs)][Zk] for 0 6 k < |β ◦ ν(λ)|.
This is true for any choice of R and (cs)s∈Saff(1) satisfying (a6) of § 4.3. We may choose R = Z
and cs 6= 0 for all s. Then c(k, λ) ∈ Z is not 0, therefore

q(k, λ) =
∏

s∈Saff/∼

q
mk,λ(s)
s (mk,λ(s) ∈ N). (86)

We will later (in Proposition 5.49) give more properties of q(k, λ). The Bernstein relations in the

R-algebra HR(qs, cs) are obtained by specialization of the Bernstein relations in HR[(qs)](qs, cs)

by the map qs → qs for s ∈ Saff/∼. We denote by q(k, λ) the specialization of q(k, λ).

Theorem 5.46 (Bernstein relations in HR(qs, cs)). For s ∈ (S ∩ So)(1), λ ∈ Λ(1), the Bernstein

element (82) belongs to the subalgebra Ao of HR(qs, cs) of basis (Eo(λ))λ∈Λ(1). It vanishes when

λ ∈ Λs(1), otherwise it is equal to

εo(1, s)εβ(λ)

|β◦ν(λ)|−1∑
k=0

q(k, λ)c(k, λ)Eo(µ(k, λ)),

with Notation 5.37 and also the notation of Proposition 5.45.

For the dominant and antidominant spherical orientation o we have S = So; for the

antidominant orientation o we have also (Example 5.32)

Eo(w) = Tw for all w ∈W0(1).

Writing E(w) = Eo(w) where o is the antidominant orientation, we obtain a presentation of the

generic algebra HR[(qs)](qs, cs).

Corollary 5.47 (Bernstein presentation of the generic algebra). The R[(qs)]-algebra

HR[(qs)](qs, cs)

is the free R[(qs)]-module of basis (Eo(w))w∈W (1) endowed with the unique R[(qs)]-algebra

structure satisfying:
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– braid relations for w,w′ ∈W0(1), E(w)E(w′) = E(ww′) if `(w) + `(w′) = `(ww′);

– quadratic relations for s ∈ S(1), E(s)2 = qss
2 + csE(s);

– product formula for λ ∈ Λ(1), w ∈W (1), E(λ)E(w) = qλ,wE(λw);

– Bernstein relations for s ∈ S(1), λ ∈ Λ(1),

E(s(λ))E(s) = E(s)E(λ)

when ν(λ) is fixed by s, and

E(s(λ))E(s)− E(s)E(λ) = εβ(λ)

|β◦ν(λ)|−1∑
k=0

q(k, λ)c(k, λ)E(µ(k, λ))

when ν(λ) is not fixed by s.

5.5 Variants of the Bernstein relations

This section is motivated by applications to the theory of smooth representations of G over a

field C of characteristic p.

In the Bernstein relations in HR[(qs)](qs, cs) (Proposition 5.45), we move the term with k = 0

from the right-hand side to the left-hand side, which (using (82)) becomes

Eo(s(λ))Eo(s)− Eo(s)Eo(λ)− εβ(λ)εo(1, s)q(0, λ)c(0, λ)Eo(µ(0, λ)). (87)

Proposition 5.48 (Variant of the Bernstein relations in HR[(qs)](qs, cs)). With the hypothesis
of Proposition 5.45, (87) is equal to

if εβ(λ) = −1, Eo(s(λ))Eo(s)− (Eo(s) + εo • s(1, s)cs)Eo(λ)

= qs(Eo(sλ)− Eo • s(sλ))

= −εo(1, s)
|β◦ν(λ)|−1∑

k=1

q(k, λ)c(k, λ)Eo(µ(k, λ)),

if εβ(λ) = 1, Eo(s(λ))(Eo(s) + εo • s(1, s)cs)− Eo(s)Eo(λ)

= εo(1, s)

|β◦ν(λ)|−1∑
k=1

q(k, λ)c(k, λ)Eo(µ(k, λ)).

The term
∑|β◦ν(λ)|−1

k=1 appears only if |β ◦ ν(λ)| > 1 and q(k, λ)q−1
s ∈ Z[(qs)] if εβ(λ) = −1.

Proof. The term with k = 0 in the Bernstein relation (Theorem 5.46) is

εβ(λ)εo(1, s)q(0, λ)c(0, λ)Eo(µ(0, λ)) = −εo(1, s)csEo(λ)

= εo • s(1, s)csEo(λ) if εβ(λ) = −1,

= εo(1, s)(s(λ) • cs)Eo(s(λ))

= −εo • s(1, s)Eo(s(λ))cs if εβ(λ) = 1,

using εo • s(1, s) + εo(1, s) = 0, Corollary 5.43, Proposition 5.45, property (a5), and Lemma 5.21.
Case εβ(λ) = −1. Then (87) is equal to

Eo(s(λ))Eo(s)− Eo(s)Eo(λ)− εo • s(1, s)csEo(λ) = Eo(s)Eo • s(λ)− (Eo(s) + εo • s(1, s)cs)Eo(λ)

= Eo(s)Eo • s(λ)− Eo • s(s)Eo(λ)

= qs(Eo(sλ)− Eo • s(sλ))
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using `(sλ) = `(λ)−1,qs,λ = qs (proof of Proposition 5.35, Eo(s) + εo • s(1, s)cs = Eo • s(s) (79)).

When R = Z, c(1, λ) ∈ Z is not 0, hence the Bernstein relations imply q(k, λ)q−1
s ∈ Z[(qs)].

Case εβ(λ) = 1. Then (87) is equal to

Eo(s(λ))Eo(s)−Eo(s)Eo(λ) + εo • s(1, s)Eo(s(λ))cs = Eo(s(λ))(Eo(s) + εo • s(1, s)cs)−Eo(s)Eo(λ)

= Eo(s(λ))Eo • s(s)− Eo(s)Eo(λ)

= Eo(sλ)− Eo(s)Eo(λ)

using `(sλ) = 1 + `(λ),qs,λ = qs(λ),s = 1 (proof of Proposition 5.35). 2

By specialization, the proposition is valid in the algebra HR(qs, cs). We now study the

elements

q(k, λ) =
∏

s∈Saff/∼

q
2mk,λ(s)
s = qλq

−1
µ(k,λ)x, mk,λ(s) ∈ N, x ∈ {1, qsq−1

s̃ }, (88)

by (86) and Proposition 5.45, for q2
s = qs for s ∈ Saff(1) and x = 1 if and only if δ = 1 or k is

even.

Proposition 5.49. Let β ∈ ∆, λ ∈ Λ, k ∈ N>0 with k < |β ◦ ν(λ)|. Then q(k, λ) 6= 1. If εβ(λ) =

−1, we have:

(a) q(k, λ)q−1
sβ
6= 1 for 1 < k < |β ◦ ν(λ)| − 1;

(b) q(1, λ)q−1
sβ

= 1⇔ q(|β ◦ ν(λ)| − 1, λ)q−1
sβ

= 1⇔ `(λ)− `(µ−1
β λ) = 2;

(c) if λ ∈ Λ− then `(λ)− `(µ−1
β λ) = 2.

Proof. The proof relies on four claims:

(1)
∑

s∈Saff/∼ 2mk,λ(s) = `(λ)− `(µ(k, λ));

(2) `(µ(k, λ)) = `(µkβλ
εβ(λ)) and `(µkβλ) = `(µ

β◦ν(λ)−k
β λ);

(3) if εβ(λ) = 1 then `(λ)− `(µkβλ) > 2Min(k, β ◦ ν(λ)− k) > 2;

(4) if λ ∈ Λ+ then µβλ ∈ Λ+.

From (88) and Claim 1, q(k, λ) 6= 1 ⇔ `(λ) 6= `(µ(k, λ)). This is always true by Claims 2

and 3.
Suppose now εβ(λ) = −1. By Proposition 5.48 and Claims 1 and 2,

q(k, λ)q−1
sβ

= 1⇔ `(λ)− `(µkβλ−1) = 2,

q(k, λ)qsβ 6= 1⇔ `(λ)− `(µkβλ−1) > 2.

We have `(λ) = `(λ−1) and εβ(λ−1) = 1. We deduce from Claim 2 that

`(λ)− `(µβλ−1) = `(λ)− `(µ|β◦ν(λ)|−1
β λ−1).

We deduce from Claim 3 that `(λ)− `(µkβλ−1) > 2 if 1 < k < |β ◦ ν(λ)| − 1.

Let ρ be the half-sum of the positive roots of Σ. If γ ∈ Σ is positive, ρ(γ∨) > 1 with equality

if and only if γ is a simple root [Bou68, Proposition 29(iii)]. If λ ∈ Λ−, we have `(λ) = −2ρ(ν(λ))

(Corollary 5.10), µ−1
β λ ∈ Λ− by Claim 4, and −ν(µβ) = β∨ (85). We obtain `(λ) − `(µ−1

β λ) =

−2ρ ◦ ν(λ) + 2ρ ◦ ν(µ−1
β λ) = −2ρ ◦ ν(µβ) = 2ρ(β∨) = 2.
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It remains to prove the claims. Claim 4 follows from ν(µβλ) = −β∨ + ν(λ) and β(−β∨ +

ν(λ)) = −2 + β ◦ ν(λ) > 0 because 0 < k < β ◦ ν(λ), −α(β∨) and α ◦ ν(λ) are non-negative for

all simple roots α ∈ Σ+ − {β} because λ ∈ Λ+. 2

We prove the remaining three claims. Claim 1 is easy and is valid without restriction on

k ∈ Z. Note that µ(k, λ) and mk,λ(s) (88) are well defined for k ∈ Z.

Lemma 5.50. 2
∑

s∈Saff/∼mk,λ(s) = `(λ)− `(µ(k, λ)) for λ ∈ Λ, k ∈ Z.

Proof. Choosing reduced decompositions of λ and µ(k, λ), we have

qλq
−1
µ(k,λ) =

∏
s∈Saff/∼

qns(k)
s , ns(k) ∈ Z,

∑
s∈Saff/∼

ns(k) = `(λ)− `(µ(k, λ)).

We compare with (88). 2

We now prove Claim 2. It is valid without restriction on k ∈ Z. The second formula is valid

for any root α ∈ Σ, µα = sα+1sα ∈ Σaff with ν(µα) = −α∨.

Lemma 5.51. `(µ(k, λ)) = `(µkβλ
εβ(λ)) and `(µkαλ) = `(µ

α◦(λ)−k
α λ) for λ ∈ Λ, k ∈ Z, α ∈ Σ.

Proof. Recalling (85) and Corollary 5.43, the value of ν(µ(k, λ)) is

ν(µ(k)) + ν(λ) = ν(µ−kβ λ) if εβ(λ) = −1,

ν(µ(k)) + ν(s(λ)) = ν(µ−kβ s(λ)) = s(ν(µkβλ)) if εβ(λ) = 1.

We have

sα(ν(µkαλ)) = sα(−kα∨ + ν(λ)) = (k − α ◦ ν(λ))α∨ + ν(λ) = ν(µα◦ν(λ)−k
α λ).

The length of x ∈ Λ depends only on ν(x) ∈ V (Corollary 5.10), is constant on the W0-orbit

of x, is stable by taking inverse, and the homomorphism ν : Λ → V is W0-equivariant. Hence

`(µ(k, λ)) = `(µ−kβ λ−εβ(λ)) = `(µkβλ
εβ(λ)) and `(µkαλ) = `(µ

α◦ν(λ)−k
α λ). 2

We prove Claim 3. It is valid for any root α ∈ Σ.

Lemma 5.52. For α ∈ Σ, λ ∈ Λ, k ∈ N>0 such that k < α ◦ ν(λ), we have

`(λ)− `(µkαλ) > 2 min(k, α ◦ ν(λ)− k).

Proof. (a) Reduction to ν(λ) dominant.

There exists w ∈W0 such that w(λ) ∈ Λ+. By W0-invariance of ν, we have α ◦ ν(λ) = w(α)◦
ν(w(λ)). We have w(µα) = wsα+1sαw

−1 = µw(α). By W0-invariance of `, `(µkαλ) = `(µkw(α)w(λ)).

The lemma is true for (w(α), w(λ)) if and only if it is true for the pair (α, λ). From now on, we

suppose that λ ∈ Λ+.

(b) By [Kum02, 1.3.22 Corollary and 1.4.2 Proposition], ν(λ)−w(ν(λ)) ∈∑γ∈∆Σ
Nγ∨. Hence

2ρ(ν(λ)− w(ν(λ))) > 0 with equality if and only if ν(λ) = w(ν(λ)).
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(c) For w ∈ W0 such that w(ν(µkαλ)) = w(−kα∨ + ν(λ)) is dominant, we have `(µkαλ) =

2ρ(w(−kα∨ + ν(λ))) as the length is W0-invariant. Hence

`(λ)− `(µkαλ) = 2ρ(ν(λ)− w(ν(λ))) + 2kρ(w(α∨)).

We deduce that (1) `(λ) − `(µkαλ) > 2k if there exists w ∈ W0 such that w(α) is positive and

w(−kα∨+ ν(λ)) is dominant; and (2) `(λ)− `(µkαλ) = 2k if there exists w ∈W0 fixing ν(λ) such

that w(α) is a simple root and w(−kα∨ + ν(λ)) is dominant.

(d) Suppose 2k = α ◦ ν(λ), or equivalently −kα∨+ ν(λ) fixed by sα. For w ∈W0, w(−kα∨+

ν(λ)) = wsα(−kα∨ + ν(λ)) and either w(α) or wsα(α) is positive. We deduce from our first

deduction in (c) that `(λ)− `(µkγλ) > 2k. The lemma is proved when 2k = α ◦ ν(λ).

(e) Suppose 2k < α ◦ ν(λ). For w ∈ W0 such that w(−kα∨+ ν(λ)) is dominant, w(α) is

positive because w(α)(w(−kα∨+ν(λ))) = α(−kα∨+ν(λ)) = α◦ν(λ)−2k is positive by hypothesis.

A root which takes a positive value on a point in the dominant Weyl chamber of V is positive.

We deduce again from our first deduction in (c) that `(λ)− `(µkαλ) > 2k. The lemma is proved

in this case.

(f) Suppose α ◦ ν(λ) < 2k < 2α ◦ ν(λ). We have `(µkαλ) = `(µ
α◦ν(λ)−k
α λ) by Lemma 5.51. We

deduce from (e) applied to k′ = α ◦ ν(λ)− k that `(λ)− `(µkαλ) > 2(α ◦ ν(λ)− k). This ends the

proof of the lemma. 2

Corollary 5.53. We suppose that qs = 0 for all s ∈ Saff(1). If λ ∈ Λ(1), o is a spherical
orientation and β ∈ ∆ are such that sβ ∈ So and s ∈ Saff(1) lifts sβ, we have

if β ◦ ν(λ) = 0, Eo(s(λ))Eo(s) = Eo(s)Eo(λ), (89)

if β ◦ ν(λ) < 0, Eo(s(λ))Eo(s) = Eo • s(s)Eo(λ), (90)

if β ◦ ν(λ) > 0, Eo(s(λ))Eo • s(s) = Eo(s)Eo(λ), (91)

where the sets {Eo(s), Eo • s(s)} = {Ts, T ∗s } are equal.

Proof. Use Propositions 5.48 and 5.49, (79), and the remark following (82). 2

Corollary 5.54. If o is the dominant or anti-dominant spherical orientation and w ∈ W0(1),

we have

Eo(wλw
−1)Eo(w̃)− Eo(w̃)Eo(λ̃) ∈

∑
v<w

TṽAo. (92)

In particular, AoTw̃ ⊂
∑

v6w TṽAo.

Proof. As S = So, the Bernstein relations (Theorem 5.46) imply Eo(s̃(λ̃))Eo(s̃) − Eo(s̃)Eo(λ̃) ∈
Ao for any s ∈ S. We prove the lemma by induction on `(w). Let w ∈W0, w 6= 1, and s ∈ S such
that `(sw) = 1 + `(w) and (92) is true for s and v 6 w. Hence the element

Eo(s̃w̃(λ̃))Eo(s̃w̃)− Eo(s̃w̃)Eo(λ̃) = Eo(s̃w̃(λ̃))Eo(s̃)Eo(w̃)− Eo(s̃)Eo(w̃)Eo(λ̃)

lies in

(Eo(s̃)Eo(w̃(λ̃)) +Ao)Eo(w̃)− Eo(s̃)
(
Eo(w̃(λ̃))Eo(w̃) +

(∑
v<w

TṽAo
))

= AoEo(w̃) +
∑
v<w

Eo(s̃)TṽAo.
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The triangular expression for Eo(w̃) in the Iwahori–Matsumoto basis (Corollary 5.26) and (92)

for v 6 w imply AoEo(w̃) ⊂∑v6w TṽAo. The product formula implies that Eo(s̃)Tṽ ∈
∑

x̃6w̃ RTx̃
if v < w. Therefore, we have

Eo(s̃w̃(λ̃))Eo(s̃w̃)− Eo(s̃w̃)Eo(λ̃) ∈
∑
v6w

TṽAo.

In particular (92) is true for s̃w̃. 2

We give the proof of another variant of the Bernstein relations when qs = 1 for all s ∈ Saff/∼
using the end of the proof of Theorem 5.38 after the Lemma 5.42. When o is the anti-dominant

orientation, this variant was discovered by Abe.

As in Notation 5.37, for s ∈ S(1), let λs ∈ Λ(1), let β ∈ ∆Σ such that s lifts sβ and let

δ ∈ {1, 2} such that β ◦ ν(Λ) = δZ and β ◦ ν(λs) = −δ, and for k ∈ Z let µ(k) ∈ Λ(1) and

c(k), c′(k) ∈ R[Zk] depending on s, λs, k defined in Notation 5.37.

As in Definitions 5.18 and 5.22, for an orientation o, we have Eo(s) = Ts if εo • s(1, s) = 1,

meaning that the alcove C belongs to the o-negative side of Hs, and Eo(s) = Ts− cs if εo • s(1, s)

= −1.

Proposition 5.55 (Variant of the Bernstein relations). We suppose that qs = 1 for all s ∈
Saff/∼. Let s ∈ (S ∩ So)(1), and let λ+, λ− ∈ Λ(1) such that β ◦ ν(λ+) = −β ◦ ν(λ−) = δn > 0.
Then

Eo(s(λ
−))Eo(s)− Eo(s)Eo(λ−) = εo • s(1, s)

δn∑
k=1

Eo(s(λ
−)µ(−k))c′(−k)

= −εo • s(1, s)
δn−1∑
k=0

c(k)Eo(µ(k)λ),

Eo(s(λ
+))Eo(s)− Eo(s)Eo(λ+) = εo • s(1, s)

δn∑
k=1

c(−k)Eo(µ(−k)λ+)

= εo • s(1, s)
δn−1∑
k=0

Eo(s(λ
+)µ(k))c′(k).

Proof. Let x = λs and y, y′ ∈ Λs(1) such that

λ− = xny = y′xn, λ+ = yx−n = x−ny′.

The Bernstein element (82) at xn, computed after Lemma 5.42, multiplied on the left by Eo(s(y
′))

is the Bernstein element at λ− = y′xn because Eo(s(y
′))Eo(s) = Eo(s)Eo • s(y

′) = Eo(s)Eo(y
′),

and we obtain

Eo(s(λ
−))Eo(s)− Eo(s)Eo(λ−) = Eo(s(y

′))(Eo(s(x
n))Eo(s)− Eo(s)Eo(xn))

= εo • s(1, s)Eo(s(y
′))Bo,nEo(x

n).

Similarly, the Bernstein element at x−n, computed after the Lemma 5.42, multiplied on the right
by Eo(y

′) is the Bernstein element at λ+ = x−ny′, and we obtain:

Eo(s(λ
+))Eo(s)− Eo(s)Eo(λ+) = (Eo(s(x

−n))Eo(s)− Eo(s)Eo(x−n))Eo(y
′)

= εo • s(1, s)Eo(s(x
−n))Bo,nEo(y

′).
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The explicit expansion of Bo,n given after (84) gives Bo,nEo(x
n) =

∑δn−1
k=0 c(k)Eo(µ(k)xn); we

compute the product in the inner terms c(k)Eo(µ(k)xn) = Eo(µ(k)xn)(µ(k)xn • c(k)), and we

replace k by δn− k to obtain

Bo,nEo(x
n) =

δn∑
k=1

Eo(µ(δn− k)xn)((µ(δn− k)xn)−1 • c(δn− k)).

Multiplying on the left by εo • s(1, s)Eo(s(y
′)), we get

Eo(s(λ
−))Eo(s)−Eo(s)Eo(λ−) = εo • s(1, s)

δn∑
k=1

Eo(s(y
′)µ(δn−k)xn) ((µ(δn−k)xn)−1 • c(δn−k)).

Analogously, the second explicit expansion of Bo,n given after (84) gives

Eo(s(x
−n))Bo,n =

δn−1∑
k=0

Eo(s(x
−n)µ(k))c′(k)

=
δn−1∑
k=0

(s(x−n)µ(k) • c′(k))Eo(s(x
−n)µ(k))

=

δn∑
k=1

(s(x−n)µ(δn− k) • c′(δn− k))Eo(s(x
−n)µ(δn− k)).

Multiplying on the right by εo • s(1, s)Eo(y
′), we get

Eo(s(λ
+))Eo(s)−Eo(s)Eo(λ+) = εo • s(1, s)

δn∑
k=1

(s(x−n)µ(δn−k) • c′(δn−k))Eo(s(x
−n)µ(δn−k)y′).

Recalling the values of µ(k) and c(k), for k ∈ Z, we have: if k = δr, then µ(δn−k)xn = s(xn−r)xr

and s(x)−nµ(δn− k) = s(x−r)xr−n,

s(y′)µ(δn− k)xn = s(y′xn−r)xr = s(λ−)s(x)−rxr = s(λ−)µ(−k),

(µ(δn− k)xn)−1 • c(δn− k) = x−r • cs = c′(−k),

s(x−n)µ(δn− k)y′ = s(x−r)xr−ny′ = s(x)−rxrλ+ = µ(−k)λ+,

s(x)−nµ(δn− k) • c′(n− k) = s(x−r) • cs = c(−k);

if δ = 2, k = 2r− 1, then µ(2n−k)xn = µ(2(n− r) + 1)xn = s(xn−r)xr−1 and s(x)−nµ(δn−k) =
s(x−r)xr−n−1,

s(y′)µ(2n− k)xn = s(λ−)s(x)−rxr−1 = s(λ−)µ(−k),

(µ(2n− k)xn)−1 • c(2n− k) = x1−r • cτ = c′(−k),

s(x−n)µ(δn− k)y′ = s(x−r)xr−1λ+ = µ(−k)λ+,

s(x)−nµ(δn− k) • c′(n− k) = s(x−r) • cτ = c(−k). 2
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