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Zero Cycles on a Twisted Cayley Plane

V. Petrov, N. Semenov, and K. Zainoulline

Abstract. Let k be a field of characteristic not 2, 3. Let G be an exceptional simple algebraic group over

k of type F4, 1E6 or E7 with trivial Tits algebras. Let X be a projective G-homogeneous variety. If G is

of type E7, we assume in addition that the respective parabolic subgroup is of type P7. The main result

of the paper says that the degree map on the group of zero cycles of X is injective.

1 Introduction

Let k be a field and G a simple algebraic group over k. Consider a projective G-homo-

geneous variety X over k. Any such variety over the separable closure ks of k becomes

isomorphic to the quotient Gs/P, where P is a parabolic subgroup of the split group

Gs = G ×k ks. It is known that conjugacy classes of parabolic subgroups of Gs are

in one-to-one correspondence with subsets of the vertices Π of the Dynkin diagram

of Gs: we say a parabolic subgroup is of type θ ⊂ Π and denote it by Pθ if it is

conjugate to a standard parabolic subgroup generated by the Borel subgroup and all

unipotent subgroups corresponding to roots in the span of Π with no θ terms (see

[TW02, 42.3.1]).

In the present paper we assume the field k has characteristic not 2, 3, G is an ex-

ceptional simple algebraic group over k of type F4, 1E6, or E7 with trivial Tits algebras

and X is a projective G-homogeneous variety over k. The goal of the paper is to com-

pute the group of zero-cycles CH0(X) which is an important geometric invariant of

a variety. Namely, we prove the following theorem.

Theorem 1.1 Let k be a field of characteristic not 2, 3. Let G be an exceptional simple

algebraic group over k of type F4, 1E6, or E7 with trivial Tits algebras and X a projective

G-homogeneous variety over k. If G is of type E7, we assume in addition that X cor-

responds to the parabolic subgroup of type P7. Then the degree map CH0(X) → Z is

injective.

The history of the question starts with the work of I. Panin [Pa84] who proved the

injectivity of the degree map for Severi–Brauer varieties. For quadrics this was proved

by R. Swan [Sw89]. The case of involution varieties was considered by A. Merkurjev

[Me95]. For varieties of type F4 it was announced by M. Rost.

Our work was mostly motivated by the paper of D. Krashen [Kr05], where he

reformulated the question in terms of R-triviality of certain symmetric powers and
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Zero Cycles on a Twisted Cayley Plane 115

proved the injectivity for a wide class of generalized Severi–Brauer varieties and some

involutive varieties, hence, generalizing the previously known results by Panin and

Merkurjev. Another motivating point is the result of V. Popov [Po05], which gives a

full classification of generically n-transitive actions of a split linear algebraic group G

on a projective homogeneous variety G/P. For instance, the case of a Cayley plane

X = G/P1, where G is split of type E6 (see [IM05]), provides an example of such

an action for n = 3. As a consequence, one can identify the open orbit (S3X)0

of the induced action on the third symmetric power with a homogeneous variety

G/(T · Spin8), where T is the torus which is complementary to Spin8. Then by the

result of Krashen one reduces the question of injectivity to the question of R-triviality

of a twisted form of (S3X)0/S3.

Apart from the main result concerning exceptional varieties we provide shortened

proofs of the injectivity of the degree map in cases of quadrics and Severi–Brauer

varieties.

Recently V. Chernousov and A. Merkurjev have obtained an independent proof of

the same results in any characteristic using Rost’s Invariant and Chain Lemma (see

[CM]). Our proof does not use those tools, but only the geometry of, and some basic

facts about, projective homogeneous varieties.

The paper is organized as follows. In the first section we provide several facts

about zero-cycles and symmetric powers. Then we prove the theorem for twisted

forms of a Cayley plane (here the prime 3 plays the crucial role). In the next section

we prove the injectivity in the case of a twisted form of a homogeneous variety of type

E7 (this deals with the prime 2). Combining these two results together with certain

facts about rational correspondences we finish the proof of the theorem.

2 Zero Cycles and Symmetric Powers

In the present section we recall several results and definitions [Kr05] concerning the

group of zero-cycles of a projective variety X and the group of R-equivalence classes

of certain symmetric powers of X.

We shall systematically use the language of Galois descent; we identify a quasi-

projective variety X over k with the variety Xs = X ×k ks over the separable closure

ks equipped with an obvious action of the absolute Galois group Γ = Gal(ks/k). By

means of this identification the set of k-rational points of X is the set of ks-rational

points of Xs invariant under the action of Γ.

Let X be a variety over k. Two rational points p, q ∈ X(k) are called elementary

linked if there exists a rational morphism ϕ : P
1
k 99K X such that p, q ∈ Im(ϕ(k)).

The R-equivalence is the equivalence relation generated by this relation. A variety

X is called R-trivial if the set of rational points is non-empty and any two rational

points are R-equivalent. A variety X is called algebraically R-trivial if XK = X ×k K is

R-trivial for any finite field extension K/k.

The n-th symmetric power of X is defined to be the quotient SnX = Xn/Sn, where

Sn is the symmetric group acting on the product

Xn
= X × · · · × X︸ ︷︷ ︸

n
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by permuting the factors.

Let p be a prime number. A field k is called prime-to-p closed if there is no proper

finite field extension K/k of degree prime to p. For any field k, we denote by kp a

prime-to-p closed algebraic extension of k.

Let X be a projective variety over k. By C̃H0(X) we denote the kernel of the degree

map

C̃H0(X) = Ker(deg : CH0(X) → Z).

The following results will be extensively used in the sequel.

Lemma 2.1 ([Kr05, Lemma 2.2]) Assume C̃H0(Xkp
) = 0 for each prime p. Then

C̃H0(X) = 0.

Proposition 2.2 ([Kr05, Theorem 3.12]) Suppose that k is prime-to-p closed and the

following conditions are satisfied:

(i) for some integer n ≥ 0, the pn-th symmetric power Spn

X is algebraically R-trivial;

(ii) for any field extension K/k such that X(K) 6= ∅, the variety XK is R-trivial.

Then C̃H0(X) = 0.

As an immediate consequence of these results, we obtain the proof of the fact

that C̃H0(SB(A)) = 0, where A is a central simple algebra over k and SB(A) is the

respective Severi–Brauer variety [Pa84, Theorem 2.3.7].

For simplicity we may assume deg A = p is prime. By Lemma 2.1, we may assume

the base field k is prime-to-p closed (for a prime q different from p, the algebra A

splits over kq). According to Proposition 2.2 it suffices to show that the p-th sym-

metric power Sp SB(AK ) is R-trivial for every finite field extension K/k (the second

hypothesis of Proposition 2.2 holds for any twisted flag variety). Changing the base,

we may assume K = k. If A is split, the assertion is trivial, so we may assume A is a

division algebra.

According to our conventions, the Severi–Brauer variety SB(A) is the variety of all

parabolic subgroups P of type P1 in the group PGL1(A ⊗k ks) with the action of Γ

coming from its action on ks. Therefore, SpX is the variety of all unordered p-tuples

[P(1), . . . , P(p)] of parabolic subgroups of type P1 of PGL1(A ⊗k ks). Let U be an

open subset of SpX defined by the condition that the intersection P(1) ∩ · · · ∩P(p) is a

maximal torus in PGL1(A⊗kks). Every maximal torus T in PGL1(A⊗kks) is contained

in precisely p parabolic subgroups of type P1 whose intersection is T. Therefore, U is

isomorphic to the variety of all maximal tori in PGL1(A). This variety is known to be

rational and, hence, R-trivial (since it is homogeneous). To finish the proof, observe

that the open embedding U → SpX is surjective on k-points. So SpX is R-trivial.

The same method can be applied to prove that C̃H0(Q) = 0 for a nonsingular

projective quadric Q over a field of characteristic not 2 (the result of Swan [Sw89]).

As above, we may assume that p = 2 and Q is anisotropic. It suffices to prove

that S2Q is R-trivial. Let q be the corresponding quadratic form on a vector space V .

The quadric Q can be viewed as the variety of lines 〈v〉, where v ∈ V ⊗k ks satisfies

q(v) = 0, with an obvious action of Γ. Its second symmetric power S2Q can be
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identified with the variety of pairs [〈v1〉, 〈v2〉] of lines (satisfying the same property),

with the induced action of Γ. Consider the open subset U defined by the condition

bq(v1, v2) 6= 0 (bq stands for the polarization of q). Clearly, the embedding U → S2Q

is surjective on k-points (otherwise the subspace 〈v1, v2〉 defines a totally isotropic

subspace over k). So it is enough to check that U is R-trivial.

Consider the open subvariety W of Gr(2,V ) consisting of planes H ⊂ V ⊗k ks

such that q|H is nonsingular. For every such plane there exists (up to scalar factors)

exactly one hyperbolic basis {v1, v2} over ks. Therefore, the map from U to W send-

ing [〈v1〉, 〈v2〉] to 〈v1, v2〉 is an isomorphism. But any open subvariety of Gr(2,V ) is

R-trivial, and we are done.

We shall use the following observation in the sequel.

Lemma 2.3 Let H ⊂ K ⊂ G be algebraic groups over k. Suppose that the map

H1(k,H) → H1(k,K) is surjective. Then the morphism G/H → G/K is surjective on

k-points.

Proof An element x of G/K(k) is represented by an element g ∈ G(ks) satisfying the

condition that γ(σ) = g−1 · σg lies in K(ks) for all σ ∈ Γ. But γ is clearly a 1-cocycle

with coefficients in K. Therefore by assumption, there exists some h ∈ K such that

h−1γ(σ) · σh = (gh)−1 · σ(gh) is a 1-cocycle with coefficients in H. But then gh

represents an element of G/H(k) which goes to x under the morphism G/H → G/K.

3 Twisted Forms of a Cayley Plane

In the present section we prove the injectivity of the degree map in the case when X

is a twisted form of a Cayley plane.

Let J denote a simple exceptional 27-dimensional Jordan algebra over k, and N J

its norm (which is a cubic form on J). An invertible linear map f : J → J is called a

similitude if there exists someα ∈ k∗ (called the multiplier of f ) such that N J( f (v)) =

αN J(v) for all v ∈ J. The group G = Sim( J) of all similitudes is a reductive group

whose semisimple part has type 1E6, and every group of type 1E6 with trivial Tits

algebras can be obtained in this way up to isogeny (see [Ga01, Theorem 1.4]). The

(twisted) Cayley plane OP
2( J) is the variety of all parabolic subgroups of type P1 in

Sim( J). Over the separable closure ks, this variety can be identified with the variety

of all lines 〈e〉 spanned by elements e ∈ Js = J⊗k ks satisfying the condition e× e = 0

(see [Ga01, Theorem 7.2]).

The goal of the present section is to prove the following.

Theorem 3.1 C̃H0(OP
2( J)) = 0.

We start the proof with the following easy reduction.

By Proposition 2.2 it is enough to prove that (Sp
OP

2( J)) ×k K is R-trivial for any

prime p and any finite field extension K/kp. Changing the base, we may assume

K = kp. Moreover, we may assume that the algebra J is not reduced (otherwise

OP
2( J) is a rational homogeneous variety and, hence, is R-trivial).
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Assume p 6= 3, then OP
2( J)(kp) 6= ∅ and, hence, is R-trivial. Indeed, choose

any cubic étale subalgebra L of J (see [Inv, Proposition 39.20]). It splits over kp, and

therefore, L ⊗k kp contains a primitive idempotent e. As an element of J ⊗k kp, it

satisfies the condition e × e = 0 (see [SV, Lemma 5.2.1(i)]). So we may assume

p = 3.

From now on p = 3 and the field k is prime-to-p closed. By definition S3(OP
2( J))

is the variety of all unordered triples [〈e1〉, 〈e2〉, 〈e3〉], where ei are the elements of

Js = J ⊗k ks satisfying the conditions ei × ei = 0, with the natural action of Γ.

Denote by U the open subvariety of OP
2( J) defined by the condition

N Js
(e1, e2, e3) 6= 0,

where N is the polarization of the norm.

The embedding U → S3(OP
2( J)) is surjective on k-points. For, if [〈e1〉, 〈e2〉, 〈e3〉]

is stable under the action of Γ and N Js
(e1, e2, e3) = 0, then 〈e1, e2, e3〉 gives by descent

a k-defined subspace V of J such that N|V = 0. But then J is reduced by [SV,

Theorem 5.5.2], which leads to a contradiction. So it is enough to show that U is

R-trivial.

Choose a cubic étale subalgebra L in J. Over the separable closure this algebra can

be represented as L⊗k ks = kse1 ⊕kse2 ⊕kse3, where e1, e2, e3 ∈ Js are primitive idem-

potents. We have ei × ei = 0, i = 1, 2, 3; the norm N Js
(e1, e2, e3) = NL⊗kks

(e1, e2, e3)

is non-trivial and the triple [e1, e2, e3] is invariant under the action of Γ (so is L).

Hence, the triple [〈e1〉, 〈e2〉, 〈e3〉] is a k-rational point of U .

By [SV68, Proposition 3.12], the group G acts transitively on U . Therefore, we

have U ≃ G/ StabG([〈e1〉, 〈e2〉, 〈e3〉]). The stabilizer is defined over k, since it is

invariant under the action of Γ. Moreover, it coincides with StabG(L). Indeed, one

inclusion is obvious, and the other one follows from the fact that e1, e2, e3 are the

only elements e of L ⊗k ks satisfying the condition e × e = 0 up to scalar factors (see

[SV, Theorem 5.5.1]).

Remark 3.2 Consider the Springer decomposition J = L ⊕ V of J with respect

to L. The pair (L,V ) has a natural structure of a twisted composition, and there

is a monomorphism Aut(L,V ) → Aut( J) sending a pair (ϕ, t) (where ϕ : L → L,

t : V → V ) to ϕ ⊕ t : J → J (see [Inv, § 38.A]). Note that Aut(L,V ) coincides with

the stabilizer of L in Aut( J).

Lemma 3.3 The following sequence of algebraic groups is exact

1 → Aut(L,V ) → StabG(L) → RL/k(Gm) → 1,

f 7→ f (1)

where RL/k stands for the Weil restriction.

Proof Exactness at the middle term follows from Remark 3.2 and the fact that the

stabilizer of 1 in G coincides with Aut( J) (see [SV, Proposition 5.9.4]). To prove the
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exactness at the last term observe that a ks-point of RL/k(Gm) is a triple of scalars

(α0, α1, α2) ∈ k∗s × k∗s × k∗s . We have to find f ∈ StabG(L)(ks) which sends 1 to

diag(α0, α1, α2).

Assume first that α0α1α2 = 1. Choose a related triple (t0, t1, t2) of elements of

GO+(Od,NOd
) (Od is the split Cayley algebra) such that µ(ti) = αi , i = 0, 1, 2 (see

[Inv, Corollary 35.5]). Now the transformation f of J defined by



ε0 c2 ·
· ε1 c0

c1 · ε2


 7→



α0ε0 t2(c2) ·
· α1ε1 t0(c0)

t1(c1) · α2ε2




lies in Sim( J) by [Ga01, (7.3)], stabilizes L ⊗k ks = diag(ks, ks, ks) and sends 1 ∈ Js to

diag(α0, α1, α2).

In the general case set α ′
i = αi(α0α1α2)−

1
3 (i = 1, 2, 3), find f ′ such that f ′(1) =

diag(α ′
1, α

′
2, α

′
3), and define f to be the product of f ′ and the scalar transformation

of Js with the coefficient (α0α1α2)
1
3 (which is an element of StabG(L)(ks)).

Since H1(k, L∗) = 1 (by Hilbert ’90), the map H1(k,Aut(L,V )) → H1(k, StabG(L))

is surjective. By Lemma 2.3 the morphism G/Aut(L,V ) → G/ StabG(L) ≃ U is sur-

jective on k-points. Therefore, it suffices to show that G/Aut(L,V ) is R-trivial.

Consider the morphismψ : G/Aut(L,V ) → G/Aut( J). By [Kr05, Corollary 3.18]

it suffices to show that

(i) ψ is surjective on k-points;

(ii) G/Aut( J) is R-trivial;

(iii) The fibers of ψ (which are isomorphic to Aut( J)/Aut(L,V )) are unirational

and R-trivial.

In order to prove surjectivity of ψ on k-points, by Lemma 2.3 it is enough to prove

surjectivity of the map H1(k,Aut(L,V )) → H1(k,Aut( J)). The set H1(k,Aut(L,V ))

classifies all twisted compositions (L ′,V ′) which become isomorphic to (L,V ) over

ks and H1(k,Aut( J)) classifies all (exceptional 27-dimensional) Jordan algebras J ′. It

is easy to verify that the morphism sends (L ′,V ′) to the Jordan algebra L ′ ⊕V ′, and

hence, the surjectivity follows from the fact that any Jordan algebra admits a Springer

decomposition (cf. [Inv, Proposition 38.7]).

Let W be the open subvariety of J consisting of elements v with N J(v) 6= 0. Then

G acts transitively on W (see [SV, Proposition 5.9.3]) and the stabilizer of the point

1 coincides with Aut( J). So G/Aut( J) ≃ W is clearly R-trivial.

Consider the variety Y of all étale cubic subalgebras of J. By [Inv, Proposition

39.20(1)], there is a map from an open subvariety J0 of regular elements in J to Y

(sending a to k[a]), surjective on k-points. Therefore Y is unirational and R-trivial

24-dimensional irreducible variety.

The group Aut( J) acts on Y naturally. Let L ′ be any k-point of Y . The stabilizer

of L ′ in Aut( J) is equal to Aut(L ′,V ′) ( J = L ′ ⊕ V ′ is the Springer decomposition).

So the orbit of L ′ is isomorphic to Aut( J)/Aut(L ′,V ′), and in particular, has dimen-

sion 24. Therefore, it is open and, since L ′ is arbitrary, the action is transitive. So

Aut( J)/Aut(L,V ) ≃ Y is unirational and R-trivial and the proof of the theorem is

complete.
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4 The Case of E7/P7

In the present section we prove the injectivity of the degree map for twisted forms of

a projective homogeneous variety corresponding to an exceptional group of type E7

and a parabolic subgroup of type P7.

Let B denote a 56-dimensional Brown algebra over k. It defines (up to a scalar

factor) a skew-symmetric form b on B and a trilinear map t from B × B × B to

B such that (B, t, b) is a Freudenthal triple system (see [Ga01, Definition 3.1] and

[Ga01, §4]). An invertible linear map f : B → B is called a similitude if there exists

some α ∈ k∗ (called the multiplier of f ) such that b( f (u), f (v)) = αb(u, v) and

t( f (u), f (v), f (w)) = α f (t(u, v,w)) for all u, v,w ∈ B. The group G = Sim(B)

of all similitudes is a reductive group whose semisimple part has type E7 and every

group of type E7 with trivial Tits algebras can be obtained in this way up to isogeny

(cf. [Ga01, Theorem 4.16]).

An element e is called singular (or strictly regular following [Fe72]) if t(e, e,B) ⊆
〈e〉. In this case t(e, e, v) = 2b(v, e)e for every v ∈ V . An equivalent definition is

that t(e, e, e) = 0 and e ∈ t(e, e,B) (see [Fe72, Lemma 3.1]). An algebra B is called

reduced if it contains singular elements. There do exist anisotropic groups of type E7

with trivial Tits algebras over certain fields (see [Ti90]).

Let X(B) be the variety obtained by Galois descent from the variety of all parabolic

subgroups of type P7 in Sim(B⊗k ks). It can be identified with the variety of lines 〈e〉
spanned by singular elements e ∈ B ⊗k ks (see [Ga01, Theorem 7.6]).

The goal of this section is to prove the following.

Theorem 4.1 C̃H0(X(B)) = 0.

We start with the similar reduction as in the case of E6.

4.1 Assume first that G has Tits index E66
7,1 (see [Ti66, Table II]). Its anisotropic ker-

nel is of type D6 and, since G has trivial Tits algebras, the anisotropic kernel corre-

sponds to a 12-dimensional nondegenerate quadratic form q with split simple fac-

tors of its Clifford algebra. A straightforward computation (see [Br05, Thm. 7.4])

shows that M(X(B)) ≃ M(Q) ⊕ M(Y )(6) ⊕ M(Q)(17), where Q is the projective

quadric corresponding to q, Y is a twisted form of the maximal orthogonal grass-

manian of a split 12-dimensional quadric, and M denotes Chow motive. Therefore,

C̃H0(X(B)) = C̃H0(Q) = 0, where the last equality is due to Swan.

4.2 By Proposition 2.2, it is enough to prove that (SpX(B))×k K is R-trivial for any prime

p and any finite field extension K/kp. After the base change it suffices to prove it for

K = kp. Moreover, we may assume B is not reduced (otherwise X(B) is rational and,

hence, R-trivial).

Assume p 6= 2, then B ⊗ kp is reduced by [Fe72, Corollary 3.4] and therefore,

X(B)(kp) 6= ∅. So we may assume p = 2.

From now on p = 2 and k = kp. Since B is not reduced, the group G has Tits

index either E133
7,0 or E66

7,1 (see [Ti71, 6.5.5] and [Ti66, Table II]). By 4.1, we may assume
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G is anisotropic (has index E133
7,0 ).

By definition, S2(X(B)) is the variety of all unordered pairs [〈e1〉, 〈e2〉], where ei

are singular elements of B ⊗k ks, with the natural action of Γ. Denote by U the open

subvariety of X(B) defined by the condition b(e1, e2) 6= 0.

Lemma 4.2 The embedding U → S2(X(B)) is surjective on k-points.

Proof Consider the diagonal action of G on X(B) × X(B) (we may assume in this

proof that G is simple). Over ks, this action has four orbits: the minimal orbit which

is the diagonal and, hence, is isomorphic to Gs/P7, the open dense orbit which is

isomorphic to the quotient Gs/L(P7), where L(P7) denotes the Levi part of P7, and

two locally closed orbits. Indeed, there is a one-to-one correspondence between the

orbits of the Gs-action and double coset classes P7\Gs/P7 given by mutually inverse

maps Gs · (x, y) 7→ P7x−1 yP7 and P7wP7 7→ Gs · (1,w). Observe that the minimal

orbit corresponds to the class of the identity and the open dense orbit to the class of

the longest element w0 of the Weyl group of Gs.

Consider the diagonal action of G on S2(X(B)). Over ks the subset U is the open

dense orbit in S2(X(B)). Assume that there exists a k-rational point on S2(X(B))\U .

Then the stabilizer H of this point is a subgroup of G defined over k. Observe that

over ks the connected component of the identity H0 is the stabilizer of one of the

non-open orbits for the action of G on X(B) × X(B) considered above, i.e., it can

be identified with the intersection of two parabolic subgroups H0
s = P7 ∩ wP7w−1,

where w is the double coset representative corresponding to the orbit. By [DG, Ex-

posé XXVI, Theorem 4.3.2], H0
s is reductive if and only if H0

s is the Levi subgroup

of P7, i.e., if and only if P7wP7 = P7w0P7. Therefore, H0
s is non-reductive and so is

H. The latter implies that G must have a unipotent element over k. But according to

[Ti86, p. 265], if G is anisotropic and char k 6= 2, 3 this is impossible, a contradiction.

According to the lemma it suffices to show that U is R-trivial.

The Brown algebra B ⊗k ks is split, that is, isomorphic to the Brown algebra of

matrices of the form
(

F Jd

Jd F

)
, where Jd is the split Jordan algebra. Set

e1 =

(
1 0

0 0

)
, e2 =

(
0 0

0 1

)
.

The pair [〈e1〉, 〈e2〉] is stable under an arbitrary semiautomorphism of B ⊗k ks (see

[Ga01, Proof of Theorem 2.9]) and, in particular, under the action of Γ. There-

fore, [〈e1〉, 〈e2〉] is a k-rational point of U . Moreover, 〈e1, e2〉 defines by descent the

(k-defined) étale quadratic subalgebra L of B.

By [Fe72, Proposition 7.6], G acts transitively on U . Therefore,

U ≃ G/ StabG([〈e1〉, 〈e2〉]).

This stabilizer clearly coincides with StabG(L) (one inclusion is obvious, and another

one follows from the fact that e1, e2 are the only singular elements of L ⊗k ks up to

scalar factors).
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Lemma 4.3 There is an exact sequence of algebraic groups

1 → Aut(B) → StabG(L) → RL/k(Gm) → 1.

f 7→ f (1)

Proof This follows from the fact that the stabilizer of 1 in G coincides with Aut(B).

Indeed, we have an obvious injection Aut(B) → StabG(1). To prove the surjectivity

we can assume that k is separably closed. Let f be an element of G preserving 1. Since

a decomposition into a sum of two non-orthogonal singular elements is unique by

[Fe72, Lemma 3.6] and 1 = e1 + e2, the element f must preserve the pair [e1, e2]. By

[Fe72, Lemma 7.5], f has a form ηλπ , where η is a similitude of J with a multiplier

ρ, π is a permutation on {1, 2}, λ ∈ k∗, and ηλπ acts on B by formulae [Fe72, (15)].

Now it follows that λ−1ρ−1
= 1 and λ2ρ = 1 and therefore λ = ρ = 1. So f is an

automorphism of B, as claimed. The surjectivity of the last map also follows from

[Fe72, Lemma 7.5].

Since H1(k, L∗) = 1, the map H1(k,Aut(B)) → H1(k, StabG(L)) is surjective. By

Lemma 2.3 the morphism G/Aut(B) → G/ StabG(L) ≃ U is surjective on k-points.

Therefore, it suffices to show that G/Aut(B) is R-trivial.

Let W be an open subvariety of B consisting of all elements v such that

b(v, t(v, v, v)) 6= 0. Then G acts transitively on W (it follows easily from [Fe72, Theo-

rem 7.10] or [SK77, p. 140]) and the stabilizer of the point 1 coincides with Aut(B).

So G/Aut(B) ≃ W is R-trivial, and we have finished the proof of Theorem 4.1.

5 Other Homogeneous Varieties

In this section using the results of [Me,Ti66], we finish the proof of Theorem 1.1. We

start with the following lemma.

Lemma 5.1 Let X and Y denote projective homogeneous varieties over a field k. As-

sume X is isotropic over the function field of Y and Y is isotropic over the function field

of X. Then the groups of zero-cycles of X and Y are isomorphic.

Proof The fact that X is isotropic over k(Y ) is equivalent to the existence of a ratio-

nal map Y 99K X. Hence, we have two composable rational maps f : Y 99K X and

g : X 99K Y , and the compositions f ◦ g and g ◦ f correspond to taking a k(X)-point

on X and a k(Y )-point on Y , respectively.

Consider the category of rational correspondences RatCor(k) introduced in [Me].

The objects of this category are smooth projective varieties over k and morphisms

Mor(X,Y ) = CH0(Yk(X)). The key property of this category is that the CH0-functor

factors through it. Namely, CH0 is a composition of two functors: the first is given

by taking a graph of a rational map (any rational map gives rise to a morphism in

RatCor(k)), the second is the realization functor (see [Me, Theorem 3.2]).

The maps f and g give rise to the morphisms [ f ] and [g] in RatCor(k). By def-

inition the compositions [ f ◦ g] and [g ◦ f ] give the identity maps in the category
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RatCor(k). Hence, the realizations [ f ]∗ and [g]∗ give the respective mutually inverse

isomorphisms between CH0(X) and CH0(Y ).

The next lemma finishes the proof of Theorem 1.1.

Lemma 5.2 Let X be an anisotropic projective G-homogeneous variety, where G is a

group of type F4 or 1E6 with trivial Tits algebras. Then C̃H0(X) = 0.

Proof According to Lemma 2.1, it is enough to prove the lemma over fields kp,

where p = 2 or 3.

Assume p = 2 and k = k2. Let G be a group of type 1E6. Consider a Jordan

algebra J corresponding to the group G. Since the base field k is prime-to-2 closed,

the algebra J is reduced [Inv, Theorem 40.8] and, hence, comes from an octonion al-

gebra O. Consider the variety Y of norm zero elements of O (which is an anisotropic

Pfister quadric). Since G has trivial Tits algebras, there are only two Tits diagrams al-

lowed for G and its scalar extensions, namely, 1E0
6,6 and 1E28

6,2 (see [Ti71, 6.4.5]). Since

X is anisotropic (by the hypothesis), extending the scalars to k(X) adds additional

circles to the respective Tits diagram and, hence, changes it. Therefore, Gk(X) (equiv-

alently Jk(X)) must be split. The fact that Gk(Y ) (equiv. Jk(Y )) is split is obvious (see

[Inv, Corollary 37.18]). All this means that the varieties Xk(Y ) and Yk(X) are isotropic.

By Lemma 5.1 we obtain C̃H0(X) = C̃H0(Y ) = 0, where the last equality holds by

[Sw89].

In the case G is a group of type F4, there are three possible Tits diagrams, namely,

F52
4,0 (anisotropic), F21

4,1 (isotropic) and F0
4,4 (split case). Consider the first case, i.e., G

is an anisotropic group of type F4 and X is a variety of parabolic subgroups of type P4.

Let Z be the Pfister form corresponding to the invariant f5. We claim that Xk(Z) and

Zk(X) are isotropic. Obviously, k(X) splits Z. The invariants g3 and f5 are trivial for the

respective Jordan algebra Jk(Z). By [PR94, p. 205], this implies that the group Gk(Z) is

isotropic, i.e., corresponds to the diagram F21
4,1. Then the variety Xk(Z) is isotropic as

well. Again by Lemma 5.1 and [Sw89] we conclude that C̃H0(X) = C̃H0(Z) = 0.

In case X is the variety of parabolic subgroups of type different from P4, one can

prove that C̃H0(X) = 0 following the same arguments as for the group of type 1E6.

Assume p = 3 and k = k3. In this case there are two Tits diagrams allowed

for G, namely, 1E78
6,0 and 1E0

6,6 (resp. F52
4,0 and F0

4,4). Consider the pair X and Y =

OP
2( J). Again the obvious arguments with Tits diagrams show that Xk(Y ) and Yk(X)

are isotropic. We obtain C̃H0(X) = C̃H0(Y ) = 0, where the last equality holds by

Theorem 3.1.
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