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Norm One Idempotent cb-Multipliers with
Applications to the Fourier Algebra
in the cb-Multiplier Norm

Brian E. Forrest and Volker Runde

Abstract. For alocally compact group G, let A(G) be its Fourier algebra, let M, A(G) denote the com-
pletely bounded multipliers of A(G), and let A 7.5 (G) stand for the closure of A(G) in M,A(G). We
characterize the norm one idempotents in M, A(G): the indicator function of a set E C G is a norm
one idempotent in M, A(G) if and only if E is a coset of an open subgroup of G. As applications, we
describe the closed ideals of A p/.5 (G) with an approximate identity bounded by 1, and we characterize
those G for which A /., (G) is 1-amenable in the sense of B. E. Johnson. (We can even slightly relax
the norm bounds.)

Introduction

The Fourier algebra A(G) and Fourier—Stieltjes algebra B(G) of a locally compact
group G were introduced by P. Eymard [8]. If G is abelian with dual group G, these
algebras are isometrically isomorphic to L' (G), the group algebra of G, and M(G), the
measure algebra of G, via the Fourier and Fourier—Stieltjes transform, respectively.
For abelian G, the idempotent elements in B(G) =2 M (G) were described by P. J.
Cohen [4]: the indicator function xg of E C G lies in B(G) if and only if E belongs
to the coset ring Q(G) of G, i.e., the ring of sets generated by the cosets of the open
subgroups of G. Later, B. Host showed that this characterization of the idempotents
in B(G) holds true for general locally compact groups G [[16].

In [[12], the Cohen—Host idempotent theorem was crucial in characterizing, for
amenable G, those closed ideals of A(G) that have a bounded approximate identity,
and in [13}[30], the authors made use of it to characterize those G for which A(G) is
amenable in the sense of B. E. Johnson [18]].

Besides the given norm on A(G), there are other, from certain points of view even
more natural, norms on A(G). Recall that a multiplier of A(G) is a function ¢ on G
with pA(G) C A(G). Itis immediate from the closed graph theorem that each multi-
plier ¢ of A(G) induces a bounded multiplication operator My on A(G); the operator
norm on the multipliers turns them into a Banach algebra. Trivially, A(G) embeds
contractively into its multipliers, but the multiplier norm on A(G) is equivalent to
the given norm if and only if G is amenable [26]].
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An even more natural norm on A(G) arises if we take into account that A(G), be-
ing the predual of a von Neumann algebra, has a canonical operator space structure.
(Our default reference for operator spaces is [[7].) This makes it possible to consider
the completely bounded multipliers (cb-multipliers in short) of A(G) as

MyA(G) := {¢: G — C: My A(G) — A(G) is completely bounded}.

For ¢ € M4A(G), we denote the completely bounded operator norm of My by
@]l azep- It is not difficult to see that B(G) embeds completely contractively into
M4A(G). However, equality holds if and only if G is amenable. In fact, G is amenable
if and only if || - ||pme and the given norm on A(G) are equivalent. (For a discussion
of these facts with references to the original literature, see [31].)

Let Apscp (G) denote the closure of A(G) in M,A(G) (see [10] for some properties
of this algebra). For certain non-amenable G, the (completely contractive) Banach
algebra Az, (G) is better behaved than A(G). For instance, A(G) has a bounded
approximate identity if and only if G is amenable ([24]); in particular, if G is IF,, the
free group in two generators, then A(G) is not operator amenable. On the other hand,
Aper(F2) has a bounded approximate identity [6] and even is operator amenable
[14] in the sense of [28]].

Juxtaposing the main results of [13}[14]], the question arises immediately whether
Aprep(IF,) is amenable in the classical sense of [[18], and it is this question that has mo-
tivated the present note. The proof of the main result of [[13]], as well as its alternative
proof in [30], rests on the Cohen—Host idempotent theorem. Attempting to emulate
these proofs with Ajps.,(G) in place of A(G) leads to the problem whether certain
idempotent functions can lie in M,A(G). The main problem is that the Cohen—Host
theorem is no longer true with M4A(G) replacing B(G): as M. Leinert showed [23]],
there are sets E C IF, such that xz € M3,A(G) \ B(G).

The main result of this note is that, even though M (G) may have more idempo-
tents than B(G), both algebras do have the same norm one idempotents. With this
result we can then characterize the closed ideals in Az, (G) having an approximate
identity bounded by one as well as those G for which A ., (G) is 1-amenable. (Due
to the useful fact that idempotent Schur multipliers of norm less than % must have

norm one, we can even work with slightly relaxed norm bounds.)

1 The Norm One Idempotents of M,A(G)

For a locally compact group G, the functions in B(G) can be described as coefficient
functions of unitary representations of G (see [8]). A related characterization, which
immediately yields the contractive inclusion B(G) C M,A(G), is the following theo-
rem due to J. Gilbert ([[15]]; for a more accessible proof, see [21]):

Gilbert’s Theorem  Let G be a locally compact group. Then for ¢: G — C the follow-
ing are equivalent:

i) ¢ € MaA(G);
(ii) there are are a Hilbert space © and bounded, continuous functions &,mn: G — 9
such that

(1.1) Plxy™) = (), () (x,y € G).
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Moreover, if ¢ € M4,A(G) and € and ) are Hilbert space valued, bounded, continuous
functions on G satisfying (L1)), then

(1.2) Pl ares < NI€lloollMlloo

holds, and & and 1) can be chosen such that we have equality in (L2)).
The following extends [[17, Theorem 2.1].
Theorem 1.1 Let G be a locally compact group. Then for E C G the following are

equivalent:

() xe € B(G) with || xg|lse) = L
(i) xe € MaA(G) with ||kl meb = 1;
(iii) E is a coset of an open subgroup.

Proof (i) = (ii) is clear, and (iii) = (i) is the easy part of [17, Theorem 2.1].
(ii) = (iii). Obviously, E is open. If x € E, then x'E contains e and satisfies

lIXs-1Ellamer = 1. Hence, we can suppose without loss of generality that e € E:
otherwise, replace E by x'E for some x € E. We shall show that E is a subgroup of
G.

By Gilbert’s Theorem, there are a Hilbert space £ and bounded, continuous func-
tions £,7: G — H with 1 = ||£]| 0o ||7]| 0o such that

(1.3) xe(xy ™) = (), n(y)) (x,y € G).

Of course, we can suppose that both ||¢||cc = ||7]lcc = 1. In view of (L3)) and the
Cauchy-Schwarz inequality, we obtain

xy 'eE = (@) =1 < x)=n0) (xyecq).

As e € E, this means, in particular, that £(e) = n(e) =: &, so that
E={x€G:&x)=¢&={yeG:n(y ") =¢}.

Hence, if x, y € E, we get xe(xy) = (£(x),n(y™1)) = (£,€) = 1,s0 thatxy € E.
Consequently, E is a subsemigroup of G.

Let x € E. Applying the preceding argument to x~'E instead of E, we see that x~!
is a subsemigroup of G; since e € E, we have, in particular, x"'x~! € x~'E, which
means that x~! € E.

All in all, E is a subgroup of G. ]

Remark. Let MA(G) denote the algebra of all multipliers of A(G). Defining |||y as
the operator norm of M, we obtain a Banach algebra norm on MA(G); obviously,
M4A(G) embeds contractively into MA(G). Hence, every norm one idempotent in
M A(G) is a norm one idempotent in MA(G). By [1l], MypA(F,) © MA(F,) holds,
and, as M. Bozejko communicated to the second author, there are sets E C I, such
that xg C MA(F,) \ MuA(F;). We do not know if such E can be chosen such that

Ixella = 1.
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By [2]], the elements of M, A(G) are precisely the so-called Herz—Schur multipliers
of A(G). For discrete G, the powerful theory of Schur multipliers (see [27] for an
account) can thus be applied to the study of M., A(G). By [25] (see also [22]), for
any index set I, an idempotent Schur multiplier of B(¢2(I)) with norm greater than 1
must have norm at least % Hence, we obtain the following.

Corollary 1.2 Let G be a group. Then for E C G the following are equivalent:

() xe € B(G) with || xglpo) = 1;

(11) XE € Mch(G) with ||XE||Mcb =1
(i) xe € MaA(G) with || xE|| meb < %;
(iv) Eis a coset of a subgroup.

2 Ideals of A, (G) with Approximate Identities Bounded by
C<2/V3

Let G be a locally compact group. In [12], the first author with E. Kaniuth, A. T.-M.
Lau, and N. Spronk characterized, for amenable G, those closed ideals of A(G) that
have bounded approximate identities in terms of their hulls. Previously, he had ob-
tained a similar characterization of those closed ideals of A(G) that have approximate
identities bounded by one without any amenability hypothesis for G [9, Propositon
3.12].

In this section, we use Theorem [L1] (or rather Corollary[L.2)) to prove an analog
of [9, Propositon 3.12] for Apscp (G).

Let H be an open subgroup of G. It is well known that we can isometrically iden-
tify A(H) with the closed ideal of A(G) consisting of those functions whose support
lies in H; with a little extra effort, one sees that this identification is, in fact, a com-
plete isometry [[I1} Proposition 4.3]. From there, it is not difficult to prove the anal-
ogous statement for Az, (G): there is a canonical isometric isomorphism between
Apep(H) and those functions in A pz.; (G) with support in H.

Given a closed ideal I of A js., (G), we define its hull to be

h(I):={x€ G: f(x) =0forall f € I}.
If E C Gis closed, we set
I(E) :={f € Apep(G) : f(x) =0forallx € E},

which is a closed ideal of A j4., (G) such that h(I(E)) = E.
Since translation by a group element is an isometric algebra automorphism of
Anren (G), in view of the preceding discussion we have the following.

Proposition 2.1 Let G be a locally compact group, let H be an open subgroup of G,
and let x € G. Then we have an isometric algebra isomorphism between A prcp(H) and
I(G\ xH).

Our main result in this section is the following.
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Theorem 2.2 Let G be a locally compact group. Then for a closed ideal I of A prep (G)
andC € [1, %) the following are equivalent:

(1) I has an approximate identity bounded by C;
(ii)) I =I(G\ xH), wherex € G and H is an open subgroup of G such that A pcp (H)
has an approximate identity bounded by C.

Proof (ii) = (i) is an immediate consequence of Proposition 2.1]

(i) = (ii). Let (eqn)n be an approximate identity for I bounded by C. By [31}
Corollary 6.3(i)], M;,A(G) embeds (completely) isometrically into M ,A(G;), where
G, stands for the group G equipped with the discrete topology; we may thus view
(€a)a as a bounded net in MA(Gy). It is easy to see that (e, ) converges to Xg\n()
pointwise on G and thus in o(£>°(G), £'(G)). With the help of [6] Lemma 1.9], we
conclude that x g\ n1y € M A(Gy) with || xa\nn || mev < Cs hence, x\n() is an idem-
potent in M;A(G,) of norm strictly less than % By Corollary[1.2] this means that
G\ h(I) is of the form xH for x € G and a subgroup H of G and thus h(I) = G\ xH.
Since h(I) is closed, xH, and thus H, must be open. By [14, Proposition 2.2], the
Banach algebra A ., (H) is Tauberian. By Proposition 2.1} this means that the set
G \ xH is of synthesis for A pc5 (G), so that I = I(G \ xH). Finally, Proposition [2.1]

again yields that Az, (H) has an approximate identity bounded by C. [ |

In [5], locally compact groups G such that A(G) has an approximate identity
bounded in || - || apzer were called weakly amenable; this is equivalent to A ., (G) hav-
ing an approximate identity [10, Proposition 1]. For instance, I, is weakly amenable
[6) Corollary 3.9] without being amenable. Both [6, Corollary 3.9] and [14}, Theo-
rem 2.7] suggest that for weakly amenable, but not amenable G, the Banach algebra
Apeb(G) is @ more promising object of study than A(G). In view of [9, Proposi-
tion 3.13] and Theorem one is thus tempted to ask whether a suitable version
of [12} Theorem 2.3] holds for A ., (G) and weakly amenable G: a closed ideal I of
Anrenr(G) has a bounded approximate identity if and only I = I(E) for some closed
E € Q(Gy).

We conclude this section with an example which shows that the characterization
of the closed ideals of Az, (G) with a bounded approximate identity for weakly
amenable, but not amenable G cannot be as elegant as for amenable G.

Example. Let E C T, be such that xg € M4 A(F,), but E ¢ Q(IF,): such E exists
by [23]. Let I = I(E). Then I = (1 — xg)Ancp(IF2) is completely complemented
in Apzer (IF2). Since Apzep (F2) is operator amenable by [[14} Theorem 2.7], it follows
from [29, Theorem 2.3.7] — with operator space overtones added — that I has a
bounded approximate identity even though h(I) = E ¢ Q(F,).

3 Amenability of A, (G)

Recall the definition of an amenable Banach algebra. Given a Banach algebra 2, let
A ®7 A denote the Banach space tensor product of A with itself. The projective
Banach space U ®7 A becomes a Banach A-bimodule via

a-x®@y)=ax®y and (x®y)-a:=xQya (a,x,ycq).
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Let A: A ®7 A — A denote the bounded linear map induced by multiplication, i.e.,
A(a®b) =abfora,b e N

Definition 3.1 A Banach algebra U is called C-amenable with C > 1 if it has an
approximate diagonal bounded by C, i.e., a net (d,), in A @7 A bounded by C such
that

a-dy—dy,-a—0 (ae)

(3.1)
alAd, —-a (aecN).

We say that U is amenable if there is C > 1 such that A is C-amenable.

Remark. This is not the original definition of an amenable Banach algebra from [18],
but equivalent to it [19]. The idea of considering bounds for approximate diagonals
seems to originate in [20]].

The question as to which locally compact groups G have an amenable Fourier al-
gebra was first studied in depth in [20]. Until then, it was widely believed, probably
with an eye on [24], that these G were precisely the amenable ones. In [20], how-
ever, Johnson exhibited compact groups G, such as SO(3), for which A(G) is not
amenable. Eventually, the authors showed that A(G) is amenable if and only if G is
almost abelian, i.e., has an abelian subgroup of finite index ([13} Theorem 2.3]; see
also [30]]).

A crucial role in the proofs in both [I3,[30] is played by the anti-diagonal of G; it
is defined as

= {(xx":x€G}

Its indicator function xr lies B(G; x G;) if and only if G is almost abelian [30,
Proposition 3.2]. If G is locally compact such that A(G) is amenable, then xr lies
in B(G; x Gy) [30, Lemma 3.1], forcing G to be almost abelian.

Forany f: G — C, we define f: G — Cby letting f(x) := f(x~"). We denote the
map assigning f to f by V;itis an isometry on A(G), but completely bounded if and
only if G is almost abelian [[13} Proposition 1.5]: this fact is crucial for characterizing
those G with an amenable Fourier algebra as the almost abelian ones (see both [13}
30]).

Since “ need not be completely bounded, it is not obvious that V is an isometry,
or even well defined, on A /., (G). Nevertheless, both are true.

Lemma 3.2 Let G be a locally compact group. Then V is an isometry on My,A(G))
leaving Apscp (G) invariant.

Proof Since Y leaves A(G) invariant, it is clear that it leaves A 3., (G) invariant once
we have established that it is isometric on M,A(G).

Let ¢ € M, A(G). By Gilbert’s Theorem, there are a Hilbert space $ and bounded
continuous &, n: G — 9 such that (1)) holds and ||¢||azes = [|€]| 0o ||7]] 0o Since

Py~ = dlyx™") = (), )5 = (), €Dy = (Nx),ED))5 (%, ¥ € G,

where $ denotes the complex conjugate Hilbert space of 9, it follows from Gilbert’s
Theorem that ¢ € MA(G) with ||d] amer < ||€llool|M]lce = 1D Meb- [ |
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With Lemma [3.2]at hand, we can prove a A y/.; (G) version of [30, Lemma 3.1].

Proposition 3.3 Let G be a locally compact group such that A pre, (G) is C-amenable
with C > 1. Then xr belongs to My, A(Gy X Gy) with ||xr||mer < C.

Proof Let (d,), be an approximate diagonal for A 5z, (G) bounded by C. By Lemma
the net ((id ® V)((da))q lies in Apep (G) @7 Apsep(G) and is also bounded by C.
Obviously, ((id® V)((d,))s converges to xr in the topology of pointwise conver-
gence. Using more or less the same line of reasoning as in the proof of Theorem 2.2}
we conclude that xp € MpA(G; x Gy) with ||xr || amer < C. [ |

Remark. Let Ap(G) be the closure of A(G) in MA(G). The question for which G the
Banach algebra Ay, (G) is amenable seems to be more natural than the corresponding
question for Apz.;(G), but is apparently much less tractable (due to the fact that
much less is known about MA(G) than about M,A(G)). For instance, we do not
know whether or not an analog of Proposition[3.3lholds for Ay (G).

Extending [30, Theorem 3.5], we obtain eventually the following.

Theorem 3.4 The following are equivalent for a locally compact group G:
(1)  Gis abelian;

(i1)) A(G) is 1-amenable;

(iil) Apsep (G) is 1-amenable;

(iv) Apnen(G) is C-amenable with C < %

Proof (i) < (ii) is [30, Theorem 3.5] and (ii) = (iii) = (iv) are trivial.

(iv) = (i). If Apsep (G) is C-amenable with C < %, then xp € MyA(Gy x Gg) is
an idempotent with || xr||ames < C by Proposition[3.3] By Corollary[I.2] this means
that I is a coset a of subgroup of G x G and thus a subgroup because (e, e) € I'. This
is possible only if G is abelian. ]

Remarks. 1. We do not know if the equivalent conditions in Theorem [3.4] are also
equivalent to Ay/(G) being 1-amenable.

2. In view of [13}, Theorem 2.3] and Theorem[3.4] we believe that A ;.;(G) is amen-
able if and only if G is almost abelian. However, we have no proof in support of this
belief. We do not even know whether or not A ;.; (G) is amenable for G = IF,.

3. As a consequence of Theorem[3.4] we have for non-abelian G that

inf{C : Apcp(G) is C-amenable} >

Sl

(and possibly infinite). This, of course, entails that

inf{C : A(G) is C-amenable} > %,

which answers the question raised in the final remark of [30].

We conclude the paper with an observation on amenable closed ideals of A p;.;, (G).
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Corollary 3.5 Let G be a locally compact group, let C € [1, %), and let I be a non-

zero, C-amenable, closed ideal of Apcp(G). Then I is of the form I(G \ xH), where
x € G and H is an open, abelian subgroup of G.

Proof Let I be a non-zero, C-amenable, closed ideal of Az (G). From (B.), it is
immediate that I has an approximate identity bounded by C, and thus is of the form
I(G\ xH) for some open subgroup H of G. In view of Proposition 2.I]and Theorem
B4 H has to be abelian. u

Remarks. 1. The restriction on C in Corollary[3.5] cannot be dropped: by [23} (13)
Bemerkung], there are infinite subsets E of IF, such that xpM,A(G) = (°°(E), where

~

2 stands for a not necessarily isometric isomorphism of Banach algebras. As
Aper (G) is Tauberian, it is then easy to see that the ideal I = xpApret (G) = I(G\E) is
isomorphic to the commutative commutative C*-algebra ¢y (E) and thus an amenable
Banach algebra. Clearly, I is not of the form described in Corollary[3.5 (It can be
shown that I is 4-amenable and has an approximate identity bounded by 2; see [3].)

2. Tt is immediate from Corollary 3.5 that A p/.,(G) can have a non-zero, C-amen-
able, closed ideal if and only if G has an open, abelian subgroup. In particular, for
connected G, such ideals exist only if G is abelian.

Addendum After this paper had been submitted we were informed by Ana-Maria
Stan that Theorem 1.1 had been obtained independently in

A.-M. Stan, On idempotents of completely bounded multipliers of the Fourier algebra
A(G). Indiana Univ. Math. J. 58(2009), no. 2, 523-535.
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