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Abstract. A simple and versatile parametrized approach to the star for-
mation history allows a quantitative investigation of the constraints from
far infrared and submillimetre counts and background intensity measure-
ments.

The models include four spectral components: infrared cirrus, an
M 82-like starburst, an Arp 220-like starburst and an AGN dust torus.
The 60 /-Lm luminosity function is determined for each chosen rate of evo-
lution using the PSCz redshift data for 15000 galaxies. The proportions
of each spectral type as a function of 60 iut: luminosity are chosen for con-
sistency with IRAS and SCUBA colour-luminosity relations, and with the
fraction of AGN as a function of luminosity found in 12 /-Lm samples.

A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and
850 /-Lm can be found with pure luminosity evolution in all 3 cosmological
models investigated: no = 1, no = 0.3 (A = 0), and no = 0.3, A = 0.7.
All 3 models also give an acceptable fit to the integrated background
spectrum. The total mass-density of stars generated in all 3 cosmological
models is consistent with that observed.

1. Introduction

Surveys at 850 /-Lm (Hughes et al. 1998; Eales et al. 1999; Barger et al. 1999; Blain
et al. 2000; Fox et al. 2000) and the detection of the submillimetre background
(Puget et al. 1996; Fixsen et al. 1998; Hauser et al. 1998) have opened up high-
redshift dusty star-forming galaxies to view. Here I review what source counts
and the background radiation at infrared and submillimetre wavelengths can
tell us about the star formation history of the universe. Madau et al. (1996)
showed how the ultraviolet surveys of Lilly et al. (1996) could be combined with
information on UV dropout galaxies in the Hubble Deep Field to give an estimate
of the star formation history from z = 0 - 4. However these studies ignored what
is already well-known from far infrared wavelengths, that dust plays a major role
in redistributing the energy radiated at visible and UV wavelengths to the far
infrared.

Subsequent to the Madau et al. analysis, several groups of authors have
argued that the role of dust is crucial in estimates of the star formation rates
at high redshifts. Rowan-Robinson et al. (1997) derived a surprisingly high rate
of star formation at z = 0.5 - 1 from an ISO survey of the Hubble Deep Field
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Figure 1. (Left) Star formation histories of the form of Eq. (1), as a
function of z, from best-fit models for far infrared and submillimetre
counts and background for no = 1, [solid curve, (P, Q) = (1.2,5.4)];
no = 0.3, [dotted curve, (P, Q) = 2.1,7.3)]; A = 0.7, [broken curve,
(P, Q) = (3.0,9.0)].
(Right) Same, but as a function of cosmic time, t.

(HDF). Subsequent ISO estimates by Flores et al. (1999) confirmed the need
to correct for the effects of dust in estimates of star-formation rates. Large
extinction correction factors (5-10) have also been derived at z = 2 - 5 by
Meurer et al. (1997, 1999), Pettini et al. (1998) and Steidel et al. (1999).

Here I report the results of a parametrized approach to the star formation
history of the universe, which allows a large category of possible histories to
be explored and quantified. The parametrized models can be compared with a
wide range of source-count and background data at far infrared and submillime-
tre wavelengths to narrow down the parameter space that the star formation
history can occupy. The approach is similar to that of Blain et al. (1998) and
Guiderdoni et al. (1998), but differs in key respects outlined below. The mod-
els of Franceschini et al. (1997) invoke a new population of heavily obscured
high redshift starbursts, designed to account for the formation of spiral bulges
and ellipticals, whereas I am testing whether the submillimetre background and
counts can be understood in terms of a single population of evolving star-forming
galaxies. A full account is given by Rowan-Robinson (2000, ApJ submitted).

A Hubble constant of 100 km s"! Mpc"! is used throughout.

2. Parametrized Approach to Star Formation History

In this paper I present a parametrized approach to the problem, investigating a
wide range of possible star formation histories for consistency with counts and
background data from the ultraviolet to the submillimetre.

The constraints we have on the star formation rate, ¢*(t), are that

(i) it is zero for t = 0
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Figure 2. (Left) Adopted spectral energy distributions for the four
components adopted in this study: cirrus [with optical emission split
into low-mass (broken curve) and high-mass (dotted curve) stars];
M 82-starburst; Arp 220-starburst (models from Efstathiou et al. 2000);
AGN dust torus (model from Rowan-Robinson 1995), showing assumed
optical/IR ratio at loglO(L60 / L0 ) == 14 (upper curve) and 8.
(Right) Average SED as a function of 60 psi: luminosity, ranging from
loglO(L60/ L0 ) == 8 to 14.

(ii) it is finite at t == to

(iii) it increases with z out to at least z == 1 (and from (i) must eventually
decrease at high z).

A simple mathematical form consistent with these constraints is

(1)

where P and Q are parameters [P > 0 to satisfy (i), Q > 0 to satisfy (iii)]. I
assume that ¢*(t) == 0 for z > 10.

Equation (1) provides a simple but versatile parametrization of the star for-
mation history, capable of reproducing most physically realistic, single-population
scenarios. Figure 1 shows models of type Eq. (1) derived from fits to far infrared
and submillimetre source-counts and background intensity in different cosmo-
logical models (see below). Models of the form (1) will not, however, be able to
reproduce the very sharply peaked scenario ('ED') of Dwek et al. (1998), or the
two-population model of Franceschini et al. (1997). In the scenarios modelled by
Eq. (1) the formation of bulges and ellipticals are part of an evolving spectrum
of star-formation rates.

The physical meaning of the parameters is as follows. The exponential term
describes an exponential decay in the star formation rate on a time-scale to/Q,
which can be interpreted as a product of the process of exhaustion of available
gas for star formation (a competition between formation into stars and return
of gas to the interstellar medium from stars) and of the declining rate of galaxy
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interactions and mergers at later epochs. This parameter is the same as that
used in the galaxy SED models of Bruzual and Charlot (1993). The power-law
term represents the build-up of the rate of star formation due to mergers of
fragments which are incorporated into galaxies. P measures how steeply this
process occurs with time. The ratio P/Q determines the location of the peak in
the star formation rate, tpeak, since tpeak/to = P/Q.

A very important assumption in the present work is that the star forma-
tion rate should vary smoothly with epoch. Several earlier assumptions have
assumed, for mathematical convenience, discontinuous changes of slope in the
star formation rate (e.g., Pearson & Rowan-Robinson 1996; the Blain et al. 1998
'anvil'models). Such discontinuities are highly unphysical and I have eliminated
them in this work.

We might expect that the cosmological model could have a significant effect
on the relationship between predicted counts and predicted background intensity,
since the latter is sensitive to how the volume element and look-back time change
with redshift. To test this, I have explored models with (a) A = 0, for which
all the required formulae are analytic (specifically, here, models with no = 1,
0.3); and (b) k = 0, for which some of them are analytic (specifically, A = 0.7,
no = 0.3).

3. 60 /-Lm Luminosity Function and Evolution Derived from the IRAS
PSCz Survey

Given an assumed (P, Q), I then determine the 60 /-Lm luminosity function, using
the IRAS PSCz sample (Saunders et al. 1999). I fit this with the form assumed
by Saunders et al. (1990)

(2)

It is not clear that any previous studies have correctly taken account of the
need to change the 60 /-Lm luminosity function as the rate of evolution is varied.
The study of Guiderdoni et al. (1998) explicitly violates the known constraints
on the 60 iui: luminosity function at the high luminosity end, and as a result the
models predict far too many high redshift galaxies at a flux-limit of 0.2 Jy at
60 ust», where substantial redshift surveys have already taken place. Blain et al.
(1998) state that they have determined the luminosity function from consistency
with the 60 uu: counts, but this process does not automatically give detailed
consistency with existing redshift surveys.

We can also use the PSCz data to determine a range of consistency for
(P, Q), using the V/Vm test. The predicted uncertainty in < V/Vm > for a
population of n galaxies, (12n)-1/2, can be used to assign a goodness of fit for
each set of (P, Q) values.

4. Assumed Infrared and Submillimetre Spectral Energy Distribu-
tions

To transform this 60 /-Lm luminosity function to other wavelengths, we have to
make an assumption about the spectral energy distributions. I have explored a
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variety of assumptions about these SEDs: (a) a single SED at all luminosities
representative of starbursts; (b) composite SEDs which are a mixture of four
components, a starburst component, a 'cirrus' component, an Arp 220-like star-
burst, and an AGN dust torus (Rowan-Robinson 1995), with the proportions of
each depending on 60 /-Lm luminosity. Neither of these approaches gave satis-
factory results, and it was not possible to find a simultaneous fit to all the far
infrared and submillimetre counts and background spectrum in any cosmologi-
cal model. Finally, I have derived counts and background spectrum separately
for each of the four components and then summed. This approach finally gave
satisfactory fits to all available data. It also allows a correct determination of
the redshift distribution of each type separately as a function of wavelength and
flux-density, and the proportion of each type of contribution to the counts at
any flux-density or to the background.

I have used the latest predictions for infrared SEDs of these components
by Efstathiou et al. (2000), and added near IR-optical-UV SEDs corresponding
to an Sab galaxy for the cirrus and an HII galaxy for the starburst component,
respectively. The starburst model is a good fit to multiwavelength data for M 82
and NGC 6092 (Efstathiou et al. 2000), and also to far infrared and submillimetre
data for luminous starbursts (Rigopoulou et al. 1996).

The normalization between far infrared and optical-UV components is de-
termined by L(60 /-Lm)/ L(0.8 /-Lm) = 0.15 for the cirrus component, 5.3 for the
starburst component, and 49 for the Arp 220 component. For the AGN com-
ponent, I assume that L(10 /-Lm)/ L(O.l /-Lm) = 0.3 (cf Rowan-Robinson 1995) for
the most luminous AGN, and that this ratio increases with decreasing lumi-
nosity to account for the fact that the mean covering factor is higher at lower
luminosities. So log {L(10 /-Lm)/ L(O.l /-Lm)} = -0.52 + 0.1 x (14.0 - log L60).

For the cirrus component I have, somewhat arbitrarily, divided the optical
SED into a contribution of young, high-mass stars (A ::; 0.4 J-Lm) and a contribu-
tion of old, low-mass stars (A 2: 0.4 J-Lm) (see Fig. 2). The former are assumed
to trace the star formation rate, but the latter trace the cumulative star for-
mation up to the epoch observed. This treatment, though approximate, allows
a reasonable prediction of the K- and B-band counts. The two components in
Fig. 2 can be modelled, assuming L ex M3, blackbody SEDs with T ex £1/2, and
with a Salpeter mass function, with mass-range 0.1-1 M0 for the low-mass star
component, and 8-40 M0 for the high-mass star component.

The proportions of the four components (at 60 /-Lm) as a function of lu-
minosity, ti(L60 ) , have been chosen to give the correct mean relations in the
8(25)/812), 8(60)/8(25), 8(100)/8(60) and 8(60)/8(850) versus £(60) dia-
grams. Where predictions are being compared with IRAS 12 J-Lm data, or (later)
with ISO 15 uu: or 6.7 J-Lm counts, account is taken of the width of the rele-
vant observation bands by filtering with a top-hat filter of appropriate half-width
(0.23,0.26 and 0.16 at 6.7, 12, and 15 J-Lm respectively). Otherwise, observations
were assumed to be monochromatic. The relative proportion of the 60 /-Lm emis-
sion due to AGN dust tori as a function of L(60) is derived from the luminosity
functions given by Rush et al. (1993) (see Fig. 4). The resulting mean SEDs
as a function of £(60) are shown in Fig. 2. Luminosity functions at different
wavelengths are shown in Figs. 3-4. There is good agreement with measured
luminosity functions at wavelengths from 0.44-850 iuii. The fit to the 850 uui
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Figure 3. (Left) Luminosity functions at 60 J.Lm for the 4 spectral
components. Units of ¢ are Mpc-3dex-1 , luminosity (vL v ) in so-
lar units. All luminosity functions are for no = 1 model, Ho ==
100 km s-l Mpc- 1 . Observed points are derived from PSCz data.
(Right) Luminosity functions at 850 J.Lm for the 4 spectral components.
The filled circles are data from Dunne et al. (2000). The crosses are
derived from the data of Hughes et al. (1998) for the HDF.

luminosity function of Dunne et al. (2000) is impressive, since the transforma-
tion from 60 to 850 J..Lm is based only on choosing the ti(L60 ) to give the correct
average 8(100)/8(60) as a function of L60 . It is also impressive that luminosity
functions derived in the far infrared can fit the data at 0.44 J..Lm (B band): the
only freedom in the models to fit the B-band luminosity functions and counts
is the amplitude of the optical SED relative to the far infrared.

Clearly it will be important to have submillimetre data for a wide range of
normal and active galaxies to test and improve these SEDs. But the approach of
using accurate radiative transfer models, with realistic assumptions about dust
grains, which have been verified with observations of known galaxies, seems su-
perior to modelling the SED as a blackbody with power-law dust grain opacity
in which the dust temperature is treated as a free parameter (as in Blain et al.
1998). The latter approximation can only be valid for rest-frame wavelengths
greater than 60 J..Lm, i.e., for accurate prediction of counts and background inten-
sities at wavelengths > 200 J..Lm. Useful predictions can certainly not be made
at 15 J..Lm without explicit treatment of PAHs. These criticisms do not apply to
the studies of Guiderdoni et al. (1998), Dwek et al. (1998}, Xu et al. (1998) and
Dole et al. (2000), whose assumed SEDs are similar to those used here.

I have also assumed that the same luminosity evolution function should be
applied to the whole 60 J..Lm function, i.e., to AGN, 'cirrus' and 'starburst' com-
ponents. I have investigated the effect of making the switchover in proportions
of different types of component at a fixed luminosity, 89 that there is in effect
a strong increase in the proportion of galaxies that are starbursts (or contain
AGN) with redshift. However, this did not permit a fit to all the available data.
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Figure 4. (Left) Luminosity functions at 12 J-Lm for the 4 spectral
components. Observed points taken from Rush et al. (1993) (filled
circles: Seyferts, open triangles: non-Seyferts).
(Right) Luminosity functions at 0.44 J-Lm for the 4 spectral components.
Data for quasars derived from PG sample and for galaxies from Loveday
et al. (1992).

A substantial part of the illumination of the cirrus component in spiral
galaxies is due to recently formed massive stars, part of whose light escapes
directly from star-forming regions despite the high average optical depth in these
regions. In the starburst models of Efstathiou et al. (2000), this corresponds to
the late stages of their starburst models. If the typical starburst luminosity was
greater in the past, then the emission from interstellar dust in the galaxy would
also be correspondingly greater. I have not at this stage considered the evolution
of the SEDs of each component with redshift (see discussion in section 8).

It is possible that the evolution of AGNs differs from that of starbursts at
z > 3, but this will have little effect on the far infrared counts and background
(there could be a significant effect at 15 J-Lm, which will be worth further study).

Elliptical galaxies are not treated explicitly, though their star formation rate
must have been much greater in the past than at present. I am assuming that
ellipticals are quiescent starburst galaxies, that their star formation proceeded
in much the same way as we see in current live starbursts, and that their star
formation episodes are part of the evolution history quantified here. We have to
think of this history as a series of short-lived fireworks taking place in different
galaxies at different times. Similarly this approach does not track the different
spiral types separately, but only in a global average at each epoch.

5. Combined Fits to 60, 175 and 850 J-Lm Counts, and 140-750 J-Lm
Background, and Determination of P, Q

I can now predict the counts and background intensity at any wavelength, and,
by comparing with observed values, constrain loci in the P - Q plane. To

https://doi.org/10.1017/S0074180900226168 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900226168


272 Rowan-Robinson

determine (P, Q) for any given cosmological model, I combine the constraints
found at 60 J-tm from the PSCz (section 4 above) with constraints from (1) deep
counts at 60 ust: (50 mJy), (2) the observed source-counts at 850 J-tm at 1 and
4 mJy, and (3) the background intensity at 140, 350 and 750 tun. For all 3
cosmological models, values of (P, Q) can be found which give a satisfactory
fit to all the available data. As emphasized above, this outcome does depend
strongly on the assumptions made about the SEDs.

An important constraint on the models is that the total mass of stars
produced in galaxies should be consistent with the mass of stars observed,
0* = 0.003 ± 0.0009 h-1 (Lanzetta et al. 1996), and that it should be less than
the total density of baryons in the universe, 0* :::; 0.0125 ± 0.0025 h-2 (Walker
et al. 1991).

We can calculate the total mass-density of stars from the 60 J-Lm luminosity
density using Eq. (7) of Rowan-Robinson et al. (1997), modified to take account
of the latest Bruzual and Charlot galaxy evolution models (Rowan-Robinson
2000), from

0* = 10-11.13 ~ h-2I
60(to/10 Gyr)

where I60 is the luminosity density in solar luminosities per Mpc",

(3)

~ = 11

[¢*"(t) I¢>*(to)]d(tlto),

and the fraction of optical-UV light being radiated in the far infrared has been
assumed to be E = 2/3.

The models which fit the counts and background for no = 1 (P = 1.2,
Q = 5.4), 0 0 = 0.3 (P = 2.1, Q = 7.3), and A = 0.7 (P = 3.0, Q = 9.0)
give l60 = 4.3, 4.4 and 4.1xl07 h L0 Mpc-3 respectively, and ~ = 5.70, 6.66,
7.25, so the corresponding values of 0* are 0.0027, 0.0032 and 0.0033 h-1 , for
to = 13 Gyr, consistent with observations. Estimating this from the young
stellar component at 2800 A or from the K-band luminosity density (with an
assumed mass-to-light ratio) also gives consistent results for an assumed Salpeter
mass-function.

6. Predicted Counts and Integrated Background Spectrum from the
UV to the Submillimetre

Figures 5-8 show the predicted source-counts in the 3 selected cosmological
models at 850, 175, 90, 60, 15, 2.2 and 0.44 um. The agreement with observations
at infrared and submillimetre wavelengths is extremely impressive. Although
the fits at 850 and 60 J-tm have been ensured by the least-squares procedure for
determining P and Q, the fits at 175, 90 and 15 ust: are simply a consequence of
the assumed SEDs and the choice of the ti(L60 ) . There is not much difference
between the predictions of the 3 cosmological models at 60-850 usn. At 15 usn
there is a difference between the models in the predicted numbers of sources at
fluxes below 100 J-tJy. The proportion of AGN dust tori at 12 J-tm agrees well
with the data of Rush et al. (1993) (15% brighter than 0.4 Jy). Fig. 7 shows
that the proportion of AGN at 15 uu: is reasonably constant (15-20%) for fluxes
brighter than 3 mJy, but is predicted to fall rapidly towards fainter fluxes.
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Figure 5. (Left) Integral source counts at 850 usu. Data are from
Hughes et al. (1998), Eales et al. (1999), Smail et al. (1997), Barger et
al. (1999), Blain et al. (2000), and Fox et al. (2000). The three models
shown are, from bottom at faint fluxes, for no == 1 and (P, Q) = (1.2,
5.4), (solid curve); for no = 0.3, (P, Q) == (2.1,7.3) (dotted curve); and
for A = 0.7, (P, Q) = (3.0, 9.0) (broken curve).
(Right) Source counts at 175 usn. Data points are from Kawara et al.
(1998), Guiderdoni et al. (1998), and Dole et al. (2000).
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Figure 6. (Left) Source-counts at 90 /-lID. Data from IRAS PSCz
(triangles) and ELAIS (filled circles) are frOID Efstathiou et al. (2000).
(Right) Source counts at 60 /-lID. Data are from Lonsdale et al. (1990)
(at 0.2-10 Jy), Hacking & Houck (1987) (at 50-100 m.Iy), Rowan-
Robinson et al. (1991), and Gregorich et al. (1995) (higher point at
50 mJy). Models as in Fig. 5.
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Figure 7. Source counts at 15 J-Lm. Data from Oliver et al. (1997, 0),
Serjeant et al. (2000, ELAIS), Elbaz et al. (2000, E) Rush et al.
(1993, R, crosses), Verma (2000, V, filled circles). Models as in Fig. 5.
The lower dash-dotted line shows counts of the AGN dust torus popu-
lation for the no = 1 model.
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Figure 8. (Left) Differential source counts at 2.2 iuu. Data from
McCracken et al. (2000).
(Right) Differential source counts at 0.44 uui. Galaxy data (filled cir-
cles) are from Metcalfe et al. (1995), quasar data (triangles) from Boyle
et al. (1988). Models as in Fig. 5. The long-dashed line shows the ef-
fects of including density evolution (see text) on the no = 1 model.

The model does not at present have ingredients capable of accounting for
the very faint K- and B-band galaxy counts. This could be provided either
by a measure of density evolution (see below) or by steepening the faint-end
luminosity function at z > 1, which could in either case be attributed to a
population of galaxies that had merged into present-day galaxies.

Figure 9 shows redshift distributions at selected wavelengths and fluxes.
The median redshift at 8(850 /-lm) = 2 mJy is predicted to be 2.2, significantly
deeper than the prediction for 8(0.44 /-lm) = 0.1 {lJy (B == 26.6). This shows the
power of the 850 ust: surveys and also the difficulty there will be in identifying
the sources detected.

Figure 10 shows the predicted integrated background spectrum for the 3
cosmological models. All are consistent with the data, though the predictions of
the no == 1 model are on the low side, while those of the A == 0.7 model are on
the high side. Figure 10 (right) shows, for the no == 1 model, the contribution
of the different SED types to the background. The dominant contribution is
from the cirrus component at most wavelengths, so the prediction is that more
of the energy from starbursts is deposited in the general interstellar medium of
a galaxy than is absorbed in the early stages close to the location of the massive
stars. This dominance by the cirrus component at submillimetre wavelengths
also implies that many of the detected sources should turn out to be rather
extended (kiloparsec scales rather than the more compact scales expected for
nuclear starbursts).
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Figure 9. (Left) Redshift distribution at 850 usn, loglOS(Jy) = -2.7.
The bin centred at z = 5.25 refers to z > 5.
(Right) Redshift distribution at 175 uux, loglOS(Jy) = -1.0.
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Figure 10. (Left) Predicted spectrum of integrated background for
the same models as Fig. 5.
(Right) Predicted spectrum of integrated background for the no =
1 model, showing the contribution of the different components. The
contribution of the Arp 220-like starbursts is less than 0.01 nW m-2 at
all wavelengths. The upper solid curve at long wavelengths shows the
effect of including density evolution (see text). Data from Fixsen et al.
(1998) (far IR, submillimetre), Pozzetti et al. (1998) (optical, UV).
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Figure 11. Direct estimates of the star formation rate, for no == 1,
from infrared, submillimetre or radio data, or with correction for the
effects of insterstellar dust, as a function of z. Data from Gallego
et al. (1995), Rowan-Robinson (1997, revised: ISO), Gronwall (1998),
Hughes et al. (1998, revised: SCUBA), Treyer et al. (1998), Flores et al.
(1999), Steidel et al. (1999), and from photometric redshifts in the HDF
(open circles, Rowan-Robinson 2000, in preparation). The ISO and
SCUBA HDF points have been recalculated using a directly determined
luminosity function (cf. Fig. 3, right-hand panel). The solid curve is
the best-fitting model to the counts and background spectrum.
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7. Effect of Including Density Evolution

In the framework of hierarchical, bottom-up galaxy formation scenarios, like
those based on cold dark matter, we expect that galaxies form as the result
of mergers between smaller fragments. Thus, we might expect to see a higher
total density of galaxies as we look back towards the past. To test whether
attributing part of the star formation history to density evolution has a major
effect on the predicted counts and backgrounds, I have considered, for the no = 1
case, a simple modification in which the comoving density of galaxies varies with
redshift as

p(z) = p(O) (1+ z}".

For n = 1, this means that the comoving number-density of galaxies at redshifts
2, 5 and 10 (our assumed cutoff redshift), is increased by a factor 3, 6 and 11
compared with the present. This would represent a very substantial degree of
merging of galaxies over the observable range of redshifts.

Since the background intensity depends on the product of the luminosity
and density evolution rates, the background spectrum will be unaltered if we
simply increase P by 2n/3. At low redshifts the counts will be unaffected if P
is increased by n/3. I find that for a combined density evolution model with
n = 1 and luminosity evolution with P = 1.5, Q = 5.4 (and no = 1), the fits
to the counts at 15-850 J.-Lm hardly change over the observed range, but the
predicted background is raised by about 0.2 dex, giving better agreement with
observations for this cosmological model. For the A = 0.7 model, the fit to
the background would be significantly worsened for models consistent with the
observed counts.

8. Discussion and Conclusions

I have developed a parametrized approach to the star formation history, which
is sufficiently versatile to reproduce many proposed model histories. The model
assumes that the evolution of the star formation rate manifests itself as pure lu-
minosityevolution. I have stressed the importance of ensuring that the assumed
luminosity function is consistent with available 60 J.-Lm redshift survey data and
that the assumed spectral energy distributions are realistic. The observed far
IR and submillimetre counts and background then provide strong constraints on
the model parameters.

The models consistent with infrared and submillimetre counts and back-
grounds tend to show a flat star formation rate from z = 1 - 3, consistent with
the observed star formation history derived from HDF galaxies and other data
(Fig. 11). The most striking difference from previous modelling work is the
dominant role of the cirrus component at submillimetre wavelengths.

Areas requiring further work are (i) the need to consider the evolution of
the shape of the SEDs, particularly for the cirrus component, with redshift. The
increased star-formation rate at earlier times would tend to make the dust tem-
perature higher, but this is partially offset by the lower abundance of low-mass
stars at earlier times; (ii) the AGN dust tori models require a further parameter,
the orientation, and this may affect the AGN counts at optical wavelengths; (iii)
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the tendency for the probability of finding an AGN component to increase with
far infrared luminosity is not fully reflected in the approach followed here.
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Discussion

Martin Harwit: The star formation rate at high red shifts should be re-
lated to the heavy element production rate, since AGNs don't seem to be major
contributors to the IR background. It will be interesting to see how abundance
measurements affect current star formation models.

Michael Rowan-Robinson: At present the models do not allow for any vari-
ation of metallicity or dust properties with redshift. We might expect that the
dust opacity was lower, and that the dust temperature was higher, at higher red-
shift. At long wavelengths, where there is greatest sensitivity to high redshifts,
these two effects may partly cancel out.

Catherine Cesarsky: Did you attempt to fit the differential counts as well?
Rowan-Robinson: I haven't yet, but I plan to. I think the conclusion will

be similar.
Eli Dwek: Can you comment on the different ranges of redshifts where

the cirrus-dominated galaxies and starburts dominate the contribution to the
observed cosmic infrared background (,\ ~ 140/-Lm)?

Rowan-Robinson: At long wavelengths, my models always show the cirrus-
dominated galaxies dominating the counts and background.

Bruce Partridge: I'd like to urge the importance of radio observations in
determining the star formation history (see Haarsma, D. B., et aI., 2000, ApJ,
544, 641). Radio observations are free of dust obscuration and provide generally
secure optical identifications (and hence redshifts). Radio observations may
prove useful in deciding between models like yours and those of Puget and others
(and I'd urge you to include radio counts and redshift distributions in your
models).

Rowan-Robinson: I agree that radio estimates provide an interesting check
on star formation histories. I plan to extend the model to radio wavelengths
shortly.
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