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Direct numerical simulations of the turbulence of a Herschel–Bulkley (HB) fluid in a
rough channel are performed at a shear Reynolds number Reτ ≈ 300 and a Bingham
number Bn ≈ 0.9. For the type of rough surface used in this study, the results indicate
that Townsend’s wall similarity hypothesis also holds for HB fluids. However, there are
notable differences compared with the effect of roughness on Newtonian fluids. More
specifically, the effect of roughness appears to be slightly stronger for HB fluids, in the
sense that the bulk Reynolds number, based on the viscosity at the wall, is reduced further
due to the increase in viscosity in the troughs of the roughness surface induced by the low
shear. At the same time, for the simulated rough surface, the contribution of form drag to
the total pressure drop is reduced from 1/4 to about 1/5 due to the persistence of viscous
shear in the boundary layer, reducing its shielding effect. As for the friction factor, due
to the nonlinearity of the HB constitutive relation, its use with the wall shear rate from
the mean wall shear stress underpredicts the minimum viscosity at the wall by up to 18 %.
This inevitably leads to uncertainties in the prediction of the friction factor. Finally, it is
observed that the rough surface is unable to break the peculiar near-wall flow structure
of HB fluids, which consists of long persistent low-speed streaks occupying the entire
domain. This means that the small-scale energy is significantly reduced for HB fluids, even
in rough channels, with the energy more concentrated in the lower wavenumber range,
implying an increase in the slope of the power spectrum to −7/2 in the inertial range, as
shown by Mitishita et al. (J. Non-Newtonian Fluid Mech., vol. 293, 2021, 104570).
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1. Introduction

Studies of turbulent non-Newtonian fluid flow have as many objectives as the nature of
the fluids considered and their applications, such as generalized Newtonian (GN) fluids
with variable viscosity, power-law (PL) fluids, Casson and Herschel–Bulkley (HB) fluids
with a yield stress τ0, elastoviscoplastic (EVP) fluids, etc. More than in many other
fluid-mechanics problems, direct numerical simulation (DNS) has proven an excellent
tool for the exploration of turbulent flow in viscoplastic fluids (Balmforth, Frigaard &
Ovarlez 2014). The DNS of GN fluids first presented by Rudman & Blackburn (2006)
showed that, in a turbulent pipe flow at a given bulk Reynolds number of 8000, shear
thinning reduces the friction factor. In two later contributions of theirs (Singh et al. 2016;
Singh, Rudman & Blackburn 2018), the authors have shown separately the importance of
rheology characterization in predicting turbulent pipe flow for these fluids, and the effect of
Reynolds number. The DNS study of turbulent PL fluids by Gavrilov & Rudyak (2016) at
relatively higher bulk Reynolds number (10 000–20 000) confirmed Singh et al.’s results.
According to them, shear thinning decreases the turbulent energy transfer from the axial
component to others compared with Newtonian fluids. These results validate the general
consensus that these fluids significantly enhance anisotropy of the turbulent fluctuations
in the near-wall region (Escudier, Nickson & Poole 2009). More recently, Singh,
Rudman & Blackburn (2017) considered a higher bulk Reynolds number (12 000) that
suggested the effect of PL rheology on turbulent pipe flow was mainly significant in the
y+ < 60 region.

Arosemena, Andersson & Solsvik (2021) considered GN fluids flowing at a lower bulk
Reynolds number. Their statistics revealed that shear-dependent fluid rheology appears
to affect the flow within the inner layer and with shear-thinning behaviour; suppressing
near-wall structures, thus inhibiting turbulence generating events and leading to different
drag reduction features. In a similar investigation, considering now EVP fluids, Izbassarov
et al. (2021) found that the changes in drag are dictated by the Bingham and Weissenberg
numbers, depending on the rate of viscoplasticity and elasticity of the fluid. More recently,
Karahan, Ranjan & Aidun (2023) performed DNS of GN fluids in a rectangular channel
at a relatively low frictional velocity. They observed that the rheology does not play a
significant role in the outer layer, and report a strong turbulence anisotropy – as in many
previous studies – and larger dissipative structures.

Abdelgawad, Cannon & Rosti (2023) showed that the flow in the presence of plastic
effects is more intermittent than in a Newtonian fluid, due to the interplay between the
classical intermittency of the turbulent dissipation rate and the plastic contribution that
instead grows with the Bingham number. Ohta & Miyashita (2014) performed DNS and
large eddy simulations (LES) of wall turbulence of various types of non-Newtonian fluids
using a PL type of constitutive laws. They show that the spatial scale of turbulence of
these types of fluids can be estimated in the same way as that for Newtonian fluids by
normalizing wall turbulence with the locally varying viscosity. Rahgozar & Rival (2017)
studied turbulence decay of a shear-thinning fluid by reference to bulk turbulence in large
arteries. Their results not only show modification of the turbulent kinetic energy (TKE)
and its dissipation rate, but also indicate significant alteration of the characteristics of the
large-scale structures.

The alteration of the turbulent energy cascade by the fluid’s plasticity has not known
the same interest as in Newtonian fluids. In a thorough study of shear-thinning fluid
flow in a pipe, Esmael et al. (2010) showed that a weak chaotic in time and regular in
space turbulence prevails in the transitional flow regime. More importantly, the resulting
power spectra of the axial velocity fluctuations decay following a two-dimensional
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Turbulent flow of non-Newtonian fluid in rough channels

turbulence-like power law, E ∼ k−3, with k being the wavenumber. In their DNS study of
a homogeneous isotropic turbulence of an EVP fluid, Abdelgawad et al. (2023) addressed
the fundamental question as to how the established dissipation theory changes, and how
the yield stress affects the energy distribution and balance. Their results showed substantial
modifications of the Kolmogorov theory (E ∼ k−5/3 for Newtonian fluids) for Bingham
numbers larger than 10, with the emergence of a new scaling law (E ∼ k−2.3), and the
dominance of the non-Newtonian flux and dissipation at small and intermediate scales.
Thanks to an extensive experimental campaign, Mitishita et al. (2021) reported a k−7/2

scaling in the energy spectra at high wavenumbers for drag-reducing fluid flows compared
with the k−5/3 scaling in the case of water flows. This was attributed either to the decrease
in the inertial effect in the presence of polymer solutions, which shrinks the inertial range
of scales because of the lower Reynolds numbers, or to the elastic effects that become
important at large wavenumbers where the fluid experiences high frequencies.

One of the early attempts to elucidating the role of a complex fluid’s rheology
on the coherent structures of the underlying turbulence is due to Gampert & Yong
(1990). The experiment of Peixinho et al. (2005) confirmed earlier observations of
the flow axisymmetry of yield stress fluids in pipes, which increases with increasing
Reynolds number in the transitional regime. In a later paper (Esmael & Nouar
2008), a three-dimensional (3-D) description of this asymmetry in transitional flow
was demonstrated, accompanied by the characterization of a robust nonlinear coherent
structure. Simulation results were then employed by Le Clainche et al. (2020), using
high-order dynamic mode decomposition, to study the near-wall dynamics, in comparison
with Newtonian and viscoelastic fluids. Their work revealed that both elasticity and
plasticity have similar effects on the near-wall coherent structures, where the flow is
characterized by long streaks disturbed for short periods by localized perturbations. To
the best of the authors’ knowledge, the interaction between non-Newtonian fluid flow and
wall roughness has never been studied before. For Newtonian fluids, however, the effects of
surface roughness in wall-bounded flows has been described thoroughly (Jiménez 2004;
Chung et al. 2021) and is not summarized in this introduction. Furthermore, to better
position the present study in a practical context, we consider here the case of a rough
surface involving small and randomly dispersed elements comparable in size to the inner
layer, with y+ < 25.

In this unprecedented simulation campaign, turbulent flows of Newtonian and
non-Newtonian, in particular HB, fluids in smooth and rough channels have been
investigated by means of DNS. The focus is on the effect of the non-Newtonian rheology
on the flow and its interaction with turbulence and irregular roughness elements; the effect
of the particular random roughness type on Newtonian fluid flow is discussed in detail
in Narayanan et al. (2024). The random roughness with zero skewness chosen here is
unique in the sense that it mimics a randomly distorted wall-surface representative of
industry-relevant cases, with the relative size of the elements of the order of the inner
boundary layer; a differentiating element from most of the previous DNS studies. The
results are discussed and compared in a systematic way, from smooth to rough walls, and
from Newtonian to non-Newtonian fluids. The effects of shear thinning on the flow are
analysed and profiles of turbulence statistics are investigated. In addition, a comparison of
the flow structure is presented together with the coherent structures distribution. Finally,
energy spectra are compared.

The simulations were carried out using the finite volume computational fluid dynamics
(CFD) code TransAT© at the TotalEnergies High Performance Computing Center on
massively parallel platforms. The simulations were distributed over 1000+ cores. The flow
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statistics were collected after initial transients for approximately ten flow-through times to
ensure that ergodic conditions were attained.

2. Simulation methodology

2.1. Mathematical model
The rough surface is accounted for using a variant of the immersed boundary method of
Peskin (1977) and Mittal & Iaccarino (2005), known as the immersed surface technique
(IST). Here, the solid object is represented in a Cartesian grid using a solid level set
function φs(x); positive values denote the fluid domain, negative values identify the solid
domain and the surface of the wall is implicitly represented by φs(x) = 0. The fluid domain
indicator function H(x), which has a value of 1 in the fluid and 0 within the solid, varies
smoothly as a function of φs(x), and is given as

H(φs) = 1
2

[
1 + tanh

(
2φs

ζ

)]
, (2.1)

where ζ is the average mesh size near the fluid–solid surface. The approach, meant to
resolve practical flows with complex geometries using a Cartesian mesh, can be used
as well to represent segmented roughness elements (Chatzikyriakou et al. 2015) or a
continuous rough surface, as in the present study. The discussion of the precise topology
of the rough surface used in this study is presented in § 2.3.

The incompressible Navier–Stokes equations are reformulated using the support of
the fluid–solid indicator function H. The resulting IST-based mass and momentum
conservation equations read

∂

∂xj
(Huj) = 0, (2.2)

H
∂ρui

∂t
+ ∂

∂xj
(Hρuiuj) = − ∂p

∂xi
+ ∂

∂xj
(2HμSij) − 2μSij

∂H
∂xj

, (2.3)

where ρ is the fluid density, μ the viscosity, ui the Cartesian velocity vector and Sij =
1/2(ui,j + uj,i) the strain-rate tensor. In the IST method the no-slip condition at the
immersed solid surface is achieved by rewriting the last term in (2.3) as (Beckermann
et al. 1999)

−2μSij
∂H
∂xj

= μ
(ui − uw

i )

ζ

∣∣∣∣∂H
∂xj

∣∣∣∣ , (2.4)

where uw is the wall velocity that is set to zero and |∂H/∂xj| is the surface area density.
Note that LES was performed on coarser grids and interpolated on to successively finer
grids so as to reach the fully developed turbulent state efficiently.

For the non-Newtonian fluid simulations, the viscosity is prescribed using the HB
rheology:

μ = τ0

γ̇
(1 − e−Mγ̇ ) + Kγ̇ (n−1), (2.5)

where γ̇ is the magnitude of the rate of strain given as 2
√

Sij Sij, τ0 is the yield stress,
K is the consistency index and n is the flow index. The above expression includes the
Papanastasiou regularization (Mitsoulis & Tsamopoulos 2017) to ensure that the viscosity
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Case u∗ uτ ub Re∗ Reτ Reb Bn r∗
rms

NS 0.05 0.0500 0.88 360 360 6363 0.0 —
NR 0.05 0.0435 0.70 360 313 5039 0.0 7.5
NNS 0.14 0.1400 2.94 294 294 6123 0.83 —
NNR 0.14 0.1272 2.33 197 177 3240 0.95 6.13

Table 1. Reynolds numbers achieved in the simulations.

does not attain unreasonably high values in low strain-rate regions. The constant M was set
to a value of 100. However, it was noted that due to the fully resolved turbulent fluctuations
in all regions of the flow, the regularization was not applied.

2.2. Simulation set-up
Four DNS were performed in this study, namely, Newtonian fluid flow over a smooth wall
(NS), Newtonian flow over a rough wall (NR), non-Newtonian flow over a smooth wall
(NNS) and non-Newtonian flow over a rough wall (NNR). For all the simulations, the
domain consisted of a Cartesian box the size of which was selected to include the largest
eddies in the flow and such that the turbulent eddies would not be correlated. Thus, for
the smooth-wall flow, the Cartesian box had dimensions Lx = 2πδ, Ly = 2δ and Lz = πδ

in the streamwise, spanwise and vertical directions, respectively, where 2δ is the channel
height. Since fully developed turbulent channel flow is homogeneous in the streamwise
and spanwise directions, periodic boundary conditions were applied in these directions.
No-slip boundary conditions were applied both on the upper and lower horizontal planes
of the smooth channel. For the rough-wall case, no-slip is enforced by the IST method
described earlier.

The flow in the streamwise direction is driven by a constant mean pressure gradient
	P = 〈−dp/dx〉. The resulting shear Reynolds number is defined as Re∗ = δu∗/νw, where
u∗ = √

(δ/ρ)	P is the shear velocity and νw is the minimum horizontal plane-averaged
kinematic viscosity, and variables normalized by u∗ and νw are denoted by the ‘*’ sub
or superscript. While in the smooth-wall case the minimum horizontal plane-averaged
viscosity is at the wall, in the rough-wall case, it is slightly away from the wall. The Re∗
for the NNR case is lower than the NNS case due to the higher value of νw. The wall
viscosity for the NNS case was equal to 0.24 Pa s, whereas the lowest viscosity for the
NNR case was equal to 0.36 Pa s. For the smooth-wall cases, u∗ is the same as uτ , where
uτ = √

τw/ρ is the friction velocity and τw is the average wall shear stress. Inner scaling
is such that the variables are normalized by means of uτ and νw, and are denoted by the
+ superscript or τ subscript. For the rough-wall cases, u∗, in addition to wall shear, also
includes the effect of form drag.

The mean pressure gradient was set to −5 N m−3 for the Newtonian simulations and
to −40 N m−3 for the non-Newtonian simulations. Due to the nonlinear rheology of
non-Newtonian fluids, several iterative simulations with smooth walls were first carried
out to estimate the mean pressure gradient that would yield a shear Reynolds number
reasonably close to the target value of 360. The final Reynolds numbers achieved for the
different cases are presented in table 1.

Turbulent statistics were computed by time averaging the velocity and the pressure
fields, once statistically ergodic conditions were obtained. The time-averaged results are
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further space averaged in the streamwise and spanwise directions throughout the flow
domain.

2.3. Surface roughness characterization
Industrial pipes transporting liquid are often hydrodynamically smooth when new;
however, over time, the wall surface degrades due to corrosion, erosion and fouling, and
its topography becomes irregular with a sand-grain roughness rs generally in the range
of 30–300 μm. For such sizes at the Reynolds numbers encountered in pipes transporting
liquid, the flow is at worst in the transitionally rough regime, i.e. the sand-grain roughness
r∗

s is generally smaller than 70 wall units. Hence, to get in this study a realistic effect of
a randomly distorted wall surface on the turbulent flow, the irregular roughness elements
were chosen (i) small enough to satisfy the conditions at which the outer-layer similarity
assumption in principle holds, since such conditions also apply to industrial pipes,
i.e. δ/r > 40, (ii) small enough to stay within the transitionally rough regime (r∗

s < 70),
but at the same time (iii) large enough to observe a reasonable impact on the flow.

In view of that, the roughness was randomly generated with the root-mean-square
(r.m.s.) roughness height and spacing between roughness structures as parameters. The
standard deviation of the roughness height r∗

rms = rrmsu∗/ν was taken to be 7.5 wall units
(ν/u∗) based on Re∗ = 360 on each side of the mean surface plane, with the spacing
between the structures as 100 wall units. The streamwise and spanwise spacing was
chosen to be significantly smaller than the streamwise domain extent of 2πδ∗ = 2263
wall units.

Using these settings, a mesh of 100 wall units spacing was created on which random
heights were generated with a standard deviation of 7.5 wall units. The rough surface
was created by fitting the roughness heights using cubic spline interpolation. This was
interpolated onto a sufficiently fine mesh so that the triagulated surface is smooth.
This was then exported to a CAD (computer aided design) format supported by the
CFD software. Typically, as mentioned in Narayanan et al. (2024), organized surface
protrusions/obstructions have been considered in the literature. In this case the rough
surface consists of both crests and troughs with respect to the mean wall surface at y = 0
and y = 2δ of the corresponding smooth-wall simulations. One of the surfaces used in the
simulations is presented in figure 1. The maximum crest and trough were found to be 23
wall units with respect to the mean wall surface and the average was found to be 5 wall
units.

Few references were found addressing similar roughness types, with the closest
reference being the work of Busse, Thakkar & Sandham (2017) for Newtonian fluids,
where the influence of roughness wavenumber filtering on the turbulent profiles is studied
for two kinds of surfaces, viz. graphite and grit blasted. Their roughness height distribution
is smaller than our work, as shown in figure 2, however, there are notable differences in
the surface characteristics. In this study the ratio of the channel half-height to the r.m.s.
roughness is 48 compared with a highest value of 27 for Busse et al. (2017). The roughness
height scaled by the outer coordinate is much smaller in the present study. Jiménez (2004)
states that universal behaviour in the outer layer should be observed for cases where
δ/r > 40, which is the case here too. More specifically, this similarity hypothesis states
that in the outer layer (δ ≥ y 	 ν/uτ , r), turbulent quantities normalized by shear velocity
scale are independent of the surface condition at sufficiently high Reynolds number,
provided that the outer-layer thickness is much greater than the roughness height (δ 	 r,
see Chung et al. 2021).
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Figure 1. Surface used for rough channel simulations.
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Figure 2. Comparison of the roughness distribution density function to Busse et al. (2017).

Another important difference is that the surface height distributions in Busse et al.
(2017) had significant skewness (of the two surfaces they studied, one had positive
skewness and the other negative), implying that either the crests were higher than the
troughs or vice versa. In the current study the surfaces are not skewed (symmetric
distribution) as shown in figure 2. Additionally, it appears that our roughness has larger
wavelengths (100 wall units) or lower slopes.

2.4. Mesh description
For each DNS, a sequence of LES were performed on successively refined grids for
the turbulence to develop quickly on the finer grid. The coarse grid results, on reaching
statistical stationarity, were interpolated on to the next finer grid. For the LES, the WALE
(wall adapting local eddy-viscosity) subgrid-scale model (Nicoud & Ducros 1999) was
used to account for the effect of the unresolved turbulence; the effect of the non-Newtonian
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Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Number of nodes x 36 68 132 260 326
y 18 34 66 130 163
z 36 68 132 260 326

Resolution 	x+ 70 35 17 8.8 4.4
	y+

min 20 4.3 1.7 0.2 0.125
	y+

max 200 43 34 12 8
	z+ 35 17 8.8 4.4 2.2

Total (106 cells) 0.02 0.16 1.15 8.80 17.3

Table 2. Mesh used for NS and NNS simulations.

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Number of nodes x 36 68 132 260 326
y 25 47 77 152 191
z 36 68 132 260 326

Resolution 	x+ 70 35 17 8.8 4.4
	y+

min 22 11 5.4 2.3 1.7
	y+

max 195 41 26.7 11 8.6
	z+ 35 17 8.8 4.4 2.2

Total (106 cells) 0.03 0.22 1.35 10.3 20.3

Table 3. Mesh used for NR and NNR simulations.

rheology on the subgrid model (as discussed in Ohta & Miyashita 2014) was neglected. For
the DNS, the subgrid-scale model was switched off and simulations were carried out only
with discretized Navier–Stokes equations. Meshes 1 to 4 correspond to increasingly refined
LES (table 2 for smooth-wall cases), while mesh 5 is DNS. The size of the DNS grid is
consistent with a previous work (Chatzikyriakou et al. 2015, using TransAT and its IST
meshing feature for roughness), where it has been shown that the 15 and 26 million-cell
runs gave similar results. The advantage of IST in the particular context of hemispherical
roughness can be demonstrated by comparing the work of Chatzikyriakou et al. (2015)
to that of Wu, Christensen & Pantano (2019), the later one using body-fitted spectral
elements that required almost nine times more grid cells (normalized by the size of the
computational domain) than the first one, even though the two studies used comparable
set-ups in terms of roughness distribution and flow conditions.

The intermediate and final mesh sizes for the rough-wall cases are detailed in table 3.
In the rough-wall case the whole roughness region is refined uniformly, with the mesh
size increasing towards the centre only away from the roughness region, thereby requiring
a larger number of cells in the wall-normal direction. The presence of the solid object
and the IST method means that a few cells are within the solid surface as well. For the
normalized mesh intervals, the Newtonian viscous length for Reτ = 360 is used for both
cases.

Mesh convergence for the NR case was demonstrated in Narayanan et al. (2024) by
comparing the mean and streamwise fluctuating velocities for the final three meshes. The
lower Reynolds number for the NNR case and the significant reduction in the energy in the
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higher wavenumbers reported in § 5.6 imply lower resolution requirements for the NNR
case as compared with the Newtonian case.

2.5. Fluid properties
The fluid density was specified as 1000 kg m−3 for all the simulations. For the
Newtonian cases used for comparison, the viscosity was set to 6.944 × 10−2 Pa s. For
the non-Newtonian fluid, the parameters for the HB law were set as τ0 = 2.18 Pa,
K = 1.42 Pa sn and n = 0.567, which are representative of a paraffinic crude oil below the
wax appearance temperature (Palermo & Tournis 2015). The non-Newtonian behaviour of
crude oils below the wax appearance temperature can be explained by the fact that wax
crystals aggregate into large porous particles, whose effective volume fraction is larger
than the actual volume fraction of the wax crystals due to porosity. The size and the
effective volume fraction of the aggregates is a function of the shear stress applied on
them, leading to an effective viscosity dependent on the shear rate.

The Bingham number (Bn) for a HB fluid is defined as

Bn = τ0

K

(
L
V

)n

, (2.6)

where L and V are characteristic length and velocity scales, respectively. Using the channel
height (2δ) and the bulk velocity as the respective scales we obtain Bn = 0.83 for the NNS
case. Due to a change in the bulk velocity and wall shear, the Bingham number for the
NNR case turns out to be 0.95. Alternatively, the effect of the yield stress can also be
characterized as the Bingham number in wall units, X = τ0/τw, which gives X = 0.11 for
the NNS case and 0.135 for the NNR case.

2.6. Computational algorithm
The simulations were performed with the finite volume CFD code TransAT©, which solves
(2.2) and (2.3) on a collocated Cartesian grid. The convection terms in the momentum
equations are discretized using the third-order QUICK scheme (Leonard 1995) and the
diffusion terms by second-order central differences. The higher-order convection schemes
are implemented using the deferred correction approach of Rubin & Khosla (1977). The
pressure-correction equation is solved using the SIMPLEC pressure-correction method of
Van Doormaal & Raithby (1984). The second-order implicit Euler backward time-stepping
scheme was used for the time derivative discretization given for one of the velocity
components (referred to as u in (2.7)) as

du
dt

∣∣∣∣
m+1

= 3um+1 − 4um + um−1

2	t
, (2.7)

where 	t is the time step. The superscripts m + 1, m and m − 1 denote the time level
being solved and the two previous times, respectively. The time step was adaptive with a
Courant number of ≈ 0.3 to guarantee good time accuracy of the simulations.

3. Validation: non-Newtonian fluids

The flow structure in the vicinity of the roughness layer is depicted in figure 3 by the
axial velocity normalized to the bulk velocity. For the Newtonian flow case reported in
figure 3(a), the behaviour in the roughness region is different from that observed in general
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Figure 3. Vertical slice of instantaneous velocity with detail of the wall neighbourhood (zoomed in).
(a) NR, (b) NNR.

for roughness being modelled as structured rows of cubic protrusions, etc. The velocity
shows accelerations and recirculations alternating in the troughs, as shown in the zoomed
portion of the contour plot. The roughness induces flow separation just downstream of
some of the elements, which enhances form-drag contribution of the total drag. For the
HB fluid (figure 3b), the flow in the roughness region differs also from the Newtonian
fluid result. Again, the velocity shows separation, acceleration and recirculation in the
troughs, responsible for the generation of form drag. The fluctuations appear damped in
the core flow, as if this were to undergo a process of relaminarisation.

The non-Newtonian fluid DNS is compared here with equivalent work in the literature.
To the best of the authors’ knowledge, simulation data of non-Newtonian fluid flow in
rough channels are new and no point of comparison could be found in the published
literature. However, our DNS of HB fluid in a smooth channel can be compared with the
results from Rudman & Blackburn (2006). They considered a HB fluid with a yield stress
of 0.1τw and a flow index of n = 0.6. In the present study the flow index of n = 0.567 is
very close and, for the smooth-wall case, τ0 = 0.11τw is also very close to their conditions.
The Bingham number in their case was 0.7 compared with 0.83 in the present smooth-wall
case. Comparison to the data of Rudman & Blackburn (2006) is presented in figure 4,
keeping in mind that their results are for a pipe flow and at a lower frictional Reynolds
number (Reτ = 180). The mean velocity profiles are close; the slightly higher velocity
in the present study is most likely due to a slightly smaller flow index, since the drag
reduction increases with a decreasing flow index, at least for PL fluids, according to Singh
et al. (2017). Although the normal fluctuation profiles do not exactly match the pipe flow
near the wall, the match in the outer layer is excellent, thereby instilling confidence in the
results obtained in this study.

4. Mean velocity profile for HB fluids

In this section we discuss the mean velocity profile and the structure of the boundary layer
through its characteristic parameters in the light of the established wall laws for smooth
and rough walls.

4.1. The DNS results for mean streamwise velocity and viscosity
The mean velocity profile for the NNS case is shown in figure 5. The maximum velocity
at the channel centre is significantly higher for the non-Newtonian case, which is the
sign of drag reduction. As shown in the mean stress balance (see figure 13), the viscous
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Figure 4. Profiles for the NNS compared with pipe flow results of Rudman & Blackburn (2006). (a) Mean
velocity profiles, (b) streamwise velocity fluctuations, (c) wall-normal velocity fluctuations, (d) spanwise
velocity fluctuations, (e) Reynolds stress profiles.

stress remains significant compared with the turbulent stress for the non-Newtonian case.
This is due to the fact that as the strain rate decreases away from the wall, the viscosity
increases nonlinearly, preventing the viscous stress from decreasing. This means that
the mean velocity profile cannot be as flat as in the Newtonian cases, where turbulent
mixing dominates immediately beyond the viscous sublayer. The LES results of Zheng
et al. (2017) showed the same behaviour. Fitting a logarithmic law gives the von Kármán
κ = 0.36 and the intercept B = 8.0 for the smooth wall.
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Figure 5. Comparison of mean streamwise velocity profiles. (a) Newtonian versus non-Newtonian,
(b) NNS versus NNR.

The roughness-induced form-drag contribution to the overall drag affects the mean
streamwise velocity profile such that the log law can be rewritten as (Durbin et al. 2001)

U+( y+) = 1
κ

ln( y+) + B + 	Br(r+), (4.1)

where y+ is the non-dimensional distance to the wall. The shift in the mean velocity profile
due to roughness is denoted by 	Br and depends on the roughness height r+ = r uτ /νw.
The function 	Br for intermediate roughness 2.25 ≤ r+ ≤ 90 is given as

	Br(r+) = ξ(r+)
[
8.5 − B − ln(r+)/κ

]
,

ξ(r+) = sin
(

π/2 ln(r+/2.25)

ln(90/2.25)

)
,

⎫⎪⎬
⎪⎭ (4.2)
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Figure 6. Variation of viscosity for non-Newtonian flow. (a) Outer scaling. (b) Inner scaling.

with B = 5.5 and 8.0 for Newtonian and non-Newtonian flows in a smooth channel,
respectively. For the NNR case, we use the same equation but with the expression for
	Br(r+) modified to take account of the increase in the value of the intercept B from 5.5
to 8.0. The value of the constant 8.5 is increased by the same amount to 11 to give

	Br(r+) = ξ(r+)
[
11.0 − B − ln(r+)/κ

]
. (4.3)

Comparison of the mean velocity profiles for the non-Newtonian cases is presented in
figure 5. For calculating 	Br, r+ = 6.1275 is used instead of 7.5 based on the Re∗ being
294 instead of 360 for the Newtonian case. The rough-wall correction matches the DNS
results very well with no adjustment to κ or B. Based on these results the function 	Br
can be generalized and written as

	Br(r+) = ξ(r+)
[
3.0 − ln(r+)/κ

]
(4.4)

to account for both the NR and NNR cases. The bulk velocity is reduced from 2.94 m s−1

for the smooth wall to 2.33 m s−1 due the wall roughness (a 20 % decrease). Due to the
reduction in the bulk velocity and, therefore, the maximum strain rate, the wall viscosity
(in practice, the minimum viscosity near the wall) reaches a value of 0.36 Pa s that is 50 %
higher than the smooth-wall viscosity value of 0.24 Pa s.

The variation of the viscosity for the NNS and NNR cases is presented in figure 6, both
as original values and normalized values (ν+ = ν/νw). The viscosity is seen to be similar
for both cases when looking at the original values in the outer region. If the viscosity
is normalized individually by the respective wall viscosities, the maximum values at
the channel centre would appear quite different given the 50 % difference in the wall
viscosities. The viscosity at the centre of the channel is somewhat lower for the NNR case
indicating higher turbulent activity (since the bulk velocity is lower) in an absolute sense
for the imposed pressure gradient of 40 Pa m−1. The near-wall variation of ν+ is presented
in figure 6(b) with respect to y∗ = y u∗/νw using a logarithmic scale. For the NNS case,
ν+ is equal to 1 at the wall and remains constant in the viscous sublayer, where the shear
is constant. For the NNR case, ν+ is equal to 1 at y∗ ≈ 3–4, below which viscosity starts
to increase in the vicinity of the roughness elements. In the range between 4 < y∗ < 30
the variation of the non-dimensional viscosity is similar to the smooth case, after which
they deviate in the outer layer due to differences in the bulk velocity.
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Figure 7. Indicators for the analytical form of the mean velocity profile. (a) Diagnostic for log law γ .
(b) Diagnostic for power law β.

The structure of the turbulent boundary layer with regard to satisfying a logarithmic
law or a power law can be analysed by plotting the parameters γ = y+∂U+/∂y+ and β =
( y+/U+)∂U+/∂y+, respectively. Figure 7 shows that for the rough surface, the interval
where a log-law behaviour is observed is smaller (also due to the lower Re∗) with almost
the same value of κ . In general, the log-law interval for the non-Newtonian cases is smaller
than for the Newtonian cases. The variation of β shows that for both the smooth and rough
non-Newtonian cases, the interval where β is constant is significantly smaller as compared
with the Newtonian case. This is an interesting result and it appears that further work is
needed to develop the functional form of the mean velocity profile for non-Newtonian and
in particular HB fluids.

4.2. The DNS results for form drag and friction factor
In this section we present domain-averaged results such as viscous drag, form drag and
comparison of friction factors with those obtained using empirical correlations such as
those based on the Colebrook–White equation (Menon 2014). Before diving into the
numbers, qualitative snapshots of the flow are discussed in the context of figure 8, showing
the wall shear patterns along with the contours of the streamwise velocity normalized by
the bulk velocity ub.

Figure 8(a) shows the HB fluid case for the smooth wall (NNS), and figure 8(b,c) for
the rough wall (NR and NNR). Note that different frictional velocity scales are used in
the figures to provide a better appreciation of the simulations and key observations. For
the NNS case, streamwise streaks of high and low shear can be observed, with the very
peculiar behaviour of continuous, unperturbed streaks occupying the domain length. This
differs from the NS case discussed in Narayanan et al. (2024), where the streaky structure
patterns are more abundant and shorter, and exhibit clearly alternating regions of low- and
high-speed fluid.

The case with roughness (NR) suggests that the near-wall streaks are now considerably
shortened by the surface crests. The streamwise correlation lengths in the wall region are
now smaller and also proportional to the roughness wavelengths. As shown by Ma, Alamé
& Mahesh (2021), the crests of the undulating wall surface are associated with higher shear
stress regions and the troughs/valleys with low-shear stress where reverse flow occurs.
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Figure 8. Instantaneous contours of normalized streamwise velocity and wall friction. Note that the same
colour scheme is used for different quantities with vastly different ranges. (a) NNS, (b) NR, (c) NNR.

The same phenomenon was observed in the DNS of interfacial, sheared air–water flow of
Fulgosi et al. (2003). Furthermore, the coherence of the streaky structures over the rough
wall is affected, and the flow establishes in the new patterns sketched by the roughness
surface. For the NNR case, the streaky structure observed in the NNS case is broken down
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Figure 9. Time variation of normalized viscous drag and form drag for the NNR case.

by the roughness elements, giving regions of high shear at the crests and low shear at the
troughs, although the structure is different from the NR case (as highlighted in § 5.5).

Wall roughness causes an increase in the total drag (viscous and form-drag
contributions), resulting in a lower Reτ for the same pressure forcing, which also results in
a lower bulk (and mean centreline) velocity. The dynamic force balance shown in figure 9
indicates that for the non-Newtonian case, viscous shear at the wall accounts for 81 %
of the applied pressure forcing and form drag for 19 % (compared with 25 % for the NR
case, see Narayanan et al. 2024). It appears that the high viscosities in the troughs of the
roughness elements and the persistence of viscous shear in the boundary layer reduces the
shielding effect of the roughness elements, thereby reducing the form-drag compared with
a Newtonian fluid.

Concerning the averaged quantities, the effect of roughness for the non-Newtonian flow
is more significant compared with Newtonian flow. Even though the reduction in the bulk
velocity due to roughness is the same for both fluids (≈20 %) and the reduction in uτ

is higher for the Newtonian case (13 % vs 9 %), the reduction in Reτ is 33 % for the
non-Newtonian case compared with 13 % for the Newtonian. This large change in the
Reτ is due to the increase in the wall viscosity.

One of the increasingly validated hypotheses in rough-wall turbulence is the one
proposed by Napoli, Armenio & De Marchis (2008), which relates the ratio of the form
drag to the total drag to the effective slope of the rough surface. In Narayanan et al. (2024)
it was shown that the present NR data are in very good agreement with the data of Napoli
et al. (2008), thus confirming the hypothesis of a universal behaviour of rough walls for
Newtonian fluids. However, the data for the HB fluid (figure 10) diverges slightly from that
of Napoli et al. (2008) due to the fact that the form drag is lower than in the Newtonian
case at 19 % of the total drag, while the effective slope is the same in both cases. The data
suggest that this hypothesis may not hold for non-Newtonian flows, thereby motivating
further studies for different values of effective slope and differing rheologies.

In order to estimate the friction coefficient for non-Newtonian fluids using the
Colebrook–White correlation, a definition of the Reynolds number is required. This is not
straightforward since the viscosity varies from low values near the wall to significantly
higher values at the channel centre. Metzner & Reed (1955) derived a generalized
Reynolds number for PL fluids such that the laminar flow friction coefficient of 64/Reb
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Figure 10. Comparison of the form-drag coefficient versus the effective slope with data from Napoli et al.
(2008).

is satisfied also for such fluids. Madlener, Frey & Ciezki (2009) extended their work to
derive a generalized Reynolds number for HB fluids (Regen,HB) satisfying the laminar flow
friction coefficient for Newtonian fluids given as

Regen,HB = ρun−1
b Dn

(τ0/8)(D/ub)n + K((3m + 1)/(4m))n 8n−1 , (4.5)

where

m = nK(8ub/D)n

τ0 + K(8ub/D)n . (4.6)

This definition recovers the generalized Reynolds number for PL fluids given by Metzner
& Reed (1955) when τ0 = 0.

The wall friction in channels and pipes can be estimated using the phenomenological
Colebrook–White equation (Menon 2014) for the Darcy–Weisbach friction factor ( f )
given as

1√
f

= −2 log10

(
r/D
3.7

+ 2.51
Re

√
f

)
, (4.7)

where Re is the bulk Reynolds number (= ρubD/μ) and D is the hydraulic diameter of the
conduit. The friction factors were computed using the above defined generalized Reynolds
number (4.5) and the Reynolds number based on the wall viscosity given as

Rew = ρubDh

μw
, (4.8)

where μw is the minimum dynamic viscosity at or near the wall and Dh = 4δ is
the hydraulic diameter for a channel flow. The nominal viscosity at the wall can be
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DNS Results Colebrook–White

Case uτ ub Reτ Reb uτ ub Reτ Reb

NNS 0.1414 2.94 294 6123 0.1414 2.52 310 5517
NNR 0.1272 2.33 177 3240 0.1249 2.11 212 3589

Table 4. Comparison between DNS and Colebrook–White predictions using Rew.

calculated as
μw = τ0

γ̇w
+ Kγ̇ n−1

w , (4.9)

where the strain rate at the wall is calculated as

γ̇w =
[
(τw − τ0)

K

]1/n

. (4.10)

It is noted that the Reynolds number based on the wall viscosity Rew has been preferred
in the more recent analyses of experimental data (among others Pinho & Whitelaw 1990;
Peixinho et al. 2005; Escudier et al. 2009; Esmael & Nouar 2008) as well as simulation
data (e.g. Singh et al. 2017).

Since the flow is driven by an imposed pressure gradient of 40 Pa m−1, the wall shear is
20 Pa for the smooth-wall case, giving a nominal wall viscosity of 0.228 Pa s. In order
to find the bulk Reynolds number, an iterative method is used starting with a guess
and calculating the friction factor with the guessed value using the Colebrook–White
correlation. The friction factor is used to get the wall shear, wall viscosity and bulk
velocity until convergence. The wall shear (without form drag) is estimated using the
Colebrook–White equation with the same bulk Reynolds number, but with zero roughness.
The values obtained using the Colebrook–White correlation for the Reynolds number
based on the nominal wall viscosity is compared with the DNS results in table 4.

The Reτ values for the NNS case do not match because the viscosity at the wall
obtained from the DNS (0.24 Pa s) is higher than the nominal value obtained using (4.9)
(0.228 Pa s). The nominal viscosity μw is not the same as the mean wall viscosity μ̄w
obtained from DNS by time and space averaging, due to the nonlinear dependence between
viscosity and strain rate (Singh et al. 2018). The mean wall viscosity μ̄w was reported to
be 2 % higher by these authors; in the NNS case, μ̄w is higher than the nominal value by
5 %. The bulk velocity predicted by the Colebrook–White correlation is lower than the
DNS, however reasonably accurate to within 15 %. The bulk Reynolds number is accurate
to within 10 % because the lower bulk velocity prediction is compensated by a lower value
for the wall viscosity.

For the NNR case, the predicted uτ is within 2 % and the bulk velocity is within 10 % of
the DNS result. However, the nominal viscosity at the wall is lower by 18 % compared with
the DNS; 0.293 Pa s as compared with 0.36 Pa s. Estimating the wall viscosity accurately
is very important to obtain an accurate estimate of the pressure drop. The difference could
be potentially associated with the skewness in the velocity fluctuation distribution function
and appears to be an interesting avenue for further research. The wall shear is predicted
to be 78 %, giving a form-drag component that is 22 %, which is a movement in the
direction of the 81-19 % split given by the DNS. Overall, the use of Rew as the input
to the Colebrook–White equation seems to give a reasonable estimate for non-Newtonian
flows, although improvements may be possible.
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DNS Results Colebrook–White

Case uτ ub Reb uτ ub Reb

NNS 0.1414 2.94 6123 0.1414 2.02 2257
NNR 0.1272 2.33 3240 0.1337 1.87 2010

Table 5. Comparison between DNS and Colebrook–White predictions using Regen,HB.

The use of Regen,HB for the turbulent flow regime to predict the friction factor using
the Colebrook–White equation did not give accurate results. The comparison to DNS is
presented in table 5. Note that Reτ is not presented in this case due to uncertainty in its
definition. The predicted values for Reb show that Regen,HB is not the correct Reynolds
number for using the Colebrook–White equation to predict the friction factor for turbulent
non-Newtonian flows.

5. Turbulence statistics

5.1. Turbulent stress profiles
The normal and shear turbulent stresses are compared in figure 11 for the NS and NNS
simulations. The notable observation is the significant increase in the streamwise velocity
fluctuations across the channel at the expense of a similar reduction in the spanwise and
vertical velocity fluctuations v′2 and w′2. This matches the results presented by Singh et al.
(2017) for PL fluids, where they suggest that the reason is a decreased energy transfer
from axial velocity fluctuations to transverse components via pressure fluctuations. The
variation of the turbulent shear stress u′v′ with inner scaling is presented in figure 11(d). A
marked reduction in the turbulent shear stress is observed compared with Newtonian fluid
flow, signifying an overall reduction in turbulence intensity.

Comparison of turbulent stresses between NNS and NNR cases is presented in figure 12;
wherein the values normalized by both uτ and u∗ are presented. The influence of roughness
on the turbulent fluctuations for non-Newtonian flow is the same as for Newtonian
flow in the sense that there is a significant enhancement of the turbulence stresses in
the roughness sublayer, in particular for the turbulent Reynolds shear stress (bottom
right). Additionally, as observed for the Newtonian case (Narayanan et al. 2024), the
peak value of the streamwise turbulent normal stress is significantly lower than for
the smooth-wall case, whereas the transverse components do not show any decrease.
It appears that for the roughness height studied, similar to Newtonian fluids, the effect
of roughness is not felt in the outer region and a good overlap is observed when
scaled with u∗, even though the Re∗ values are different for the two non-Newtonian
cases due to the difference in the reference near-wall viscosities. Therefore, for a
given driving force (pressure gradient), increased turbulence production and intensity is
restricted to the inner region. It also shows that the wall roughness does not change
the nature of non-Newtonian turbulence, which is different from Newtonian turbulence,
in particular, the significance of the mean viscous stress all along the boundary layer
(see § 5.2).
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Figure 11. Comparison of turbulent stresses between Newtonian and non-Newtonian fluid flows, for the
smooth-wall case. (a) Streamwise velocity fluctuations. (b) Wall-normal velocity fluctuations. (c) Spanwise
velocity fluctuations. (d) Reynolds stress.

5.2. Mean momentum balance
The mean (time and space-averaged) streamwise momentum equation for a channel flow
shows that the mean streamwise pressure gradient is balanced by a cross-stream stress
gradient. The sequential averaging referred to as the double-averaging decomposition of
the velocity field (Yuan & Aghaei Jouybari 2018; Ma et al. 2021) shows that roughness
introduces a dispersive stress in the vicinity of the roughness elements, coming from the
spatial variation of the time-averaged quantities. Roughness also adds a pressure drag force
to the mean streamwise momentum balance. In order to retrieve the classical form of the
balance for smooth walls (which is the way to go for Reynolds-averaged Navier–Stokes
type of modelling), it is convenient to combine the pressure drag and the dispersive stress
to rewrite them as a single shear stress induced by roughness, τ r, which can be simply
calculated for Newtonian fluids as (Yuan & Piomelli 2014; Narayanan et al. 2024)

τ r =
〈
−dp

dx

〉
δ
(

1 − y
δ

)
− τμ − τ uv, (5.1)

where τ uv is the Reynolds shear stress and τμ the viscous shear stress. For a
non-Newtonian fluid, an additional shear stress, τvv = 2ν′sij, is present due to fluctuations
in the viscosity (Singh et al. 2017). Thus, for a HB fluid in a rough channel, the total stress
can be decomposed into

τ = τ uv + τμ + τvv + τ r. (5.2)
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Figure 12. Comparison of turbulent stresses between NNS and NNR cases. (a) Streamwise velocity
fluctuations. (b) Vertical velocity fluctuations. (c) Spanwise velocity fluctuations. (d) Reynolds stress.

The τ r in this case includes an additional dispersive stress arising out of the viscosity
fluctuations.

The mean stress balance for the NNS and NNR cases is presented in figure 13. The key
observation in the mean stress balance for non-Newtonian fluids is that the viscous stress
τμ always remains significant compared with the Reynolds shear stress τ uv , independent
of the surface conditions. This is due to the fact that as the strain reduces away from
the wall, the viscosity increases nonlinearly, thereby resulting in a significant value for the
mean viscous stress over most of the boundary layer. This particular effect has a significant
impact on many of the differences between Newtonian and non-Newtonian turbulent flows.
Here τvv is found to be non-negligible all along the wall-normal direction, accounting for
10 % of the total stress.

For the rough case, it is first noted that the shear stress induced by roughness, τ r, is equal
to 0.19 at the wall, in agreement with the contribution of form drag to the total pressure
forcing; see figures 9 and 10. This means that the dispersive stress is not significant for the
roughness topography studied, corroborating the study of Yuan & Aghaei Jouybari (2018)
and Ma et al. (2021) where, for a surface with low skewness, the dispersive stress was
negligible. The dispersive stress was however significant for the surface in Yuan & Aghaei
Jouybari (2018) with large positive skewness and high effective slope. The main difference
with the NNS case is the finite value of the turbulent stress at y = 0 that is counterbalanced
by the variable viscosity term. The variable viscosity term is not impacted by the rough
surface over the entire channel section. The viscous shear stress and the variable viscosity
term start to decrease toward zero approximately when the total stress magnitude is close

1000 A55-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

89
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.891


C. Narayanan and others

1.2

1.0

0.8

0.6

0.4

0.2

–0.2

0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

1.2

1.0

0.8

0.6

0.4

0.2

–0.2

0

y/δ

τ∗

τuv

τμ

τvv

τ

τuv

τμ

τvv

τr
τ

y/δ

(a) (b)

Figure 13. Mean shear stress balances for non-Newtonian fluid. (a) NNS, (b) NNR.
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Figure 14. Comparison of turbulence anisotropy. (a) NS and NNS, (b) NNS and NNR.

to the yield stress. However, the velocity profile does not become entirely flat, i.e. no
formation of a plug in the centre of the channel, because the velocity fluctuations are large
enough to exceed the yield stress.

5.3. Stress anisotropy
As can be already guessed from the turbulent normal stress profiles, the anisotropy is
sharply increased in the non-Newtonian HB flow studied here. The degree of anisotropy
can be evaluated by the ratio of the individual cross-stream turbulent stress components to
the streamwise component, as shown in figure 14 comparing NS and NNS cases, as well
as the smooth- and rough-wall cases for non-Newtonian flow. Focusing on the channel
centre, the ratios of the cross-stream to the streamwise ratios decrease from ≈ 0.7 for the
Newtonian case to ≈ 0.35 for the non-Newtonian case. The anisotropy in the free-stream
turbulence is virtually doubled for the HB fluid. Near the wall, the anisotropy reaches much
higher ratios. As in the case of Newtonian flow, the free-stream anisotropy is unaffected
by the roughness, as expected by the roughness height δ/r > 40. Near the wall, there is a
slight reduction in anisotropy due to the enhancement of cross-stream stress components at
the expense of the streamwise component. However, the overall effect is a strong increase
in anisotropy of turbulence in a HB fluid.
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Figure 15. Non-Newtonian (variable viscosity) terms in the TKE balance. (a) Smooth wall. (b) Rough wall.

5.4. Mean TKE budget
The mean TKE equation for general Reynolds averaged, non-Newtonian fluid flows is
described as follows:

∂k
∂t

+ ūj
∂k
∂xj

= − u′
iu

′
j
∂ ūi

∂xj︸ ︷︷ ︸
P

−
∂u′

iu
′
iu

′
j

∂xj︸ ︷︷ ︸
T

− 1
ρ

∂p′u′
i

∂xi︸ ︷︷ ︸
Π

+ ∂

∂xj

(
2ν̄ u′

isij

)
︸ ︷︷ ︸

D

− 2ν̄ sij
∂u′

i
∂xj︸ ︷︷ ︸

ε

+ ∂

∂xj

(
2u′

iν
′ S̄ij

)
︸ ︷︷ ︸

ξvv

− 2ν′ ∂u′
i

∂xj
S̄ij︸ ︷︷ ︸

χvv

+ ∂

∂xj

(
2 ν′u′

isij

)
︸ ︷︷ ︸

Dvv

− 2 ν′sij
∂u′

i
∂xj︸ ︷︷ ︸

εvv

. (5.3)

The terms in (5.3) are annotated as follows: turbulence production P, turbulent transport
T , pressure diffusion Π , mean viscous diffusion D and mean viscous dissipation ε. In these
quantities, Sij and sij denote the mean and fluctuating rate-of-strain tensors, respectively.
The four additional terms resulting from the non-Newtonian rheology have been annotated
as in Singh et al. (2017), and are named as follows (where the subscript vv denotes variable
viscosity): ξvv , mean shear turbulent viscous transport; χvv , mean shear turbulent viscous
dissipation; Dvv , viscous turbulent transport; and εvv , turbulent viscous dissipation.

For rough-wall flows, when resorting again to the sequential double-averaging
decomposition, two additional production terms induced by the dispersive shear, denoted
as Pm and Pw (Yuan & Aghaei Jouybari 2018), add to P, besides the turbulent transport
term due to wake fluctuations (Tw), and the viscous (Dr) and pressure diffusion (Πr) terms
associated with form drag.

Firstly, the variable viscosity terms vv are presented in figure 15. It is clear that the terms
arising due to non-Newtonian rheology are significant contributors to the TKE balance.
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Figure 16. Turbulent kinetic energy balance. (a) NS, (b) NNS, (c) NNS – χvv as production, (d) NNR.

In particular, ξvv and χvv are very consequential in the viscous sublayer and εvv gains
in magnitude towards the outer layer. Additionally, the sum of all the terms (not shown
here) remains as significant as the largest terms. Singh et al. (2017) classify (as evidenced
by the names) χvv and εvv as dissipation terms, thereby defining a total dissipation εT =
ε + χvv + εvv and ξvv and Dvv as diffusive transport terms contributing to a total diffusion
DT = D + Dvv + ξvv . It is noteworthy that both εvv and χvv are positive as shown by
Singh et al. (2017) for shear-thinning fluids and they change sign for shear-thickening
fluids based on the expected correlation between the viscosity and the strain rate.
Here ξvv and Dvv change signs several times exhibiting behaviour similar to the Newtonian
transport terms such as T , Π and D. One of the questions that arises is the classification
of χvv as dissipation, especially given the interaction of the turbulent viscosity, velocity
gradient correlation with the mean strain rate. In the rough-wall case a significant increase
in εvv is observed along with a movement of the peak dissipation towards the wall. In
general the movement towards the wall is observed for all quantities, as also observed for
the Newtonian case.

The TKE budgets for NS and NNS (with DT and εT as defined above) are shown
in figure 16(a,b). The qualitative behaviour of the TKE budget for the non-Newtonian
case is very similar to the Newtonian case, except that all the quantities have lower
values. Turbulence production, in particular, is significantly lower in the non-Newtonian
case. This is directly related to the significant reduction in the turbulent stress u′v′ for
the non-Newtonian case as shown in figure 11. The balance in the viscous sublayer is
between viscous dissipation and turbulent diffusion, as is well known for Newtonian flow.

1000 A55-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

89
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.891


Turbulent flow of non-Newtonian fluid in rough channels

0.020

0.015

0.010

0.005

–0.005

–0.010
100 101

y+

Π+

102

0

NS
NNS

Figure 17. Comparison of the pressure diffusion term between Newtonian and non-Newtonian flow.

Figure 16(c) shows the balance when χvv is counted as a production term and added
to P such that PT = P + χvv and εT = ε + εvv . In this interpretation, the mean viscous
dissipation increases back to levels in the Newtonian flow, and the peak production
also increases, although still significantly lower than in the Newtonian flow. However,
turbulence production does not go to zero in the viscous sublayer (due to χvv) but instead
reaches a constant value at the wall. The balance in the viscous sublayer is between viscous
dissipation on one hand and production and diffusion on the other.

For smooth walls, the main balance in the viscous sublayer is between mean viscous
diffusion and dissipation with turbulence production going to zero rapidly as the wall
is approached. For rough walls, turbulent dissipation balances the sum of turbulence
production and mean viscous diffusion. In short, the effect of roughness on turbulence
is to a large extent independent of the fluid rheology.

The pressure transport term Π is known to redistribute energy from the streamwise
component to the cross-stream components, inclining to make the flow isotropic. The
term is therefore also called the return-to-isotropy term. Based on the discussion in the
preceding section on stress anisotropy, the pressure diffusion term is expected to be
significantly smaller for the non-Newtonian flow. The comparison of the pressure diffusion
term presented in figure 17 shows, as expected, a reduction by a factor of three, thereby
pointing towards increased anisotropy in the turbulent normal stresses.

The ratio of turbulence production to dissipation is presented for all the four cases in
figure 18. As noted earlier for Newtonian flow, the P/ε ratio for the rough wall matches
with the smooth-wall case in the outer layer even for the non-Newtonian flow. The profile
for non-Newtonian flow is, however, very different from Newtonian flow. Firstly, the peak
value near the wall is significantly lower for non-Newtonian flow. Additionally, the ratio
continuously reduces in the outer layer in contrast to Newtonian flow where there is a
second maximum at y/δ ≈ 0.4. At y/δ = 0.6 the ratio for the Newtonian case is five times
larger than the non-Newtonian flow. This is an important parameter in averaged turbulence
modelling and will definitely serve as an important behaviour to capture correctly in such
models. Figure 18(b) compares the ratio P/ε to P/εT and (P + χvv)/(ε + εvv). In this
case, the ratio is enhanced in the outer layer, however, it is still quite different from the
Newtonian profile. It is noteworthy that adding χvv to P and removing from εT does not
change the ratio significantly.
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Figure 18. Ratio of turbulence production to mean viscous dissipation. (a) All cases, (b) NNS case
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5.5. Flow structures
In Newtonian wall-bounded flow, turbulence is sustained by the continuous process of
growth and breakdown of streamwise elongated structures. Momentum is extracted from
the outer region to the inner region and final dissipation into heat as an effect of the
viscous forces. In particular, streamwise velocity streaks are generated by streamwise
vortices. Figure 19 compares the u-velocity contours of the Newtonian and HB fluid fields
at various near-wall horizontal planes; here we only consider the case of a smooth channel.
Figure 19(a,c,e,g,i) shows the footprint of the streamwise vortices usually observed in the
turbulence of Newtonian fluid flows, with negative streaks weakening away from the wall.
The non-Newtonian fluid flow results (right column) show however a peculiar persistence
of these low-speed streaks, along the entire domain, the trace of which suggest larger
structures than in Newtonian fluid turbulence. This is mainly due to the significantly
lower energy in the smaller scales, whereby the structures appear unbroken and persistent.
A similar behaviour was observed by Anbarlooei et al. (2018).

The negative low-speed streaks seem to persist – aligned but not interacting – up to
y+ = 30 (and probably y+ = 40 too); positive ones have the tendency to rather dilute or
better said, increase in size as was reported by Le Clainche et al. (2020). At y+ = 50, the
streaks start to dislocate and diffuse, in contrast to the Newtonian case, where no change is
to be noticed. The enhancement of the streamwise momentum in high-speed streaks in the
y+ < 30 region should corroborate with the reduction of TKE by viscous dissipation as
shown in (5.3), and as also shown by Dubief et al. (2004). In addition, this points to more
energy being contained in the larger spanwise wavelengths compared with Newtonian flow
and also an increase in the viscous layer thickness as discussed earlier. The differences in
the spanwise energy spectra are discussed in the following section. Additionally the long
unbroken streaks also point to higher correlation along the streamwise direction.

Figure 20 comparing the streamwise velocity contours in the rough channel shows
another picture. As before, the contours are plotted at five planes: y+ = 5, 10, 20, 30 and
50. Interestingly, until the farthest plane from the wall y+ = 50, the roughness elements
seem incapable of breaking the increased correlation in the structures for the HB fluid,
as compared with the Newtonian one. The structures seem to persist along the domain as
in the smooth surface discussed earlier; the negative structures being more slender than
the positive ones. As a consequence, one might expect less form drag being generated,
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Figure 19. Instantaneous axial flow velocity in the smooth channel at different heights for Newtonian
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as evidenced by the little impact of roughness on the mean velocity (minimal shift in the
outer layer) and shear stress profiles discussed earlier, compared with Newtonian fluid.
A close inspection might reveal though that the roughness elements cause the flow to be
diverted in either the positive of negative spanwise direction, which should increase the
vertical and spanwise fluctuations in the inner layer.
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Figure 20. Instantaneous axial flow velocity in the rough channel at different heights for Newtonian
and non-Newtonian fluids. (a) Newtonian y+ = 5, (b) non-Newtonian y+ = 5, (c) Newtonian y+ = 10,
(d) non-Newtonian y+ = 10, (e) Newtonian y+ = 20, ( f ) non-Newtonian y+ = 20, (g) Newtonian y+ = 30,
(h) non-Newtonian y+ = 30, (i) Newtonian y+ = 50, ( j) non-Newtonian y+ = 50.

5.5.1. Coherent structures
To consolidate the findings about the flow structures discussed previously, this section
provides additional results showing the coherent structures near the walls for the
different simulations performed. Due to the differences in bulk velocity, shear Reynolds
number or viscosity between the simulations, a quantitative analysis is difficult,
nonetheless qualitative observations can be made. Here, we rely on the so-called Q-vortex
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identification criterion (Hunt, Wray & Moin 1988), a well-known measure of the
balance between the rate-of-rotation tensor rij and the rate-of-strain tensor sij within the
superimposed fluctuating field, and is defined as Q = 1/2(rijrij − sijsij); the positive values
of which indicate regions where the strength of the rotation overcomes the strain. For this
purpose, the probability density functions (p.d.f.) of the identifier were determined and the
isosurface thresholds of p.d.f. 0.005 were selected.

Three-dimensional views of the vortex identification criterion are depicted in figure 21
for the four cases studied. The instantaneous isocontours (taken at a randomly selected
frame) of Qpdf=0.005 coloured by y+ show the nature of the structures and their
concentration in the boundary layer. Note that the maximum y+ used to colour the p.d.f.
is rather low (150). Taking the smooth-wall context, the Newtonian fluid flow reveals a
rather dense population of small-scale vortices surrounded by hairpin-like structures. In
contrast, in the non-Newtonian case, only the large structures can be detected, regardless
of the wall surface. It is as if most of the high-frequency motions vanish. Looking now
at the NR case confirms the observation made earlier, that is, in the roughness layer
the vortical structures are broken and disrupted by the roughness elements. Furthermore,
the structures do not seem to rise towards the outer layer as in the case of large surface
asperities. Likewise, the interaction between the flow and the roughness elements is not
so obvious, although the lift of the flow due to their blockage effect is perceivable. These
results raise the following instructive findings: (i) surface roughness generates a denser
population of coherent structures, confined mostly in the affected layer y+ < 25, than in
the smooth case; and (ii) the hypothetical penetration of these structures to the outer layer is
not evidenced. On the contrary, it rather seems that the outer layer has way less structures
than the smooth case, which corroborates with the observation concerning S∗, made in
the context of figure 16. In the NNR case the same observation as in the smooth case
holds, that is, most of the small-scale structures seem to be smoothed out; the pertinent
large-scale ones are somewhat disrupted in the roughness sublayer, but less than in the
Newtonian case.

5.6. Energy spectra
The power spectra of the streamwise and the spanwise velocities along the streamwise
direction at two locations ( y/δ = 0.12 and 1) are presented in figure 22. Mitishita et al.
(2021), in their experiments with an aqueous solution of a polymer additive called
Carbopol, observe a k−7/2 scaling of the energy spectrum at larger wavenumbers. They
remark that the scaling of energy for higher wavenumbers (kδ > 5) is close to k−7/2 instead
of the usual k−5/3 for the inertial range in Newtonian fluids, indicating a larger power decay
for higher wavenumbers (small scales). Therefore, both the −5/3 and the −7/2 slopes are
shown in the figures for comparison. The spectra are normalized by u2

τ . The spectra of
the wall-normal velocity is very similar to the spanwise velocity and are therefore not
presented here. The spectra for the non-Newtonian cases also show that the simulations
are well resolved with a steep drop in the energy towards the highest wavenumbers.

Comparing the power spectra of the Newtonian with the non-Newtonian fluid
(figure 22a), it is observed that the energy is concentrated significantly more in the lower
wavenumber range both near the wall and at the channel centre. This becomes clearer
if one shifts the spectra so that they match in the lower wavenumbers. This change
in the distribution of energy is very significant, but could be visually underestimated
due to the logarithmic scale used to present the results. This redistribution directly
implies an increase in the slope in the inertial range as shown by Mitishita et al. (2021).
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Figure 21. Contour of the Q-criterion with p.d.f. = 0.005, with y+max = 150. (a) NS, (b) NNS, (c) NR,
(d) NNR.
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Figure 22. Power spectra in the streamwise x direction. (a) Streamwise velocity, NS vs NNS. (b) Spanwise
velocity, NS vs NNS. (c) Streamwise velocity, NNS vs NNR. (d) Spanwise velocity, NNS vs NNR.

Even though this increase in slope to −7/2 is clearly observable, the match in a short range
of wavenumbers due to the lower Reynolds numbers of the simulations is not as convincing
as the experimental results from Mitishita et al. (2021) at much higher Reynolds numbers.
Exactly the same behaviour is also observed (figure 22b) for the power spectra of the
spanwise velocity in the streamwise direction. This appears to be an important point to
study further by simulating higher Reynolds numbers and other viscoplastic rheologies.

Similar to the effect on the anisotropy of the normal turbulent stresses (figure 12),
the effect of roughness pales in comparison to the non-Newtonian effect (figure 22c,d).
Additionally, since the effect of roughness is to enhance the energy in the small scales
(shown for Newtonian flow), this effect is significantly less visible due to the significant
reduction in the energy at the higher wavenumbers caused by the non-Newtonian effect.

The power spectra of the streamwise and the spanwise velocities along the spanwise
direction at two locations ( y/δ = 0.12 and 1) are presented in figure 23. The reduction in
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Figure 23. Power spectra in spanwise z direction. (a) Streamwise velocity, NS vs NNS. (b) Spanwise velocity,
NS vs NNS. (c) Streamwise velocity, NNS vs NNR. (d) Spanwise velocity, NNS vs NNR.

the energy in the higher wavenumbers relative to the lower wavenumbers is also observed
for the spanwise length scales of turbulence (for both the streamwise and spanwise
velocity components). Although the HB rheology increases the anisotropy of turbulence
significantly by reduced transfer of energy from the streamwise to the cross-stream
fluctuations, the distribution of energy within each component is similar. The qualitative
observations comparing near-wall streamwise velocity contours in figure 19 show that
the low-speed streaks appear stronger and unbroken, thus pointing to a reduction in the
small-scale structure that is quantitatively observable in the power spectra.

6. Conclusions

The work is innovative in that it investigates the interaction between a turbulent HB
fluid and surface roughness. The roughness chosen consists of randomly irregular
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intrusions with heights relevant to industrial applications. Direct numerical simulations
were performed in a smooth and a rough channel and compared with their Newtonian
counterparts. The initial results corroborate with those of Singh et al. (2017) in that the
turbulence of a non-Newtonian fluid in a smooth channel differs from a Newtonian fluid,
exhibiting peculiar flow structures near the wall. As a result, the effect of shear-thinning
rheology is to increase the axial Reynolds stress at the expense of the normal and
spanwise components. This result is reflected in the TKE budget, which shows a
significant reduction in the pressure diffusion term, while the mean viscous stress and
the non-Newtonian stress remain non-negligible throughout the boundary layer.

The simulation with a HB fluid in a rough channel indicates that the outer layer
is unaffected by the rough wall, confirming thereby that Townsend’s wall similarity
hypothesis holds for these fluids, too. The distribution of the stresses in the outer layer
match those obtained for a smooth wall. This important finding allows extending the model
for the mean velocity profile proposed by Durbin et al. (2001) to the HB fluids context.
However, notable differences have been revealed compared with the effect of roughness on
Newtonian fluids. More specifically, the effect of roughness appears to be slightly stronger
for HB fluids, in the sense that the bulk Reynolds number, based on the viscosity at the
wall, is reduced further due to the increase in viscosity in the wall troughs induced by
the low shear. At the same time, for the simulated rough surface, the contribution of form
drag to the total pressure drop is reduced from 1/4 to about 1/5 due to the persistence
of viscous shear in the boundary layer, reducing its shielding effect. It means that the
universal relation between form drag and effective slope proposed by Napoli et al. (2008)
does not necessarily hold for HB fluids (note that we showed in an earlier contribution that
it was well recovered for a Newtonian fluid, in the same roughness). As for the friction
factor, due to the nonlinearity of the HB constitutive relation, its use with the wall shear
rate from the mean wall shear stress underpredicts the minimum viscosity at the wall by
up to 18 %. This inevitably leads to uncertainties in the prediction of the friction factor.
Finally, it is observed that surface roughness is unable to break the peculiar near-wall flow
structure of non-Newtonian fluids, which consists of long, persistent, low-speed streaks
occupying the entire domain. This means that the small-scale energy is significantly
reduced for HB fluids, even in rough channels, with the energy more concentrated in the
lower wavenumber range, implying an increase in the slope of the power spectrum to −7/2
in the inertial range, as shown by Mitishita et al. (2021).
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