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We explore experimentally whether axisymmetry breaking can be exploited for the
open-loop control of a prototypical hydrodynamic oscillator, namely a low-density inertial
jet exhibiting global self-excited axisymmetric oscillations. We find that when forced
transversely or axially at a low amplitude, the jet always transitions first from a period-1
limit cycle to T2 quasiperiodicity via a Neimark–Sacker bifurcation. However, we find that
the subsequent transition, from T2 quasiperiodicity to 1 : 1 lock-in, depends on the spatial
symmetry of the applied perturbations: axial forcing induces a saddle-node bifurcation
at small detuning but an inverse Neimark–Sacker bifurcation at large detuning, whereas
transverse forcing always induces an inverse Neimark–Sacker bifurcation irrespective of
the detuning. Crucially, we find that only transverse forcing can enable both asynchronous
and synchronous quenching of the natural mode to occur without resonant or non-resonant
amplification of the forced mode, resulting in substantially lower values of the overall
response amplitude across all detuning values. From this, we conclude that breaking
the jet axisymmetry via transverse forcing is a more effective control strategy than
preserving the jet axisymmetry via axial forcing. Finally, we show that the observed
synchronization phenomena can be modelled qualitatively with just two forced coupled
Van der Pol oscillators. The success of such a simple low-dimensional model in capturing
the complex synchronization dynamics of a multi-modal hydrodynamic system opens up
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new opportunities for axisymmetry breaking to be exploited for the open-loop control of
other globally unstable flows.

Key words: instability control, jets, nonlinear dynamical systems

1. Introduction

Open jet flows are ubiquitous in nature and engineering. Over the years, their
spatiotemporal stability and dynamics have been studied extensively (Huerre &
Monkewitz 1990; Schmid & Henningson 2001; Drazin & Reid 2004). It is now well known
that when the density of a jet is sufficiently below that of its surroundings, a region of
local absolute instability can develop in the near field (Monkewitz & Sohn 1988; Yu &
Monkewitz 1990; Jendoubi & Strykowski 1994; Lesshafft & Huerre 2007; Coenen, Sevilla
& Sánchez 2008; Lesshafft & Marquet 2010; Srinivasan, Hallberg & Strykowski 2010;
Coenen & Sevilla 2012). If this region is sufficiently large, then it can give rise to global
instability, causing the jet to transition from a spatial amplifier of extrinsic perturbations
to a self-excited oscillator with an intrinsic limit cycle at a well-defined natural frequency
(Chomaz, Huerre & Redekopp 1988; Chomaz 2005; Lesshafft et al. 2006; Hallberg et al.
2007; Lesshafft, Huerre & Sagaut 2007; Coenen et al. 2017; Chakravarthy, Lesshafft &
Huerre 2018). If the jet discharges from a round non-swirling nozzle with thin shear
layers, then its dynamics will be dominated by axisymmetric (bulging) oscillations
with azimuthal wavenumber m = 0, which can arise via a supercritical or subcritical
Hopf bifurcation (Sreenivasan, Raghu & Kyle 1989; Monkewitz et al. 1990; Kyle &
Sreenivasan 1993; Hallberg & Strykowski 2006; Zhu, Gupta & Li 2017, 2019). Such
self-excited oscillations are desirable in some situations because they can aid mixing
and transport. They are, however, undesirable in other situations because they can
couple with structural, acoustic or other hydrodynamic modes at nearby frequencies. It
is thus important to be able to control the self-excited oscillations of globally unstable
jets.

Studies have already shown that globally unstable axisymmetric jets can be controlled
readily with time-periodic acoustic forcing applied axially, such that rotationally
symmetric perturbations of a prescribed frequency and amplitude are generated at the
jet base (see § 1.2 for details). Under most conditions, however, such jets are not only
globally unstable to the axisymmetric mode (m = 0), but also convectively unstable
to the helical modes, i.e. the spiralling modes with m = ±1, ±2, . . . (Monkewitz &
Sohn 1988; Jendoubi & Strykowski 1994; Lesshafft & Huerre 2007; Coenen et al.
2008). Consequently, it is important to explore the effects of rotationally asymmetric
forcing as well, not least because such forcing could interact differently with the
natural axisymmetric and helical modes, producing axisymmetry-breaking phenomena
not seen with purely axial forcing. In this study, we take a forced synchronization
approach to investigating the effects of axisymmetry breaking, induced by transverse
acoustic forcing, on a globally unstable low-density jet oscillating self-excitedly in a
period-1 limit cycle. Before presenting our experimental and modelling methodologies
(§§ 2 and 3) and results (§§ 4 and 5), we will review the universal concept of
forced synchronization and its amplitude suppression mechanisms (§ 1.1) and survey
previous work on the axial (§ 1.2) and transverse (§ 1.3) forcing of axisymmetric jets,
drawing on examples involving global instability in the hydrodynamic field whenever
possible.
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1.1. Forced synchronization and its amplitude suppression mechanisms
When a self-excited oscillator (e.g. a globally unstable flow) is forced externally at a
frequency ff different from its natural frequency fn, it can adjust its motion to match
that of the forcing signal (Pikovsky, Rosenblum & Kurths 2003). This unidirectional
adjustment process is known as forced synchronization (Balanov et al. 2009) and can
lead to a completely synchronous state, known as lock-in in fluid mechanics (Sreenivasan
et al. 1989), if the forcing amplitude is sufficiently high. According to synchronization
theory based on single-mode oscillators, lock-in tends to occur via two universal routes
(Balanov et al. 2009): phase locking and suppression. Along the phase-locking route,
which typically arises when the detuning (|ff − fn|) is small, lock-in occurs via a gradual
pulling of f ∗

n (where the superscript ∗ denotes the presence of external forcing) towards
ff as the forcing amplitude increases. By contrast, along the suppression route, which
typically arises when the detuning is large, lock-in occurs via a gradual reduction in the
amplitude of the natural mode without a simultaneous pulling of its frequency. These
two routes can also be distinguished by their unique bifurcations: the phase-locking route
involves a saddle-node bifurcation to lock-in, whereas the suppression route involves an
inverse Neimark–Sacker bifurcation to lock-in, i.e. a torus-death bifurcation (Balanov et al.
2009; Li & Juniper 2013a,c; Hyodo & Biwa 2018; Kashinath, Li & Juniper 2018).

However, only along the suppression route can asynchronous quenching occur
(Bogoliubov & Mitropolsky 1961; Balanov et al. 2009). This is a nonlinear phenomenon
whereby the natural mode of a self-excited oscillator is stabilized to a fixed point
by periodic forcing applied externally at an off-resonance frequency sufficiently far
from fn, i.e. at large detuning (Minorsky 1974). Under most conditions, asynchronous
quenching occurs without amplification of the forcing signal (Minorsky 1967), resulting in
a substantial reduction in the overall response amplitude of the forced self-excited system
– often to less than 20 % of the natural (uncontrolled) amplitude (Guan et al. 2019a,b).
Such quenching of the natural mode is due to the external forcing inducing an asymptotic
loss of stability in the original limit-cycle attractor (Minorsky 1974). Nevertheless, it is
worth noting that quenching of the natural mode can occur for small detuning as well,
in an analogous process known as synchronous quenching (Odajima, Nishida & Hatta
1974). This type of quenching, however, is usually accompanied by resonant amplification
of the forcing signal, resulting in an increase in the overall response amplitude (Abel,
Ahnert & Bergweiler 2009). Both asynchronous and synchronous quenching are universal
phenomena in nonlinear dynamical systems (Pikovsky et al. 2003) and can be modelled
with a forced self-excited oscillator containing a generic Van der Pol (VDP) kernel (Dewan
1972; Odajima et al. 1974). Unsurprisingly, such phenomena have been observed in various
systems, ranging from premixed combustors (Lubarsky et al. 2003; Bellows, Hreiz &
Lieuwen 2008; Kashinath et al. 2018; Guan, Murugesan & Li 2018; Guan et al. 2019a,b,c;
Mondal, Pawar & Sujith 2019; Roy et al. 2020) to plasma columns (Keen & Fletcher 1969,
1970; Ohe & Takeda 1974) to open jet flows (Staubli & Rockwell 1987; Li & Juniper
2013a), albeit mostly in response to purely axial (symmetric) forcing.

For open-loop control, asynchronous quenching appears to be a promising mechanism
by which to suppress limit-cycle oscillations. However, a major drawback of this strategy,
as implemented in the examples above, is the need for ff to be sufficiently far from fn
(Bogoliubov & Mitropolsky 1961; Minorsky 1967). This presents a potential challenge
for open-loop controllers as it requires prior knowledge of the value of fn, which may
be difficult to obtain in systems where even momentary excursions into a high-amplitude
limit-cycle regime can cause catastrophic mechanical or thermal damage. Exacerbating
this is the possibility that fn can drift with changes in the operating conditions or
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system parameters. For robust control, it would be helpful to have a method of suppressing
limit-cycle oscillations that is less sensitive to the detuning between the forced and natural
modes. In other words, we seek a method of inducing both asynchronous and synchronous
quenching that simultaneously avoids any amplification of the forcing signal. In this
study, we demonstrate on a prototypical hydrodynamic oscillator – a globally unstable
low-density axisymmetric jet – that one such method is to exploit axisymmetry breaking
by applying transverse acoustic forcing.

1.2. Axial forcing of globally unstable jets
The hydrodynamic response of a globally unstable low-density axisymmetric jet to axial
acoustic forcing has been studied by Li & Juniper (2013a,c). These researchers found that
when ff is incommensurable with f ∗

n (i.e. when the dressed winding number, f ∗
n /ff , is

irrational), the jet can be in one of three possible states depending on the forcing amplitude.
When unforced, the jet oscillates periodically at fn, with its phase trajectory evolving on
a limit-cycle attractor. When forced weakly, the jet oscillates quasiperiodically at both
f ∗
n and ff , with its phase trajectory evolving on a two-frequency torus attractor. When

forced strongly, the jet locks into the forcing by oscillating only at ff and its harmonics,
with the phase trajectory evolving on another limit-cycle attractor but at ff instead of fn.
The minimum forcing amplitude required for lock-in increases as ff shifts away from fn,
producing a ∨-shaped lock-in boundary centred on ff /fn = 1. The parameter space above
this boundary is known as the 1 : 1 Arnold tongue in synchronization theory (Pikovsky
et al. 2003; Balanov et al. 2009). Such a tongue can be found not only in low-density
jets (Sreenivasan et al. 1989; Kyle & Sreenivasan 1993; Hallberg & Strykowski 2008;
Li & Juniper 2013a,c; Murugesan, Zhu & Li 2019) but also in other globally unstable
flows, such as bluff-body wakes (Koopmann 1967; Stansby 1976; Provansal, Mathis &
Boyer 1987; Olinger & Sreenivasan 1988; Karniadakis & Triantafyllou 1989), capillary
jets (Olinger 1992), jet diffusion flames (Juniper, Li & Nichols 2009; Li & Juniper 2013b),
and cross-flow jets (Davitian et al. 2010a,b; Karagozian 2010; Shoji et al. 2020).

Li & Juniper (2013a,c) also found that as the forcing amplitude increases en route to
lock-in, the jet follows either the phase-locking route if ff is close to fn, or the suppression
route if ff is far from fn. Crucially, asynchronous quenching was observed only along
the suppression route (Li & Juniper 2013a,c). All of these experimental observations are
consistent with theoretical analyses of the classic (single-mode) VDP oscillator subjected
to external periodic forcing (Dewan 1972; Balanov et al. 2009). This shows that these
synchronization phenomena are not unique to a forced low-density jet, but are universal to
forced self-excited oscillators in general.

1.3. Transverse forcing of jets
Compared with that of axial forcing, the effect of transverse forcing has been less well
studied, despite its relevance to annular combustors in gas turbines (Hauser, Lorenz &
Sattelmayer 2010; Bauerheim et al. 2014; Bourgouin et al. 2015; Ghirardo, Juniper &
Moeck 2016). In such devices, multiple jet-stabilized flames are typically distributed
around the annulus and can interact with the acoustics therein to produce azimuthal
thermoacoustic instabilities in the form of spinning and standing modes (Ghirardo &
Juniper 2013; Noiray & Schuermans 2013b; Bothien, Noiray & Schuermans 2015; Yang,
Laera & Morgans 2019). From the local viewpoint of an individual flame, such modes
appear as an approximately one-dimensional acoustic field, generating time-varying
pressure gradients in a direction perpendicular (transverse) to the jet axis (O’Connor,
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Acharya & Lieuwen 2015). Under certain conditions, a statistical preference can emerge
for standing modes over spinning modes (Noiray, Bothien & Schuermans 2011; Wolf
et al. 2012; Worth & Dawson 2013). Flames located at different points along the standing
waveform would thus experience different pressure fields, causing some hydrodynamic
modes to be excited preferentially over others, depending on the exact nozzle location
(Lespinasse, Baillot & Boushaki 2013).

Lieuwen’s group (O’Connor & Lieuwen 2011, 2012b; Blimbaum et al. 2012; O’Connor
et al. 2015; Smith et al. 2018a,b) has investigated the response of swirling jets and
swirl-stabilized flames to planar acoustic standing waves. At a pressure node, the acoustic
perturbations are antisymmetric (out-of-phase by π) about the nodal line running through
the nozzle centre, producing transverse velocity perturbations that preferentially excite the
odd-m helical hydrodynamic modes (m = ±1, ±3, . . . ; O’Connor & Lieuwen 2012a,b;
Smith et al. 2018b); the superposition of a pair of counter-rotating m = ±1 modes of
equal amplitude can induce a transverse flapping motion with staggered vortices in the
shear layers. At a pressure antinode, the acoustic perturbations are symmetric (in-phase)
about the antinodal line running through the nozzle centre, producing axial velocity
perturbations that preferentially excite the bulging hydrodynamic mode (m = 0), leading
to the axisymmetric roll-up of vortical structures (O’Connor & Lieuwen 2012a,b; Smith
et al. 2018b). From these and other related studies (Hauser et al. 2010; Lespinasse et al.
2013; Saurabh & Paschereit 2017; Saurabh, Moeck & Paschereit 2017), it can be concluded
that axial forcing (pressure antinode) preferentially excites axisymmetric flow structures,
whereas transverse forcing (pressure node) preferentially excites flapping flow structures.

The hydrodynamic response of a globally unstable jet to transverse acoustic forcing has
been studied by only a few researchers. In seminal experiments, O’Connor & Lieuwen
(2012b) applied transverse (out-of-phase) and axial (in-phase) forcing to a swirling
annular jet featuring a central vortex breakdown bubble generated by global hydrodynamic
instability. When unforced, the jet was found to be dominated by the m = −2 and −1
helical modes, which were associated with large-scale undulations of the jet column
and with coherent structures in the recirculation zone, respectively. Transverse forcing
was found to alter the relative amplitudes of the two modes, without much affecting
the axisymmetric mode (m = 0). These findings are consistent with the trends discussed
above, highlighting again how certain hydrodynamic modes can be preferentially excited
over others, depending on the spatial symmetry of the applied forcing. Crucially, in this
non-axisymmetric swirling jet, neither lock-in nor asynchronous/synchronous quenching
was observed with either axial or transverse forcing, even at high forcing amplitudes
(O’Connor & Lieuwen 2012b).

Other studies that have examined the effects of asymmetric forcing have done so with
a focus on convectively unstable jets (Parekh, Reynolds & Mungal 1987; Reynolds et al.
2003; Suzuki, Kasagi & Suzuki 2004; Tyliszczak & Geurts 2014; Tyliszczak 2015; Gohil
& Saha 2019). Unlike globally unstable jets, convectively unstable jets are not self-excited
(Huerre & Monkewitz 1990) and therefore cannot undergo asynchronous or synchronous
quenching, regardless of the value of ff (Minorsky 1967). Studies on convectively unstable
axisymmetric jets have examined how some of their characteristics – such as mixing,
entrainment and spreading – can be enhanced via transverse forcing (Urbin & Métais 1997;
Danaila & Boersma 2000; Worth et al. 2020; Douglas et al. 2021) or via a combination
of axial and transverse forcing applied at the same frequency (Æsøy et al. 2021) or at
different frequencies (Da Silva & Métais 2002). However, little is known about how such
complex forcing patterns would affect a globally unstable axisymmetric jet, particularly its
bifurcations en route to lock-in and its ability to undergo asynchronous and synchronous
quenching. This is despite the fact that such a jet is a prototypical hydrodynamic oscillator
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(Huerre & Monkewitz 1990) and that global instability has been detected in the open shear
flows of various propulsion and power-generation devices (Juniper 2012; Oberleithner
et al. 2015; Tammisola & Juniper 2016).

1.4. Contributions of the present study
It is well known that a low-density inertial jet discharging from a round nozzle can develop
global axisymmetric oscillations at a discrete natural frequency fn. Previous experiments
have shown that when such a jet is forced axially at an off-resonance frequency ff , its
self-excited oscillations can become suppressed via asynchronous quenching, without
amplification of the forcing signal, resulting in a substantial reduction in the overall
response amplitude (§§ 1.1 and 1.2). This is clearly a promising strategy for open-loop
flow control, but it requires ff to be sufficiently far from fn. In this study, we propose
an alternative method of inducing both asynchronous and synchronous quenching, one
that exploits axisymmetry breaking to avoid any amplification of the forcing signal, thus
removing the need to worry about the exact detuning between ff and fn. Specifically, we
ask three research questions:

(i) Can breaking the axisymmetry of a globally unstable jet via transverse forcing lead
to a more effective open-loop control strategy than preserving the axisymmetry via
axial forcing?

(ii) If it can, how do the synchronization phenomena – such as the bifurcation routes,
Arnold tongues and quenching mechanisms – differ between transverse and axial
forcing?

(iii) Can these synchronization phenomena be modelled phenomenologically with a
low-dimensional system based simply on a pair of coupled VDP oscillators?

The rest of this paper is organized as follows. In §§ 2 and 3, we introduce the
experimental set-up and low-dimensional model, respectively. In §§ 4 and 5, we investigate
experimentally the effects of axisymmetry breaking on a globally unstable low-density jet,
and then we model the main synchronization phenomena, such as the bifurcation routes,
Arnold tongues and quenching mechanisms. In § 6, we conclude with the key implications
of this study for the open-loop control of globally unstable axisymmetric flows.

2. Experimental set-up

The experimental set-up consists of two main components (figure 1): a convergent nozzle
from which a globally unstable axisymmetric jet is produced (§ 2.1), and a rectangular
enclosure in which planar acoustic standing waves are established to perturb the jet (§ 2.2).

2.1. Jet nozzle and velocity measurements
The nozzle has a round outlet whose exit diameter is D = 6 mm. Its internal walls are
defined by a fifth-order polynomial with a 34 : 1 area contraction between the settling
chamber and the nozzle outlet. The streamwise, transverse (radial) and cross-stream
coordinates are denoted by x, y and z, respectively, as shown in figure 1. The nozzle outlet
can be moved along the transverse (y) direction, enabling the jet position to be varied
relative to the standing acoustic waveform in the enclosure. However, the nozzle outlet
always protrudes 1.67D into the enclosure itself so as to minimize wall effects. Helium
gas is discharged from the nozzle into the enclosure air (at temperature 293 K), creating
a jet whose density ratio is S ≡ ρj/ρ∞ = 0.14, well below the upper limit for global
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Figure 1. Diagram of the experimental set-up. The measurement diagnostics include four microphones
mounted flush along the transverse wall of the enclosure, a hot-wire probe positioned on the jet centreline, and
a particle image velocimetry system (not shown). MFC: mass flow controller. DAQ: data acquisition system.

instability (Monkewitz et al. 1990; Kyle & Sreenivasan 1993). The helium is supplied from
a compressed gas cylinder and is metered with a mass flow controller (Alicat MCR-500).
Figure 2(a) shows radial profiles of the normalized time-averaged streamwise velocity,
ū/ūmax, for a range of Reynolds numbers, 700 � Re ≡ UjρjD/μj � 3990, where Uj is
the jet centreline velocity, and μj is the jet dynamic viscosity. The data are acquired
with a hot-wire anemometer positioned just beyond the nozzle outlet (x/D ≈ 0.1); the
measurement procedures are described further below. It can be seen in figure 2(a) that
the velocity profile is top-hat with thin shear layers. This aids the detection of global
instability by keeping the critical Re low, thus limiting the ability of convective modes
to amplify inherent disturbances (Hallberg et al. 2007). Figure 2(b) shows that the velocity
fluctuations in the jet core are weak (u′

rms/ū < 0.35 %), while figure 2(c) shows that the
transverse curvature – defined as D normalized by the initial momentum thickness θ0 –
scales linearly with Re1/2. This linear scaling indicates that the initial shear layers are
laminar, which further aids the detection of global instability.

The hydrodynamic response of the jet to acoustic perturbations is characterized with
hot-wire anemometry (HWA) and particle image velocimetry (PIV). HWA is used when
long time traces are needed to identify the topology of the jet attractor in its reconstructed
phase space, whereas PIV is used when spatiotemporal information is needed to better
understand the flow symmetry. The HWA system consists of a constant-temperature bridge
operated at an overheat ratio of 1.8 and connected to a single-normal probe (Dantec
55P11) equipped with a platinum-plated tungsten wire (diameter 5 μm, length 1.25 mm).
Its frequency response is around 104 Hz, well above the natural global frequency of the
jet (§ 4: fn ∼ 103 Hz). Previous studies have shown that when an open shear flow becomes
globally unstable, a large section of its domain becomes temporally synchronized such
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Figure 2. Characterization of the jet base flow: (a) normalized time-averaged streamwise velocity, and (b)
its local fluctuations, both as functions of the radial position. Also shown is (c) the transverse curvature as
a function of the square root of the Reynolds number. The data are acquired with a hot-wire anemometer
positioned just beyond the nozzle outlet (x/D ≈ 0.1).

that its dynamics can be resolved with only local measurements taken at a single spatial
location (Huerre & Monkewitz 1990; Broze & Hussain 1994). In both the unforced (§ 4)
and forced (§ 5) jet experiments, the HWA probe is positioned on the jet centreline, 1.5D
downstream of the nozzle outlet, i.e. at (x/D, y/D) = (1.5, 0), with uncertainty ±0.017D
in each axis. This sampling location is chosen because it is far enough downstream for
a nonlinear global mode to emerge and interact with the applied forcing (Hallberg &
Strykowski 2008), but it is not so far downstream as to be outside the potential core,
where fluctuations in helium concentration could contaminate the HWA data (Li & Juniper
2013a,c). Furthermore, sampling the HWA data in the potential core is preferred because it
provides direct measurements of the wavemaker (Lesshafft et al. 2006; Qadri, Chandler &
Juniper 2018), which is the flow region that prescribes the intrinsic dynamics of the global
mode (Huerre & Monkewitz 1990; Chomaz 2005). The HWA probe wire itself is oriented
parallel to the z axis (see figure 1) so that it senses simultaneously both streamwise (x)
and transverse (y) velocity components. This probe orientation enables both axisymmetric
(m = 0) and transverse flapping (m = ±1) oscillations in the jet to be resolved. For each
test run, the HWA voltage is digitized at 25 600 Hz for 8 s on a 16-bit data acquisition
system, generating a time trace of the local x–y velocity, γ (t). Here the conventional
symbol for velocity, u(t), is not used because it is reserved for the x velocity component
measured with PIV (see below) and because the HWA probe is sensitive to both the x and y
velocity components. The γ (t) data are examined via: (i) the power spectral density (PSD),
as computed with the algorithm of Welch (1967); (ii) the instantaneous phase difference,
as computed with the Hilbert transform; and (iii) the phase space, as reconstructed via
nonlinear time series analysis based on the time-delay embedding theorem of Takens
(1981) (Appendix A).

Planar stereoscopic time-resolved PIV measurements are performed to quantify the
spatiotemporal evolution of the jet velocity under different forcing conditions. The PIV
system consists of a high-speed dual-cavity Nd:YLF laser (Litron LDY303HE), a set
of sheet-forming optics (Thorlabs), and two high-speed cameras (Photron FASTCAM
SA1.1). Both cameras are fitted with Scheimpflug adapters and 180 mm lenses, with their
axes aligned at 12.5◦ to the measurement plane normal. The measurement plane itself
is illuminated with a laser sheet (thickness 1 mm) positioned in the x–y plane. Oil-droplet
seeding is introduced into both the jet flow and the enclosure air via a Laskin nozzle. Image
pairs are recorded at 5442 Hz, which is more than five times fn; the image separation time
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is δt = 12 μs. The image resolution is 768 (height) × 512 (width) pixels at a depth of
12 bits, spread over a field-of-view measuring 4.44D × 2.96D. The image pairs are
processed with the software DaVis 8.2.2 from LaVision. First, the image pairs are
preprocessed with two filters: (i) a sliding background subtraction filter of width
32 pixels; and (ii) a particle intensity normalization filter of width 8 pixels. Next, the image
pairs are processed with a multipass cross-correlation algorithm. The initial interrogation
area contains 64 × 64 pixels, with a 50 % window overlap for the first two passes. The
final interrogation area contains 32 × 32 pixels, which corresponds to 1.11 × 1.11 mm2

in physical space; the window overlap for the last pass is 75 %, producing a final vector
spacing of 0.046D. The velocity components in the streamwise (x), transverse (y) and
cross-stream (z) directions are denoted by u, v and w, respectively, with the magnitude
of the total velocity vector given by V ≡ √

u2 + v2 + w2. In each test run, 4000 image
pairs are recorded, resulting in the same number of instantaneous vector fields. This
represents over 650 cycles of the natural jet oscillation at fn, which is sufficient for
statistical convergence.

2.2. Acoustic pressure field
As mentioned earlier, the jet discharges into a rectangular enclosure, in which planar
acoustic standing waves are established to perturb the jet. These waves arise from
resonance between the natural acoustic modes of the enclosure and the pressure
oscillations generated by a pair of loudspeakers (Monacor KU-516) mounted at opposite
ends of the enclosure (figure 1). Each loudspeaker is fitted with its own acoustic resonance
tube and is driven by a sinusoidal voltage signal sent from a function generator (Aim–TTi
TGA1244) via a power amplifier (Crown CE1000). The frequency of the signal (i.e. the
forcing frequency ff ) is varied around the natural global frequency of the jet (0.8 ≤ ff /fn ≤
1.2) in order to explore the 1 : 1 Arnold tongue and its synchronization phenomena.
The enclosure has width W = 0.22 m (z direction), height H = 0.59 m (x direction), and
variable length L = 0.96–1.35 m (y direction) so that the acoustic resonance frequency can
be tuned carefully to match ff . The ratio of the enclosure width to the jet diameter (W/D =
36.7) is large enough to keep confinement effects negligible in the near field, 0 � x/D � 4.
At every value of ff , the enclosure contains three full standing waves. The wavelength
of these transverse acoustic waves is much larger than the jet diameter (λ/D > 53.5),
implying that the jet can be regarded as acoustically compact in the near field. The acoustic
pressure fluctuations (p′) in the enclosure are measured with four microphones (B&K Type
4939-A-011: ±2.07 × 10−5 Pa uncertainty, 4.13 mV Pa−1 sensitivity) mounted flush along
the transverse wall (figure 1). The multiple microphone method is used to reconstruct the
acoustic field in the enclosure from estimates of the incident (pi) and reflected (pr) planar
acoustic waves (Seybert & Ross 1977; Jang & Ih. 1998). The stationarity of the acoustic
mode is verified by ensuring that the standing-wave ratio is sufficiently close to zero:
−0.01 < (|pi| − |pr|)/(|pi| + |pr|) < 0.01. The jet is positioned at five discrete locations
along the acoustic standing wave, producing a variety of forcing conditions: pure axial
forcing (position A in figure 3, a pressure antinode), pure transverse forcing (position E,
a pressure node), and combinations of axial and transverse forcing (positions B, C and D,
between a pressure antinode and a pressure node).

As discussed in § 1.3, placing a jet in an acoustic standing wave can preferentially
excite certain hydrodynamic modes, depending on the exact nozzle location. Following
O’Connor et al. (2015), we use the Jacobi–Anger expansion to decompose the planar
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Figure 3. Decomposition of the acoustic pressure field in the jet enclosure. The modal amplitude is shown as
a function of m at five different locations in a planar acoustic standing wave: a pressure antinode (position A), a
pressure node (position E), and between a pressure antinode and node (positions B, C and D). At the pressure
node (position E), the superposition of the m = ±1 helical modes leads to a transverse flapping motion. In the
experiments, three full standing waves are present in the jet enclosure, but for illustration purposes, only one is
shown here.

acoustic perturbations in the jet enclosure into a superposition of nozzle-centric modes:

eiky + e−iky =
∞∑

m=−∞
Cm(kr) eimθ +

∞∑

m=−∞
Cm(kr) e−imθ (2.1)

=
∞∑

m=−∞
im Jm(kr) eimθ +

∞∑

m=−∞
(−i)m Jm(kr) e−imθ , (2.2)

where k and m are, respectively, the wavenumbers in the transverse (y) and azimuthal (θ )
directions, r is the nozzle-centric radial coordinate, Cm is the modal amplitude, and Jm
is the Bessel function of the first kind. For an acoustically compact nozzle (kr � 1), a
Taylor series expansion to leading order gives Jm(kr) = (kr)m/2mm!. Figure 3 shows that
the acoustic disturbances generated at the pressure antinode (position A) are dominated
by the m = 0 mode, with no contribution from the m = ±1 modes (see inset), indicating
pure axial forcing. Moving away from the pressure antinode (i.e. to positions B → D), the
m = 0 mode gradually weakens, while the m = ±1 modes gradually strengthen. These
variations, however, are not symmetric in space: the m = 0 mode remains significantly
stronger than the m = ±1 modes, even at positions C and D. It is not until arriving fully
at the pressure node (position E) that the acoustic disturbances become dominated by the
m = ±1 modes, with no contribution from the m = 0 mode, indicating pure transverse
forcing. Crucially, for a given amplitude of the acoustic standing wave, the axial forcing
(m = 0) produced at the pressure antinode (position A) is more than an order of magnitude
stronger than the transverse forcing (m = ±1) produced at the pressure node (position E).
Therefore, to provide representative comparisons between axial and transverse forcing, we
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adjust the amplitude of the acoustic standing wave such that the modal amplitude is kept
constant across all five nozzle positions.

3. Low-dimensional model

One of the simplest low-dimensional models with self-excited temporal solutions
is the VDP oscillator (van der Pol 1926). This model has been used throughout
science and engineering to study various nonlinear phenomena (Pikovsky et al. 2003;
Balanov et al. 2009), such as the frictional dynamics of tectonic plates (Cartwright
et al. 1999), the interaction between vocal folds (Lucero & Schoentgen 2013), and
thermoacoustic instabilities in combustors (Noiray & Schuermans 2013a; Guan et al.
2019a,b, 2021). Similarly, the forced VDP oscillator has been shown to be able to capture
phenomenologically the forced synchronization dynamics of various globally unstable
flows, such as cylinder wakes (Baek & Sung 2000), jet diffusion flames (Li & Juniper
2013b) and low-density jets (Li & Juniper 2013a,c).

However, the classic VDP oscillator contains only a single natural mode, whereas
the present study concerns the interactions between axisymmetric and transverse
hydrodynamic modes. Therefore, we use two coupled VDP oscillators, each forced
externally by a sinusoidal term, to model phenomenologically the forced synchronization
of the jet:

ẍ1 − σ1ẋ1 + ω2
1x1 + β1x2

1ẋ1 + α12x2
2ẋ1 + κ12(x1 − x2) = b1 sin(ωf t), (3.1)

ẍ2 − σ2ẋ2 + ω2
2x2 + β2x2

2ẋ2 + α21x2
1ẋ2 + κ21(x2 − x1) = b2 sin(ωf t), (3.2)

where x1 is the dynamical variable of the oscillator (3.1) representing the axisymmetric
mode (m = 0), and x2 is the dynamical variable of the oscillator (3.2) representing the
transverse mode (m = ±1). Linear growth is controlled by σ1 and σ2, nonlinear saturation
is controlled by β1 and β2, and the natural angular frequencies in the linear limit are
given by ω1 and ω2. Each oscillator is forced sinusoidally with an independent amplitude
(b1 or b2) but at a common frequency (ωf ). Axial forcing is modelled by exciting the
m = 0 oscillator ((3.1), b1 > 0), while transverse forcing is modelled by exciting the
m = ±1 oscillator ((3.2), b2 > 0). Although our aim is to model phenomenologically
the experimentally observed jet dynamics, care must be taken when choosing the values
of the coefficients in both (3.1) and (3.2). For the m = 0 oscillator (3.1), we set σ1 =
0.07 as per Lee et al. (2019), who used the Fokker–Planck equation to perform system
identification of a low-density jet similar to the one studied here. We set β1 = 4 because
this produces a self-excited oscillation waveform that matches that found in our jet
experiments. For the m = ±1 oscillator (3.2), we allow it to be globally stable (σ2 =
−0.15, β2 = 4), in accordance with the stability analyses of Monkewitz & Sohn (1988),
Jendoubi & Strykowski (1994), Lesshafft & Huerre (2007) and Coenen et al. (2008). The
behaviour of the model remains qualitatively unchanged so long as σ2 remains small
and negative (−0.18 < σ2 < −0.01). However, when b2 increases, the amplitude of the
m = ±1 oscillator also increases, causing it to compete with the m = 0 oscillator. We
let ω1 = 1 and ω2 = 1.04, which is consistent with the analysis of Monkewitz & Sohn
(1988) showing that the Strouhal number of the axisymmetric mode is slightly lower than
that of the first helical mode. We use symmetric nonlinear coupling (α12 = α21 = 3.6)
to model the stabilizing effect of base flow modifications induced by the growth of
either of the two modes (Sipp & Lebedev 2007). We use symmetric linear reactive
coupling (κ12 = κ21 = 0.015) to model mode competition (Balanov et al. 2009). We solve
the coupled oscillator model ((3.1) and (3.2)) numerically for a wide range of forcing
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conditions (b1, b2, ωf ) in order to reproduce the synchronization phenomena observed in
the jet experiments.

4. Natural jet dynamics

Before examining the forced jet response, it is important to identify a suitable operating
point at which to apply external forcing. Figure 4 shows the amplitude and PSD of the
HWA velocity fluctuations in the unforced jet over a range of Re. In this bifurcation
diagram, we increase and decrease Re so as to test for hysteresis and bistability. We
define the jet amplitude as the root-mean-square velocity fluctuation normalized by the
time-averaged velocity: γ ′

rms/γ̄ . By examining both the jet amplitude and PSD (figure 4),
we find four distinct flow regimes.

(i) In regime I (148 < Re < 400), the jet is globally stable but convectively unstable, as
evidenced by the low amplitude of its oscillations and by the absence of sharp peaks
in the PSD. Physically, this implies that the amplification of background disturbances
by local convective modes is not strong enough to overcome the stabilizing influence
of viscosity.

(ii) In regime II (400 < Re < 562), the jet is hysteretic: along the forward path
(increasing Re), the jet amplitude is initially low but then jumps when Re reaches
a critical value (Re = 474), coinciding with the emergence of a sharp peak in the
PSD. This indicates an abrupt transition from a globally stable state (a fixed point)
to a globally unstable state (a limit cycle) (Huerre & Monkewitz 1990). These
limit-cycle oscillations are sustained by a balance between dissipation and extraction
of energy, the latter from the base flow via the baroclinic torque (Lesshafft & Huerre
2007). Along the backward path (decreasing Re), the jet remains globally unstable
throughout the entire regime; the PSD shown in figure 4(b) is for the forward path
only. These differences between the forward and backward paths are characteristic
of a subcritical Hopf bifurcation (Strogatz 1994). Subcritical Hopf bifurcations can
arise in various flow systems (e.g. plane Poiseuille flow, Taylor–Couette flow, a Rijke
tube; Reynolds & Potter 1967; Marques & Lopez 2006; Rigas et al. 2016), but they
have only recently been discovered in low-density inertial jets (Zhu et al. 2017, 2019).

(iii) In regime III (562 < Re < 695), the jet amplitude increases sharply and then
decreases with increasing Re, while the dominant frequency in the PSD remains
roughly constant. This indicates that the global hydrodynamic mode of the jet
has locked into a natural acoustic mode of the nozzle, resulting in hydroacoustic
resonance at a constant Helmholtz number. This regime is to be avoided in our
forced synchronization tests because the natural jet dynamics is no longer prescribed
by global hydrodynamic instability.

(iv) In regime IV (695 < Re < 888), both the jet amplitude and frequency resume the
upward trends that began in regime II, indicating that the global hydrodynamic mode
is no longer locked into a natural acoustic mode of the nozzle. In regimes II and IV,
the dominant frequency increases with Re in accordance with the scaling proposed
by Hallberg & Strykowski (2006) based on a viscous diffusion time scale. This
confirms that the instability is caused by hydrodynamic mechanisms alone, rather
than by hydroacoustic coupling.

In our forced synchronization tests (§ 5), we consider an operating point in regime IV
where Re = 800 (±3.7 %). We choose this particular point because it is far from regime
II where hysteretic bistability occurs. It is also sufficiently far from regime III that, even
at high forcing amplitudes, the instantaneous Re remains high enough to keep the jet in a
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Figure 4. (a) Normalized amplitude and (b) PSD of the HWA velocity fluctuations in the unforced jet over a
range of Re. Panel (b) is for the forward path only. In our forced synchronization tests (§ 5), we consider an
operating point (regime IV: Re = 800) at which the jet is dominated by global hydrodynamic instability. The
resultant self-excited oscillations are axisymmetric (m = 0), as shown in the schlieren snapshot (see inset).

purely hydrodynamically self-excited state, without the risk of it locking into the nozzle
acoustics. Moreover, the Mach number (M ≡ Uj/cj = 1.6 × 10−2, where cj is the speed
of sound) and the Richardson number (Ri ≡ gD(ρ∞ − ρj)/ρjU2

j = 1.3 × 10−3) are both
low enough to render the effects of compressibility and buoyancy insignificant. Finally,
spatiotemporal stability analyses have shown that if the shear layers of a low-density
axisymmetric jet are excessively thick, then the helical modes (m = ±1) can join the
axisymmetric mode (m = 0) in becoming locally absolutely unstable (Monkewitz & Sohn
1988; Jendoubi & Strykowski 1994; Lesshafft & Huerre 2007; Coenen et al. 2008).
To prevent this, we ensure that the transverse curvature (D/θ0 = 33.2) at our chosen
operating point (Re = 800) is in a range where local absolute instability exists in only the
axisymmetric mode, and not in any of the helical modes (Jendoubi & Strykowski 1994).
Consequently, the unforced jet is dominated by global hydrodynamic oscillations whose
spatial mode structure is axisymmetric (m = 0), as shown in the schlieren snapshot of
figure 4 (see inset).

5. Forced jet response

Having identified a suitable operating point (§ 4), we proceed to explore the forced
synchronization of the jet. We apply time-periodic acoustic forcing of different amplitudes,
frequencies (0.8 < ff /fn < 1.2) and symmetries (axial, transverse, and a mix of both). At
each ff , we increase the forcing amplitude incrementally to a value above that required for
lock-in. We define the forcing amplitude as a ≡ (a2

1 + a2
2)

1/2, where a1 is the maximum
pressure oscillation amplitude at the nozzle outlet centreline and is a measure of the axial
forcing amplitude, while a2 is the maximum pressure gradient across the nozzle centreline
and is a measure of the transverse forcing amplitude. We define the normalized response
amplitude of the jet as ηγ ≡ γ ′∗

rms/γ
′
rms, where γ ′∗

rms and γ ′
rms denote the root-mean-square

HWA velocity fluctuations in the forced and unforced jets, respectively. The HWA data
will be supplemented by PIV data in § 5.2.
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Figure 5. Synchronization maps from the forced jet experiments. The surface colours denote the normalized
response amplitude (ηγ ≡ γ ′∗

rms/γ
′
rms), shown in a parameter space defined by the forcing amplitude (a) and

the normalized forcing frequency (ff /fn). The minimum value of a required for lock-in, aloc, is indicated by
circular markers, which form the lower boundaries of the 1 : 1 Arnold tongue. The filled (black) markers
denote a saddle-node bifurcation along the phase-locking route to lock-in, whereas the hollow (white) markers
denote an inverse Neimark–Sacker bifurcation along the suppression route to lock-in.

5.1. Synchronization maps
To provide an overview of the amplitude response and lock-in boundaries, we show in
figure 5 the synchronization maps for the five jet positions examined in figure 3. These
maps contain surfaces of ηγ in a parameter space defined by a and ff /fn. The red and blue
regions correspond, respectively, to amplification and attenuation of the self-excited jet
oscillations. For each value of ff /fn, the minimum value of a required for lock-in, aloc,
is indicated by circular markers. As noted in § 1.2, the region above these markers is
known as the 1 : 1 Arnold tongue (Balanov et al. 2009). The filled (black) markers denote
a saddle-node bifurcation along the phase-locking route to lock-in, whereas the hollow
(white) markers denote an inverse Neimark–Sacker bifurcation along the suppression route
to lock-in; these two routes will be examined in §§ 5.3.1 and 5.3.2. In this study, we define
lock-in as a completely synchronous state in which the instantaneous phase difference
between the forcing signal and the forced self-excited system is constant in time; this state
is known as phase locking in the synchronization literature and can be reached via either
the phase-locking route or the suppression route (Pikovsky et al. 2003). Prior to lock-in
(a < aloc), the jet is either partially synchronized (phase trapping) or desynchronized
(phase drifting), depending on its proximity to the Arnold tongue; these intermediate
quasiperiodic states will also be examined in §§ 5.3.1 and 5.3.2.

The synchronization maps in figure 5 reveal that aloc increases as ff /fn deviates from
1, producing a classic ∨-shaped Arnold tongue centred on the natural mode (ff /fn = 1).
The shape and position of the Arnold tongue remain similar across all five jet positions,
indicating that the jet always locks in at the same set of forcing amplitudes regardless of
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Figure 6. The same as for figure 5 but from the forced VDP model ((3.1) and (3.2)).

the symmetry of the imposed perturbations, i.e. regardless of whether the forcing is purely
axial (position A), purely transverse (position E), or a mix of both (positions B, C and D).

An examination of the ηγ surfaces shows that when the jet is forced purely axially
(figure 5, position A), its oscillations within the Arnold tongue are amplified when ff /fn <

1 (red regions) but attenuated when ff /fn > 1 (blue regions). This is consistent with the
experiments by Li & Juniper (2013a), who found the same asymmetry in a similar jet
subjected to pure axial forcing from a loudspeaker mounted upstream of the nozzle outlet.
In figure 5, the asymmetry in ηγ also appears at all the jet positions between the pressure
antinode and node (positions B, C and D). This is not surprising given that the acoustic
perturbations at these intermediate jet positions are still dominated by the axial mode
(figure 3), just as they are at the pressure antinode itself (figure 5, position A). As § 5.4
will show, the asymmetry in ηγ is caused by non-resonant amplification of the forcing
signal when ff /fn < 1.

When the jet is forced purely transversely (figure 5, position E), its oscillations become
suppressed across the full range of ff /fn. Crucially, this suppression occurs not just
inside the Arnold tongue but also outside it, demonstrating the robustness of this control
technique (i.e. axisymmetry breaking) to variations in both ff and a. The degree of
suppression is generally high: the oscillation amplitude can be reduced to less than
10–15 % of that of the unforced jet in most of the parameter space (figure 5, position E). As
§ 5.4 will show, this suppression of the self-excited jet oscillations occurs via asynchronous
and synchronous quenching, both without any amplification of the forcing signal.

We have shown from a synchronization perspective that breaking the axisymmetry of a
globally unstable jet via transverse forcing can lead to a more effective means of open-loop
flow control than preserving the axisymmetry via axial forcing. In particular, although the
shape and position of the Arnold tongue (aloc) are relatively insensitive to the symmetry of
the imposed perturbations, the jet oscillations themselves are suppressed more readily with
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transverse forcing than with axial forcing. Compared with pure axial forcing (position A)
and axially dominated forcing (positions B, C and D), pure transverse forcing (position E)
can produce larger reductions in ηγ with fewer limitations on the required values of ff
and a. By contrast, when ff /fn < 1, axial forcing, even when combined with transverse
forcing, can cause ηγ to exceed unity. This amplification occurs because the axisymmetric
global mode (m = 0) is preferentially receptive to perturbations matching its own spatial
structure, a phenomenon that will be examined further in § 5.4.

The synchronization maps for the model are shown in figure 6. As before, the surface
colours denote the normalized response amplitude (ηx ≡ x′∗

rms/x′
rms), and the circular

markers denote the onset of lock-in via a saddle-node bifurcation (filled black markers)
or an inverse Neimark–Sacker bifurcation (hollow white markers). The forcing amplitude
is defined as b ≡ (b2

1 + b2
2)

1/2, with the minimum value of b required for lock-in denoted
by bloc. Comparing figures 5 and 6, we find many similarities but also some key differences
between the jet and the model. In both systems, the minimum forcing amplitude required
for lock-in (aloc, bloc) increases with detuning regardless of the symmetry of the imposed
perturbations, resulting in a familiar ∨-shaped Arnold tongue centred on the natural mode
(ff /fn = 1, ωf /ωn = 1). Furthermore, when forced purely transversely (figures 5 and 6,
position E), the self-excited oscillations in both systems become suppressed readily across
a wide range of forcing frequencies and amplitudes, highlighting again the effectiveness
of axisymmetry breaking as a quenching strategy. However, a notable feature of the jet
that could not be captured by the model is the asymmetry in ηγ about ff /fn = 1, which
occurs whenever the imposed perturbations are axially dominated, i.e. at positions A–D

in figure 5. This discrepancy was also noted by Li & Juniper (2013a), but its origin has
yet to be fully established. Nevertheless, it is encouraging to see how such a simple model
can still accurately – albeit qualitatively – capture the extensive amplitude suppression
observed in the purely transversely forced jet, including its insensitivity to both ff and a
(figures 5 and 6, position E).

5.2. Amplitude suppression and symmetry breaking of the wavemaker region
The extensive amplitude suppression observed in the purely transversely forced jet
(figure 5) was established based on local measurements made with a spatially fixed HWA
probe. To verify that the observed suppression is not simply an artefact of the nonlinear
global mode shifting away from the HWA probe, we show in figures 7(a–c) the spatial
distribution of the total velocity fluctuation (i.e. the root-mean-square of V ′, or V ′

rms), as
measured with stereoscopic time-resolved PIV, for both axial and transverse forcing as
well as for no forcing at all. Our focus is on the potential core, rather than on the regions
downstream, because that is where the wavemaker of the global mode is known to reside
(Lesshafft et al. 2006; Qadri et al. 2018). We demarcate the potential core with a black line
representing the regions where V̄ exceeds 95 % of its value at the nozzle outlet centreline.
In figures 7(d–f ), we show the normalized PSD of V ′ along the jet centreline (y/D = 0) at
different axial stations.

When the jet is unforced (figure 7a), V ′
rms increases from around zero at the nozzle

outlet (x/D ≈ 0) to a local maximum within the potential core (x/D ≈ 1.5, coinciding
with the HWA probe location; § 2.1), before eventually decreasing downstream towards
the tip. The corresponding PSD (figure 7d) shows that these self-excited oscillations
occur at the fundamental frequency of the natural global mode (fn). Farther downstream
(x/D > 2.3), the subharmonic (fn/2) overtakes the fundamental (fn) to become the new
dominant mode. This coincides with regions of large V ′

rms outside the potential core.
Such strong fn/2 oscillations in the downstream region are known to arise from period
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root-mean-square of the total velocity fluctuation V ′
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doubling associated with vortex pairing, possibly aided by disturbance amplification from
local convective modes (Kyle & Sreenivasan 1993). From these observations, we can
conclude that the potential core of the jet is dominated by a global hydrodynamic mode at
its natural fundamental frequency (fn).

When the jet is forced purely axially at aloc and ff /fn = 1.09 (figure 7b), V ′
rms

becomes lower than that of the unforced jet, particularly in the potential core, which is
now noticeably shorter. This amplitude reduction for ff > fn is consistent with the ηγ

data (figure 5) extracted from our local HWA measurements. The corresponding PSD
(figure 7e) shows that, as is the case without forcing, most of the potential core oscillates
at the fundamental frequency of the dominant mode, which is now at ff (not fn) because
the jet has locked into the forcing. For a similar reason, the regions downstream oscillate
at the subharmonic of the forced mode (ff /2), rather than at the subharmonic of the natural
global mode (fn/2).

When the jet is forced purely transversely at aloc and ff /fn = 1.09 (figure 7c), V ′
rms

becomes even lower than that of the purely axially forced jet (figure 7b), with most of the
decrease occurring in the potential core. Also decreasing is the streamwise extent of the
potential core itself, although most of its spatial domain (x/D < 2) remains dominated
by the ff mode, with the regions downstream dominated by the ff /2 mode (figure 7f ).
Crucially, the fact that regardless of whether the forcing is axial (figure 7b) or transverse
(figure 7c), the decrease in V ′

rms occurs spatially throughout most of the potential core,
where the wavemaker is known to reside (Lesshafft et al. 2006; Qadri et al. 2018), confirms
that our single-point HWA measurements are indeed a reliable indicator of the jet response.

To assess the symmetry of the vortical structures in the jet, we show in figures 7(g–i)
the dominant spatial modes extracted via dynamic mode decomposition (DMD; Schmid
2010; Rowley & Dawson 2017) of the in-plane velocity field (u, v) measured with PIV.
These DMD modes are dominant in the sense that their amplitudes are the highest in their
respective spectra; they correspond to the fn mode in the unforced jet (figure 7g) and to
the ff mode in both the purely axially forced jet (figure 7h) and the purely transversely
forced jet (figure 7i). Superimposed over the DMD modes are contours of the out-of-plane
vorticity fluctuation. In all three cases (figures 7g–i), the jet dynamics are periodic, either
naturally or due to lock-in, with each DMD mode featuring a train of counter-rotating
vortical structures advecting along the shear layers on both sides of the jet centreline.

In both the unforced jet (figure 7g) and the purely axially forced jet (figure 7h), the
vortical structures are antisymmetric about the jet centreline, which is consistent with the
presence of an m = 0 global mode. To quantify the phase shift between the left and right
shear layers (Θ), we apply the Hilbert transform to instantaneous streamwise profiles of
vorticity extracted at y/D = ±0.5, and then plot the data in figure 7(j) as a normalized
histogram of Θ . We find that the histogram peaks at Θ ≈ 0 for both the unforced and
axially forced jets, confirming that the left and right shear layers are rolling up in phase
with each other. This is the classic behaviour of an axisymmetric jet dominated by an
m = 0 global mode.

In the purely transversely forced jet (figure 7i), however, the vortical structures are no
longer antisymmetric about the jet centreline. Instead, they roll up and advect out-of-phase
by π/2 (figure 7j), producing a transverse flapping motion that breaks the axisymmetry
of the m = 0 global mode. Put together, these findings provide compelling evidence that
axial forcing preserves the inherent axisymmetry of the jet, whereas transverse forcing
breaks that axisymmetry by inducing the staggered roll-up of vortical structures in the
shear layers. The latter effect will prove to be crucial in achieving asynchronous and
synchronous quenching of the natural global mode, without amplification of the forced
mode.
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Figure 8. Synchronization dynamics of the jet when forced axially (position A) at a frequency close to its
natural global frequency: ff /fn = 1.04. The (a) time trace, (b) PSD, (c) temporal evolution of 
φf ,γ , and (d)
one-sided Poincaré map are shown for nine forcing amplitudes, including the unforced case (A = 0). Lock-in
occurs via the phase-locking route, which involves a Neimark–Sacker bifurcation at A = 0 → 0.25 followed
by a saddle-node bifurcation at A = 0.93 → 1. The unforced state is shown in green, the quasiperiodic states
are shown in blue, and the onset of lock-in is shown in red.

5.3. Bifurcation routes to lock-in
Having examined the spatial characteristics of the forced jet response, we now turn to
identifying the bifurcations responsible for lock-in. We first consider the purely axially
forced jet (§ 5.3.1, position A) so as to establish a calibrated baseline against the axial
forcing experiments of Li & Juniper (2013a,c). We then compare this to the purely
transversely forced jet (§ 5.3.2, position E) so as to determine the effects of axisymmetry
breaking. In the interest of brevity, we do not show results for combined axial–transverse
forcing (positions B, C and D) because they are qualitatively similar to those for pure axial
forcing (position A). This is expected because all four of these jet positions (positions A, B,
C and D) are dominated by axial perturbations (m = 0), with little to no contribution from
transverse perturbations (m = ±1), as was shown in figure 3. For each type of forcing, we
consider two representative values of ff , one close to fn and one far from fn. This is so
that we can investigate the full range of synchronization dynamics around the 1 : 1 Arnold
tongue.

5.3.1. Axial forcing: the jet at position A

Figure 8 shows the synchronization dynamics of the jet when forced axially at a frequency
close to its natural global frequency: ff /fn = 1.04. We consider the time trace, the PSD, the
instantaneous phase difference between the forcing signal and the forced self-excited jet,

φf ,γ , and the one-sided Poincaré map, all extracted from the γ (t) signal. For comparison,
we show in figure 9 the same indicators but for the axially forced model. In both systems,
we increase the forcing amplitude incrementally until reaching the onset of lock-in, which
occurs at A ≡ a/aloc = 1 for the jet and at B ≡ b/bloc = 1 for the model.
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Figure 9. The same as in figure 8 but for the axially forced model at ωf /ωn = 1.04.

When unforced (figure 8, A = 0), the jet is hydrodynamically self-excited, exhibiting
a nonlinear global mode at fn with progressively weaker components at the subharmonic
and superharmonics (both odd and even; figures 8a,b). In the absence of forcing, 
φf ,γ is
undefined, so we plot in the bottom row of figure 8(c) the instantaneous phase evolution of
the unforced jet, −φγ , which is seen to drift continuously in time without phase slips. This
behaviour is consistent with the absence of pronounced amplitude modulation in the time
trace (figure 8a) (Pikovsky et al. 2003). In the Poincaré map (figure 8d), the intercepts of
the phase trajectory are concentrated at a single spot, indicating the presence of a closed
repetitive orbit in the phase portrait, a signature feature of a period-1 limit-cycle attractor.

When forced at intermediate amplitudes (figure 8, A = 0.25–0.93), the jet becomes
quasiperiodic. This is evidenced by the appearance of amplitude modulation in the time
trace (figure 8a) and by the emergence of sharp peaks at both the forced (ff ) and natural
(f ∗

n ) modes in the PSD (figure 8b). The values of ff and f ∗
n are incommensurable and,

through the action of nonlinear resonant three-wave interactions (Schmid, Henningson
& Jankowski 2002), they generate a train of spectral peaks at linear combinations of
ff and f ∗

n . Quasiperiodicity is also demonstrated by 
φf ,γ drifting unboundedly in time
(figure 8c) and by the formation of a closed ring of trajectory intercepts in the Poincaré
map (figure 8d). Taken together, these observations indicate that the jet has transitioned
from a period-1 limit-cycle attractor to an ergodic two-dimensional torus attractor T2

via a Neimark–Sacker bifurcation at A = 0 → 0.25 (Pikovsky et al. 2003; Balanov et al.
2009). Several other features are worth noting in this quasiperiodic regime. As A increases,
the natural mode at f ∗

n gradually shifts towards the forced mode at ff , whose value is
dictated by the external forcing and is thus fixed. This temporal adjustment process,
known as frequency pulling in the synchronization literature, is a hallmark feature of the
phase-locking route to lock-in (Pikovsky et al. 2003; Balanov et al. 2009). As for the
phase difference (figure 8c), frequency pulling causes the time-averaged slope of 
φf ,γ ,
or 〈
φ̇f ,γ 〉, to approach zero gradually as A increases. Physically, this implies that the
time scale of the natural mode is adjusting to match that of the forced mode. This process
occurs without significant changes in the oscillation amplitude (figure 8a). Consequently,
lock-in along the phase-locking route occurs via adjustments in the frequency rather than
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in the amplitude, which is physically consistent with this route arising only when ff is
sufficiently close to fn. Another notable feature is that at relatively high forcing amplitudes
(figure 8c, A = 0.74–0.93), 
φf ,γ drifts increasingly nonlinearly, spending long epochs at
nearly constant values and then dropping abruptly by one complete cycle of 2π (see insets
of figure 8c). In synchronization theory, the sudden loss or gain of an integer number
of complete cycles is known as phase slipping and is another defining feature of the
phase-locking route (Pikovsky et al. 2003). As A increases towards the value required
for lock-in (A = 1), the time between successive phase slips increases. Physically, this
implies that the jet is spending more and more time oscillating at ff , with fewer phase slips.
Meanwhile, the Poincaré map shows that the phase trajectory continues to wrap around the
ergodic T2 torus attractor, whose scale grows monotonically as A increases (figure 8d).
This confirms that the jet is still oscillating quasiperiodically at two incommensurable
frequencies.

When forced at a critical amplitude (figure 8, A = 1), the jet transitions from T2

quasiperiodicity to 1 : 1 lock-in: it now oscillates at only ff and its harmonics, with no
sign of the original natural mode at f ∗

n (figure 8b). As a result, the time trace is no
longer modulated (figure 8a), and 
φf ,γ no longer drifts or slips but instead remains
constant in time (figure 8c), indicating phase locking (Pikovsky et al. 2003). As expected,
this transition from T2 quasiperiodicity to 1 : 1 lock-in sees the ring structure in the
Poincaré map replaced by a single cluster of trajectory intercepts, indicative of a period-1
orbit (figure 8d). Crucially, the collapse of the ring structure occurs suddenly rather than
gradually (figure 8d, A = 0.93 → 1). According to synchronization analyses of the forced
VDP oscillator (Balanov et al. 2009), the suddenness of this collapse indicates that the
T2 attractor is still alive but has become resonant through a saddle-node bifurcation.
Consequently, a pair of periodic orbits – one stable orbit and one saddle orbit – is born
on the resonant T2 surface, with lock-in occurring when the phase trajectory snaps on to
the stable orbit. This synchronization mechanism, involving a saddle-node bifurcation and
frequency pulling, is intrinsic to the phase-locking route to lock-in (Balanov et al. 2009).

As mentioned earlier, figure 9 shows the same four indicators as in figure 8 but for
the axially forced model. We find that the model can reproduce qualitatively the main
synchronization phenomena exhibited by the jet. These include: (i) a Neimark–Sacker
bifurcation from a period-1 limit cycle to T2 quasiperiodicity when axial forcing is first
applied; (ii) amplitude modulation of the time trace, along with phase drifting and slipping
during T2 quasiperiodicity; (iii) a gradual pulling of f ∗

n towards ff as the forcing amplitude
increases, causing 〈
φ̇f ,γ 〉 to approach zero gradually; and (iv) a saddle-node bifurcation
from T2 quasiperiodicity to 1 : 1 lock-in at a critically high forcing amplitude. However,
the model cannot reproduce the train of spectral peaks observed at and around the
subharmonic and superharmonics of fn. This is because the VDP kernel used in the model
contains only cubic nonlinearity, thus generating only odd harmonics (Nayfeh & Mook
1995). Although incorporating other forms of nonlinearity may improve the comparison,
doing so is not a priority here. Our primary aim is to use the simplest possible model
to capture phenomenologically the most salient synchronization phenomena of the jet,
such as its Arnold tongue, bifurcation routes to lock-in, phase dynamics, and oscillation
quenching mechanisms.

Next we increase ff so that it is far from fn (figure 10, ff /fn = 1.17). We find several
important differences relative to the earlier case where ff is close to fn (figure 8, ff /fn =
1.04). In particular, lock-in now occurs not through a gradual pulling of f ∗

n towards ff ,
but through a gradual reduction in the amplitude of the natural mode. This fundamental
change in the synchronization mechanism can be seen in the PSD (figure 10b), where the
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Figure 10. Synchronization dynamics of the jet when forced axially (position A) at a frequency far from its
natural global frequency: ff /fn = 1.17. The (a) time trace, (b) PSD, (c) temporal evolution of 
φf ,γ , and (d)
one-sided Poincaré map are shown for nine forcing amplitudes, including the unforced case (A = 0). Lock-in
occurs via the suppression route, which involves a Neimark–Sacker bifurcation at A = 0 → 0.18 followed by an
inverse Neimark–Sacker bifurcation at A = 0.91 → 1. The unforced state is shown in green, the quasiperiodic
states are shown in blue, and the onset of lock-in is shown in red.
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Figure 11. The same as in figure 10 but for the axially forced model at ωf /ωn = 1.17.

frequency (f ∗
n ) of the spectral peak corresponding to the natural mode remains constant

as A increases. The difference can also be seen in the temporal evolution of the phase
difference (figure 10c), where 〈
φ̇f ,γ 〉 remains constant as A increases, until it eventually
snaps to zero at the onset of phase trapping (A = 0.78) (Aronson, Ermentrout & Kopell
1990; Thévenin et al. 2011).
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As A increases from the onset of phase trapping, the ring structure in the Poincaré
map shrinks gradually (figure 10d, A = 0.78 → 1), indicating that the underlying T2

attractor is collapsing gradually to its death via an inverse Neimark–Sacker bifurcation
(Balanov et al. 2009). This gradual collapse stands in stark contrast to the sudden collapse
seen in figure 8(d), where the detuning is small. According to synchronization analyses
of the forced VDP oscillator (Balanov et al. 2009), this difference is consistent with
the jet locking into the forcing via the suppression route, rather than the phase-locking
route. In other words, instead of adjusting its phase dynamics (i.e. advancement or
retardation of its temporal rhythm) to match that of the forcing, the jet experiences a
suppression of its natural amplitude dynamics (Pikovsky et al. 2003). Because in this
example ff /fn is sufficiently larger than 1, the suppression of the natural mode occurs
without resonant amplification of the forced mode, resulting in the oscillation amplitude at
lock-in (figure 10a, A = 1) being lower than that in the unforced state (figure 10a, A = 0).
In synchronization theory, a suppression of the natural mode by non-resonant forcing is
often referred to as asynchronous quenching (Bogoliubov & Mitropolsky 1961; Minorsky
1967, 1974), which will be examined further in § 5.4.

For comparison, we show in figure 11 the same four indicators as in figure 10 but for the
axially forced model. As is the case when ff is close to fn (figures 8 and 9), we find that
the model can reproduce qualitatively the main synchronization phenomena exhibited by
the jet. Crucially, these include features specific to the suppression route to lock-in, such
as: (i) a gradual reduction in the amplitude of the natural mode as A increases, without
a simultaneous pulling of f ∗

n towards ff ; (ii) a constant value of 〈
φ̇f ,γ 〉 followed by an
abrupt snap to zero at the onset of phase trapping; and (iii) a gradual reduction in the size
of the ring structure in the Poincaré map, indicating an inverse Neimark–Sacker bifurcation
from T2 quasiperiodicity to 1 : 1 lock-in at a critically high forcing amplitude.

In summary, we have investigated the forced synchronization of a prototypical
hydrodynamic oscillator – a globally unstable low-density axisymmetric jet – located at
the pressure antinode of a planar acoustic standing wave, where axial (symmetric, m = 0)
perturbations were produced at different amplitudes and frequencies. We found that around
the 1 : 1 Arnold tongue, the jet exhibits a complex range of synchronization phenomena,
such as: (i) phase drifting, slipping and trapping during quasiperiodicity on a T2 attractor
at intermediate A values; (ii) phase locking on a periodic orbit at critically high A values;
and (iii) two bifurcation routes to lock-in – the phase-locking route when the detuning is
small, and the suppression route when the detuning is large. We then showed that these
synchronization phenomena could be captured qualitatively by the simple VDP model
proposed in § 3. These findings are broadly consistent with the experiments conducted by
Li & Juniper (2013a,c) on a similar hydrodynamically self-excited jet forced axially from
upstream with a loudspeaker mounted in the nozzle plenum. This further validates the
present experimental methodology and data analysis, paving the way for an exploration of
the effects of axisymmetry breaking via transverse forcing.

5.3.2. Transverse forcing: the jet at position E

Figure 12 shows the synchronization dynamics of the jet when forced transversely at
a frequency close to its natural global frequency: ff /fn = 1.04. Comparing this with
figure 8, we find that switching from axial to transverse forcing at small detuning leads
to a dramatic change in the jet response. In particular, although the jet still transitions
from unforced periodicity to T2 quasiperiodicity via a Neimark–Sacker bifurcation when
forcing is first applied (figure 12, A = 0 → 0.14), the subsequent transition to 1 : 1 lock-in
no longer occurs via a saddle-node bifurcation, as would be expected from figure 8 and
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Figure 12. Synchronization dynamics of the jet when forced transversely (position E) at a frequency close to
its natural global frequency: ff /fn = 1.04. The (a) time trace, (b) PSD, (c) temporal evolution of 
φf ,γ , and (d)
one-sided Poincaré map are shown for nine forcing amplitudes, including the unforced case (A = 0). Lock-in
occurs via the suppression route, which involves a Neimark–Sacker bifurcation at A = 0 → 0.14 followed by an
inverse Neimark–Sacker bifurcation at A = 0.92 → 1. The unforced state is shown in green, the quasiperiodic
states are shown in blue, and the onset of lock-in is shown in red.

from weakly nonlinear analyses of the classic (single-mode) VDP model when ff is close
to fn (Pikovsky et al. 2003; Balanov et al. 2009). Instead, we find in figure 12 that as
A increases in the quasiperiodic regime, the frequency (f ∗

n ) of the natural mode remains
constant but its amplitude decreases gradually, indicating asynchronous quenching without
frequency pulling. In turn, this causes 〈
φ̇f ,γ 〉 to remain constant with increasing A, until
it eventually snaps to zero at the onset of phase trapping (figure 12c, A = 0.92). By tracking
the ring structure in the Poincaré map (figure 12d), we find a gradual shrinkage of the T2

attractor en route to lock-in, providing evidence of an inverse Neimark–Sacker bifurcation
(Balanov et al. 2009). Put together, these observations reveal that when its axisymmetry
is broken via transverse forcing, the jet locks in via the suppression route, even when
the detuning is small. This is strikingly different from the phase-locking route taken by
the axially forced jet (figure 8). An intrinsic feature of the suppression route is a marked
reduction in the oscillation amplitude en route to lock-in (Balanov et al. 2009). Here, such a
reduction is indeed observed, both in the time trace (figure 12a) and in the synchronization
map (figure 5). Figure 13 shows that the main synchronization phenomena exhibited by the
transversely forced jet – such as the amplitude reduction, phase trapping, and suppression
route to lock-in via an inverse Neimark–Sacker bifurcation – are well captured by the
transversely forced model.

Next we increase ff so that it is far from fn (figure 14, ff /fn = 1.17). We find that the
jet responds qualitatively similarly to when ff is close to fn (figure 12, ff /fn = 1.04).
Specifically, lock-in still occurs via the suppression route: (i) the natural mode becomes
quenched without its frequency f ∗

n being pulled towards ff ; (ii) phase trapping occurs just
before the onset of lock-in; and (iii) the T2 attractor shrinks gradually to its death via an
inverse Neimark–Sacker bifurcation. For comparison, we show the corresponding model
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Figure 13. The same as in figure 12 but for the transversely forced model at ωf /ωn = 1.04.
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Figure 14. Synchronization dynamics of the jet when forced transversely (position E) at a frequency far from
its natural global frequency: ff /fn = 1.17. The (a) time trace, (b) PSD, (c) temporal evolution of 
φf ,γ , and (d)
one-sided Poincaré map are shown for nine forcing amplitudes, including the unforced case (A = 0). Lock-in
occurs via the suppression route, which involves a Neimark–Sacker bifurcation at A = 0 → 0.49 followed by an
inverse Neimark–Sacker bifurcation at A = 0.95 → 1. The unforced state is shown in green, the quasiperiodic
states are shown in blue, and the onset of lock-in is shown in red.

response in figure 15. As is the case for small detuning (figures 12 and 13), we find that
the model can reproduce qualitatively the main synchronization phenomena exhibited by
the jet, including the substantial reduction in the oscillation amplitude en route to lock-in
(figure 15a).
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Figure 15. The same as in figure 14 but for the transversely forced model at ωf /ωn = 1.17.

5.4. Asynchronous quenching
In § 5.3.1, we showed that when forced axially, the jet locks in via the phase-locking
route when the detuning is small, but via the suppression route when the detuning is
large. In § 5.3.2, we showed that when forced transversely, the jet locks in exclusively
via the suppression route, regardless of whether the detuning is small or large. According
to synchronization theory based on a self-excited oscillator with a single natural mode
(Balanov et al. 2009), only the suppression route can cause asynchronous quenching of
the natural mode without resonant amplification of the forced mode. The findings of
§§ 5.3.1 and 5.3.2 thus suggest that transverse forcing would be more effective than axial
forcing in suppressing the global axisymmetric oscillations of a low-density jet. Below,
we provide definitive evidence of this and show that, like most other synchronization
phenomena observed in the jet, asynchronous quenching can be qualitatively reproduced
by the coupled oscillator model of § 3.

Figure 16 shows the spectral power of the natural mode (P′∗
n ), of the forced mode (P′∗

f ),
and of the total γ ′ signal (P′∗

t ), all as functions of the forcing power (A2) for both axial and
transverse forcing. We consider two representative non-resonant values of ff , one below fn
(figure 16a,c, ff /fn = 0.82) and one above fn (figure 16b,d, ff /fn = 1.17). Both ff values are
sufficiently far from fn for lock-in to occur via the suppression route (figure 5). We compute
the spectral power by integrating the PSD around each respective mode (±5 Hz) and then
normalizing the result by the total power of the unforced system (P′

t). We compute the total
power by integrating the PSD across the entire bandwidth, with verification that it obeys
Parseval’s theorem, i.e. that it is equal (within 0.22 %) to the mean squared fluctuation.

5.4.1. Axial forcing: the jet at position A

Figures 16(a,b) show that, regardless of whether ff /fn < 1 or ff /fn > 1, the axially forced
jet undergoes a suppression of its natural mode en route to lock-in (grey shading). This
is demonstrated by P′∗

n decaying to zero as A2 increases to 1 and beyond, providing clear
evidence of asynchronous quenching (Bogoliubov & Mitropolsky 1961; Minorsky 1967,
1974). Meanwhile, P′∗

f increases, but in two different ways. When ff /fn > 1 (figure 16b),
P′∗

f increases linearly with A2 up to and beyond lock-in. When ff /fn < 1 (figure 16a),
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Figure 16. Evidence of asynchronous quenching in the jet: spectral power as a function of the forcing power
for (a,b) axial forcing, and (c,d) transverse forcing. For both types of forcing, lock-in occurs via the suppression
route. Two representative values of ff are shown: (a,c) one below fn, and (b,d) one above fn.
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Figure 17. The same as in figure 16 but for the axially or transversely forced model.

however, P′∗
f increases linearly at first but then nonlinearly at higher A2 values, jumping

sharply at the onset of lock-in (A2 = 1). This accelerated growth in P′∗
f is indicative of

an amplification of the forced mode via nonlinear interactions with the natural mode
(Odajima et al. 1974; Abel et al. 2009). Because here the forcing is non-resonant
(figure 16a, ff /fn = 0.82), this phenomenon is referred to as non-resonant amplification
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(Nayfeh & Mook 1995). Such an amplification of the forced mode causes P′∗
t to rise

above that of the unforced system (P′∗
t /P′

t > 1). Consequently, if the control objective
is to suppress the global axisymmetric oscillations of a low-density jet using axial forcing,
then it is not simply enough for ff to be sufficiently far from fn to activate the suppression
route; one must also ensure that ff /fn > 1, as this enables asynchronous quenching to
occur without resonant or non-resonant amplification en route to lock-in (figure 16b). If
ff is somehow allowed to fall below fn, then asynchronous quenching still occurs, but
its effect is counteracted by non-resonant amplification of the forced mode, resulting in
the total power increasing above that of the unforced system as lock-in is approached
(figure 16a). We believe that this is the first time that asynchronous quenching has been
observed alongside non-resonant amplification in a forced self-excited hydrodynamic
system. As § 5.4.2 will confirm, this discovery provides a compelling incentive to consider
axisymmetry breaking, via transverse forcing, as an alternative method of suppressing a
nonlinear global mode.

Figures 17(a,b) show the spectral power of the axially forced model at the two forcing
frequencies shown in figures 16(a,b): ωf /ωn = 0.82 and 1.17. For both values of ωf /ωn,
the model can capture qualitatively the asynchronous quenching observed in the jet: P′∗

n
decays to zero as B2 increases to 1 and beyond. However, the model cannot capture
the non-resonant amplification of the forced mode, regardless of whether ωf /ωn < 1 or
ωf /ωn > 1. Instead, it exhibits a proportional relationship between P′∗

f and B2, resulting
in P′∗

t remaining well below that of the unforced state en route to and at the onset of
lock-in (B2 = 1). The inability of the model to capture non-resonant amplification when
the forcing frequency is below the natural frequency is why the asymmetry about ff /fn = 1
in the ηγ data from the jet (figure 5) is absent in the ηx data from the model (figure 6).
Nevertheless, in both the jet and the model, continuing to increase the forcing amplitude
(or forcing power) after lock-in eventually causes the total amplitude to rise above that of
the unforced state (figure 5).

5.4.2. Transverse forcing: the jet at position E

Turning now to the transversely forced jet (figures 16c,d), we find that in some ways it
behaves similarly to the axially forced jet (figures 16a,b). For example, for both ff /fn < 1
(figure 16c) and ff /fn > 1 (figure 16d), P′∗

n decays to zero as A2 increases. As before,
this is clear evidence of asynchronous quenching, consistent with the suppression route to
lock-in. However, we find that P′∗

n decays more rapidly here, indicating that transverse
forcing is more effective than axial forcing in disrupting the natural global mode of
the jet. Moreover, we find that P′∗

n decays to negligible values well before A2 reaches
1, implying that the onset of natural-mode suppression (P′∗

n ≈ 0) precedes the onset of
lock-in (A2 = 1). This occurs because the onset of lock-in is defined as when the attractor
topology changes from T2 to a periodic orbit. A strong subharmonic mode at f ∗

n /2 (e.g.
see figure 14b) can thus cause the jet to remain quasiperiodic, even when the fundamental
mode at f ∗

n itself is relatively weak.
Another difference relative to the axially forced jet is that not only is P′∗

f not amplified
but it does not even increase in proportion to A2 (figures 16c,d). Instead, it remains
negligible over the entire range of A2. The complete absence of a response at ff is in
stark contrast to the proportional increase (figure 16b) and the non-resonant amplification
(figure 16a) seen in the axially forced jet. These differences suggest that the jet is more
receptive to axial perturbations that reinforce the axisymmetry of its natural global mode
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Figure 18. Evidence of synchronous quenching in (a,c) the jet, and (b,d) the model: spectral power as a
function of the normalized forcing frequency for (a,b) axial forcing, and (c,d) transverse forcing. The forcing
amplitude is (a) a = 0.998 Pa, (b) b = 0.019, (c) a = 1.320 Pa, and (d) b = 0.049.

(m = 0) and is less receptive to transverse perturbations that break its axisymmetry (m =
±1), as expected from the helical hydrodynamic modes (m = ±1) being only globally
stable. Given that P′∗

f ≈ 0 over the entire range of A2, P′∗
t decays similarly to P′∗

n for
both ff /fn < 1 and ff /fn > 1 (figures 16c,d), implying that the overall jet oscillations are
quenched well before the onset of lock-in.

Figures 17(c,d) show that the transversely forced model can capture qualitatively the
spectral power characteristics of the transversely forced jet (figures 16c,d). This includes:
(i) asynchronous quenching of the natural mode; (ii) the absence of any response at the
forced mode; and (iii) quenching of the overall jet oscillations to a quiescent state.

5.5. Synchronous quenching
To examine the amplitude response at small detuning, we show in figure 18 the spectral
power of the jet and of the model for a range of forcing frequencies, both close to and
far from the natural frequency. The forcing is either axial or transverse, but always at a
relatively low amplitude (see the caption of figure 18).

In the axially forced jet (figure 18a), we find that as ff /fn approaches 1 from either
the low side or the high side, P′∗

n decays to zero whilst P′∗
f grows to a maximum.

This indicates that synchronous quenching of the natural mode is occurring alongside
resonant amplification of the forced mode (Keen & Fletcher 1969; Odajima et al. 1974;
Abel et al. 2009; Mondal et al. 2019). Here the degree of resonant amplification is
strong enough to enable P′∗

f to counterbalance the quenching of P′∗
n , resulting in P′∗

t
exceeding P′

t just below ff /fn = 1. In the axially forced model (figure 18b), we find
the same qualitative behaviour involving the simultaneous occurrence of synchronous
quenching and resonant amplification when ff /fn is close to 1. Similar behaviour has been
observed recently in self-excited thermoacoustic systems subjected to similar resonant
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forcing (Guan et al. 2019a,b; Mondal et al. 2019). However, we believe that this is the first
time that synchronous quenching has been observed alongside resonant amplification in
a self-excited hydrodynamic system, reinforcing the universality of such synchronization
phenomena in physically disparate systems.

In the transversely forced jet (figure 18c), we find markedly different behaviour: although
synchronous quenching of the natural mode still occurs (P′∗

n → 0), the forced mode is not
amplified to a degree sufficient to cause P′∗

t to exceed P′
t, implying the absence of resonant

amplification. The same qualitative behaviour is observed in the transversely forced model
(figure 18d). This demonstrates that synchronous quenching of the natural mode occurring
without resonant amplification of the forced mode is the primary mechanism by which
transverse forcing is able to reduce the overall response amplitude when ff is close to fn.

6. Conclusions

In this study, we have adopted a forced synchronization framework to answer three
research questions (§ 1.4) on the open-loop control of period-1 limit-cycle oscillations
in a prototypical hydrodynamic oscillator, namely a globally unstable low-density
axisymmetric jet.

(i) Can breaking the axisymmetry of the jet via transverse forcing lead to a more
effective open-loop control strategy than preserving the axisymmetry via axial
forcing?
We have shown experimentally that breaking the m = 0 axisymmetry of the
nonlinear global mode of the jet, by applying transverse acoustic forcing (flapping
perturbations), can cause lock-in to occur exclusively via the suppression route,
regardless of whether ff is close to or far from fn. This insensitivity to detuning
enables both asynchronous and synchronous quenching of the natural mode to occur
without resonant or non-resonant amplification of the forced mode. The result is
a substantially greater reduction in the overall response amplitude across all tested
values of ff /fn, as compared with the baseline case of axial forcing. This shows that
simply switching from symmetric to asymmetric perturbations can lead to a more
effective open-loop control strategy, in the sense that stronger amplitude suppression
can be achieved without the need to worry about the exact detuning between ff andfn.

(ii) How do the synchronization phenomena – such as the bifurcation routes, Arnold
tongues, and quenching mechanisms – differ between transverse and axial forcing?
We have shown experimentally that when applied at low A, transverse forcing,
like axial forcing, causes the jet to transition from a period-1 orbit on a
limit-cycle attractor to T2 quasiperiodicity on a torus attractor via a Neimark–Sacker
bifurcation. When A increases, however, we find that the subsequent transition,
from T2 quasiperiodicity to 1 : 1 lock-in, depends on the spatial symmetry of the
applied perturbations. Specifically, we find that axial forcing induces a saddle-node
bifurcation at small detuning but an inverse Neimark–Sacker bifurcation at large
detuning, whereas transverse forcing always induces an inverse Neimark–Sacker
bifurcation irrespective of the detuning. Nevertheless, we find that the shape and
position of the Arnold tongue remain similar for both types of forcing. This shows
that although transverse and axial forcing are equally capable of causing lock-in, only
transverse forcing can ensure that it occurs via the suppression route rather than the
phase-locking route. It is partly through this specific route selection that transverse
forcing can suppress the natural mode via synchronous quenching at small detuning
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and asynchronous quenching at large detuning, without ever incurring a significant
amplification of the forcing signal.

(iii) Can these synchronization phenomena be modelled phenomenologically with a
low-dimensional system based simply on a pair of coupled VDP oscillators?
We have shown that the main synchronization phenomena exhibited by the jet
can be modelled qualitatively with just two generic VDP oscillators coupled to
each other and forced externally by sinusoidal terms. The success of such a
simple low-dimensional model in capturing the complex nonlinear dynamics of
a multi-modal hydrodynamic system opens up the possibility that, with further
development, such a model could be used to explore the forced synchronization
of other hydrodynamically self-excited flows subjected to axisymmetric and
non-axisymmetric mode excitation. As well as offering new insight into the
interactions between different hydrodynamic and acoustic modes, this could
facilitate the discovery of novel control strategies for the suppression of nonlinear
global modes.

Regarding future work, one aspect that deserves further attention is the asymmetry in
ηγ about ff /fn = 1, which was detected in the axially forced jet (figure 5). We believe that
this asymmetry may be due to the different spatial-mode structures generated at different
values of ff , with higher frequency modes experiencing stronger viscous damping and thus
stronger amplitude attenuation. One of our next steps is to explore this further by extending
the present temporal analysis to a spatiotemporal analysis involving a more detailed modal
decomposition of the PIV images and low-order modelling via the Ginzburg–Landau
equation.
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Appendix A. Nonlinear time series analysis

Forced synchronization is an inherently nonlinear process (Pikovsky et al. 2003; Balanov
et al. 2009). As such, it is often studied in phase space (i.e. state space) using methods from
nonlinear time series analysis (Kantz & Schreiber 2003). In general, the phase space of a
continuous dynamical system is a Q-dimensional hyperspace in which all Q state variables
reside. Within this hyperspace, the temporal evolution of the system is represented by its
phase trajectory, whose characteristics can reveal useful information about the topology of
the dominant attractors. In most real-world systems, however, it is difficult to determine
the phase space directly because not all of its state variables are known or accessible.
Nevertheless, owing to intrinsic coupling between different state variables, it is possible
to reconstruct the phase space from only a single scalar observation function, by using the
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time-delay embedding theorem of Takens (1981). Here we use this theorem to reconstruct
the dominant attractors as a Euclidean vector of time-delayed elements of dimension q:

ξ(t) = [γ ′(t), γ ′(t − τ), γ ′(t − 2τ), . . . , γ ′(t − (q − 1)τ )], ξ ∈ R
q, (A1)

where γ ′ is the velocity fluctuation in the jet (this is replaced by x′ in the model of § 3), τ is
the embedding time delay, and q is the embedding dimension. We set the value of τ to be
the time taken by the average mutual information function to attain its first local minimum
(Fraser & Swinney 1986). This ensures that the time-delayed vector elements are optimally
decorrelated such that the attractors unfold maximally in the embedding space, enabling
their fine structures to be identified readily (Kantz & Schreiber 2003). We determine the
minimum value of q using the algorithm of Cao (1997). After reconstructing the phase
space, we visualize the attractors within it in two ways: (i) via the three-dimensional phase
portrait; and (ii) via a two-dimensional slice through the phase portrait, which is known as
the Poincaré map (Kantz & Schreiber 2003).
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