

ARTICLE

Clustered colouring of graph classes with bounded treedepth or pathwidth

Sergey Norin¹, Alex Scott² and David R. Wood^{3,}*

¹Department of Mathematics and Statistics, McGill University, Montréal, Canada. Supported by NSERC grant 418520, ²Mathematical Institute, University of Oxford, Oxford, UK and ³School of Mathematics, Monash University, Melbourne, Australia. Supported by the Australian Research Council [∗]Corresponding author. Email: david.wood@monash.edu

(Received 14 February 2021; revised 20 January 2022; accepted 8 June 2022; first published online 5 July 2022)

Abstract

The *clustered chromatic number* of a class of graphs is the minimum integer *k* such that for some integer *c* every graph in the class is *k*-colourable with monochromatic components of size at most *c*. We determine the clustered chromatic number of any minor-closed class with bounded treedepth, and prove a best possible upper bound on the clustered chromatic number of any minor-closed class with bounded pathwidth. As a consequence, we determine the fractional clustered chromatic number of every minor-closed class.

Keywords: graph; graph colouring; clustered colouring; minor; treedepth; pathwidth; fractional colouring **2020 MSC Codes:** Primary: 05C83, Secondary: 05C15

1. Introduction

This paper studies improper vertex colourings of graphs with bounded monochromatic degree or bounded monochromatic component size. This topic has been extensively studied recently [\[1](#page-10-0)[–6,](#page-10-1) [7,](#page-10-2) [8,](#page-10-3) [9](#page-10-4)[–18,](#page-10-5) [19–](#page-10-6)[21\]](#page-10-7); see [\[22\]](#page-10-8) for a survey.

A *k*-*colouring* of a graph *G* is a function that assigns one of *k* colours to each vertex of *G*. In a coloured graph, a *monochromatic component* is a connected component of the subgraph induced by all the vertices of one colour.

A colouring has *defect d* if each monochromatic component has maximum degree at most *d*. The *defective chromatic number* of a graph class G , denoted by $\chi_{\Delta}(G)$, is the minimum integer *k* such that, for some integer *d*, every graph in *G* is *k*-colourable with defect *d*.

A colouring has *clustering c* if each monochromatic component has at most *c* vertices. The *clustered chromatic number* of a graph class G , denoted by $\chi_{\star}(G)$, is the minimum integer k such that, for some integer *c*, every graph in *G* has a *k*-colouring with clustering *c*. We shall consider such colourings, where the goal is to minimise the number of colours, without optimising the clustering value.

Every colouring of a graph with clustering *c* has defect *c* − 1. Thus, $\chi_{\Delta}(\mathcal{G}) \le \chi_{\star}(\mathcal{G})$ for every class *G*.

The following is a well-known and important example in defective and clustered graph colouring. Let *T* be a rooted tree. The *depth* of *T* is the maximum number of vertices on a root–to–leaf path in *T*. The *closure* of *T* is obtained from *T* by adding an edge between every ancestor and descendant in *T*. For *h*, $k \ge 1$, let $C(h, k)$ be the closure of the complete *k*-ary tree of depth *h*, as illustrated in Figure [1.](#page-1-0)

^C The Author(s), 2022. Published by Cambridge University Press.

Figure 1. The standard example $C(4, 2)$.

It is well known and easily proved (see [\[22\]](#page-10-8)) that there is no $(h - 1)$ -colouring of *C* $\langle h, k \rangle$ with defect $k - 1$, which implies there is no $(h - 1)$ -colouring of $C(h, k)$ with clustering k. This says that if a graph class G includes $C(h, k)$ for all k , then the defective chromatic number and the clustered chromatic number are at least *h*. Put another way, define the *tree-closure-number* of a graph class *G* to be

$$
tcn(G) := min\{h : \exists k \ C \langle h, k \rangle \notin G\} = max\{h : \forall k \ C \langle h, k \rangle \in G\} + 1;
$$

then

$$
\chi_{\star}(\mathcal{G}) \geqslant \chi_{\Delta}(\mathcal{G}) \geqslant \text{tcn}(\mathcal{G}) - 1.
$$

Our main result, Theorem [1](#page-1-1) below, establishes a converse result for minor-closed classes with bounded treedepth. First we explain these terms. A graph *H* is a *minor* of a graph *G* if a graph isomorphic to *H* can be obtained from some subgraph of *G* by contracting edges. A class of graphs *M* is *minor-closed* if for every graph *G* ∈*M* every minor of *G* is in *M*, and *M* is *proper* minorclosed if, in addition, some graph is not in *M*. The *connected treedepth* of a graph *H*, denoted by $\overline{td}(H)$, is the minimum depth of a rooted tree *T* such that *H* is a subgraph of the closure of *T*. This definition is a variant of the more commonly used definition of the *treedepth* of *H*, denoted by td(*H*), which equals the maximum connected treedepth of the connected components of *H*. (See [\[23\]](#page-10-9) for background on treedepth.) If *H* is connected, then $td(H) = td(H)$. In fact, $td(H) = td(H)$ unless *H* has two connected components H_1 and H_2 with td(H_1) = td(H_2) = td(H), in which case $\text{td}(H) = \text{td}(H) + 1$. It is convenient to work with connected treedepth to avoid this distinction. A class of graphs has *bounded treedepth* if there exists a constant *c* such that every graph in the class has treedepth at most *c*.

Theorem 1. *For every minor-closed class G with bounded treedepth,*

$$
\chi_{\Delta}(\mathcal{G}) = \chi_{\star}(\mathcal{G}) = \text{tcn}(\mathcal{G}) - 1.
$$

Our second result concerns pathwidth. A *path-decomposition* of a graph *G* consists of a sequence (B_1, \ldots, B_n) , where each B_i is a subset of $V(G)$ called a *bag*, such that for every vertex *v* ∈ *V*(*G*), the set {*i* ∈ [1, *n*] : *v* ∈ *B_i*} is an interval, and for every edge *vw* ∈ *E*(*G*) there is a bag *B_i* containing both *v* and *w*. Here $[a, b] := \{a, a + 1, \ldots, b\}$. The *width* of a path decomposition (B_1, \ldots, B_n) is max $\{|B_i| : i \in [1, n]\} - 1$. The *pathwidth* of a graph *G* is the minimum width of a path-decomposition of *G*. Note that paths (and more generally caterpillars) have pathwidth 1. A class of graphs has *bounded pathwidth* if there exists a constant *c* such that every graph in the class has pathwidth at most *c*.

Theorem 2. *For every minor-closed class G with bounded pathwidth,*

$$
\chi_{\Delta}(\mathcal{G})\leqslant \chi_{\star}(\mathcal{G})\leqslant 2\mathrm{tcn}(\mathcal{G})-2.
$$

Theorems [1](#page-1-1) and [2](#page-2-0) are, respectively, proved in Sections [2](#page-3-0) and [3.](#page-8-0) These results are best possible and partially resolve a number of conjectures from the literature, as we now explain.

Ossona de Mendez et al. [\[20\]](#page-10-10) studied the defective chromatic number of minor-closed classes. For a graph *H*, let \mathcal{M}_H be the class of *H*-minor-free graphs (that is, not containing *H* as a minor). Ossona de Mendez et al. [\[20\]](#page-10-10) proved the lower bound, $\chi_{\Delta}(\mathcal{M}_H) \geq \overline{\text{td}}(H) - 1$ and conjectured that equality holds.

Conjecture 3 ([\[20\]](#page-10-10)). *For every graph H,*

$$
\chi_{\Delta}(\mathcal{M}_H) = \overline{\operatorname{td}}(H) - 1.
$$

Conjecture [3](#page-2-1) is known to hold in some special cases. Edwards et al. [\[8\]](#page-10-3) proved it if $H = K_t$; that is, $\chi_{\Delta}(\mathcal{M}_{K_t}) = t - 1$, which can be thought of as a defective version of Hadwiger's Conjecture; see $[21]$ for an improved bound on the defect in this case. Ossona de Mendez et al. $[20]$ proved Conjecture [3](#page-2-1) if $td(H) \le 3$ or if *H* is a complete bipartite graph. In particular, $\chi_{\Delta}(\mathcal{M}_{K_{s,t}})$ = $min\{s, t\}.$

Norin et al. [\[19\]](#page-10-6) studied the clustered chromatic number of minor-closed classes. They showed that for each $k \geq 2$, there is a graph *H* with treedepth *k* and connected treedepth *k* such that $\chi_{\star}(M_H) \ge 2k - 2$. Their proof in fact constructs a set X of graphs in M_H with bounded pathwidth (at most $2k - 3$ to be precise) such that $\chi_{\star}(\mathcal{X}) \geq 2k - 2$. Thus, the upper bound on $\chi_{\star}(\mathcal{G})$ in Theorem [2](#page-2-0) is best possible.

Norin et al. [\[19\]](#page-10-6) conjectured the following converse upper bound (analogous to Conjecture [3\)](#page-2-1):

Conjecture 4 ([\[19\]](#page-10-6)). *For every graph H*,

$$
\chi_{\star}(\mathcal{M}_H) \leqslant 2 \overline{\operatorname{td}}(H) - 2.
$$

While Conjectures [3](#page-2-1) and [4](#page-2-2) remain open, Norin et al. [\[19\]](#page-10-6) showed in the following theorem that $\chi_{\Delta}(\mathcal{M}_H)$ and $\chi_{\star}(\mathcal{M}_H)$ are controlled by the treedepth of *H*:

Theorem 5 ([\[19\]](#page-10-6)). *For every graph H,* $\chi_*(\mathcal{M}_H)$ *is tied to the (connected) treedepth of H. In particular,*

$$
\overline{\operatorname{td}}(H)-1\leqslant \chi_{\star}(\mathcal{M}_H)\leqslant 2^{\overline{\operatorname{td}}(H)+1}-4.
$$

Theorem [1](#page-1-1) gives a much more precise bound than Theorem [5](#page-2-3) under the extra assumption of bounded treedepth.

Our third main result concerns fractional colourings. For real $t \geq 1$, a graph *G* is *fractionally t*-colourable with clustering c if there exist *Y*₁, *Y*₂, ..., *Y*_s \subseteq *V*(*G*) and α_1 , ..., $\alpha_s \in [0, 1]$ such that¹:

- Every component of $G[Y_i]$ has at most *c* vertices,
- $\sum_{i=1}^s \alpha_i \leqslant t$
- $\sum_{i: v \in Y_i} \alpha_i \geq 1$ for every $v \in V(G)$.

The *fractional clustered chromatic number* $\chi^f_\star(G)$ of a graph class *G* is the infimum of *t* > 0 such that there exists $c = c(t, G)$ such that every $G \in G$ is fractionally *t*-colourable with clustering *c*.

 1 If $c = 1$, then this corresponds to a (proper) fractional *t*-colouring, and if the α_i are integral, then this yields a *t*-colouring with clustering *c*.

Figure 2. The weak closure $W(4, 2)$.

Fractionally t-colourable with defect d and *fractional defective chromatic number* $\chi^f_\Delta(\mathcal{G})$ are defined in exactly the same way, except the condition on the component size of *G*[*Yi*] is replaced by "the maximum degree of $G[Y_i]$ is at most d ".

The following theorem determines the fractional clustered chromatic number and fractional defective chromatic number of any proper minor-closed class.

Theorem 6. *For every proper minor-closed class G,*

$$
\chi_{\Delta}^{f}(\mathcal{G}) = \chi_{\star}^{f}(\mathcal{G}) = \text{tcn}(\mathcal{G}) - 1.
$$

This result is proved in Section [4.](#page-8-1)

We now give an interesting example of Theorem [6.](#page-3-1)

Corollary 7. *For every surface* Σ *, if* \mathcal{G}_{Σ} *is the class of graphs embeddable in* Σ *, then*

$$
\chi_{\Delta}^{f}(\mathcal{G}_{\Sigma}) = \chi_{\star}^{f}(\mathcal{G}_{\Sigma}) = 3.
$$

Proof. Note that $C(3, k)$ is planar for all k. Thus, $\text{ten}(\mathcal{G}_{\Sigma}) \geq 4$. Say Σ has Euler genus g. It follows from Euler's formula that $K_{3,2g+3} \notin G_{\Sigma}$. Since $K_{3,2g+3} \subseteq C\langle 4, 2g+3 \rangle$, we have $C\langle 4, 2g+3 \rangle \notin G_{\Sigma}$.
Thus, tcn(G_{Σ}) = 4. The result follows from Theorem 6. Thus, $ten(\mathcal{G}_{\Sigma}) = 4$. The result follows from Theorem [6.](#page-3-1)

In contrast to Corollary [7,](#page-3-2) Dvořák and Norin [\[7\]](#page-10-2) proved that $\chi_{\star}(\mathcal{G}_{\Sigma}) = 4$. Note that Archdeacon [\[2\]](#page-10-11) proved that $\chi_{\Lambda}(\mathcal{G}_{\Sigma}) = 3$; see [\[5\]](#page-10-12) for an improved bound on the defect.

2. Treedepth

Say *G* is a subgraph of the closure of some rooted tree *T*. For each vertex $v \in V(T)$, let T_v be the maximal subtree of *T* rooted at *v* (consisting of *v* and all its descendants), and let $G[T_v]$ be the subgraph of *G* induced by $V(T_v)$.

The *weak closure* of a rooted tree T is the graph G with vertex set $V(T)$, where two vertices $v, w \in V(T)$ are adjacent in *G* whenever *v* is a leaf of *T* and *w* is an ancestor of *v* in *T*. As illustrated in Figure [2,](#page-3-3) let $W(h, k)$ be the weak closure of the complete *k*-ary tree of height *h*.

Note that $W(h, k)$ is a proper subgraph of $C(h, k)$ for $h \ge 3$. On the other hand, Norin et al. [\[19\]](#page-10-6) showed that $W(h, k)$ contains $C(h, k - 1)$ $C(h, k - 1)$ $C(h, k - 1)$ as a minor for all $h, k \ge 2$. Therefore, Theorem 1 is an immediate consequence of the following lemma.

Lemma 8. For all d , k , $h \in \mathbb{N}$ there exists $c = c(d, k, h) \in \mathbb{N}$ such that for every graph G with treedepth *at most d, either G contains a W* $\langle h, k \rangle$ -minor or G is $(h - 1)$ -colourable with clustering c.

Proof. Throughout this proof, *d*, *k* and *h* are fixed, and we make no attempt to optimise *c*.

We may assume that *G* is connected. So *G* is a subgraph of the closure of some rooted tree of depth at most *d*. Choose a tree *T* of depth at most *d* rooted at some vertex *r*, such that *G* is a subgraph of the closure of *T*, and subject to this, $\sum_{v \in V(T)} \text{dist}_T(v, r)$ is minimal. Suppose that $G[T_v]$ is disconnected for some vertex v in *T*. Choose such a vertex v at maximum distance from *r*. Since *G* is connected, $v \neq r$. By the choice of *v*, for each child *w* of *v*, the subgraph $G[T_w]$ is connected. Thus, for some child *w* of *v*, there is no edge in *G* joining *v* and *G*[*T_w*]. Let *u* be the parent of *v*. Let *T'* be obtained from *T* by deleting the edge *vw* and adding the edge *uw*, so that *w* is a child of *u* in *T'*. Note that *G* is a subgraph of the closure of *T'* (since *v* has no neighbour in *G*[*T_w*]). Moreover, dist_{*T'*}(*x*, *r*) = dist_{*T*}(*x*, *r*) − 1 for every vertex *x* ∈ *V*(*T_w*), and dist_{*T'*}(*y*, *r*) = $dist_T(y,r)$ for every vertex $y \in V(T) \setminus V(T_w)$. Hence, $\sum_{v \in V(T')} dist_{T'}(v,r) < \sum_{v \in V(T)} dist_T(v,r)$, which contradicts our choice of *T*. Therefore, $G[T_v]$ is connected for every vertex *v* of *T*.

Consider each vertex $v \in V(T)$. Define the *level* $\ell(v) := \text{dist}_T(r, v) \in [0, d - 1]$. Let T_v^+ be the subtree of *T* consisting of T_v plus the *vr*-path in *T*, and let $G[T_v^+]$ be the subgraph of *G* induced by $V(T_v^+)$. For a subtree *X* of *T* rooted at vertex *v*, define the *level* $\ell(X) := \ell(v)$.

A *ranked graph* (for fixed *d*) is a triple (H, L, \leq) where:

- *H* is a graph,
- $L: V(H) \rightarrow [0, d-1]$ is a function,
- \bullet ≤ is a partial order on *V*(*H*) such that *L*(*v*) < *L*(*w*) whenever *v* ≺ *w*.

Here and throughout this proof, $v \prec w$ means that $v \preceq w$ and $v \neq w$. Up to isomorphism, the number of ranked graphs on *n* vertices is at most $2^{n \choose 2} d^n 3^{n \choose 2}$. For a vertex *v* of *T*, a ranked graph (H, L, \leq) is said to be *contained in* G[T⁺] if there is an isomorphism ϕ from *H* to some subgraph of $G[T_v^+]$ such that:

- (A) for each vertex $v \in V(H)$ we have $L(v) = \ell(\phi(v))$, and
- (B) for all distinct vertices $v, w \in V(H)$ we have that $v \prec w$ if and only if $\phi(v)$ is an ancestor of $\phi(w)$ in *T*.

Say (*H*, *L*, \le) is a ranked graph and *i* ∈ [0, *d* − 1]. Below we define the *i*-*splice* of (*H*, *L*, \le) to be a particular ranked graph (H', L', \preceq') , which (intuitively speaking) is obtained from (H, L, \preceq) by copying *k* times the subgraph of *H* induced by the vertices *v* with $L(v) > i$. Formally, let

$$
V(H') := \{(v, 0) : v \in V(H), L(v) \in [0, i]\} \cup
$$

$$
\{(v, j) : v \in V(H), L(v) \in [i + 1, d], j \in [1, k]\}.
$$

$$
E(H') := \{(v, 0)(w, 0) : vw \in E(H), L(v) \in [0, i], L(w) \in [0, i]\} \cup
$$

$$
\{(v, 0)(w, j) : vw \in E(H), L(v) \in [0, i], L(w) \in [i + 1, d], j \in [1, k]\} \cup
$$

$$
\{(v, j)(w, j) : vw \in E(H), L(v) \in [i + 1, d], L(w) \in [i + 1, d], j \in [1, k]\}.
$$

Define $L'((v, j)) := L(v)$ for every vertex $(v, j) \in V(H')$. Now define the following partial order \preceq' on $V(H')$:

- $(v, j) \preceq (v, j)$ for all $(v, j) \in V(H')$;
- if $v \prec w$ and $L(v)$, $L(w) \in [0, i]$, then $(v, 0) \prec ' (w, 0)$;
- if *v* ≺ *w* and *L*(*v*) ∈ [0, *i*] and *L*(*w*) ∈ [*i* + 1, *d*], then (*v*, 0) ≺ (*w*, *j*) for all *j* ∈ [1, *k*]; and
- if *v* ≺ *w* and *L*(*v*), *L*(*w*) ∈ [*i* + 1, *d*], then (*v*, *j*) ≺ (*w*, *j*) for all *j* ∈ [1, *k*].

Note that if $(v, a) \prec ' (w, b)$, then $a \leq b$ and $v \prec w$ (implying $(L(v) < L(w))$). It follows that \prec' is a partial order on $V(H')$ such that $L'((v, a)) < L'((w, b))$ whenever $(v, a) < ' (w, b)$. Thus, (H', L', \leq') is a ranked graph.

For $\ell \in [0, d-1]$, let

$$
N_{\ell} := (d+1)(h-1)(k+1)^{d-1-\ell}.
$$

For each vertex *v* of *T*, define the *profile* of *v* to be the set of all ranked graphs (H, L, \leq) contained in $G[T_v^+]$ such that $|V(H)| \leqslant N_{\ell(v)}$. Note that if *v* is a descendant of *u*, then the profile of *v* is a subset of the profile of *u*. For $\ell \in [0, d-1]$, if $N = N_{\ell}$ then let

$$
M_{\ell} := 2^{2\binom{N}{2}} d^{N} 3^{\binom{N}{2}}.
$$

Then there are at most M_{ℓ} possible profiles of a vertex at level ℓ .

We now partition *V*(*T*) into subtrees. Each subtree is called a *group*. (At the end of the proof, vertices in a single group will be assigned the same colour.) We assign vertices to groups in nonincreasing order of their distance from the root. Initialise this process by placing each leaf *v* of *T* into a singleton group. We now show how to determine the group of a non-leaf vertex. Let ν be a vertex not assigned to a group at maximum distance from *r*. So each child of *v* is assigned to a group. Let Y_v be the set of children y of v, such that the number of children of v that have the same profile as *y* is in the range $[1, k - 1]$. If $Y_v = \emptyset$ start a new singleton group $\{v\}$. If $Y_v \neq \emptyset$ then merge all the groups rooted at vertices in Y_v into one group including v . This defines our partition of *V*(*T*) into groups. Each group *X* is *rooted* at the vertex in *X* closest to *r* in *T*. A group *Y* is *above* a distinct group *X* if the root of *Y* is on the path in *T* from the root of *X* to *r*.

The next claim is the key to the remainder of the proof.

Claim 1. *Let uv* $\in E(T)$ *where u is the parent of v, and u is in a different group to v. Then for every ranked graph* (H, L, \leq) *in the profile of v, the* $\ell(u)$ *-splice of* (H, L, \leq) *is in the profile of u.*

Proof. Since (H, L, \leq) is in the profile of *v*, there is an isomorphism ϕ from *H* to some subgraph of $G[T_v^+]$ such that for each vertex $x \in V(H)$ we have $L(x) = \ell(\phi(x))$, and for all distinct vertices $x, y \in V(H)$ we have that $x \prec y$ if and only if $\phi(x)$ is an ancestor of $\phi(y)$ in *T*.

Since *u* and *v* are in different groups, there are *k* children y_1, \ldots, y_k of *u* (one of which is *v*) such that the profiles of y_1, \ldots, y_k are equal. Thus, (H, L, \leq) is in the profile of each of y_1, \ldots, y_k . That is, for each $j \in [1, k]$, there is an isomorphism ϕ_j from *H* to some subgraph of $G[T^+_{y_j}]$ such that for each vertex $x \in V(H)$ we have $L(x) = \ell(\phi_i(x))$, and for all distinct vertices $x, y \in V(H)$ we have that $x \prec y$ if and only if $\phi_i(x)$ is an ancestor of $\phi_i(y)$ in *T*.

Let (H', L', \preceq') be the $\ell(u)$ -splice of (H, L, \preceq') . We now define a function ϕ' from *V*(*H*[']) to *V*(*G*[*T*^{$+$}_{*u*}]). For each vertex $(x, 0)$ of *H*['] (thus with $x \in V(H)$ and $L(x) \in [0, \ell(u)]$), define $\phi'((x, 0)) := \phi(x)$. For every other vertex (x, j) of *H'* (thus with $x \in V(H)$ and $L(x) \in [\ell(u) + 1, d - 1]$ and $j \in [1, k]$), define $\phi'((x, j)) := \phi_j(x)$.

We now show that ϕ' is an isomorphism from *H'* to a subgraph of *G*[*T_u*¹]. Consider an edge $(x, a)(y, b)$ of *H'*. Thus, $xy \in E(H)$. It suffices to show that $\phi'((x, a))\phi'((y, b)) \in E(G[T_u^+])$. First suppose that $a = b = 0$. So $L(x) \in [0, \ell(u)]$ and $L(y) \in [0, \ell(u)]$. Thus $\phi'((x, a)) = \phi(x)$ and $\phi'((y, b)) = \phi(y)$. Since ϕ is an isomorphism to a subgraph of $G[T_v^+]$, we have $\phi(x)\phi(y) \in$ *E*($G[T_v^+]$), which is a subgraph of $G[T_u^+]$. Hence, $\phi'((x, a))\phi'((y, b)) \in E(G[T_u^+])$, as desired. Now suppose that $a = 0$ and $b \in [1, k]$. Thus, $\phi'((x, a)) = \phi(x)$ and $\phi'((y, b)) = \phi_b(y)$. Moreover, both $\ell(\phi(x))$ and $\ell(\phi_b(x))$ equal $L(x) \in [0, \ell(u)]$. There is only vertex *z* in T_v^+ with $\ell(z)$ equal to a specific number in $[0, \ell(u)]$. Thus, $\phi'((x, a)) = \phi(x) = \phi_b(x) \ (=z)$. Since ϕ_b is an isomorphism to a subgraph of $G[T^+_{y_b}]$, we have $\phi_b(x)\phi_b(y) \in E(G[T^+_{y_b}])$, which is a subgraph of $G[T^+_{u}]$. Hence, $\phi'((x, a))\phi'((y, b)) \in E(G[T_u^+])$, as desired. Finally, suppose that $a = b \in [1, k]$. Thus, $\phi'((x, a)) =$ $\phi_a(x)$ and $\phi'(y, b) = \phi_b(y) = \phi_a(y)$. Since ϕ_a is an isomorphism to a subgraph of $G[T^+_{y_a}]$, we have $\phi_a(x)\phi_a(y) \in E(G[T_{y_a}^+])$, which is a subgraph of $G[T_u^+]$. Hence, $\phi'((x, a))\phi'((y, b)) \in E(G[T_u^+])$, as desired. This shows that ϕ' is an isomorphism from H' to a subgraph of $G[T^+_u]$.

We now verify property (A) for (H', L', \leq') . For each vertex $(x, 0)$ of H' (thus with $x \in$ *V*(*H*) and *L*(*x*) \in [0, $\ell(u)$]) we have *L'*((*x*, 0)) = *L*(*x*) = $\ell(\phi(x)) = \ell(\phi'(x, 0))$, as desired. For every other vertex (x, j) of H' (thus with $x \in V(H)$ and $L(x) \in [\ell(u) + 1, d - 1]$ and $j \in [1, k]$) we have $L'((x, j)) = L(x) = \ell(\phi_j(x)) = \ell(\phi'((x, j))),$ as desired. Hence, property (A) is satisfied for $(H', L', \preceq').$

We now verify property (B) for (H', L', \leq') . Consider distinct vertices $(x, a), (y, b) \in V(H')$. First suppose that $a = 0$ and $b = 0$. Then $(x, a) \prec ' (y, b)$ if and only if $x \prec y$ if and only if $\phi(x)$ is an ancestor of $\phi(y)$ in *T* if and only if $\phi'((x, a))$ is an ancestor of $\phi'((y, b))$ in *T*, as desired. Now suppose that $a = 0$ and $b \in [1, k]$. Then $(x, a) \prec ' (y, b)$ if and only if $x \prec y$ if and only if $\phi(x)$ is an ancestor of $\phi_b(y)$ in *T* if and only if $\phi'((x, a))$ is an ancestor of $\phi'((y, b))$ in *T*, as desired. Now suppose that $a = b \in [1, k]$. Then $(x, a) \prec'(y, b)$ if and only if $x \prec y$ if and only if $\phi_a(x)$ is an ancestor of $\phi_b(y)$ in *T* if and only if $\phi'((x, a))$ is an ancestor of $\phi'((y, b))$ in *T*, as desired. Finally, suppose that $a, b \in [1, k]$ and $a \neq b$. Then (x, a) and (y, b) are incomparable under \prec' , and $\phi'((x, a))$ and $\phi'((y, b))$ in *T* are unrelated in *T*, as desired. Hence, property (B) is satisfied for (H', L', \preceq') .

So ϕ' is an isomorphism from *H'* to a subgraph of $G[T^+_u]$ satisfying properties (A) and (B). Thus (H', L', \leq') is contained in $G[T_u^+]$, as desired. Since (H, L, \leq) is in the profile of *v*, we have $|V(H)| \leq (d+1)(h-1)(k+1)^{h-\ell(v)}$. Since $|V(H')| \leq (k+1)|V(H)|$ and $\ell(u) = \ell(v) - 1$, we have $|V(H')|$ ≤ $(d+1)(h-1)(k+1)^{h+1-\ell(v)} = (d+1)(h-1)(k+1)^{h-\ell(u)}$. Thus, (H', L', \leq') is in the profile of *u*. \Box

The proof now divides into two cases. If some group X_0 is adjacent in *G* to at least *h* − 1 other groups above X_0 , then we show that *G* contains $W(h, k)$ as a minor. Otherwise, every group *X* is adjacent in *G* to at most *h* − 2 other groups above *X*, in which case we show that *G* is (*h* − 1)-colourable with bounded clustering.

Finding the minor

Suppose that some group X_0 is adjacent in *G* to at least $h-1$ other groups X_1, \ldots, X_{h-1} above *X*₀. We now show that *G* contains $W(h, k)$ as a minor; refer to Figure [3.](#page-7-0) For $i \in [1, h-1]$, since X_i is above X_0 , the root v_i of X_i is on the v_0r -path in *T*. Without loss of generality, $v_0, v_1, \ldots, v_{h-1}$ appear in this order on the *v*₀*r*-path in *T*. For $i \in [1, h - 1]$, let w_i be a vertex in X_i adjacent to some vertex z_i in X_0 ; since G is a subgraph of the closure of T, w_i is on the v_0r -path in T. For *i* ∈ [0, *h* − 2], let *u_i* be the parent of *v_i* in *T* (which exists since $v_{h-2} \neq r$). So *u_i* is not in *X_i* (but may be in X_{i+1}). Note that v_0 , u_0 , w_1 , v_1 , u_1 , ..., w_{h-2} , v_{h-2} , u_{h-2} , w_{h-1} , v_{h-1} appear in this order on the *v*₀*r*-path in *T*, where *v*₀, *v*₁, ..., *v*_{*h*-1} are distinct (since they are in distinct groups).

Let P_j be the z_jr -path in *T* for $j \in [1, h-1]$. Let H_0 be the graph with $V(H_0) := V(P_1 \cup$... ∪ *P*_{*h*−1}) and *E*(*H*₀) := { z_jw_j : $j \in [1, h - 1]$ }. Define the function L_0 : $V(H_0) \to [0, d - 1]$ by *L*₀(*x*) := $\ell(x)$ for each *x* ∈ *V*(*H*₀). Define the partial order \leq ₀ on *V*(*H*₀), where *x* \lt ₀ *y* if and only if *x* is ancestor of *y* in *T*. Thus, (H_0, L_0, \leq_0) is a ranked graph. By construction, (H_0, L_0, \leq_0) is contained in *G*[*T*^{$+$}_{*v*}^{0}]. Since *H*₀ has less than (*d* + 1)(*h* − 1) vertices, *H*₀ is in the profile of *v*₀. For *i* = 0, 1, ..., *h* − 2, let (*H_{i+1}*, *L_{i+1}*, ≺*i*₊₁) be the $\ell(u_i)$ -splice of (*H_i*, *L_i*, ≺*i*).

By induction on *i*, using Claim [1](#page-5-0) at each step and since $G[T_{u_i}^+] \subseteq G[T_{v_{i+1}}^+]$, we conclude that for each $i \in [0, h-1]$, the ranked graph $(H_i, L_i, \leq i)$ is in the profile of v_i . In particular, $(H_{h-1}, L_{h-1}, \prec_{h-1})$ is in the profile of v_{h-1} , and H_{h-1} is isomorphic to a subgraph of *G*. Note that each vertex of H_{h-1} is of the form $(((\dots (x, d_1), d_2), \dots), d_{h-1})$ for some $x \in V(H_0)$ and *d*₁, ..., *d*_{*h*−1} ∈ [0, *k*]. For brevity, call such a vertex $x\langle d_1, \ldots, d_{h-1}\rangle$. Note that if $x = w_i$ for some $j \in [1, h-1]$, then $d_1 = \ldots = d_i = 0$ (since w_i is above u_i whenever $i < j$, and $(H_{i+1}, L_{i+1}, \prec_{i+1})$ is the $\ell(u_i)$ -splice of (H_i, L_i, \leq_i)).

For $x \in V(H_0)$, let Λ_x be the set of vertices $x\langle d_1, \ldots, d_{h-1} \rangle$ in H_{h-1} . By construction, no two vertices in Λ_x are comparable under \leq_{h-1} . Therefore, by property (B), $V(T_a) \cap V(T_b) = \emptyset$ for all distinct $a, b \in \Lambda_x$. In particular, $V(T_a) \cap V(T_b) = \emptyset$ for all distinct $a, b \in \Lambda_{\nu_0}$. As proved above,

Figure 3. Construction of a $W(4, k)$ minor (where u_i might be in X_{i+1}).

 $G[T_a]$ is connected for each $a \in V(T)$. Let *G'* be the graph obtained from *G* by contracting $G[T_a]$ into a single vertex $\alpha \langle d_1, \ldots, d_{h-1} \rangle$, for each $a = v_0 \langle d_1, \ldots, d_{h-1} \rangle \in \Lambda_{v_0}$. So *G'* is a minor of *G*.

Let *U* be the tree with vertex set

$$
\{\langle d_1,\ldots,d_{h-1}\rangle:\exists j\in[0,h-1]\ d_1=\ldots=d_j=0\text{ and }d_{j+1},\ldots,d_{h-1}\in[1,k]\},\
$$

where the parent of $(0, \ldots, 0, d_{j+1}, d_{j+2}, \ldots, d_{h-1})$ is $(0, \ldots, 0, d_{j+2}, \ldots, d_{h-1})$. Then *U* is isomorphic to the complete *k*-tree of height *h* rooted at $(0, \ldots, 0)$. We now show that the weak closure of *U* is a subgraph of *G*['], where each vertex $\langle 0, \ldots, 0, d_{j+1}, \ldots, d_{h-1} \rangle$ of *U* with $j \in [1, h-1]$ is mapped to vertex $w_j(0, \ldots, 0, d_{j+1}, \ldots, d_{h-1})$ of *G'*, and each other vertex $\langle d_1, \ldots, d_{h-1} \rangle$ of *U* is mapped to $\alpha \langle d_1, \ldots, d_{h-1} \rangle$ of *G*'. For all $d_1, \ldots, d_{h-1} \in [1, k]$ and $j \in [1, h-1]$ the vertex z_j *d*₁, ..., *d*_{*h*-1}) of *G* is contracted into the vertex α *(d*₁, ..., *d*_{*h*-1}) of *G'*. By construction, $z_j(d_1, \ldots, d_{h-1})$ is adjacent to $w_j(0, \ldots, 0, d_{j+1}, \ldots, d_{h-1})$ in *G*. So $\alpha \langle d_1, \ldots, d_{h-1} \rangle$ is adjacent to $w_j(0, \ldots, 0, d_{j+1}, \ldots, d_{h-1})$ in *G'*. This implies that the weak closure of *U* (that is, $W(h, k)$) is isomorphic to a subgraph of *G*', and is therefore a minor of *G*.

Finding the colouring

Now assume that every group *X* is adjacent in *G* to at most *h* − 2 other groups above *X*. Then $(h - 1)$ -colour the groups in order of distance from the root, such that every group *X* is assigned a colour different from the colours assigned to the neighbouring groups above *X*. Assign each vertex within a group the same colour as that assigned to the whole group. This defines an $(h-1)$ -colouring of *G*.

Consider the function $s : [0, d-1] \rightarrow \mathbb{N}$ recursively defined by

$$
s(\ell) := \begin{cases} 1 & \text{if } \ell = d - 1 \\ (k - 1) \cdot M_{\ell + 1} \cdot s(\ell + 1) & \text{if } \ell \in [0, d - 2]. \end{cases}
$$

Then every group at level ℓ has at most $s(\ell)$ vertices. By construction, our $(h-1)$ -colouring of *G* has clustering *s*(0), which is bounded by a function of *d*, *k* and *h*, as desired. \Box

3. Pathwidth

The following lemma of independent interest is the key to proving Theorem [2.](#page-2-0) Note that Eppstein [\[24\]](#page-11-0) independently discovered the same result (with a slightly weaker bound on the path length). The decomposition method in the proof has been previously used, for example, by Dujmovic, ´ Joret, Kozik, and Wood [\[25,](#page-11-1) Lemma 17].

Lemma 9. *Every graph with pathwidth at most w has a vertex 2-colouring such that each monochromatic path has at most* $(w + 3)^w$ *vertices.*

Proof. We proceed by induction on $w \ge 1$. Every graph with pathwidth 1 is a caterpillar, and is thus properly 2-colourable. Now assume $w \geq 2$ and the result holds for graphs with pathwidth at most $w - 1$. Let G be a graph with pathwidth at most w. Let (B_1, \ldots, B_n) be a path-decomposition of *G* with width at most *w*. Let t_1, t_2, \ldots, t_m be a maximal sequence such that $t_1 = 1$ and for each *i* \geq 2, *t_i* is the minimum integer such that *B_{ti}* ∩ *B_{ti−1}* = Ø. For odd *i*, colour every vertex in *B_{ti}* 'red'. For even *i*, colour every vertex in B_{t_i} 'blue'. Since $B_{t_i} \cap B_{t_{i-1}} = \emptyset$ for $i \geq 2$, no vertex is coloured twice. Let *G'* be the subgraph of *G* induced by the uncoloured vertices. By the choice of B_{t_i} , for *i* ≥ 2 each bag *B_j* with *j* ∈ [t_{i-1} + 1, t_i − 1] intersects *B*_{t_{i-1}}. Thus, (*B*₁ ∩ *V*(*G*[']), ..., *B_n* ∩ *V*(*G*['])) is a path-decomposition of *G'* of width at most $w - 1$. By induction, *G'* has a vertex 2-colouring such that each monochromatic path has at most $(w + 3)^{w-1}$ vertices. Since $B_{t_i} \cup B_{t_{i+2}}$ separates $B_{t_{i+1}} \cup \ldots \cup B_{t_{i+2}-1}$ from the rest of *G*, each monochromatic component of *G* is contained in *B*_{ti+1} ∪ ... ∪ *B*_{ti+2}-1 for some *i* ∈ [0, *n* − 2]. Consider a monochromatic path *P* in *G*[*B*_{ti+1} ∪ ... ∪ *B*_{*t*_{i+2}-1}]. Then *P* has at most *w* + 1 vertices in *B*_{*t*_{i+1}}. Note that *P* − *B*_{*t*_{i+1}} is contained in *G*'. Thus, *P* consists of up to $w + 2$ monochromatic subpaths in *G'* plus $w + 1$ vertices in $B_{t_{i+1}}$. Hence, *P* has at most $(w + 2)(w + 3)^{w-1} + (w + 1) < (w + 3)^w$ vertices. П

Nešetřil and Ossona de Mendez [\[23\]](#page-10-9) showed that if a graph *G* contains no path on *k* vertices, then td(*G*) $\lt k$ (since *G* is a subgraph of the closure of a DFS spanning tree with height at most *k*). Thus Lemma [9](#page-8-2) implies:

Corollary 10. *Every graph with pathwidth at most w has a vertex 2-colouring such that each monochromatic component has treedepth at most* $(w + 3)^w$.

Proof of Theorem [2.](#page-2-0) Let *G* be a minor-closed class of graphs, each with pathwidth at most *w*. Let *h* be the minimum integer such that $C(h, k) \notin \mathcal{G}$ for some $k \in \mathbb{N}$. Consider $G \in \mathcal{G}$. Thus, $W(h, k+1)$ is not a minor of *G* (since $C(h, k)$ is a minor of $W(h, k + 1)$, as noted above). By Corollary [10,](#page-8-3) *G* has a vertex 2-colouring such that each monochromatic component *H* of *G* has treedepth at most (*w* + 3)^{*w*}. Thus, *W* $\langle h, k+1 \rangle$ is not a minor of *H*. By Lemma [8,](#page-4-0) *H* is $(h-1)$ -colourable with clustering $c((w + 3)^w, k + 1, h)$. Taking a product colouring, *G* is $(2h - 2)$ -colourable with clustering $c((w + 2)^w, k + 1, h)$. $(3)^{w}, k+1, h$. Hence, $\chi_{\Delta}(\mathcal{G}) \leq \chi_{\star}(\mathcal{G}) \leq 2h-2$.

Note that Lemma [9](#page-8-2) cannot be extended to the setting of bounded tree-width graphs: Esperet and Joret (see [[\[14\]](#page-10-13), Theorem 4.1]) proved that for all positive integers *w* and *d* there exists a graph *G* with tree-width at most *w* such that for every *w*-colouring of *G* there exists a monochromatic component of *G* with diameter greater than *d* (and thus with a monochromatic path on more than *d* vertices, and thus with treedepth at least $log_2 d$.

4. Fractional colouring

This section proves Theorem [6.](#page-3-1) The starting point is the following key result of Dvořák and Sereni $[26]$ ^{[2](#page-9-0)}

Theorem 11 ([\[26\]](#page-11-2)). *For every proper minor-closed class G and every* $\delta > 0$ *there exists* $d \in \mathbb{N}$ *satisfying the following. For every* $G \in \mathcal{G}$ *there exist* $s \in \mathbb{N}$ *and* $X_1, X_2, \ldots, X_s \subseteq V(G)$ *such that:*

- $td(G[X_i]) \leq d$, and
- *every* $v \in V(G)$ *belongs to at least* $(1 \delta)s$ *of these sets.*

We now prove a lower bound on the fractional defective chromatic number of the closure of complete trees of given height.

Lemma 12. Let $C_h := \{C(h, k)\}_{k \in \mathbb{N}}$. Then $\chi^f_{\Delta}(C_h) \geq h$.

Proof. We show by induction on *h* that if *Ch*, *k* is fractionally *t*-colourable with defect *d*, then $t \geq h - (h - 1)d/k$. This clearly implies the lemma. The base case $h = 1$ is trivial.

For the induction step, suppose that $G := C \langle h, k \rangle$ is fractionally *t*-colourable with defect *d*. Thus, there exist $Y_1, Y_2, \ldots, Y_s \subseteq V(G)$ and $\alpha_1, \ldots, \alpha_s \in [0, 1]$ such that:

- every component of $G[Y_i]$ has maximum degree at most d ,
- $\sum_{i=1}^s \alpha_i \leq t$, and
- $\sum_{i: v \in Y_i} \alpha_i \geq 1$ for every $v \in V(G)$.

Let *r* be the vertex of *G* corresponding to the root of the complete *k*-ary tree and let H_1, \ldots, H_k be the components of *G* − *r*. Then each *H_i* is isomorphic to *C* $\langle h-1, k \rangle$. Let *J*₀ := {*j* : *r* ∈ *Y_j*}, and let $J_i := \{j : Y_j \cap V(H_i) \neq \emptyset\}$ for $i \in [1, k]$. Denote $\sum_{j \in J_i} \alpha_j$ by $\alpha(J_i)$ for brevity. Thus, $\alpha(J_0) \geqslant 1$. For $i \in [1, k]$, the subgraph H_i is $\alpha(J_i)$ -colourable with defect *d*, and thus $\alpha(J_i) \geq h - 1 - (h - 2)d/k$ by the induction hypothesis. Thus,

$$
(k-d)\alpha(J_0) + \sum_{i=1}^k \alpha(J_i) \geqslant (k-d) + k(h-1) - (h-2)d = kh - (h-1)d.
$$

If $j \in J_0$ then Y_j intersects at most *d* of H_1, \ldots, H_k (since $G[Y_j]$ has maximum degree at most *d*). Thus, every α_i appears with coefficient at most *k* in the left side of the above inequality, implying

$$
(k-d)\alpha(J_0)+\sum_{i=1}^k\alpha(J_i)\leqslant k\sum_{i=1}^s\alpha_i\leqslant kt.
$$

Combining the above inequalities yields the claimed bound on *t*.

Proof of Theorem [6.](#page-3-1) By [Lemma 12,](#page-9-1)

$$
\chi^f_{\star}(\mathcal{G}) \geqslant \chi^f_{\Delta}(\mathcal{G}) \geqslant \text{tcn}(\mathcal{G}) - 1.
$$

It remains to show that $\chi^f_\star(\mathcal{G}) \leqslant \text{tr}(\mathcal{G}) - 1$. Equivalently, we need to show that for all *h*, $k \in \mathbb{N}$ and $\varepsilon > 0$, if $C(h, k) \notin \mathcal{G}$ then there exists *c* such that every graph in \mathcal{G} is fractionally $(h - 1 +$ *ε*)-colourable with clustering *c*. This is trivial for $h = 1$, and so we assume $h \ge 2$.

 \Box

²Dvořák and Sereni [\[26\]](#page-11-2) expressed their result in the terms of "treedepth fragility". The sentence "proper minor-closed classes are fractionally treedepth-fragile" after Theorem 31 in [\[26\]](#page-11-2) is equivalent to Theorem [11.](#page-9-2) Informally speaking, Theorem [11](#page-9-2) shows that the fractional "treedepth" chromatic number of every minor-closed class equals 1.

Let $d \in \mathbb{N}$ satisfy the conclusion of Theorem [11](#page-9-2) for the class \mathcal{G} and $\delta = 1 - \frac{1}{1 + \varepsilon/(h-1)}$. Choose $c = c(d, k + 1, h)$ to satisfy the conclusion of Lemma [8.](#page-4-0) We show that *c* is as desired.

Consider *G* ∈ *G*. By the choice of *d* there exists $s \in \mathbb{N}$ and $X_1, X_2, \ldots, X_s \subseteq V(G)$ such that:

- $td(G[X_i]) \leq d$, and
- every $v \in V(G)$ belongs to at least $(1 \delta)s$ of these sets.

Since $C(h, k) \notin G$, we have $W(h, k + 1) \notin G$, and by the choice of *c*, for each $i \in [1, s]$ there exists a partition $(Y_i^1, Y_i^2, \ldots, Y_i^{h-1})$ of X_i such that every component of $G[Y_i^j]$ has at most *c* vertices. Every vertex of *G* belongs to at least $(1 - \delta)s$ sets Y_i^j where $i \in [1, s]$ and $j \in [1, h - 1]$. Considering these sets with equal coefficients $\alpha_i^j := \frac{1}{(1-\delta)s}$, we conclude that *G* is fractionally $\frac{h-1}{1-\delta}$ -colourable with clustering *c*, as desired (since $\frac{h-1}{1-\delta} = h - 1 + \varepsilon$).

Acknowledgement

This work was partially completed while SN was visiting Monash University supported by a Robert Bartnik Visiting Fellowship. SN thanks the School of Mathematics at Monash University for its hospitality. Thanks to the referee for several helpful comments.

References

- [1] Alon, N., Ding, G., Oporowski, B. and Vertigan, D. (2003) Partitioning into graphs with only small components. *J. Combin. Theory Ser. B* **87**(2) 231–243.
- [2] Archdeacon, D. (1987) A note on defective colorings of graphs in surfaces. *J. Graph Theory* **11**(4) 517–519.
- [3] Broutin, N. and Kang, R. J. (2018) Bounded monochromatic components for random graphs. *J. Comb.* **9**(3) 411–446.
- [4] Choi, I. and Esperet, L. (2019) Improper coloring of graphs on surfaces. *J. Graph Theory* **91**(1) 16–34.
- [5] Cowen, L., Goddard, W. and Jesurum, C. E. (1997) Defective coloring revisited. *J. Graph Theory* **24**(3) 205–219.
- [6] Dujmovic, V., Esperet, L., Morin, P., Walczak, B. and Wood, D. R. (2022) Clustered 3-colouring graphs of bounded ´ degree. *Combin. Probab. Comput.* **31**(1) 123–135.
- [7] Dvořák, Z. and Norin, S. (2017) Islands in minor-closed classes. I. Bounded treewidth and separators, arXiv: 1710.02727.
- [8] Edwards, K., Kang, D. Y., Kim, J., Oum, S. and Seymour, P. (2015) A relative of Hadwiger's conjecture. *SIAM J. Disc. Math.* **29**(4) 2385–2388.
- [9] Esperet, L. and Joret, G. (2014) Colouring planar graphs with three colours and no large monochromatic components. *Combin., Probab. Comput.* **23**(4) 551–570.
- [10] Haxell, P., Szabó, T. and Tardos, G. (2003) Bounded size components—partitions and transversals. *J. Combin. Theory Ser. B* **88**(2) 281–297.
- [11] Kang, D. Y. and Oum, S. (2019) Improper coloring of graphs with no odd clique minor. *Combin. Probab. Comput.* **28**(5) 740–754.
- [12] Kawarabayashi, K. (2008) A weakening of the odd Hadwiger's conjecture. *Combin. Probab. Comput.* **17**(6) 815–821.
- [13] Kawarabayashi, K. and Mohar, B. (2007) A relaxed Hadwiger's conjecture for list colorings. *J. Combin. Theory Ser. B* **97**(4) 647–651.
- [14] Liu, C.-H. and Oum, S. (2018) Partitioning *H*-minor free graphs into three subgraphs with no large components. *J. Combin. Theory Ser. B* **128** 114–133.
- [15] Liu, C.-H. and Wood, D. R. (2019a) Clustered coloring of graphs excluding a subgraph and a minor , arXiv: 1905.09495.
- [16] Liu, C.-H. and Wood, D. R. (2019b) Clustered graph coloring and layered treewidth, arXiv: 1905.08969.
- [17] Liu, C.-H. and Wood, D. R. (2022) Clustered variants of Hajós' conjecture. *J. Combin. Theory, Ser. B* **152**(2) 27–54.
- [18] Mohar, B., Reed, B. and Wood, D. R. (2017) Colourings with bounded monochromatic components in graphs of given circumference. *Australas. J. Combin.* **69**(2) 236–242.
- [19] Norin, S., Scott, A., Seymour, P. and Wood, D. R. (2019) Clustered colouring in minor-closed classes. *Combinatorica* **39**(6) 1387–1412.
- [20] Ossona de Mendez, P., Oum, S. and Wood, D. R. (2019) Defective colouring of graphs excluding a subgraph or minor. *Combinatorica* **39**(2) 377–410.
- [21] van den Heuvel, J. and Wood, D. R. (2018) Improper colourings inspired by Hadwiger's conjecture. *J. London Math. Soc.* **98**(1) 129–148, arXiv: 1704.06536.
- [22] Wood, D. R. (2018) Defective and clustered graph colouring. *Electron. J. Combin.,* DS23, Version 1.
- [23] Nešetřil, J. and Ossona de Mendez, P. (2012) *Sparsity*, vol. 28. Algorithms and Combinatorics. Springer .
- [24] Eppstein, D. (2020) Pathbreaking for intervals, *11011110.*
- [25] Dujmovic, V., Joret, G., Kozik, J. and Wood, D. R. (2016) Nonrepetitive colouring via entropy compression. ´ *Combinatorica* **36**(6) 661–686.
- [26] Dvoˇrák, Z. and Sereni, J.-S. (2020) On fractional fragility rates of graph classes. *Electronic J. Combinat*. **27**(4) P4.9.

Cite this article: Norin S, Scott A, and Wood DR (2023). Clustered colouring of graph classes with bounded treedepth or pathwidth. *Combinatorics, Probability and Computing* **32**, 122–133. <https://doi.org/10.1017/S0963548322000165>