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Abstract
The clustered chromatic number of a class of graphs is the minimum integer k such that for some integer c
every graph in the class is k-colourable with monochromatic components of size at most c. We determine
the clustered chromatic number of any minor-closed class with bounded treedepth, and prove a best pos-
sible upper bound on the clustered chromatic number of any minor-closed class with bounded pathwidth.
As a consequence, we determine the fractional clustered chromatic number of every minor-closed class.
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1. Introduction
This paper studies improper vertex colourings of graphs with bounded monochromatic degree or
bounded monochromatic component size. This topic has been extensively studied recently [1–6,
7, 8, 9–18, 19–21]; see [22] for a survey.

A k-colouring of a graph G is a function that assigns one of k colours to each vertex of G. In a
coloured graph, amonochromatic component is a connected component of the subgraph induced
by all the vertices of one colour.

A colouring has defect d if each monochromatic component has maximum degree at most d.
The defective chromatic number of a graph class G, denoted by χ�(G), is the minimum integer k
such that, for some integer d, every graph in G is k-colourable with defect d.

A colouring has clustering c if each monochromatic component has at most c vertices. The
clustered chromatic number of a graph class G, denoted by χ�(G), is the minimum integer k such
that, for some integer c, every graph in G has a k-colouring with clustering c. We shall consider
such colourings, where the goal is to minimise the number of colours, without optimising the
clustering value.

Every colouring of a graph with clustering c has defect c− 1. Thus, χ�(G)� χ�(G) for every
class G.

The following is a well-known and important example in defective and clustered graph colour-
ing. Let T be a rooted tree. The depth of T is the maximum number of vertices on a root–to–leaf
path in T. The closure of T is obtained from T by adding an edge between every ancestor and
descendant in T. For h, k� 1, let C〈h, k〉 be the closure of the complete k-ary tree of depth h, as
illustrated in Figure 1.
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Figure 1. The standard example C〈4, 2〉.

It is well known and easily proved (see [22]) that there is no (h− 1)-colouring of C〈h, k〉 with
defect k− 1, which implies there is no (h− 1)-colouring ofC〈h, k〉with clustering k. This says that
if a graph class G includes C〈h, k〉 for all k, then the defective chromatic number and the clustered
chromatic number are at least h. Put another way, define the tree-closure-number of a graph class
G to be

tcn(G) := min{h : ∃k C〈h, k〉 �∈ G} =max{h : ∀k C〈h, k〉 ∈ G} + 1;

then

χ�(G)� χ�(G)� tcn(G)− 1.

Our main result, Theorem 1 below, establishes a converse result for minor-closed classes with
bounded treedepth. First we explain these terms. A graph H is a minor of a graph G if a graph
isomorphic toH can be obtained from some subgraph ofG by contracting edges. A class of graphs
M is minor-closed if for every graph G ∈M every minor of G is in M, and M is proper minor-
closed if, in addition, some graph is not in M. The connected treedepth of a graph H, denoted by
td(H), is the minimum depth of a rooted tree T such thatH is a subgraph of the closure of T. This
definition is a variant of the more commonly used definition of the treedepth of H, denoted by
td(H), which equals the maximum connected treedepth of the connected components of H. (See
[23] for background on treedepth.) If H is connected, then td(H)= td(H). In fact, td(H)= td(H)
unlessH has two connected componentsH1 andH2 with td(H1)= td(H2)= td(H), in which case
td(H)= td(H)+ 1. It is convenient to work with connected treedepth to avoid this distinction.
A class of graphs has bounded treedepth if there exists a constant c such that every graph in the
class has treedepth at most c.

Theorem 1. For every minor-closed class G with bounded treedepth,
χ�(G)= χ�(G)= tcn(G)− 1.

Our second result concerns pathwidth. A path-decomposition of a graph G consists of a
sequence (B1, . . . , Bn), where each Bi is a subset of V(G) called a bag, such that for every ver-
tex v ∈V(G), the set {i ∈ [1, n] : v ∈ Bi} is an interval, and for every edge vw ∈ E(G) there is a bag
Bi containing both v and w. Here [a, b] := {a, a+ 1, . . . , b}. The width of a path decomposition
(B1, . . . , Bn) is max{|Bi| : i ∈ [1, n]} − 1. The pathwidth of a graph G is the minimum width of a
path-decomposition of G. Note that paths (and more generally caterpillars) have pathwidth 1.
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A class of graphs has bounded pathwidth if there exists a constant c such that every graph in the
class has pathwidth at most c.

Theorem 2. For every minor-closed class G with bounded pathwidth,

χ�(G)� χ�(G)� 2tcn(G)− 2.

Theorems 1 and 2 are, respectively, proved in Sections 2 and 3. These results are best possible
and partially resolve a number of conjectures from the literature, as we now explain.

Ossona de Mendez et al. [20] studied the defective chromatic number of minor-closed classes.
For a graphH, letMH be the class ofH-minor-free graphs (that is, not containingH as a minor).
Ossona deMendez et al. [20] proved the lower bound, χ�(MH)� td(H)− 1 and conjectured that
equality holds.

Conjecture 3 ([20]). For every graph H,

χ�(MH)= td(H)− 1.

Conjecture 3 is known to hold in some special cases. Edwards et al. [8] proved it ifH =Kt ; that
is, χ�(MKt )= t − 1, which can be thought of as a defective version of Hadwiger’s Conjecture;
see [21] for an improved bound on the defect in this case. Ossona de Mendez et al. [20] proved
Conjecture 3 if td(H)� 3 or if H is a complete bipartite graph. In particular, χ�(MKs,t )=
min{s, t}.

Norin et al. [19] studied the clustered chromatic number of minor-closed classes. They showed
that for each k� 2, there is a graph H with treedepth k and connected treedepth k such that
χ�(MH)� 2k− 2. Their proof in fact constructs a set X of graphs in MH with bounded path-
width (at most 2k− 3 to be precise) such that χ�(X )� 2k− 2. Thus, the upper bound on χ�(G)
in Theorem 2 is best possible.

Norin et al. [19] conjectured the following converse upper bound (analogous to Conjecture 3):

Conjecture 4 ([19]). For every graph H,

χ�(MH)� 2td(H)− 2.

While Conjectures 3 and 4 remain open, Norin et al. [19] showed in the following theorem that
χ�(MH) and χ�(MH) are controlled by the treedepth of H:

Theorem 5 ([19]). For every graph H, χ�(MH) is tied to the (connected) treedepth of H. In
particular,

td(H)− 1� χ�(MH)� 2td(H)+1 − 4.

Theorem 1 gives a much more precise bound than Theorem 5 under the extra assumption of
bounded treedepth.

Our third main result concerns fractional colourings. For real t� 1, a graph G is fractionally
t-colourable with clustering c if there existY1, Y2, . . . , Ys ⊆V(G) and α1, . . . , αs ∈ [0, 1] such that1:

• Every component of G[Yi] has at most c vertices,
•

∑s
i=1 αi � t,

•
∑

i :v∈Yi αi � 1 for every v ∈V(G).

The fractional clustered chromatic number χ
f
� (G) of a graph class G is the infimum of t > 0 such

that there exists c= c(t, G) such that every G ∈ G is fractionally t-colourable with clustering c.

1If c= 1, then this corresponds to a (proper) fractional t-colouring, and if the αi are integral, then this yields a t-colouring
with clustering c.
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Figure 2. The weak closureW〈4, 2〉.

Fractionally t-colourable with defect d and fractional defective chromatic number χ
f
�(G) are

defined in exactly the same way, except the condition on the component size of G[Yi] is replaced
by “the maximum degree of G[Yi] is at most d”.

The following theorem determines the fractional clustered chromatic number and fractional
defective chromatic number of any proper minor-closed class.

Theorem 6. For every proper minor-closed class G,
χ
f
�(G)= χ

f
� (G)= tcn(G)− 1.

This result is proved in Section 4.
We now give an interesting example of Theorem 6.

Corollary 7. For every surface �, if G� is the class of graphs embeddable in �, then

χ
f
�(G�)= χ

f
� (G�)= 3.

Proof. Note that C〈3, k〉 is planar for all k. Thus, tcn(G�)� 4. Say � has Euler genus g. It follows
from Euler’s formula that K3,2g+3 �∈ G� . Since K3,2g+3 ⊆ C〈4, 2g + 3〉, we have C〈4, 2g + 3〉 �∈ G� .
Thus, tcn(G�)= 4. The result follows from Theorem 6.

In contrast to Corollary 7, Dvořák and Norin [7] proved that χ�(G�)= 4. Note that
Archdeacon [2] proved that χ�(G�)= 3; see [5] for an improved bound on the defect.

2. Treedepth
Say G is a subgraph of the closure of some rooted tree T. For each vertex v ∈V(T), let Tv be the
maximal subtree of T rooted at v (consisting of v and all its descendants), and let G[Tv] be the
subgraph of G induced by V(Tv).

The weak closure of a rooted tree T is the graph G with vertex set V(T), where two vertices
v,w ∈V(T) are adjacent in G whenever v is a leaf of T and w is an ancestor of v in T. As illustrated
in Figure 2, letW〈h, k〉 be the weak closure of the complete k-ary tree of height h.

Note thatW〈h, k〉 is a proper subgraph of C〈h, k〉 for h� 3. On the other hand, Norin et al. [19]
showed that W〈h, k〉 contains C〈h, k− 1〉 as a minor for all h, k� 2. Therefore, Theorem 1 is an
immediate consequence of the following lemma.

https://doi.org/10.1017/S0963548322000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000165


126 S. Norin, A. Scott and D. R. Wood

Lemma 8. For all d, k, h ∈N there exists c= c(d, k, h) ∈N such that for every graph Gwith treedepth
at most d, either G contains a W〈h, k〉-minor or G is (h− 1)-colourable with clustering c.

Proof. Throughout this proof, d, k and h are fixed, and we make no attempt to optimise c.

We may assume that G is connected. So G is a subgraph of the closure of some rooted tree
of depth at most d. Choose a tree T of depth at most d rooted at some vertex r, such that G
is a subgraph of the closure of T, and subject to this,

∑
v∈V(T) distT(v, r) is minimal. Suppose

that G[Tv] is disconnected for some vertex v in T. Choose such a vertex v at maximum distance
from r. Since G is connected, v �= r. By the choice of v, for each child w of v, the subgraph G[Tw]
is connected. Thus, for some child w of v, there is no edge in G joining v and G[Tw]. Let u be the
parent of v. Let T′ be obtained from T by deleting the edge vw and adding the edge uw, so that
w is a child of u in T′. Note that G is a subgraph of the closure of T′ (since v has no neighbour
in G[Tw]). Moreover, distT′(x, r)= distT(x, r)− 1 for every vertex x ∈V(Tw), and distT′(y, r)=
distT(y, r) for every vertex y ∈V(T) \V(Tw). Hence,

∑
v∈V(T′) distT′(v, r)<

∑
v∈V(T) distT(v, r),

which contradicts our choice of T. Therefore, G[Tv] is connected for every vertex v of T.
Consider each vertex v ∈V(T). Define the level �(v) := distT(r, v) ∈ [0, d − 1]. Let T+

v be the
subtree of T consisting of Tv plus the vr-path in T, and let G[T+

v ] be the subgraph of G induced
by V(T+

v ). For a subtree X of T rooted at vertex v, define the level �(X) := �(v).
A ranked graph (for fixed d) is a triple (H, L,� ) where:

• H is a graph,
• L :V(H)→ [0, d − 1] is a function,
• � is a partial order on V(H) such that L(v)< L(w) whenever v≺w.

Here and throughout this proof, v≺w means that v�w and v �=w. Up to isomorphism, the
number of ranked graphs on n vertices is at most 2(

n
2) dn 3(

n
2). For a vertex v of T, a ranked graph

(H, L,� ) is said to be contained in G[T+
v ] if there is an isomorphism φ fromH to some subgraph

of G[T+
v ] such that:

(A) for each vertex v ∈V(H) we have L(v)= �(φ(v)), and
(B) for all distinct vertices v,w ∈V(H) we have that v≺w if and only if φ(v) is an ancestor of

φ(w) in T.

Say (H, L,� ) is a ranked graph and i ∈ [0, d − 1]. Below we define the i-splice of (H, L,� ) to
be a particular ranked graph (H′, L′,�′), which (intuitively speaking) is obtained from (H, L,� )
by copying k times the subgraph of H induced by the vertices v with L(v)> i. Formally, let

V(H′) := {(v, 0) : v ∈V(H), L(v) ∈ [0, i]} ∪
{(v, j) : v ∈V(H), L(v) ∈ [i+ 1, d], j ∈ [1, k]}.

E(H′) := {(v, 0)(w, 0) : vw ∈ E(H), L(v) ∈ [0, i], L(w) ∈ [0, i]} ∪
{(v, 0)(w, j) : vw ∈ E(H), L(v) ∈ [0, i], L(w) ∈ [i+ 1, d], j ∈ [1, k]} ∪
{(v, j)(w, j) : vw ∈ E(H), L(v) ∈ [i+ 1, d], L(w) ∈ [i+ 1, d], j ∈ [1, k]}.

Define L′((v, j)) := L(v) for every vertex (v, j) ∈V(H′). Now define the following partial order
�′ on V(H′):

• (v, j)�′(v, j) for all (v, j) ∈V(H′);
• if v≺w and L(v), L(w) ∈ [0, i], then (v, 0)≺ ′(w, 0);
• if v≺w and L(v) ∈ [0, i] and L(w) ∈ [i+ 1, d], then (v, 0)≺ ′(w, j) for all j ∈ [1, k]; and
• if v≺w and L(v), L(w) ∈ [i+ 1, d], then (v, j)≺ ′(w, j) for all j ∈ [1, k].
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Note that if (v, a)≺ ′(w, b), then a� b and v≺w (implying (L(v)< L(w)). It follows that≺ ′ is a
partial order on V(H′) such that L′((v, a))< L′((w, b)) whenever (v, a)≺ ′(w, b). Thus, (H′, L′,�′)
is a ranked graph.

For � ∈ [0, d − 1], let
N� := (d + 1)(h− 1)(k+ 1)d−1−�.

For each vertex v of T, define the profile of v to be the set of all ranked graphs (H, L,� ) con-
tained in G[T+

v ] such that |V(H)|�N�(v). Note that if v is a descendant of u, then the profile of v
is a subset of the profile of u. For � ∈ [0, d − 1], if N =N� then let

M� := 22(
N
2 ) dN 3(

N
2 ) .

Then there are at mostM� possible profiles of a vertex at level �.
We now partition V(T) into subtrees. Each subtree is called a group. (At the end of the proof,

vertices in a single group will be assigned the same colour.) We assign vertices to groups in non-
increasing order of their distance from the root. Initialise this process by placing each leaf v of T
into a singleton group. We now show how to determine the group of a non-leaf vertex. Let v be
a vertex not assigned to a group at maximum distance from r. So each child of v is assigned to
a group. Let Yv be the set of children y of v, such that the number of children of v that have the
same profile as y is in the range [1, k− 1]. If Yv = ∅ start a new singleton group {v}. If Yv �= ∅ then
merge all the groups rooted at vertices in Yv into one group including v. This defines our partition
of V(T) into groups. Each group X is rooted at the vertex in X closest to r in T. A group Y is above
a distinct group X if the root of Y is on the path in T from the root of X to r.

The next claim is the key to the remainder of the proof.

Claim 1. Let uv ∈ E(T) where u is the parent of v, and u is in a different group to v. Then for every
ranked graph (H, L,� ) in the profile of v, the �(u)-splice of (H, L,� ) is in the profile of u.

Proof. Since (H, L,� ) is in the profile of v, there is an isomorphism φ from H to some subgraph
of G[T+

v ] such that for each vertex x ∈V(H) we have L(x)= �(φ(x)), and for all distinct vertices
x, y ∈V(H) we have that x≺ y if and only if φ(x) is an ancestor of φ(y) in T.

Since u and v are in different groups, there are k children y1, . . . , yk of u (one of which is v)
such that the profiles of y1, . . . , yk are equal. Thus, (H, L,� ) is in the profile of each of y1, . . . , yk.
That is, for each j ∈ [1, k], there is an isomorphism φj from H to some subgraph of G[T+

yj ] such
that for each vertex x ∈V(H) we have L(x)= �(φj(x)), and for all distinct vertices x, y ∈V(H) we
have that x≺ y if and only if φj(x) is an ancestor of φj(y) in T.

Let (H′, L′,�′) be the �(u)-splice of (H, L,� ). We now define a function φ′ from
V(H′) to V(G[T+

u ]). For each vertex (x, 0) of H′ (thus with x ∈V(H) and L(x) ∈ [0, �(u)]),
define φ′((x, 0)) := φ(x). For every other vertex (x, j) of H′ (thus with x ∈V(H) and
L(x) ∈ [�(u)+ 1, d − 1] and j ∈ [1, k]), define φ′((x, j)) := φj(x).

We now show that φ′ is an isomorphism from H′ to a subgraph of G[T+
u ]. Consider an

edge (x, a)(y, b) of H′. Thus, xy ∈ E(H). It suffices to show that φ′((x, a))φ′((y, b)) ∈ E(G[T+
u ]).

First suppose that a= b= 0. So L(x) ∈ [0, �(u)] and L(y) ∈ [0, �(u)]. Thus φ′((x, a))= φ(x) and
φ′((y, b))= φ(y). Since φ is an isomorphism to a subgraph of G[T+

v ], we have φ(x)φ(y) ∈
E(G[T+

v ]), which is a subgraph of G[T+
u ]. Hence, φ′((x, a))φ′((y, b)) ∈ E(G[T+

u ]), as desired. Now
suppose that a= 0 and b ∈ [1, k]. Thus, φ′((x, a))= φ(x) and φ′((y, b))= φb(y). Moreover, both
�(φ(x)) and �(φb(x)) equal L(x) ∈ [0, �(u)]. There is only vertex z in T+

v with �(z) equal to a spe-
cific number in [0, �(u)]. Thus, φ′((x, a))= φ(x)= φb(x) (= z). Since φb is an isomorphism to
a subgraph of G[T+

yb], we have φb(x)φb(y) ∈ E(G[T+
yb]), which is a subgraph of G[T+

u ]. Hence,
φ′((x, a))φ′((y, b)) ∈ E(G[T+

u ]), as desired. Finally, suppose that a= b ∈ [1, k]. Thus, φ′((x, a))=
φa(x) and φ′((y, b))= φb(y)= φa(y). Since φa is an isomorphism to a subgraph of G[T+

ya], we have
φa(x)φa(y) ∈ E(G[T+

ya]), which is a subgraph of G[T+
u ]. Hence, φ′((x, a))φ′((y, b)) ∈ E(G[T+

u ]), as
desired. This shows that φ′ is an isomorphism from H′ to a subgraph of G[T+

u ].
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We now verify property (A) for (H′, L′,�′). For each vertex (x, 0) of H′ (thus with x ∈
V(H) and L(x) ∈ [0, �(u)]) we have L′((x, 0))= L(x)= �(φ(x))= �(φ′((x, 0))), as desired. For
every other vertex (x, j) of H′ (thus with x ∈V(H) and L(x) ∈ [�(u)+ 1, d − 1] and j ∈ [1, k])
we have L′((x, j))= L(x)= �(φj(x))= �(φ′((x, j))), as desired. Hence, property (A) is satisfied for
(H′, L′,�′).

We now verify property (B) for (H′, L′,�′). Consider distinct vertices (x, a), (y, b) ∈V(H′).
First suppose that a= 0 and b= 0. Then (x, a)≺ ′(y, b) if and only if x≺ y if and only if φ(x)
is an ancestor of φ(y) in T if and only if φ′((x, a)) is an ancestor of φ′((y, b)) in T, as desired. Now
suppose that a= 0 and b ∈ [1, k]. Then (x, a)≺ ′(y, b) if and only if x≺ y if and only if φ(x) is an
ancestor of φb(y) in T if and only if φ′((x, a)) is an ancestor of φ′((y, b)) in T, as desired. Now sup-
pose that a= b ∈ [1, k]. Then (x, a)≺ ′(y, b) if and only if x≺ y if and only if φa(x) is an ancestor
of φb(y) in T if and only if φ′((x, a)) is an ancestor of φ′((y, b)) in T, as desired. Finally, suppose
that a, b ∈ [1, k] and a �= b. Then (x, a) and (y, b) are incomparable under ≺ ′, and φ′((x, a)) and
φ′((y, b)) in T are unrelated in T, as desired. Hence, property (B) is satisfied for (H′, L′,�′).

So φ′ is an isomorphism from H′ to a subgraph of G[T+
u ] satisfying properties (A) and (B).

Thus (H′, L′,�′) is contained in G[T+
u ], as desired. Since (H, L,� ) is in the profile of v, we have

|V(H)|� (d + 1)(h− 1)(k+ 1)h−�(v). Since |V(H′)|� (k+ 1)|V(H)| and �(u)= �(v)− 1, we have
|V(H′)|� (d + 1)(h− 1)(k+ 1)h+1−�(v) = (d + 1)(h− 1)(k+ 1)h−�(u). Thus, (H′, L′,�′) is in the
profile of u.

The proof now divides into two cases. If some group X0 is adjacent in G to at least h− 1 other
groups above X0, then we show that G contains W〈h, k〉 as a minor. Otherwise, every group
X is adjacent in G to at most h− 2 other groups above X, in which case we show that G is
(h− 1)-colourable with bounded clustering.

Finding the minor
Suppose that some group X0 is adjacent in G to at least h− 1 other groups X1, . . . , Xh−1 above

X0. We now show that G containsW〈h, k〉 as a minor; refer to Figure 3. For i ∈ [1, h− 1], since Xi
is above X0, the root vi of Xi is on the v0r-path in T. Without loss of generality, v0, v1, . . . , vh−1
appear in this order on the v0r-path in T. For i ∈ [1, h− 1], let wi be a vertex in Xi adjacent to
some vertex zi in X0; since G is a subgraph of the closure of T, wi is on the v0r-path in T. For
i ∈ [0, h− 2], let ui be the parent of vi in T (which exists since vh−2 �= r). So ui is not in Xi (but
may be in Xi+1). Note that v0, u0,w1, v1, u1, . . . ,wh−2, vh−2, uh−2,wh−1, vh−1 appear in this order
on the v0r-path in T, where v0, v1, . . . , vh−1 are distinct (since they are in distinct groups).

Let Pj be the zjr-path in T for j ∈ [1, h− 1]. Let H0 be the graph with V(H0) := V(P1 ∪
. . . ∪ Ph−1) and E(H0) := {zjwj : j ∈ [1, h− 1]}. Define the function L0 :V(H0)→ [0, d − 1] by
L0(x) := �(x) for each x ∈V(H0). Define the partial order �0 on V(H0), where x≺0 y if and only
if x is ancestor of y in T. Thus, (H0, L0,�0 ) is a ranked graph. By construction, (H0, L0,�0) is
contained in G[T+

v0 ]. Since H0 has less than (d + 1)(h− 1) vertices, H0 is in the profile of v0. For
i= 0, 1, . . . , h− 2, let (Hi+1, Li+1,≺i+1 ) be the �(ui)-splice of (Hi, Li,≺i).

By induction on i, using Claim 1 at each step and since G[T+
ui ]⊆G[T+

vi+1], we conclude
that for each i ∈ [0, h− 1], the ranked graph (Hi, Li,�i ) is in the profile of vi. In particular,
(Hh−1, Lh−1,≺h−1 ) is in the profile of vh−1, and Hh−1 is isomorphic to a subgraph of G. Note
that each vertex of Hh−1 is of the form ((( . . . (x, d1), d2), . . . ), dh−1) for some x ∈V(H0) and
d1, . . . , dh−1 ∈ [0, k]. For brevity, call such a vertex x〈d1, . . . , dh−1〉. Note that if x=wj for some
j ∈ [1, h− 1], then d1 = . . . = dj = 0 (since wj is above ui whenever i< j, and (Hi+1, Li+1,≺i+1) is
the �(ui)-splice of (Hi, Li,�i)).

For x ∈V(H0), let 	x be the set of vertices x〈d1, . . . , dh−1〉 in Hh−1. By construction, no two
vertices in 	x are comparable under �h−1. Therefore, by property (B), V(Ta)∩V(Tb)= ∅ for all
distinct a, b ∈ 	x. In particular, V(Ta)∩V(Tb)= ∅ for all distinct a, b ∈ 	v0 . As proved above,
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Figure 3. Construction of aW〈4, k〉minor (where ui might be in Xi+1).

G[Ta] is connected for each a ∈V(T). Let G′ be the graph obtained from G by contracting G[Ta]
into a single vertex α〈d1, . . . , dh−1〉, for each a= v0〈d1, . . . , dh−1〉 ∈ 	v0 . So G′ is a minor of G.

Let U be the tree with vertex set

{〈d1, . . . , dh−1〉 : ∃j ∈ [0, h− 1] d1 = . . . = dj = 0 and dj+1, . . . , dh−1 ∈ [1, k]},
where the parent of (0, . . . , 0, dj+1, dj+2, . . . , dh−1) is (0, . . . , 0, dj+2, . . . , dh−1). Then U is iso-
morphic to the complete k-tree of height h rooted at 〈0, . . . , 0〉. We now show that the weak clo-
sure of U is a subgraph of G′, where each vertex 〈0, . . . , 0, dj+1, . . . , dh−1〉 of U with j ∈ [1, h− 1]
is mapped to vertex wj〈0, . . . , 0, dj+1, . . . , dh−1〉 of G′, and each other vertex 〈d1, . . . , dh−1〉 of
U is mapped to α〈d1, . . . , dh−1〉 of G′. For all d1, . . . , dh−1 ∈ [1, k] and j ∈ [1, h− 1] the ver-
tex zj〈d1, . . . , dh−1〉 of G is contracted into the vertex α〈d1, . . . , dh−1〉 of G′. By construction,
zj〈d1, . . . , dh−1〉 is adjacent to wj〈0, . . . , 0, dj+1, . . . , dh−1〉 in G. So α〈d1, . . . , dh−1〉 is adjacent
to wj〈0, . . . , 0, dj+1, . . . , dh−1〉 in G′. This implies that the weak closure of U (that is, W〈h, k〉) is
isomorphic to a subgraph of G’, and is therefore a minor of G.

Finding the colouring
Now assume that every group X is adjacent in G to at most h− 2 other groups above X.

Then (h− 1)-colour the groups in order of distance from the root, such that every group X is
assigned a colour different from the colours assigned to the neighbouring groups above X. Assign
each vertex within a group the same colour as that assigned to the whole group. This defines an
(h− 1)-colouring of G.
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Consider the function s : [0, d − 1]→N recursively defined by

s(�) :=
{
1 if � = d − 1
(k− 1) ·M�+1 · s(� + 1) if � ∈ [0, d − 2].

Then every group at level � has at most s(�) vertices. By construction, our (h− 1)-colouring of
G has clustering s(0), which is bounded by a function of d, k and h, as desired.

3. Pathwidth
The following lemma of independent interest is the key to proving Theorem 2. Note that Eppstein
[24] independently discovered the same result (with a slightly weaker bound on the path length).
The decomposition method in the proof has been previously used, for example, by Dujmović,
Joret, Kozik, and Wood [25, Lemma 17].

Lemma 9. Every graph with pathwidth at most w has a vertex 2-colouring such that each
monochromatic path has at most (w+ 3)w vertices.

Proof. We proceed by induction on w� 1. Every graph with pathwidth 1 is a caterpillar, and is
thus properly 2-colourable. Now assume w� 2 and the result holds for graphs with pathwidth at
most w− 1. Let G be a graph with pathwidth at most w. Let (B1, . . . , Bn) be a path-decomposition
of G with width at most w. Let t1, t2, . . . , tm be a maximal sequence such that t1 = 1 and for each
i� 2, ti is the minimum integer such that Bti ∩ Bti−1 = ∅. For odd i, colour every vertex in Bti ‘red’.
For even i, colour every vertex in Bti ‘blue’. Since Bti ∩ Bti−1 = ∅ for i� 2, no vertex is coloured
twice. Let G′ be the subgraph of G induced by the uncoloured vertices. By the choice of Bti , for
i� 2 each bag Bj with j ∈ [ti−1 + 1, ti − 1] intersects Bti−1 . Thus, (B1 ∩V(G′), . . . , Bn ∩V(G′)) is
a path-decomposition of G′ of width at most w− 1. By induction, G′ has a vertex 2-colouring
such that each monochromatic path has at most (w+ 3)w−1 vertices. Since Bti ∪ Bti+2 separates
Bti+1 ∪ . . . ∪ Bti+2−1 from the rest of G, each monochromatic component of G is contained in
Bti+1 ∪ . . . ∪ Bti+2−1 for some i ∈ [0, n− 2]. Consider a monochromatic path P in G[Bti+1 ∪ . . . ∪
Bti+2−1]. Then P has at most w+ 1 vertices in Bti+1 . Note that P − Bti+1 is contained in G′. Thus,
P consists of up to w+ 2 monochromatic subpaths in G′ plus w+ 1 vertices in Bti+1 . Hence, P has
at most (w+ 2)(w+ 3)w−1 + (w+ 1)< (w+ 3)w vertices.

Nešetřil and Ossona de Mendez [23] showed that if a graph G contains no path on k vertices,
then td(G)< k (since G is a subgraph of the closure of a DFS spanning tree with height at most k).
Thus Lemma 9 implies:

Corollary 10. Every graph with pathwidth at most w has a vertex 2-colouring such that each
monochromatic component has treedepth at most (w+ 3)w.

Proof of Theorem 2. Let G be aminor-closed class of graphs, each with pathwidth at mostw. Let h
be the minimum integer such that C〈h, k〉 �∈ G for some k ∈N. Consider G ∈ G. Thus,W〈h, k+ 1〉
is not a minor ofG (sinceC〈h, k〉 is a minor ofW〈h, k+ 1〉, as noted above). By Corollary 10,G has
a vertex 2-colouring such that eachmonochromatic componentH ofG has treedepth at most (w+
3)w. Thus, W〈h, k+ 1〉 is not a minor of H. By Lemma 8, H is (h− 1)-colourable with clustering
c((w+ 3)w, k+ 1, h). Taking a product colouring, G is (2h− 2)-colourable with clustering c((w+
3)w, k+ 1, h). Hence, χ�(G)� χ�(G)� 2h− 2. �

Note that Lemma 9 cannot be extended to the setting of bounded tree-width graphs: Esperet
and Joret (see [[14], Theorem 4.1]) proved that for all positive integersw and d there exists a graph
G with tree-width at most w such that for every w-colouring of G there exists a monochromatic
component ofGwith diameter greater than d (and thus with a monochromatic path onmore than
d vertices, and thus with treedepth at least log2 d).
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4. Fractional colouring
This section proves Theorem 6. The starting point is the following key result of Dvořák and Sereni
[26].2

Theorem 11 ([26]). For every proper minor-closed class G and every δ > 0 there exists d ∈N

satisfying the following. For every G ∈ G there exist s ∈N and X1, X2, . . . , Xs ⊆V(G) such that:

• td(G[Xi])� d, and
• every v ∈V(G) belongs to at least (1− δ)s of these sets.

We now prove a lower bound on the fractional defective chromatic number of the closure of
complete trees of given height.

Lemma 12. Let Ch := {C〈h, k〉}k∈N. Then χ
f
�(Ch)� h.

Proof. We show by induction on h that if C〈h, k〉 is fractionally t-colourable with defect d, then
t� h− (h− 1)d/k. This clearly implies the lemma. The base case h= 1 is trivial.

For the induction step, suppose that G := C〈h, k〉 is fractionally t-colourable with defect d.
Thus, there exist Y1, Y2, . . . , Ys ⊆V(G) and α1, . . . , αs ∈ [0, 1] such that:

• every component of G[Yi] has maximum degree at most d,
•

∑s
i=1 αi � t, and

•
∑

i :v∈Yi αi � 1 for every v ∈V(G).

Let r be the vertex of G corresponding to the root of the complete k-ary tree and letH1, . . . ,Hk
be the components of G− r. Then each Hi is isomorphic to C〈h− 1, k〉. Let J0 := {j : r ∈ Yj}, and
let Ji := {j : Yj ∩V(Hi) �= ∅} for i ∈ [1, k]. Denote

∑
j∈Ji αj by α(Ji) for brevity. Thus, α(J0)� 1. For

i ∈ [1, k], the subgraphHi is α(Ji)-colourable with defect d, and thus α(Ji)� h− 1− (h− 2)d/k by
the induction hypothesis. Thus,

(k− d)α(J0)+
k∑

i=1
α(Ji)� (k− d)+ k(h− 1)− (h− 2)d = kh− (h− 1)d.

If j ∈ J0 then Yj intersects at most d of H1, . . . ,Hk (since G[Yj] has maximum degree at most
d). Thus, every αj appears with coefficient at most k in the left side of the above inequality,
implying

(k− d)α(J0)+
k∑

i=1
α(Ji)� k

s∑
i=1

αi � kt.

Combining the above inequalities yields the claimed bound on t.

Proof of Theorem 6. By Lemma 12,

χ
f
� (G)� χ

f
�(G)� tcn(G)− 1.

It remains to show that χ f
� (G)� tcn(G)− 1. Equivalently, we need to show that for all h, k ∈N

and ε > 0, if C〈h, k〉 �∈ G then there exists c such that every graph in G is fractionally (h− 1+
ε)-colourable with clustering c. This is trivial for h= 1, and so we assume h� 2.

2Dvořák and Sereni [26] expressed their result in the terms of “treedepth fragility”. The sentence “proper minor-closed
classes are fractionally treedepth-fragile” after Theorem 31 in [26] is equivalent to Theorem 11. Informally speaking,
Theorem 11 shows that the fractional “treedepth” chromatic number of every minor-closed class equals 1.
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Let d ∈N satisfy the conclusion of Theorem 11 for the class G and δ = 1− 1
1+ε/(h−1) . Choose

c= c(d, k+ 1, h) to satisfy the conclusion of Lemma 8. We show that c is as desired.
Consider G ∈ G. By the choice of d there exists s ∈N and X1, X2, . . . , Xs ⊆V(G) such that:

• td(G[Xi])� d, and
• every v ∈V(G) belongs to at least (1− δ)s of these sets.

Since C〈h, k〉 �∈ G, we haveW〈h, k+ 1〉 �∈ G, and by the choice of c, for each i ∈ [1, s] there exists
a partition (Y1

i , Y2
i , . . . , Y

h−1
i ) of Xi such that every component of G[Yj

i ] has at most c vertices.
Every vertex of G belongs to at least (1− δ)s sets Yj

i where i ∈ [1, s] and j ∈ [1, h− 1]. Considering
these sets with equal coefficients α

j
i := 1

(1−δ)s , we conclude that G is fractionally h−1
1−δ

-colourable
with clustering c, as desired (since h−1

1−δ
= h− 1+ ε). �
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[7] Dvořák, Z. and Norin, S. (2017) Islands inminor-closed classes. I. Bounded treewidth and separators, arXiv: 1710.02727.
[8] Edwards, K., Kang, D. Y., Kim, J., Oum, S. and Seymour, P. (2015) A relative of Hadwiger’s conjecture. SIAM J. Disc.

Math. 29(4) 2385–2388.
[9] Esperet, L. and Joret, G. (2014) Colouring planar graphs with three colours and no large monochromatic components.

Combin., Probab. Comput. 23(4) 551–570.
[10] Haxell, P., Szabó, T. and Tardos, G. (2003) Bounded size components—partitions and transversals. J. Combin. Theory

Ser. B 88(2) 281–297.
[11] Kang, D. Y. and Oum, S. (2019) Improper coloring of graphs with no odd clique minor. Combin. Probab. Comput. 28(5)

740–754.
[12] Kawarabayashi, K. (2008) A weakening of the odd Hadwiger’s conjecture. Combin. Probab. Comput. 17(6) 815–821.
[13] Kawarabayashi, K. and Mohar, B. (2007) A relaxed Hadwiger’s conjecture for list colorings. J. Combin. Theory Ser. B

97(4) 647–651.
[14] Liu, C.-H. and Oum, S. (2018) Partitioning H-minor free graphs into three subgraphs with no large components. J.

Combin. Theory Ser. B 128 114–133.
[15] Liu, C.-H. andWood, D. R. (2019a) Clustered coloring of graphs excluding a subgraph and a minor , arXiv: 1905.09495.
[16] Liu, C.-H. and Wood, D. R. (2019b) Clustered graph coloring and layered treewidth, arXiv: 1905.08969.
[17] Liu, C.-H. and Wood, D. R. (2022) Clustered variants of Hajós’ conjecture. J. Combin. Theory, Ser. B 152(2) 27–54.
[18] Mohar, B., Reed, B. and Wood, D. R. (2017) Colourings with bounded monochromatic components in graphs of given

circumference. Australas. J. Combin. 69(2) 236–242.
[19] Norin, S., Scott, A., Seymour, P. and Wood, D. R. (2019) Clustered colouring in minor-closed classes. Combinatorica

39(6) 1387–1412.
[20] Ossona de Mendez, P., Oum, S. and Wood, D. R. (2019) Defective colouring of graphs excluding a subgraph or minor.

Combinatorica 39(2) 377–410.
[21] van den Heuvel, J. and Wood, D. R. (2018) Improper colourings inspired by Hadwiger’s conjecture. J. London Math.

Soc. 98(1) 129–148, arXiv: 1704.06536.
[22] Wood, D. R. (2018) Defective and clustered graph colouring. Electron. J. Combin., DS23, Version 1.
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