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Abstract

The ordinary string class is an obstruction to lift the structure group LSpin(n) of a loop group bundle
LQ —>• LM to the universal central extension of LSpin(n) by the circle. The vanishing problem of the
ordinary string class and generalized string classes are considered from the viewpoint of the ring structure
of the cohomology H*(M; R).

1991 Mathematics subject classification (Amer. Math. Soc): primary 57R20; secondary 55P35.

1. Introduction

Let M be a simply connected finite dimensional manifold. Suppose that £ : P -> M
is an SO(n)-bundle. To define the Dirac operator, we need a lifting of the structure
group SO(n) of £ to Spin(n). The bundle Q -> M obtained from such a lifting
is called a spin structure of £. It is well-known that a spin structure exists if and
only if the second Stiefel-Whitney class w2(P) e H2(M; 1/2) vanishes. Let LM
denote the space of smooth loops on M. Killingback in [4] has generalized the above
conception from the viewpoint of objects on the loop space LM and has shown that
the generalization can be understood in terms of physical objects. In particular, the
generalization of the Dirac operator in string theory has been given. When the frame
bundle of F -> M has a spin structure F -> M, the generalized operator is defined
under the condition that the structure group LSpin(n) of the bundle LF -> LM lifts
to a central extension of LSpin(n) by the circle. In [4], the obstruction to lifting
the structure group LSpin(n) of LQ —> LM to a central extension of LSpin(n) has
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been also considered, where Q —> M is a spin structure for §. The obstruction has
been defined by applying sheaf cohomology theory. In [5], McLaughlin has proved
that £ has a spin structure if and only if the structure group LSO(n) of the principal
bundle L% : LP —> LM is reducible to the identity component ([5, Proposition 2.1]).
Moreover, he has also clarified results of Killingback by defining the string class
Li(Q) G / / 3 (LM; Z). The class is the obstruction, which is denned without using
sheaf cohomology theory, to lifting the structure group LSpin(n) of LQ —> LM to
LSpin(n), where T —»• LSpin(n) —»• LSpin(n) is the universal central extension by
the circle and n > 5. One of the main theorems in [5] is as follows.

THEOREM A. ([5, Theorem 3.1.]) Let M be a simply-connected, finite-dimensional
manifold. The string class n(Q) vanishes if p\(i~)/2 vanishes, where P\{%) denotes
the first Pontrjagin class of%. The converse is also true ifn2(M) = 0.

The question arises whether the converse holds when the manifold M is not 2-
connected, in particular, when M is a complex Grassmann manifold. We will prove
the following.

THEOREM 1. Suppose that H4(M; T) is torsion free and dim H2(M; K) < 1. Then
vanishes if the string class li{Q) vanishes.

Let G be a linear Lie group and f a G-bundle over M. In [1], Asada has defined
the /7th string class CP(L%) of the LG-bundle L§ which belongs to the cohomology
group H2p+1(LM; Q. (Practically speaking, the higher string classes are defined for
any element of the first non-abelian de Rham set of a manifold with respect to the Lie
algebra of G ([1, p. 11]).) Moreover it has been shown that the higher string classes
have property similar to that of the ordinary string class /z. The property is stated as
follows.

THEOREM B. ([I, Theorem 3.3.];. For any G-bundle £ over M,

Cp(L^) = -(2nV^l)p+ipl f •ev*(Ch'+1(f)),
Js<

where Chp+1(£) e H2(-p+l)(M; C) is the p + lth Chern character of%, ev : Si x
LM -»• M is the evaluation map and / s , : H*(Sl x LM; C) ->• H*~l{LM\ C) is the
integration along Sl.

Thus we see that the pth string class Cp(Li-) vanishes if Chp+1(§) = 0. In order
to obtain a necessary and sufficient condition on the vanishing of string classes, we
assume that
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(1.1) //* (M; R) is isomorphic to a GCI-algebra below degree 2s for some integer
s > 0. To be exact,

H*(M; R^2s = {A(y , , . . . , y,) ® K[xu ..., xn]/(Pl,... , pm)}^

as an algebra, where p\, ... , pm are decomposable elements in the polynomial algebra
R[xu . . . , xn] with the property that each p, is a non-zero divisor in the quotient of
the polynomial algebra by the ideal generated by px,... , p,_i-

Let A be the algebra A(yu ..., y:) ® R[x 1 ; . . . , xn]. For a subset S of A, (5)
will denote the ideal of A generated by S. We will obtain theorems on the vanishing
problem of higher string classes.

THEOREM 2. Suppose that H*(M; i&) is a tensor product of truncated polyno-
mial algebras and exterior algebras. Then, for any p, CP(L%) = 0 if and only if

= 0 .

THEOREM 3. Assume that p < s — 1 and (1.1) holds. Then the pth string class
CP(L^) vanishes if and only ifd Chp+1 (£)/9z belongs to the ideal (dpj/dz, Pj,; 1 <
y < m) for any z e {xu ... , xn, yu ... ,y,}.

We prove Theorems 1, 2 and 3 by reducing to a problem of the injectivity of some
derivation from H*(M; R) to the Hochschild homology of a minimal model of the de
Rham complex Q (M). Moreover, Theorem 3 will be proved by considering when the
image under the derivation of the Chern character is zero.

The author would like to thank Professor A. Asada for helpful conversation.

2. Reduction to an algebraic problem

From the argument of the proof of [5, Theorem 3.1] and the assumption that
H4(M; Z) is torsion free, we see that, in order to prove Theorem 1, it suffices to
consider the injectivity of the map / s , • ev* to H3(LM; K) from H4(M; K). Since the
tensor product of real cohomology and C preserves injectivity of a map between real
cohomologies, by Theorem B, it follows that the proof of Theorem 2 can be reduced to
a problem of the injectivity of the map / s , • ev* between real cohomologies. Moreover,
the assertion of Proposition 2.1 stated below enables us to reduce the proof of Theorems
1 and 2 to that of injectivity of the derivation ft* [2, 1.4.; p.55]. By Theorem B and
Proposition 2.1, the problem of the vanishing of Cp(Li-) will be changed into that of
/J*(Chp+1(£)). By making use of this fact, we prove Theorem 3. Before we describe
our key proposition, we recall the definitions of the chain complex [2, 1.4] which
is used to calculate Hochschild homology explicitly, and the iterated integral map
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[3]. Let A V be a free algebra generated by a graded vector space V = ® n > 0 Vn. We
define a vector space V by demanding that Vn-\ = Vn. For any free differential graded
algebra (free DGA) (A V, d), we define the free DGA (A(V + V), 8) as follows :

(i) p is the unique derivation of degree —1 extending the identity map V —> V,
and P(V) = 0. We denote P(v) by v for any v e V.

(ii) <5 is the unique derivation of degree + 1 which satisfies that 8\v = d and
80 + 08 = 0.

In [2], 0 has been denned as the derivation of degree +1 for a DGA endowed with
a differential of degree — 1. However, since our DGA has its differential of degree
+1, we define j5 as the derivation of degree — 1.

Secondly, we recall the definition of the chain map a : N(fl(Af)) —> Q(LM)
which is called the iterated integral map ([3]), where £2(M) and £l(LM) are the
de Rham complexes of the manifolds X and LX respectively, and N(£2(M)) is the
Hochschild complex of £2(M). Let <p, (t e T) be the circle action on LX, generated
by the vector field T, and i the interior product with T. Let e, : LX —>• X denote
the evaluation map at time t. The iterated integral map a : N(£2(X)) —> Q(LX) is
defined by

a(coo,... ,a>k)= I «o(O) A t<wi(*i) A • • • A Lcok(jtk)dtx • • • dt= f

w h e r e A k i s t h e / t - s i m p l e x {(tu ... , t k ) e R k \ O < t ] < - - - < t k < l ] a n d

co(t) = e*co. Note that the iterated integral map induces an isomorphism of algebras
on cohomology ([3, Theorem 3.1, Proposition 4.1]).

PROPOSITION 2.1. (i) Let H*(N(Q(M)), b) be the Hochschild homology ([3]) of
the de Rham complex of M. Then the map a : H*(M; K) - • H*~l(M(Q(M)), b)
defined by x i-> (1, x) is a derivation of degree —1. That is, a satisfies a(xy) —
(1, JC) • y + (—l)lxlx • ( l , y ) , where • is the product in the Hochschild homology.

(ii) The following diagram is commutative:

f .•ev*
Sl . H*~\LM\

01 \ . / a

H*-l(H(Q(M)),b)

where a is the isomorphism induced from the iterated integral map.
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(iii) Let (p : (A W, 3) —>• (Q(M), d) be a minimal model. We have the following
commutative diagram:

H(<p) a

H*(AW,8) ^ H"(M;K) ,. //*-'(N(tt(M)), b)

= ( HH{<p)

H*~\A{W + W),8) I ^ H*-\H(KW),b)

where the map fi is the unique derivation of degree — 1 defined by fi(x) = xfor any base
x ofW, which is a generator of the minimal model AW, and the map ® which induces
the isomorphism H(@) is defined by &(a0, au ... ,ap) = aop(ai) • • • f5(ap)/p\ ([2,
Theorem 2.4]).

PROOF. By definition of the Hochschild boundary b, we have

b{\,x, y) = -(x, y) - ( - l ^ - ' d , xy) + (-O'l'l-'HW-')^, X).

This fact implies that

in H*(N(Q(M)), b). Therefore we can conclude that a is a derivation. Statement (ii)
follows from the definition of the iterated integral map ([3]). We obtain (iii) from the
definition of 0 .

The assumption (1.1) enables us to construct an explicit minimal model of
below degree 2s — 1.

LEMMA 2.2. Suppose that (1.1) holds. Let AV be the DGA

A(yu... ,y,)®R[xu... , xH] ® A(r,, . . . , xm)

whose differential 3 is defined by x, i->- 0, yj i->- 0 and xk H> pk. Then there exists a
minimal model (AW, 8) ofSl(M) such that AV £ AW and A V-2s~'L = AW-21"1 as
a DGA.
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PROOF. Since H*(M\ K) is aGCI-algebrabelow degree 2s, by [6, Proposition 1.1],
it follows that A V is a minimal model of Q(M) below degree 2s — 1. By extending
the complex A V, we can obtain a minimal model of £2 (M) ([7, §5]).

By Lemma 2.2, we see that (A(V + V), 8) is a sub-DGA of (A(W + W), 8) and that
(A(W + W), 8)-2s~2 is equal to (A(V + V), 8)-2s~2. Therefore we have the inclusion
H*(A(V + V), 8)-2s~l ^ H*(A(W + W), 8)-2s~* and the following commutative
diagrams :

2s P*^2s = H*(M; H*(A(W + W))--2s~x

Srf; k>

inc.

where, for any /, fr is the map defined by x i-> fi(x). Note that the inclusion inc. is
defined since the ideal (0 (p}), pj) is equal to (p,, 5 f/) n A (^-) ® K [ j ; - ] ® K [xt ] ® A (x,•).

From the above argument, the problem of the injectivity of H(/3) can be reduced
to a purely algebraic problem. We prepare to state this problem.

Let F be a commutative algebra which is isomorphic to the algebra A / / below
degree 2s, where A = A(j] , . . . , y:) <g> R[xu .., xn] and / is the ideal generated by
elements p\,... , pm (regularity of the sequence is not assumed) of W\xx,... ,xn].
For any element X e A, [A.], means the sum of the term of X with the element x,.
Let Q(xi) denote an element of A which consists of terms without the element xt.
Suppose that

(2.1) Any element [f kpjdxj], with degree below 2s belongs to the ideal I, where j
means a formal integration and k e A.

(2.2) IfQ{Xi) = Q(Xj) in A/I for any j , then Q{x{) e A(yu ... , y,) modulo I.

The injectivity of 0* is shown from the following lemma.
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LEMMA 2.3. Under the assumptions (2.1) and (2.2), the map

is injective.

The proof of Lemma 2.3 is postponed to the following section.
We describe an example of an algebra which satisfies the conditions (2.1) and (2.2).

EXAMPLE 2.4. Let p, (1 < j < m) be monomials of R[x{,... , xn]. The algebra
F = A / / satisfies the conditions. In fact, it is clear that F satisfies (2.1). We
can choose the element Qix-) whose terms do not include the monomials pj as a
representation of Q(XJ) in F. Suppose that Q{xt) = Q(xj) in F. We see that
Q(x,) — Q(xj) e / . Since all terms of element of / include some pj it follows that
Q(Xj) — Q(Xj) = 0. Thus each term of Q(JC,) does not include the element xjt either.
Thus we can conclude that <2(*,) belongs to A ( j i , . . . ,yi). So Q(xt) = (2(i,) e

3. Proof of Theorems 1,2 and 3

Let 3/3z be the unique derivation defined by z i-> 1 and w i-> 0 if w ^ z, where
z e {x j , . . . , .*„, j j , . . . , yi}. For any element u € A, we will write M SO that the
generators ^ precede ;t, in the each term.

PROOF OF THEOREM 3. Suppose that 3 Chp+1 (§)/3z belongs to (dpj/dz, p,-,; 1 <
j < m) fo r a n y z e {xu • • • , yi, • • •}• S i n c e

•̂ —> 9 M _ ^—\ 3 M

" ^ dxi ~^ 3y ,

for any u e / /*(M; Q £ 2 s , it follows that ^ (Ch p + 1 (^ ) ) = 0, so /3*(Chp+1(^)) = 0.
By Proposition 2.1 (ii), we can conclude that the pth string class CP{L%) vanishes. If
P*(u) = 0 for some element u € H*(M; C) s 2 i , then ^*(M) = 0. By definition of
we have that

(3.1) (/*(/), / ) 9 AGO

Therefore we can write J^i JT*' = E/CE, Yijt)*' + E , ( E ; YaPj)Xi- This implies
that

3 M •r—v dp,

(3.2) ^ 7 = l ^ ^ a ^
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In consequence, the element du/dxt has to belong to the ideal (dpj/dxi, pf, 1 < j <
m) of A. Moreover, from this fact and (3.1), we obtain that £^. du/dy^j e (/6/, / ) .
Hence the element 3M/3J; is in / . Thus we have Theorem 3.

PROOF OF THEOREM 2. It suffices to prove that /63* is a monomorphism. We see
that the algebra H*(M; 1) satisfies the conditions (2.1) and (2.2) from Example 2.4.
Theorem 2 follows from Lemma 2.3.

PROOF OF THEOREM 1. Since M is simply-connected and dim H2(M; K) < 1, it
follows that the algebra H*{M; K) is isomorphic, below degree 4, to the algebra

A(y1,...,y,)®IR[z,Jc1,... ,xn]/(€z2)

as an algebra, deg v;- = 3, deg Xj = 4, deg z = 2 and e = 0 or 1. Therefore H*(M\ R)
satisfies the conditions (1.1), (2.1) and (2.2). We obtain Theorem 1 by Lemma 2.3.

In the case dim H2(M; R) > 2, from Example 2.4 we see that the consequence
of Theorem 1 is true if the relations of degree 4 in H*(M; R) are monomials and
H4(M; T) is torsion free.

PROOF OF LEMMA 2.3. Suppose that /33*(M) = 0. From (3.2), it follows that

u = H \YjPj ~ [ / J^PJ dx>\ + [ / Y'JPJ dx>\

for some Q(Xj). From (2.1), we see that Q(x,) = Q(Xj) in A/ / for any / and
j . By making use of (2.2), we can write u = u\ + u2, where u, e / and
M2 e A(vi,. . . ,yt). From the equality (3.1), we obtain that ^.(3ui/3x,)x, +
T,j(dul/dyj)yj + Y,j(du2/dyj)yj e (fi(I)J). Since terms of an element of (0 ( / ) , / )

include some element x,, it follows that ^,j(du2/dyj)yj = 0. Therefore we can
conclude that u2 = 0 and that w = 0 in A// .

Let Q -> M be a 5p/n(n)-bundle. Finally, we consider the string class of the
induced bundle i*LQ —*• QM by the natural inclusion / : QM —>• LM.

REMARK. We define a string structure for i*LQ -> QM, in a similar fashion to
LQ -*• LM, as a lifting of the structure group to LSpin(n) which is a non-trivial
central extension of LSpin (n) by the circle. In particular, we take notice of the string
structure for i*LQ -> QM which is defined as a lifting of the structure group to
the universal central extension LSpin{n). By considering the Serre exact sequence
for the bundle i*LQ -> QM, we can obtain the obstruction to defining the string
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structure as the transgression image of the generator of H2(LSpin(n); 7L) (see [5,
§3]). Therefore it follows that the obstruction is i*[i(Q), where (i(Q) is the ordinary
string class of Q -> M. For any element x with bar degree 0 in H*(M(Q(M)), b),
we see that o(x) — e*0{x), where a is the iterated integral map and e0 : LM —> M
is the evaluation map at time 0. Therefore, from Proposition 2.1 (i) and (ii), we
can conclude that i*n(Q) vanishes if H3(QM; Z) is torsion free and there is no
indecomposable element of degree 4 in H*(M; IR). In consequence, i*LQ -»• QM
has a string structure under the same assumption. We also see that i*Cp(L%) = 0 if
H*(M\ IR) does not have an indecomposable element with degree 2(p + 1).
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